

CS:4980 Topics in Computer Science II
Introduction to Automated Reasoning

Combining Theories and Their Solvers

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa, and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like

$$a = b + 2 \wedge A \doteq \text{write}(B, a, 4) \wedge (\text{read}(A, b + 3) \doteq b - 2 \vee f(a - b) \neq f(b + 1))$$

Solving that formula requires reasoning over

- the theory of integer arithmetic (T_{LIA})
- the theory of arrays (T_A)
- the theory of uninterpreted functions (T_{UUF})

Given solvers for each theory, can we combine them modularly into one for a theory that combines T_{LIA} , T_A and T_{UUF} ?

The answer is yes, under certain conditions

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like

$$a = b + 2 \wedge A \doteq \text{write}(B, a, 4) \wedge (\text{read}(A, b + 3) \doteq b - 2 \vee f(a - b) \neq f(b + 1))$$

Solving that formula requires reasoning over

- the theory of integer arithmetic (\mathcal{T}_{LIA})
- the theory of arrays (\mathcal{T}_A)
- the theory of uninterpreted functions (\mathcal{T}_{EUF})

Given solvers for each theory, can we combine them modularly into one for a theory that combines \mathcal{T}_{LIA} , \mathcal{T}_A and \mathcal{T}_{EUF} ?

The answer is yes, under certain conditions

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like

$$a = b + 2 \wedge A \doteq \text{write}(B, a, 4) \wedge (\text{read}(A, b + 3) \doteq b - 2 \vee f(a - b) \neq f(b + 1))$$

Solving that formula requires reasoning over

- the theory of integer arithmetic (\mathcal{T}_{LIA})
- the theory of arrays (\mathcal{T}_A)
- the theory of uninterpreted functions (\mathcal{T}_{EUF})

Given solvers for each theory, can we **combine them modularly** into one for a theory that combines \mathcal{T}_{LIA} , \mathcal{T}_A and \mathcal{T}_{EUF} ?

The answer is yes, under certain conditions

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like

$$a = b + 2 \wedge A \doteq \text{write}(B, a, 4) \wedge (\text{read}(A, b + 3) \doteq b - 2 \vee f(a - b) \neq f(b + 1))$$

Solving that formula requires reasoning over

- the theory of integer arithmetic (\mathcal{T}_{LIA})
- the theory of arrays (\mathcal{T}_A)
- the theory of uninterpreted functions (\mathcal{T}_{EUF})

Given solvers for each theory, can we **combine them modularly** into one for a theory that combines \mathcal{T}_{LIA} , \mathcal{T}_A and \mathcal{T}_{EUF} ?

The answer is **yes**, under certain conditions

First-order theories and their combination

Recall: A *theory* \mathcal{T} is a pair (Σ, \mathcal{I}) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- \mathcal{I} is a class of Σ -interpretations closed under variable re-assignment

We limit interpretations of Σ -formulas to those in \mathcal{I}

First-order theories and their combination

Recall: A *theory* \mathcal{T} is a pair (Σ, \mathcal{I}) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- \mathcal{I} is a class of Σ -interpretations closed under variable re-assignment

Two signatures Σ_1 and Σ_2 are *compatible* if each of their *shared* function symbols, those in $\Sigma_1^F \cap \Sigma_2^F$, has the same rank in both Σ_1 and Σ_2

First-order theories and their combination

Recall: A *theory* \mathcal{T} is a pair (Σ, \mathcal{I}) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- \mathcal{I} is a class of Σ -interpretations closed under variable re-assignment

Two signatures Σ_1 and Σ_2 are *compatible* if each of their *shared* function symbols, those in $\Sigma_1^F \cap \Sigma_2^F$, has the same rank in both Σ_1 and Σ_2

The *combination* of two compatible signatures Σ_1 and Σ_2 , is the signature

$$\Sigma_1 \oplus \Sigma_2 = (\Sigma_1^S \cup \Sigma_2^S, \Sigma_1^F \cup \Sigma_2^F)$$

First-order theories and their combination

Recall: A *theory* \mathcal{T} is a pair (Σ, \mathcal{I}) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- \mathcal{I} is a class of Σ -interpretations closed under variable re-assignment

Two signatures Σ_1 and Σ_2 are *compatible* if each of their *shared* function symbols, those in $\Sigma_1^F \cap \Sigma_2^F$, has the same rank in both Σ_1 and Σ_2

The *combination* of two compatible signatures Σ_1 and Σ_2 , is the signature

$$\Sigma_1 \oplus \Sigma_2 = (\Sigma_1^S \cup \Sigma_2^S, \Sigma_1^F \cup \Sigma_2^F)$$

Note: Signatures with no shared function symbols are trivially compatible

First-order theories and their combination

Recall: A *theory* \mathcal{T} is a pair (Σ, \mathcal{I}) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- \mathcal{I} is a class of Σ -interpretations closed under variable re-assignment

Let $\mathcal{T}_1 = (\Sigma_1, \mathcal{S}_1)$ and $\mathcal{T}_2 = (\Sigma_2, \mathcal{S}_2)$ be two theories with compatible signatures

