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Abstract

Predicting the edge weights of a graph is a critical task across
many domains. Some examples include predicting traffic
flow in transportation networks, strength of interactions in
protein-protein networks, and collaboration frequency in co-
authorship networks. Graph Neural Networks have been
very successful in edge-weight prediction tasks. However,
these predictions lack rigorous statistical uncertainty quan-
tification. Recent work has demonstrated the efficacy of con-
formal inference in quantifying the uncertainties of the pre-
dictions made by graph neural networks. However, there has
been limited research in conformal inference for edge-weight
prediction.

A prior work has demonstrated that the powerful in-
ductive bias of the representations learned by deep neural
networks can be leveraged for robust uncertainty quantifi-
cation. In this paper, we extend the traditional conformal
inference paradigm to compute uncertainty estimates in the
latent space exploiting the deep representations learned by
graph neural networks. Specifically, our method (Edge-CP)
computes the non-conformity scores in the latent feature
space of the nodes and leverages the scores for bandwidth
estimation for weighted edge prediction. Experiments on a
wide variety of edge-weighted networks show that Edge-CP
always achieves the pre-defined target marginal coverage and
obtains up to 38.16% shorter bands than the nearest base-
line. Additionally, Edge-CP achieves the best conditional
coverage among all methods.

1 Introduction

Graph Neural Networks (GNN) have a wide variety of
applications in numerous domains such as in traffic-
forecasting [26], analyzing RNA sequences in biological
networks [42], and drug discovery [24]. While GNNs
offer better performance in predicting point estimates
overall, deploying them in high-stakes environments is
challenging as their predictions could be unreliable. Cal-
ibrating GNNs to provide uncertainty estimates of their
predictions is a promising direction to resolve this issue.
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However, GNNs are notoriously under-confident [43],
contrary to other deep-learning frameworks like Con-
volution Neural Networks (CNN), which are generally
over-confident [36], traditional calibration techniques do
not perform well for GNNs [28, 48]. This leads to the
need to design calibration techniques tailored to net-
works and the corresponding encodings by GNN which
are used as predictors. While there has been some re-
search interest in GNN-specific calibration, these are
either computationally expensive or fail to provide sta-
tistical guarantees of the effectiveness of the uncertainty
estimates [12,13,43].

The field of conformal inference, pioneered by [41]
provides prediction regions along with point predictions,
thus providing a notion of model uncertainty. Recently,
there has been some interest in conformal inference for
GNN predictions for both inductive and transductive
settings [6, 14, 45, 46]. However, all of these works only
perform node-level prediction. Although node-level pre-
dictive tasks are generally used in various applications,
edge-level predictions are particularly important in bi-
ological and drug networks. For example, in protein-
protein networks, the interactions unravel the cellular
behavior and its functionality [17]. Similarly, an edge
in a drug–target interaction network indicates that a
drug binds to a target protein [15]. Therefore, uncer-
tainty quantification is equally important for edge-level
tasks.

One naive approach of extending node-level uncer-
tainty quantification for edge-level tasks would trans-
form each graph to its corresponding line-graph [5] and
use the previously developed conformal inference meth-
ods on the transformed graph. However, this approach
has some drawbacks. First, this technique will not scale
to larger graphs where the number of edges is order of
magnitude larger than the number of nodes. Second,
the predictive performance of GNNs can vastly differ
between the original graph and the corresponding line-
graph, thus affecting the uncertainty estimates for their
predictions. This leads to the need for the development
of a conformal inference algorithm tailored to edge pre-
dictions on the original graph itself.

To address the research gaps mentioned above, we

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



propose a conformal inference approach for edge-weight
prediction that operates on the original graph. We as-
sume an encoder-decoder framework as the mean es-
timator, where the encoder can be a GNN that ag-
gregates node information while the decoder performs
edge-weight prediction using the latent embeddings of
the aggregated information of the nodes. We extend
the notion of ‘surrogate features’ [37] to edge-weight
prediction and develop a general non-conformity score
that quantifies uncertainty. This non-conformity score
measures the deviation between the surrogate feature
embeddings and the embeddings produced by the en-
coder in the latent dimension. We then transfer the
heuristic notion of uncertainty in the latent embedding
space to the output space and correspondingly ensure
the general marginal coverage guaranteed by conformal
inference methods. Our contributions can be summa-
rized as follows:

• We present a principled approach to directly apply
conformal inference for uncertainty quantification
for weighted edge prediction using the latent node
representations learned by GNNs.

• We perform extensive experiments on four real-
world datasets, and our proposed approach outper-
forms all the baselines in three out of the 4 datasets
in terms of band efficiency.

• We perform experiments to show that our approach
obtains reasonable conditional coverage, which is
an indicator of the adaptability of the bands to the
nature of every individual sample.

2 Related Work

We discuss the literature related to our present work
here. Prior works can be characterized into the following
categories:

2.1 Uncertainty Quantification in Graph Neu-
ral Networks: Multiple methods perform model-
agonistic risk estimation in Graph Neural Networks
(GNNs) for both classification and regression tasks
[28, 33, 48], while other works leverage the structural
properties of graphs with [13, 43] by exploring un-
derconfidence of GNNs for calibration. [8] interprets
dropout training in deep neural networks as approxi-
mate Bayesian inference within deep Gaussian Processes
while [12,21] identify depth, width, weight decay, batch
normalization and other temperature scaling methods
for calibration. [39, 40] develop and apply a stochastic
centering method for calibration in GNNs.

2.2 Conformal Inference: The distribution-free
nature of the coverage guarantee provided by confor-
mal inference has allowed applications in various do-
mains like model calibration [35], passenger booking
systems [44], computer vision [1,4] and time series fore-
casting [9, 23]. Given a user-specified miscoverage level
(uncertainty level) α ∈ (0, 1), it leverages a set of ‘cali-
bration’ data to output prediction sets/intervals for new
test points that provably include the true outcome with
probability at least 1 − α. Different non-conformity
scores have been proposed by prior works [16,31,32] for
both classification tasks with a recent work proposing a
score in the latent feature space [37]. While exchange-
ability remains an important assumption in standard
conformal inference, works like [3, 9, 23, 38] extend the
standard conformal inference beyond exchangeability in
cases of label or covariate shift or dependent data.

2.3 Conformal Inference in Graph Neural Net-
works: The application of conformal inference to net-
work data has gained popularity recently with the first
application being in the inductive setting [6], which
showed that the non-conformity scores are not ex-
changeable. On the other hand [14, 25, 45] operate
in the transductive setting, where the non-conformity
scores are exchangeable. Both these works utilize the
local neighborhood structure of the graph to improve
effectiveness while obtaining good efficiency. A recent
work [46] builds the notation of node-exchangeability
and edge-exchangeability in growing graphs in the in-
ductive setting and applies non-conformity scores based
on the structure of the graph thus formed at each step.

3 Preliminaries

Let G = (V, E ,X ,Y) be a digraph, where V is a set of
nodes, E is a set of edges, and X = {xv}v∈V is the set
of node attributes, where xv ∈ Rd is a d-dimensional
feature vector for node v ∈ V. Let Y = {yu,v}(u,v)∈E be
the set of edge weights, and yu,v ∈ R is the weight of
an edge eu,v connecting a pair of nodes vu and vv. Our
paper focuses on regression problems, but our theory
and method can be easily extended to classification
problems. To perform point predictions, we are given
a mean estimator µ that predicts the edge weight ŷu,v
given the node embeddings xu and xv that form the
edge.

3.1 Transductive Setting: We focus on the trans-
ductive weighted edge prediction problem with ran-
dom data split. In this setting, we partition the edge
weights into three disjoint sets: training Dtrain =
(V, E ,X ,Ytrain), calibration Dcal = (V, E ,X ,Ycal), and
testing Dtest = (V, E ,X ,Ytest). In particular, during
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Figure 1: Schematic Representation of Edge-CP (best viewed in color): During training, the encoder f(·) learns node
representations while the decoder g(·) concatenates pairs of node embeddings to predict edge weights for the training
labeled edges. During calibration, the weights of f(·) and g(·) are frozen and for each calibration edge, the surrogate
feature is computed by steps 4-8 of Algorithm 1. Then the non-conformity score is represented by a function of the norm
of deviation between the surrogate features and the encoded features of the nodes. The non-conformity scores of the
calibration edges are sorted and Q1−α is computed, which is then sent as the perturbation limit to the band estimator
during testing. The band estimator also takes in the encoded node embeddings of the corresponding test edge and returns
the upper and lower uncertainty bands for each test edge.