First-order theories and their combination

Recall: A *theory* \mathcal{T} is a pair (Σ, \mathcal{I}) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- \mathcal{I} is a class of Σ -interpretations closed under variable re-assignment

Let $\mathcal{T}_1 = (\Sigma_1, \mathcal{S}_1)$ and $\mathcal{T}_2 = (\Sigma_2, \mathcal{S}_2)$ be two theories with compatible signatures

The *combination* of \mathcal{T}_1 and \mathcal{T}_2 is the theory

$$\mathcal{T}_1 \oplus \mathcal{T}_2 = (\Sigma, \mathcal{S})$$

where $\Sigma = \Sigma_1 \oplus \Sigma_2$ and $\mathcal{S} = \{ \mathcal{I} \mid \mathcal{I}^{\Sigma_1} \in \mathcal{S}_1 \text{ and } \mathcal{I}^{\Sigma_2} \in \mathcal{S}_2 \}$

First-order theories and their combination

Recall: A *theory* \mathcal{T} is a pair (Σ, \mathcal{I}) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- \mathcal{I} is a class of Σ -interpretations closed under variable re-assignment

Let $\mathcal{T}_1 = (\Sigma_1, \mathcal{S}_1)$ and $\mathcal{T}_2 = (\Sigma_2, \mathcal{S}_2)$ be two theories with compatible signatures

The *combination* of \mathcal{T}_1 and \mathcal{T}_2 is the theory

$$\mathcal{T}_1 \oplus \mathcal{T}_2 = (\Sigma, \mathcal{S})$$

where $\Sigma = \Sigma_1 \oplus \Sigma_2$ and $\mathcal{S} = \{ \mathcal{I} \mid \mathcal{I}^{\Sigma_1} \in \mathcal{S}_1 \text{ and } \mathcal{I}^{\Sigma_2} \in \mathcal{S}_2 \}$

Recall: the reduct \mathcal{I}^Ω of a Σ -interpretation \mathcal{I} to a subsignature Ω of Σ is an Ω -interpretation defined exactly as \mathcal{I} over the symbols in Ω

Convex Theories

We want to build theory solvers for combined theory by **modularly** combining theory solvers for the individual theories

This is easier to do when individual theories are **convex**

A \mathcal{T} -theory \mathcal{T} is **convex** if for all sets Γ of \mathcal{T} -literals over the variables $x_1, \dots, x_n, y_1, \dots, y_n$ with $n > 0$

$$\Gamma \models_{\mathcal{T}} x_1 \neq y_1 \vee \dots \vee x_n \neq y_n \quad \text{iff} \quad \Gamma \models_{\mathcal{T}} x_k \neq y_k \quad \text{for some } k \in 1, \dots, n$$

Convex Theories

We want to build theory solvers for combined theory by **modularly** combining theory solvers for the individual theories

This is easier to do when individual theories are **convex**

A \mathcal{T} -theory \mathcal{T} is **convex** if for all sets Γ of \mathcal{T} -literals over the variables $x_1, \dots, x_n, y_1, \dots, y_n$ with $n > 0$

$$\Gamma \models_{\mathcal{T}} x_1 \neq y_1 \vee \dots \vee x_n \neq y_n \quad \text{iff} \quad \Gamma \models_{\mathcal{T}} x_k \neq y_k \quad \text{for some } k \in 1, \dots, n$$

Convex Theories

We want to build theory solvers for combined theory by **modularly** combining theory solvers for the individual theories

This is easier to do when individual theories are **convex**

A \mathcal{T} -theory \mathcal{T} is **convex** if for all sets Γ of \mathcal{T} -literals over the variables $x_1, \dots, x_n, y_1, \dots, y_n$ with $n > 0$

$$\Gamma \models_{\mathcal{T}} x_1 \doteq y_1 \vee \dots \vee x_n \doteq y_n \quad \text{iff} \quad \Gamma \models_{\mathcal{T}} x_k \doteq y_k \quad \text{for some } k \in 1, \dots, n$$

Convex Theories: Examples

Linear real arithmetic is **convex**

This is a consequence of the fact that sets of literals in this theory define convex polytopes (recall the linear programming slides)

Linear integer arithmetic is **non-convex**, for instance

$x=1, y=2, 1 \leq z, z \leq 2 \models_{\text{LIA}} z = x \vee z = y$ holds, while neither

$x=1, y=2, 1 \leq z, z \leq 2 \models_{\text{LIA}} z = x$ nor

$x=1, y=2, 1 \leq z, z \leq 2 \models_{\text{LIA}} z = y$ holds

Many theories used in SMT are non-convex, which makes their solvers harder to combine with other theories, as we will see

Convex Theories: Examples

Linear real arithmetic is **convex**

This is a consequence of the fact that sets of literals in this theory define convex polytopes (recall the linear programming slides)

Linear integer arithmetic is **non-convex**, for instance

$x \doteq 1, y \doteq 2, 1 \leq z, z \leq 2 \models_{\text{LIA}} z \doteq x \vee z \doteq y$ holds, while neither

$x = 1, y = 2, 1 \leq z, z \leq 2 \models_{\text{LIA}} z = x$ nor

$x = 1, y = 2, 1 \leq z, z \leq 2 \models_{\text{LIA}} z = y$ holds

Many theories used in SMT are non-convex, which makes their solvers harder to combine with other theories, as we will see

Convex Theories: Examples

Linear real arithmetic is **convex**

This is a consequence of the fact that sets of literals in this theory define convex polytopes (recall the linear programming slides)

Linear integer arithmetic is **non-convex**, for instance

$x \doteq 1, y \doteq 2, 1 \leq z, z \leq 2 \models_{\text{LIA}} z \doteq x \vee z \doteq y$ holds, while neither

$x = 1, y = 2, 1 \leq z, z \leq 2 \models_{\text{LIA}} z = x$ nor

$x = 1, y = 2, 1 \leq z, z \leq 2 \models_{\text{LIA}} z = y$ holds

Many theories used in SMT are non-convex, which makes their solvers harder to combine with other theories, as we will see

Combining Theory Solvers

Let S_1 and S_2 be two theory solvers deciding the satisfiability of sets of literals in theories T_1 and T_2 , respectively

We are interested in constructing a theory solver deciding the satisfiability of sets L of literals in $T_1 \oplus T_2$ by modularly combining S_1 and S_2

A popular procedure that achieves this combination consists of four main steps:

1. **Purification.** Purify L into a set L_1 of Σ_1 -literals and a set L_2 of Σ_2 -literals
2. **Propagation.** Exchange entailed equalities between variables shared by L_1 and L_2
3. **Decision.** If either T_1 or T_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables. Go to ??
4. **Check.** Check the satisfiability of L_i locally in T_i for $i = 1, 2$

Combining Theory Solvers

Let \mathbf{S}_1 and \mathbf{S}_2 be two theory solvers deciding the satisfiability of sets of literals in theories \mathcal{T}_1 and \mathcal{T}_2 , respectively

We are interested in constructing a theory solver deciding the satisfiability of sets L of literals in $\mathcal{T}_1 \oplus \mathcal{T}_2$ by **modularly combining** \mathbf{S}_1 and \mathbf{S}_2

A popular procedure that achieves this combination consists of four main steps:

1. **Purification.** Purify L into a set L_1 of Σ_1 -literals and a set L_2 of Σ_2 -literals
2. **Propagation.** Exchange entailed equalities between variables shared by L_1 and L_2
3. **Decision.** If either \mathcal{T}_1 or \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables. Go to ??
4. **Check.** Check the satisfiability of L_i locally in \mathcal{T}_i for $i = 1, 2$

Combining Theory Solvers

Let S_1 and S_2 be two theory solvers deciding the satisfiability of sets of literals in theories T_1 and T_2 , respectively

We are interested in constructing a theory solver deciding the satisfiability of sets L of literals in $T_1 \oplus T_2$ by **modularly combining** S_1 and S_2

A popular procedure that achieves this combination consists of four main steps:

1. **Purification.** Purify L into a set L_1 of Σ_1 -literals and a set L_2 of Σ_2 -literals
2. **Propagation.** Exchange entailed equalities between variables shared by L_1 and L_2
3. **Decision.** If either T_1 or T_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables. Go to ??
4. **Check.** Check the satisfiability of L_i locally in T_i for $i = 1, 2$

Combining Theory Solvers: Step 1 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

1. Purify and partition input set

$$I = \begin{cases} f(f(x) - f(y)) = a \\ f(0) > a + 2 \\ x = y \end{cases} \rightarrow \begin{cases} f(v_1 - v_2) = a, v_1 = f(x), v_2 = f(y) \\ f(v_3) > a + 2, v_3 = 0 \\ x = y \end{cases}$$

$$\rightarrow \begin{cases} f(v_4) = a, v_4 = v_1 - v_2, v_1 = f(x), v_2 = f(y) \\ v_5 > a + 2, v_5 = f(v_3), v_3 = 0 \\ x = y \end{cases}$$

$$L_1 = \{f(v_4) = a, v_1 = f(x), v_2 = f(y), v_5 = f(v_3), x = y\}$$

$$L_2 = \{v_5 = v_1 - v_2, v_5 > a + 2, v_3 = 0\}$$

Combining Theory Solvers: Step 1 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

1. Purify and partition input set

$$L = \begin{cases} f(f(x) - f(y)) \doteq a \\ f(0) > a + 2 \\ x \doteq y \end{cases} \rightarrow \begin{cases} f(v_1 - v_2) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y) \\ f(v_3) > a + 2, v_3 \doteq 0 \\ x \doteq y \end{cases}$$

$$\rightarrow \begin{cases} f(v_4) \doteq a, v_4 \doteq v_1 - v_2, v_1 \doteq f(x), v_2 \doteq f(y) \\ v_5 > a + 2, v_5 \doteq f(v_3), v_3 \doteq 0 \\ x \doteq y \end{cases}$$

$$L_1 = \{f(v_4) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y), v_5 \doteq f(v_3), x \doteq y\}$$

$$L_2 = \{v_5 \doteq v_1 - v_2, v_5 > a + 2, v_3 \doteq 0\}$$

Combining Theory Solvers: Step 1 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