training, the model can access V, E ,X , but only the
training weights Ytrain are revealed to the model. Abus-
ing the notation, we use Etrain to denote elements of E
for which the edge weights are in Ytrain. We follow the
same notation throughout the paper. After training, the
calibration data {yu,v}(u,v)∈Ecal

is used to apply confor-
mal prediction. Finally, we predict the weights of the
remaining edges (i.e., Etest).

3.2 Conformal Inference: In this paper we focus
on split conformal inference [14,45], where given a pre-
defined miscoverage rate α ∈ [0, 1], for a given non-
conformity score that quantifies the heuristic notion of
uncertainty, the method proceeds in the following steps:
(1) Training: Train the mean estimator µ on the train-
ing data Dtrain. (2) Score Computation: For each
edge e = (u, v) connecting nodes u and v in Ecal, com-
pute the non-conformity scores {V (xu,xv, yu,v)}e∈Ecal

and create a distribution from the scores. (3) Quantile
Creation: Compute the (1−α)th quantile Q̂1−α of the
distribution 1

|Ecal|+1

∑
e∈Ecal

δVe + δ∞, where δa is Dirac

Delta distribution at point a, and Ve when e = (u, v)
is shorthand for V (xu,xv, yu,v). (4) Predictive Band
Creation: Given a new test point eu,v, a prediction

set/interval Ĉ(eu,v) = {y ∈ Y : V (xu,xv, y) ≤ Q̂1−α} is
constructed. The notion of transferring the prediction
bands computed on the calibration data to the points
in test data relies on the following assumption on per-
mutation invariance [14,46].

Assumption 1. For any permutation π on the calibra-
tion and test edges, the non-conformity score V obeys

V (xu,xv, yu,v; {ya,b}(a,b)∈Etrain
,X ,V, E)

=V (xu,xv, yu,v; {ya,b}(a,b)∈Etrain
,X ,V, Eπ)

This means that the non-conformity scores of edges in
a graph G = (V, E ,X ,Y) are exchangeable.

Assumption 1 imposes the permutation invariance
condition for the GNN training to later compute the
non-conformity scores for edge prediction, which means
that the model output/ non-conformity score is invari-
ant to permuting the order of the calibration and test
edges on the graph. Note that this is an extension of the
assumption [14] makes for nodes, but for edges. Typi-
cally, an edge is constructed by a pair of nodes. As the
non-conformity scores for nodes are exchangeable due
to GNNs obeying the permutation invariance assump-
tion [19], so would the scores that are constructed by a
function that takes in a pair of node scores.
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Lemma 1. (Coverage Guarantee for Conformal Infer-
ence) [14, 38, 41] Under Assumption 1, for any α > 0,
the confidence band returned by the conformal inference
algorithm satisfies:

(3.1) P(yu,v ∈ Ĉ1−α(eu,v)) ≥ 1− α

where the probability is taken over the calibration fold
Dcal and the testing point (eu,v, yu,v).

Here, P(yu,v ∈ Ĉ1−α(eu,v)) denotes the coverage
that the true label yu,v lies in the predictive band. The
proof of the lemma is provided in the Appendix.

4 Methodology

We now describe our proposed approach, which we call
Edge-Conformal Prediction (Edge-CP) to reduce inef-
ficiency (trivially large predictive band lengths) while
maintaining valid coverage. Edge-CP leverages the in-
dividual node-level uncertainties to predict the edge-
weights between given pairs of nodes. The key idea
of Edge-CP is to construct the non-conformity score
function in the latent dimension and transfer the no-
tion of non-conformity in the latent dimension to the
output space. We will now define the mean estimator
as a composition of functions.

4.1 Mean Estimator: We define the mean estima-
tor µ for Edge-CP using two components, namely an en-
coder (represented by function f(·):Rn → RnL) and a de-
coder (represented by function g(·, ·):RnL × RnL → R).
The point prediction for each sample can be obtained
by passing it via a composition of these 2 functions.
The details about the encoder and the decoder func-
tions are, as follows: (1) Encoder: Graph Neural
Network: Graph Neural Networks (GNNs) aggregate
neighborhood information [10] via a sequence of propa-
gation layers where the kth layer consists of a Message
Passing Step, and a Node Update Step.(2) Decoder:
After the node representations are learned via the en-
coder, the decoder predicts the edge weight between a
pair of nodes i and j by concatenating them and passing
it via a feed-forward neural network.

4.2 Node-Uncertainty Enhanced Edge Non-
Conformity Score: In this section, we elaborate on
our proposed non-conformity score for the weighted
edge prediction problem in graphs. While different
norm-based scores can be used as non-conformity scores
to quantify the non-conformity of samples [29, 30], our
approach leverages a heuristic notion of node level un-
certainty in the latent feature space [37] to quantify un-
certainty in edge weight prediction. We transfer the
heuristic idea of non-conformity in the latent feature

Algorithm 1 Non-Conformity Feature Score

Require: Pair of node features with their correspond-
ing edge weight label (xu,xv,yu,v), trained encoder

f̂(·), trained decoder ĝ(·, ·), NC function h(·, ·), step
size η, number of steps M

1: su ← f̂(xu)

2: sv ← f̂(xv)
3: m← 0
4: while m < M do
5: su ← su − η

∂||ĝ(su,sv)−yu,v||2
∂su

6: sv ← sv − η
∂||ĝ(su,sv)−yu,v||2

∂sv
7: m← m+ 1
8: end while
9: return V (xu,xv, yu,v) = h(||su − f̂(xu)||, ||sv −

f̂(xv)||)

space and transfer that notion to the output space. To
this end, we first define the surrogate node feature em-
beddings in the latent feature space, which can serve as
the ground truth proxy of the label value in the output
space.
Definition 1: (Surrogate Node Embeddings) Given

a trained mean estimator µ̂ = ĝ(f̂(·), f̂(·)) denoting

a composition of two functions, where f̂(·) denotes
the encoder function and ĝ(·, ·) denotes the decoder
function, for a given sample (xu,xv) with label yu,v,
(ŝu, ŝv) denote the latent node feature embeddings. The
surrogate node feature embeddings are the latent feature
embeddings (su, sv) where g(su, sv) = yu,v.

With the help of the surrogate node feature embed-
dings, we can now define a non-conformity score in the
feature space. The score is given as V (xu,xv, yu,v) =

h(||su − f̂(xu)||, ||sv − f̂(xv)||). Here h(·, ·) is a binary
operator on the deviation between the surrogate node
feature embeddings and the latent node embeddings for
each pair of nodes constituting an edge. The surro-
gate node embeddings serve as a proxy for the node
embeddings that are needed to predict the given edge
weight correctly. The deviation in turn creates a ℓp ball
around those perfect node embeddings with the radius
of ∥sv − f̂(xv)∥,∀v ∈ V. However, the presence of the
infimum operator in the non-conformity score makes it
intractable in practice. So, we use Algorithm 1, which
applies gradient descent from the encoder’s learned node
embeddings to the surrogate node feature embeddings
independently to compute the upper bound of the pro-
posed non-conformity score.

4.3 Band Estimation: Having constructed the no-
tion of non-conformity in the latent feature space where
we leverage the heuristic of deviation between the ideal
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and predicted node embedding for perfect prediction of
edge weights and derive a confidence band based on it,
we will need a way to transfer this confidence band to
the output space as well.