1. Purify and partition input set

$$L = \begin{cases} f(f(x) - f(y)) \doteq a \\ f(0) > a + 2 \\ x \doteq y \end{cases} \rightarrow \begin{cases} f(v_1 - v_2) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y) \\ f(v_3) > a + 2, v_3 \doteq 0 \\ x \doteq y \end{cases}$$

$$\rightarrow \begin{cases} f(v_4) \doteq a, v_4 \doteq v_1 - v_2, v_1 \doteq f(x), v_2 \doteq f(y) \\ v_5 > a + 2, v_5 \doteq f(v_3), v_3 \doteq 0 \\ x \doteq y \end{cases}$$

$$L_1 = \{f(v_4) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y), v_5 \doteq f(v_3), x \doteq y\}$$

$$L_2 = \{v_4 \doteq v_1 - v_2, v_5 > a + 2, v_3 \doteq 0\}$$

Combining Theory Solvers: Step 1 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

1. Purify and partition input set

$$L = \begin{cases} f(f(x) - f(y)) \doteq a \\ f(0) > a + 2 \\ x \doteq y \end{cases} \rightarrow \begin{cases} f(v_1 - v_2) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y) \\ f(v_3) > a + 2, v_3 \doteq 0 \\ x \doteq y \end{cases}$$

$$\rightarrow \begin{cases} f(v_4) \doteq a, v_4 \doteq v_1 - v_2, v_1 \doteq f(x), v_2 \doteq f(y) \\ v_5 > a + 2, v_5 \doteq f(v_3), v_3 \doteq 0 \\ x \doteq y \end{cases}$$

$$L_1 = \{ f(v_4) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y), v_5 \doteq f(v_3), x \doteq y \}$$

$$L_2 = \{ v_4 \doteq v_1 - v_2, v_5 > a + 2, v_3 \doteq 0 \}$$

Combining Theory Solvers: Step 1

An *i-term* is a non-variable term of signature Σ_i for $i = 1$ or $i = 2$

Purification: Given a set L of $\Sigma_1 \oplus \Sigma_2$ -literals:

1. Find an *i-term* t that is a subterm of a non- Σ_i -literal $l \in L$
2. Replace t in l with a **fresh variable** v , and add $v \doteq t$ to L
3. Repeat Steps 1 and 2 until every literal is *pure* (i.e, is either a Σ_1 - or a Σ_2 -literal)
4. Partition L into a set L_1 of Σ_1 -literals and a set L_2 of Σ_2 -literals

Note: L is equisatisfiable with $L_1 \cup L_2$ in $T_1 \oplus T_2$

Combining Theory Solvers: Step 1

An *i-term* is a non-variable term of signature Σ_i for $i = 1$ or $i = 2$

Purification: Given a set L of $\Sigma_1 \oplus \Sigma_2$ -literals:

1. Find an *i-term* t that is a subterm of a non- Σ_i -literal $l \in L$
2. Replace t in l with a **fresh variable** v , and add $v \doteq t$ to L
3. Repeat Steps 1 and 2 until every literal is *pure* (i.e, is either a Σ_1 - or a Σ_2 -literal)
4. Partition L into a set L_1 of Σ_1 -literals and a set L_2 of Σ_2 -literals

Note: L is equisatisfiable with $L_1 \cup L_2$ in $\mathcal{T}_1 \oplus \mathcal{T}_2$

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

2. Propagate entailed equalities between the shared variables $v_1, v_2, v_3, v_4, v_5, a$

L_1	L_2
$f(v_4) \doteq a$	$v_4 \doteq v_1 - v_2$
$v_1 \doteq f(x)$	$v_5 > a + 2$
$v_2 \doteq f(y)$	$v_3 \doteq 0$
$v_5 \doteq f(v_3)$	$v_1 \doteq v_2$
$x \doteq y$	$a \doteq v_5$
$v_3 \doteq v_4$	

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

2. Propagate entailed equalities between the shared variables $v_1, v_2, v_3, v_4, v_5, a$

L_1	L_2
$f(v_4) \doteq a$	$v_4 \doteq v_1 - v_2$
$v_1 \doteq f(x)$	$v_5 > a + 2$
$v_2 \doteq f(y)$	$v_3 \doteq 0$
$v_5 \doteq f(v_3)$	$v_1 \doteq v_2$
$x \doteq y$	$a \doteq v_5$
$v_3 \doteq v_4$	

$$L_1 \models_{\text{EUF}} v_1 \doteq v_2$$

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

2. Propagate entailed equalities between the shared variables $v_1, v_2, v_3, v_4, v_5, a$

L_1	L_2
$f(v_4) \doteq a$	$v_4 \doteq v_1 - v_2$
$v_1 \doteq f(x)$	$v_5 > a + 2$
$v_2 \doteq f(y)$	$v_3 \doteq 0$
$v_5 \doteq f(v_3)$	$v_1 \doteq v_2$
$x \doteq y$	$a \doteq v_5$
$v_3 \doteq v_4$	