To transfer the confidence bands to the output
space, we can use the decoder ĝ(·, ·). Since the de-
coder ĝ(·, ·) is non-linear, it is harder to estimate the
confidence band explicitly. So, we use Neural Net-
work Robustness Certification Methods like Interval
Bound Propagation (IBP) [11] and CROWN [47]. Both
these methods utilize interval arithmetic to propagate
bounds through each layer of the network. For a test
sample passed through the encoder with node embed-
dings (xu,xv) and a given perturbation value ϵ, the
method computes upper and lower bounds on the ac-
tivations at each layer of the decoder, ensuring that
the output logits respect these bounds. Mathemati-
cally, if we assume that ĝ(·, ·) is a m-layer neural net-
work with nk∀k ∈ [m] neurons in each layer k-th layer
weight matrix be W(k) ∈ Rnk×nk−1 . If (xπ(u),xπ(v))
are the perturbed versions of node embeddings (su, sv)
within an ϵ-bounded ℓp-ball centered at (su, sv), de-
noted as xπ(u) ∈ BP (su, ϵ) and xπ(v) ∈ BP (sv, ϵ) with
BP (xO, ϵ) = {x : ||x − xO||∞ ≤ ϵ} these methods con-
struct two explicit functions ĝL : RnL × RnL → R
and ĝU : RnL × RnL → R such that the inequal-
ity ĝL(xπ(u),xπ(v)) ≤ ĝ(xπ(u),xπ(v)) ≤ ĝU (xπ(u),xπ(v))
holds. Thus, these robustness certification methods can
provide the upper and lower bounds (uncertainty esti-
mate) in the output space, given the node embeddings in
the feature space and a perturbation value. Our overall
method is presented in Algorithm 2. Here the perturba-
tion is Q1−α from Step 7 of Algorithm 2 computed after
estimating scores on the calibration data Having defined
the overall framework, we will now theoretically demon-
strate the benefits of our proposed framework over gen-
eral conformal inference methods.

4.4 Theoretical Guarantees

Theorem 1. (Edge-CP is provably more efficient than
Vanilla-CP) Assume that the node feature space satisfies
the following conditions:
(1) Length Preservation: The loss of information
for Edge CP in the latent feature space is bounded by
the information obtained in the output space.
(2) Expansion: The Band Estimation operator ex-
pands the differences between individual length and their
quantiles.
(3) Quantile Stability: Given a calibration set Dcal,
the quantile of the band length is stable in both feature
space and output space
Then Edge CP provably outperforms Vanilla CP in
terms of average band length where the expectation is

taken over the calibration fold and the testing point.

An informal sketch of the proof will be to start
with the statement of Expansion which assumes that
the difference between the quantile and each individual
is smaller in the feature space than that in the output
space. We display empirical results to verify this claim
later. We will then rearrange the terms, but unlike [37]
cannot directly use the Holder condition as our non-
conformity score is not simply a norm-type function
but is instead a function of two norm type functions.
Thus we leverage the Lipschitz continuous property
coupled with the Minkowski Inequality and then use the
statement of Length Preservation and Quantile Stability
to get the final form of the proof statement. For the
detailed proof, refer to the Appendix.

Algorithm 2 Weighted Edge Conformal Prediction
(Edge-CP)

Require: Level α, Graph G, Dtrain, Dcal, and Test
point eu,v

1: Randomly split the dataset D into training (Dtrain)
and calibration fold (Dcal)

2: Train a base ML model ĝ(f̂(·), f̂(·)) using Dtrain

3: Freeze the weights of f̂(·) and ĝ(·, ·)
4: for each edge (i, j) with weight yi,j in Ecal do
5: Get NC score V (xi,xj , yi,j) via Algorithm 1
6: end for
7: Calculate the (1− α)th quantile Q̂1−α of the distri-

bution:
1

|Ecal|+ 1

∑
e∈Ecal

δVe + δ∞

8: Apply Band Estimation on test data features
with perturbation Q̂1−α and prediction head g(·, ·),
which returns Ĉecp

1−α(eu,v)

9: return Ĉecp
1−α(eu,v)

5 Experiment

5.1 Setup: We conduct experiments to demonstrate
the advantages of Edge CP over other Conformal Un-
certainty Quantification methods in achieving empirical
marginal coverage for graph data and report the average
band length. We also evaluate the conditional coverage
of Edge CP and conduct parameter analysis with differ-
ent score functions.
Evaluation: For the task of weighted edge prediction,
we follow a standard semi-supervised learning evalua-
tion procedure [19], where we randomly split data into
train and test folds with 80:20 split ratio. Then we
equally split the train data into real train and calibra-
tion folds randomly. We adopt the following metrics to
evaluate the algorithmic empirical performance:
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• Empirical Coverage (Effectiveness): It is the
empirical probability that a test point falls into
the predicted confidence band. A good predictive
inference method should achieve empirical coverage
slightly larger than 1 − α for a given significance
level α.

• Band Length (Efficiency): Given the empirical
coverage being larger than 1 − α, we want the
confidence band to be as short as possible. The
band length should be compared under the regime
of empirical coverage being larger than 1 − α,
otherwise one can always set the confidence band
to empty to get a zero band length.

To calculate the coverage for Edge CP, we first
apply Band Estimation on the test point eu,v, with

label yu,v) to detect whether yu,v is in Ĉecp1−α(eu,v),
and then calculate its average value to obtain the
empirical coverage. Also, since the explicit expression
for confidence bands is intractable for the proposed
algorithm, we could only derive an estimated band
length via Band Estimation. Concretely, we first use
band estimation to estimate the confidence interval,
which returns a band with explicit formulation, and
then calculate the average length across each dimension.

Table 1: Description of the 4 Datasets

Dataset |V| |E| Label Range

HS-PI 17,849 633,460 (1.77-4.90)

cond-mat 16,264 47,594 (0.05-22.33)

astro-ph 16,046 121,251 (0.01-16.50)

BZR-MD 6,520 137,734 (1.14-16.64)

Although conformal prediction methods only the-
oretically guarantee empirical coverage [7], it is desir-
able to have adaptive confidence bands based on the
‘hardness’ of samples (referred to as conditional cov-
erage) [32]. Conditional coverage asks for P(yu,v ∈
Ĉ(eu,v) | eu,v = e) ≈ 1− α, ∀e.
Baselines: As smaller effectiveness always leads to
higher efficiency, for a fair comparison, we can only com-
pare methods on efficiency that achieve the same effec-
tiveness. Thus, we do not evaluate other uncertainty
quantification baselines as they do not produce exact
effectiveness and are thus not comparable. We report
the details about the baselines below:

• Monte-Carlo Dropout (MCDropout) [8]: Af-
ter the base estimator is trained, this method turns
on dropout during evaluation and produces K pre-
dictions. We then take the 90% quantile of the
predicted distribution.

• Conformal Quantile Regression (CQR) [31]:
This method corrects the upper and lower quantiles
produced by the base estimator with the scored
correction term.

• Conformalized GNN (CF-GNN) [14]: This
method adds a topology-aware correction model on
top of the base estimator that updates the node
predictions based on their neighbors, thus leading
to shorter bands.

• Vanilla-CP (Vanilla) [41]: This is a classical
conformal inference method for regression on the
original edge-weighted graph which is constructed
by evaluating the MSE for each edge weight in the
output space for calibration dataset, finding the
1 − α quantile of the scores and use that for test
data to construct prediction band Ĉvanilla1−α (eu,v) for
a test point eu,v.

• Error Reweighted Conformal CQR (CQR-
ERC) [25]: This method is a recent work using
conformal inference for weighted edge prediction.
To address data heteroscedasticity, the authors
employ error reweighting and CQR.

For the baselines that perform on the line graph as
well as CQR-ERC, we use a 2-layer GCN. In contrast,
for our method and Vanilla CP, we use a 2-layer GCN
as the encoder followed by concatenation of embeddings
and predicting via FFN layers as the decoder.
Datasets: We evaluate Edge CP on 4 weighted edge
prediction datasets of diverse network types. We sum-
marize some basic statistics in Table 1 and give more
details below:

• Human Protein-Protein Physical Interac-
tion Network (HS-PI): The Human Protein-
Protein physical interaction network compiled by
the HumanNet project [18] where the interaction
strengths were compiled from years of protein-
protein interaction mappings from a variety of
sources.