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

2. Propagate entailed equalities between the shared variables $v_1, v_2, v_3, v_4, v_5, a$

$$\frac{\begin{array}{c} L_1 \\ \hline f(v_4) \doteq a \\ v_1 \doteq f(x) \\ v_2 \doteq f(y) \\ v_5 \doteq f(v_3) \\ x \doteq y \end{array}}{\begin{array}{c} L_2 \\ \hline v_4 \doteq v_1 - v_2 \\ v_5 > a + 2 \\ v_3 \doteq 0 \\ v_1 \doteq v_2 \\ a \doteq v_5 \end{array}}$$

$v_3 \doteq v_4$

$$L_2 \models_{\text{LRA}} v_3 = v_4$$

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

2. Propagate entailed equalities between the shared variables $v_1, v_2, v_3, v_4, v_5, a$

L_1	L_2
$f(v_4) \doteq a$	$v_4 \doteq v_1 - v_2$
$v_1 \doteq f(x)$	$v_5 > a + 2$
$v_2 \doteq f(y)$	$v_3 \doteq 0$
$v_5 \doteq f(v_3)$	$v_1 \doteq v_2$
$x \doteq y$	$a \doteq v_5$
$v_3 \doteq v_4$	

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

2. Propagate entailed equalities between the shared variables $v_1, v_2, v_3, v_4, v_5, a$

L_1	L_2
$f(v_4) \doteq a$	$v_4 \doteq v_1 - v_2$
$v_1 \doteq f(x)$	$v_5 > a + 2$
$v_2 \doteq f(y)$	$v_3 \doteq 0$
$v_5 \doteq f(v_3)$	$v_1 \doteq v_2$
$x \doteq y$	$a \doteq v_5$
$v_3 \doteq v_4$	

$L_1 \models_{\text{EUF}} a = v_5$

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

2. Propagate entailed equalities between the shared variables $v_1, v_2, v_3, v_4, v_5, a$

L_1	L_2
$f(v_4) \doteq a$	$v_4 \doteq v_1 - v_2$
$v_1 \doteq f(x)$	$v_5 > a + 2$
$v_2 \doteq f(y)$	$v_3 \doteq 0$
$v_5 \doteq f(v_3)$	$v_1 \doteq v_2$
$x \doteq y$	$a \doteq v_5$
$v_3 \doteq v_4$	

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

2. Propagate entailed equalities between the shared variables $v_1, v_2, v_3, v_4, v_5, a$

L_1	L_2
$f(v_4) \doteq a$	$v_4 \doteq v_1 - v_2$
$v_1 \doteq f(x)$	$v_5 > a + 2$
$v_2 \doteq f(y)$	$v_3 \doteq 0$
$v_5 \doteq f(v_3)$	$v_1 \doteq v_2$
$x \doteq y$	$a \doteq v_5$
$v_3 \doteq v_4$	

3. If either \mathcal{T}_1 or \mathcal{T}_2 is non-convex, ...

No action because both theories are convex

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

2. Propagate entailed equalities between the shared variables $v_1, v_2, v_3, v_4, v_5, a$

L_1	L_2
$f(v_4) \doteq a$	$v_4 \doteq v_1 - v_2$
$v_1 \doteq f(x)$	$v_5 > a + 2$
$v_2 \doteq f(y)$	$v_3 \doteq 0$
$v_5 \doteq f(v_3)$	$v_1 \doteq v_2$
$x \doteq y$	$a \doteq v_5$
$v_3 \doteq v_4$	

4. Check for satisfiability of L_1 and of L_2 locally

$L_1 \not\models_{\text{EUF}} \perp$ and $L_2 \models_{\text{LRA}} \perp$

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LRA}}$

2. Propagate entailed equalities between the shared variables $v_1, v_2, v_3, v_4, v_5, a$

L_1	L_2
$f(v_4) \doteq a$	$v_4 \doteq v_1 - v_2$
$v_1 \doteq f(x)$	$v_5 > a + 2$
$v_2 \doteq f(y)$	$v_3 \doteq 0$
$v_5 \doteq f(v_3)$	$v_1 \doteq v_2$
$x \doteq y$	$a \doteq v_5$
$v_3 \doteq v_4$	

4. Check for satisfiability of L_1 and of L_2 locally

$L_1 \not\models_{\text{EUF}} \perp$ and $L_2 \models_{\text{LRA}} \perp$ Report UNSAT

Combining Theory Solvers: Step 3 Example (non-convex case)

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LIA}}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L_2
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	$x \leq 2$
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$

Combining Theory Solvers: Step 3 Example (non-convex case)