• Astrophysics Collaboration Network (astro-
ph) [27]: This network contains the collaboration
network of scientists posting preprints on the as-
trophysics archive on arXiv during 1995-1999 and
was compiled by M. Newman.

• Condensed-Matter Physics Collaboration
Network (cond-mat) [27]: This network con-
tains the collaboration network of scientists post-
ing preprints on the condensed matter archive on
arXiv during 1995-1999 and was compiled by M.
Newman.
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Figure 2: Variations of Effectiveness (right) and Efficiency (left) across seeds for the 4 datasets with α = 0.1

Table 2: Mean Effectiveness and Band Length for 4 Datasets, α = 0.1

Method
Effectiveness (higher is better) Efficiency (lower is better)

HS-PI cond-mat astro-ph BZR-MD HS-PI cond-mat astro-ph BZR-MD

Vanilla 89.96 ✗ 90.13 ✓ 90.27 ✓ 89.93 ✗ 1.31 1.51 1.93 7.86
MCDropout 30.26 ✗ 68.57 ✗ 72.24 ✗ 73.44 ✗ 1.16 2.06 0.28 4.11
CQR 90.04 ✓ 89.89 ✗ 89.99 ✗ 90.42 ✓ 4.93 4.39 2.08 12.83
CQR-ERC 89.98 ✗ 90.16 ✓ 90.04 ✓ 90.77 ✓ 2.73 3.58 1.73 8.21
CF-GNN 90.04 ✓ 90.01 ✓ 90.13 ✓ 90.25 ✓ 3.93 3.36 2.51 9.47

Edge-CP 90.37 ✓ 90.38 ✓ 90.00 ✓ 90.30 ✓ 0.81 2.60 1.30 7.56

• Benzodiazepine Receptor (BZR) Network
(BZR-MD) [20, 34]: This network contains in-
teractions between a set of 405 ligands of the Ben-
zodiazepine Receptor (BZR).

5.2 Results: From Tables 2 and 3, we observe
several important findings:

Table 3: Mean SSC for 4 Datasets, α = 0.1
Dataset Model Mean

SSC

HS-PI
CQR 83.08
CQR-ERC 85.21
CF-GNN 83.98
Edge-CP (Ours) 88.37

cond-mat
CQR 80.13
CQR-ERC 81.38
CF-GNN 81.16
Edge-CP (Ours) 82.79

astro-ph
CQR 81.22
CQR-ERC 83.58
CF-GNN 78.59
Edge-CP (Ours) 82.03

BZR-MD
CQR 74.33
CF-GNN 79.67
CQR-ERC 79.91
Edge-CP (Ours) 80.73

Edge-CP always achieves empirical effectiveness:
The left side of Table 2 shows the mean effectiveness for
all the methods for the task of weighted edge prediction