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LIA}}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L_2
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	$x \leq 2$
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$

Note: No entailed equalities, but $L_2 \models_{\text{LIA}} x \doteq v_1 \vee x \doteq v_2$

Combining Theory Solvers: Step 3 Example (non-convex case)

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LIA}}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L_2
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	$x \leq 2$
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$

Consider each case of $x \doteq v_1 \vee x \doteq v_2$ separately

Combining Theory Solvers: Step 3 Example (non-convex case)

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LIA}}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L_2
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	$x \leq 2$
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$

Case 1) $x \doteq v_1$

Combining Theory Solvers: Step 3 Example (non-convex case)

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LIA}}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L_2
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	$x \leq 2$
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
$x \doteq v_1$	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$
	$x \doteq v_1$

Combining Theory Solvers: Step 3 Example (non-convex case)

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LIA}}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L_2
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	$x \leq 2$
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
$x \doteq v_1$	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$
	$x \doteq v_1$

$L_1 \models_{\text{EUF}} a \doteq b$ but $L_2, a \doteq b \models_{\text{LIA}} \perp$

Combining Theory Solvers: Step 3 Example (non-convex case)

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LIA}}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L_2
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	$x \leq 2$
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$

Case 2) $x = v_2$

Combining Theory Solvers: Step 3 Example (non-convex case)

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LIA}}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L_2
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	$x \leq 2$
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
$x \doteq v_2$	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$
	$x \doteq v_2$

Combining Theory Solvers: Step 3 Example (non-convex case)

Let $\mathcal{T}_1 = \mathcal{T}_{\text{EUF}}$ and $\mathcal{T}_2 = \mathcal{T}_{\text{LIA}}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L_2
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	$x \leq 2$
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
$x \doteq v_2$	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$
	$x \doteq v_2$

$L_1 \models_{\text{EUF}} v_3 \doteq b$ but $L_2, v_3 \doteq b \models_{\text{LIA}} \perp$

The Combination Method

Bare-bones, non-deterministic, non-incremental version:

Input: $L_1 \cup L_2$ with L_i finite set of T_i -literals

Output: SAT or UNSAT

1. Guess an *arrangement* A , i.e., a set of equalities and disequalities over the variables V shared by L_1 and L_2 such that

$$u = v \in A \text{ or } u \neq v \in A \text{ for all } u, v \in V$$

2. If $L_i \cup A$ is unsatisfiable in T_i for $i = 1$ or $i = 2$, return UNSAT
3. Otherwise, return SAT

The Combination Method

Bare-bones, **non-deterministic**, **non-incremental** version:

Input: $L_1 \cup L_2$ with L_i finite set of \mathcal{T}_i -literals

Output: SAT or UNSAT

1. Guess an *arrangement* A , i.e., a set of equalities and disequalities over the variables V shared by L_1 and L_2 such that

$$u = v \in A \text{ or } u \neq v \in A \text{ for all } u, v \in V$$

2. If $L_i \cup A$ is unsatisfiable in \mathcal{T}_i for $i = 1$ or $i = 2$, return UNSAT
3. Otherwise, return SAT

The Combination Method

Bare-bones, **non-deterministic**, **non-incremental** version:

Input: $L_1 \cup L_2$ with L_i finite set of T_i -literals

Output: SAT or UNSAT

1. Guess an *arrangement* A , i.e., a set of equalities and disequalities over the variables V shared by L_1 and L_2 such that

$$u \stackrel{?}{=} v \in A \text{ or } u \neq v \in A \text{ for all } u, v \in V$$

2. If $L_i \cup A$ is unsatisfiable in T_i for $i = 1$ or $i = 2$, return UNSAT
3. Otherwise, return SAT

The Combination Method

Bare-bones, **non-deterministic**, **non-incremental** version:

Input: $L_1 \cup L_2$ with L_i finite set of \mathcal{T}_i -literals

Output: SAT or UNSAT

1. Guess an *arrangement* A , i.e., a set of equalities and disequalities over the variables V shared by L_1 and L_2 such that

$$u \stackrel{?}{=} v \in A \text{ or } u \neq v \in A \text{ for all } u, v \in V$$

2. If $L_i \cup A$ is unsatisfiable in \mathcal{T}_i for $i = 1$ or $i = 2$, return UNSAT
3. Otherwise, return SAT

The Combination Method

Bare-bones, **non-deterministic**, **non-incremental** version:

Input: $L_1 \cup L_2$ with L_i finite set of \mathcal{T}_i -literals

Output: **SAT** or **UNSAT**

1. Guess an *arrangement* A , i.e., a set of equalities and disequalities over the variables V shared by L_1 and L_2 such that

$$u \stackrel{?}{=} v \in A \text{ or } u \neq v \in A \text{ for all } u, v \in V$$

2. If $L_i \cup A$ is unsatisfiable in \mathcal{T}_i for $i = 1$ or $i = 2$, return **UNSAT**
3. Otherwise, return **SAT**

Correctness of the Combination Method

Theorem 1 (Refutation Soundness)

If the method returns UNSAT for every arrangement, the input is unsatisfiable in $T_1 \oplus T_2$.

Proof.

Because unsatisfiability in $T_1 \oplus T_2$ is preserved. □

Theorem 2 (Solution Soundness)

If $\Sigma_1^T \cap \Sigma_2^T = \emptyset$ and T_1 and T_2 are stably infinite over $\Sigma_1^T \cap \Sigma_2^T$, when the method returns SAT for some arrangement, the input is satisfiable in $T_1 \oplus T_2$.

Proof.

Because satisfiability in $T_1 \oplus T_2$ is preserved for stably infinite theories. □

Correctness of the Combination Method

Theorem 1 (Refutation Soundness)

If the method returns UNSAT for every arrangement, the input is unsatisfiable in $T_1 \oplus T_2$.

Proof.

Because unsatisfiability in $T_1 \oplus T_2$ is preserved. □

Theorem 2 (Solution Soundness)

If $\Sigma_1^F \cap \Sigma_2^F = \emptyset$ and T_1 and T_2 are stably infinite over $\Sigma_1^S \cap \Sigma_2^S$, when the method returns SAT for some arrangement, the input is satisfiable in $T_1 \oplus T_2$.

Proof.

Because satisfiability in $T_1 \oplus T_2$ is preserved for stably infinite theories. □

Correctness of the Combination Method

Theorem 3 (Termination)

The method is terminating.

Proof.

Because there is only a finite number of arrangements to guess. □

Theorem 4 (Decidability)

If $\Sigma_1^F \cap \Sigma_2^F = \emptyset$, T_1 and T_2 are stably infinite over $\Sigma_1^F \cap \Sigma_2^F$, and the satisfiability of quantifier-free formulas in T_i is decidable for $i = 1, 2$, then the satisfiability of quantifier-free formulas in $T_1 \oplus T_2$ is decidable.

Correctness of the Combination Method

Theorem 3 (Termination)

The method is terminating.

Proof.

Because there is only a finite number of arrangements to guess.

□

Theorem 4 (Decidability)

If $\Sigma_1^F \cap \Sigma_2^F = \emptyset$, T_1 and T_2 are *stably infinite* over $\Sigma_1^S \cap \Sigma_2^S$, and the satisfiability of quantifier-free formulas in T_i is decidable for $i = 1, 2$, then the satisfiability of quantifier-free formulas in $T_1 \oplus T_2$ is decidable.

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

\mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S .

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

\mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S .

Many **interesting** theories **are** stably infinite:

- Theories of an infinite structure (e.g., integer/real arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
- Convex theories (e.g., EUF with uninterpreted sorts, linear real arithmetic)

Recall: With convex theories, arrangements do not need to be guessed as they can be computed by (theory) propagation

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

\mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S .

Many **interesting** theories **are** stably infinite:

- Theories of an **infinite structure** (e.g., integer/real arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
- Convex theories (e.g., EUF with uninterpreted sorts, linear real arithmetic)

Recall: With convex theories, arrangements do not need to be guessed as they can be computed by (theory) propagation

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

\mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S .

Many **interesting** theories **are** stably infinite:

- Theories of an **infinite structure** (e.g., integer/real arithmetic)
- **Complete** theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
- **Convex** theories (e.g., EUF with uninterpreted sorts, linear real arithmetic)

Recall: With convex theories, arrangements do not need to be guessed as they can be computed by (theory) propagation

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

\mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S .

Many **interesting** theories **are** stably infinite:

- Theories of an **infinite structure** (e.g., integer/real arithmetic)
- **Complete** theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
- **Convex** theories (e.g., EUF with uninterpreted sorts, linear real arithmetic)

Recall: With convex theories, arrangements do not need to be guessed as they can be computed by (theory) propagation

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

\mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S .

Other **interesting** theories **are not** stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

\mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S .

Other **interesting** theories **are not** stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

\mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S .

Other **interesting** theories **are not** stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

\mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S .

Other **interesting** theories **are not** stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

The combination method has been **extended to** over the years to various classes of **non-stably infinite** theories

Why the combination method needs stably infiniteness

The **theory of fixed-size bit-vectors** contains sorts whose domains are all finite. Hence, this theory cannot be stably-infinite.

Example: Consider T_{array} where both indices and elements are of the same sort bv , so that the sorts of T_{array} are $\{\text{array}, \text{bv}\}$, and a theory T_{bv} that requires the sort bv to be interpreted as bit-vectors of size 1.

- Both theories are decidable and we would like to decide the combination theory in a Nelson-Oppen-like framework.
- Let a_1, \dots, a_5 be array variables and consider the following constraints: $a_i \neq a_j$, for $1 \leq i < j \leq 5$.
- These constraints are entirely within T_{array} . Array theory solver is given all constraints and the bit-vector theory solver is given none.
- **Problem:** Array solver tells us these constraints are SAT, but there are only four possible different arrays with elements and indices over bit-vectors of size 1.