for a target effectiveness of 90% across 4 datasets. While
MCDropout, CQR, and CF-GNN operate on the line
graph, Edge-CP, CQR-ERC, and Vanilla operate on the
original graph itself. Firstly, we observe that none of the
uncertainty quantification methods other than CF-GNN
and Edge-CP achieves the desired target effectiveness
across all datasets. The results thus validate the
validity of our theory behind Edge-CP for uncertainty
quantification. Also, notice that Edge-CP consistently
achieves the greatest effectiveness. We believe that the
slight over-coverage of Edge-CP also helps it to achieve
better conditional coverage.
Edge-CP achieves competitive efficiency: The
right side of Table 2 shows the mean effectiveness for
all the methods for the task of weighted edge prediction
for a target effectiveness of 90% across 4 datasets.
We observe that our method shows improvement over
Vanilla (we do not compare MCDropout as it has
very low Effectiveness for all the datasets) for HS-PI,
astro-ph and BZR-MD datasets and loses to it in the
cond-mat dataset. However, Edge-CP still performs
better than CQR, CQR-ERC and CF-GNN (both of
which also have conditional coverage while Vanilla does
not) across all four datasets. This means that Edge-
CP is not just returning trivial prediction bands with
extremely high effectiveness. We hypothesize that CF-
GNN does worse than our method as in the line graph,
the original graph’s edges now become nodes and in
the Topology-aware Conformal Correction Process, the
information gathered from the local subgraph is that
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of edges instead of nodes. On the other hand, CQR-
ERC is simply a variant of Vanilla but with adaptive
bands that only computes the NC scores in the output
space and fails to leverage the rich information from the
latent feature space of the nodes. However, Edge-CP
directly leverages node uncertainty in the score function
to compute the non-conformity scores.
Edge-CP achieves the best Overall Conditional
Coverage over all baselines: While Edge-CP
achieves marginal effectiveness, it is highly desirable
to have a method that achieves reasonable conditional
coverage, which was the motivation of APS [32] and
CQR [31]. We evaluate conditional coverage for the
methods by estimating the Size-stratified coverage met-
ric [2]. Lower SSC indicates lower conditional coverage
and consequently lower adaptiveness of the conformal
method to the nature of the noise in the data sam-
ple. Table 3 shows the mean SSC for the UQ meth-
ods. Vanilla has equal-sized predictive bands and thus
cannot be evaluated for conditional coverage. On the
other hand, we do not evaluate MCDropout as it has
very little effectiveness. We observe that Edge-CP has
the highest SSC across all datasets compared to CQR
and CF-GNN and achieves SSC very close to 1 − α in
all of them, obtaining it for STRING-H. We notice that
CQR-ERC has better SSC than our method for astro-
ph. However note that this 1.89% gain in SSC comes
with a 48.21% loss in marginal effectiveness as shown in
Table 2.

Table 4: Results for different latent feature-based score
functions for 2 datasets, α = 0.1

Score Effectiveness Efficiency SSC

HS-PI

Cat 90.68 0.83 87.98
Max 90.31 0.82 88.51
Sum 91.75 0.98 88.92
Min 90.37 0.81 88.37

cond-mat

Cat 90.38 2.60 82.79
Max 90.58 2.79 80.36
Sum 93.35 3.17 90.52
Min 90.13 2.65 78.95

5.3 Ablation Study: Variants of Edge-CP Non-
Conformity Scores We performed additional exper-
iments by altering the score functions of Edge-CP for
HS-PI and cond-mat datasets. For this experiment,
the variants of the binary-operator score function h(·, ·)
were:
1. Cat: In this score function, for step 9 of Algo-
rithm 1, we first concatenated the node embeddings
f̂(xu) and f̂(xv) and then concatenated the Surrogate
Node Feature Embeddings su and sv. Then the non-

conformity score function is given as V (xu,xv, yu,v) =

||(su|sv) − (f̂(xu)|f̂(xv))||. Here | denotes the concate-
nation operation.
2. Max: We used the maximum node deviation given
as V (xu,xv, yu,v) = max(||su − f̂(xu)||, ||su − f̂(xv)||)
as the NC score function.
3. Sum: We used the sum given as V (xu,xv, yu,v) =

||su − f̂(xu)||+ ||sv − f̂(xv)|| as the NC score function.
4. Min: We used the maximum node deviation given
as V (xu,xv, yu,v) = min(||su− f̂(xu)||, ||sv− f̂(xv)||) as
the NC score function.

The results of the experiment are in Table 4. The
results indicate that observing the maximum/minimum
deviation between the Surrogate Node Feature Embed-
dings and the predicted node embeddings performs very
similarly to concatenating the node features and then
computing the deviation. Note that the theory of con-
formal inference does not guarantee conditional effec-
tiveness, and even though Sum obtains the highest SSC
for HS-PI and cond-mat, we reject it due to its high
marginal efficiency. We also note that Min does better
than Max and this is to be expected as the band estima-
tor generally gives looser bands for samples. This led us
to experiment with Min and Cat as the score functions
for all the experiments and display the best result in
Table 4.

6 Conclusion

In this work, we extend conformal inference in GNN to
weighted edge prediction tasks. Our method leverages
the latent node embeddings to construct a NC score. We
show that our method1 achieves the theoretical guaran-
tees achieved by traditional conformal inference meth-
ods. Potential future directions would be to explore
the validity of this method in higher-order interaction
structures like hypergraphs and the connection to lo-
cally valid coverage [22].
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