SMT Solving with **Multiple** Theories

Let $\mathcal{T}_1, \dots, \mathcal{T}_n$ be theories with respective solvers $\mathcal{S}_1, \dots, \mathcal{S}_n$

How can we integrate all of them **cooperatively** into a single SMT solver for $\mathcal{T} = \mathcal{T}_1 \oplus \dots \oplus \mathcal{T}_n$?

SMT Solving with **Multiple** Theories

Let $\mathcal{T}_1, \dots, \mathcal{T}_n$ be theories with respective solvers $\mathcal{S}_1, \dots, \mathcal{S}_n$

How can we integrate all of them **cooperatively** into a single SMT solver for $\mathcal{T} = \mathcal{T}_1 \oplus \dots \oplus \mathcal{T}_n$?

Quick Solution:

1. Combine $\mathcal{S}_1, \dots, \mathcal{S}_n$ into a theory solver for \mathcal{T}
2. Build a CDCL(\mathcal{T}) solver as usual

SMT Solving with **Multiple** Theories

Let $\mathcal{T}_1, \dots, \mathcal{T}_n$ be theories with respective solvers $\mathcal{S}_1, \dots, \mathcal{S}_n$

How can we integrate all of them **cooperatively** into a single SMT solver for $\mathcal{T} = \mathcal{T}_1 \oplus \dots \oplus \mathcal{T}_n$?

Better Solution:

1. Extend CDCL(\mathcal{T}) to CDCL($\mathcal{T}_1, \dots, \mathcal{T}_n$)
2. Lift combination method to the CDCL(X_1, \dots, X_n) level
3. Build a CDCL($\mathcal{T}_1, \dots, \mathcal{T}_n$) solver

Modeling CDCL($\mathcal{T}_1, \dots, \mathcal{T}_n$) Abstractly

- Let $n = 2$, for simplicity
- Let \mathcal{T}_i be of signature Σ_i for $i = 1, 2$, with $\Sigma_1 \cap \Sigma_2 = \emptyset$
- Let C be a set of **fresh** constants
- Assume wlog that each input literal has signature $(\mathcal{T}_1 \cup C)$ or $(\mathcal{T}_2 \cup C)$ (**no mixed** literals)
- Let $M|_i \stackrel{\text{def}}{=} \{\Sigma_{i \cup C}\text{-literals of } M \text{ and their complements}\}$
- Let $I(M) \stackrel{\text{def}}{=} \{c = d \mid c, d \text{ occur in } C, M|_1 \text{ and } M|_2\} \cup \{c \neq d \mid c, d \text{ occur in } C, M|_1 \text{ and } M|_2\}$
(*interface literals*)

Abstract CDCL Modulo Multiple Theories

PROPAGATE, CONFLICT, EXPLAIN, BACKJUMP, FAIL (unchanged)

DECIDE $\frac{i \in \text{Lits}(F) \cup I(M) \quad i, \bar{i} \notin M}{M := M \cup \{i\}}$

Only change: decide on interface equalities as well

\mathcal{T} -PROPAGATE $\frac{i \in \text{Lits}(F) \cup I(M) \quad i \in \{1, 2\} \quad M \models_{\mathcal{T}} i \quad i, \bar{i} \notin M}{M := M \setminus i}$

Only change: propagate interface equalities as well, but reason locally in each \mathcal{T}_i

Abstract CDCL Modulo Multiple Theories

PROPAGATE, CONFLICT, EXPLAIN, BACKJUMP, FAIL (unchanged)

$$\text{DECIDE } \frac{l \in \text{Lits}(F) \cup I(M) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

Only change: decide on interface equalities as well

$$\text{ \mathcal{T} -PROPAGATE } \frac{l \in \text{Lits}(F) \cup I(M) \quad i \in \{1, 2\} \quad M \vdash_{\mathcal{T}_i} l \quad l, \bar{l} \notin M}{M := M /}$$

Only change: propagate interface equalities as well, but reason locally in each \mathcal{T}_i

Abstract CDCL Modulo Multiple Theories

PROPAGATE, CONFLICT, EXPLAIN, BACKJUMP, FAIL (unchanged)

$$\text{DECIDE } \frac{l \in \text{Lits}(F) \cup I(M) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

Only change: decide on interface equalities as well

$$\mathcal{T}\text{-PROPAGATE } \frac{l \in \text{Lits}(F) \cup I(M) \quad i \in \{1, 2\} \quad M \models_{\mathcal{T}_i} l \quad l, \bar{l} \notin M}{M := M \bullet l}$$

Only change: propagate interface equalities as well, but reason locally in each \mathcal{T}_i

Abstract CDCL Modulo Multiple Theories

\mathcal{T} -Conflict

$$\frac{C = \text{no } l_1, \dots, l_n \in M \quad l_1, \dots, l_n \models_{\mathcal{T}_i} \perp \quad i \in \{1, 2\}}{C := \bar{l}_1 \vee \dots \vee \bar{l}_n}$$

\mathcal{T} -Explain

$$\frac{C = l \vee D \quad \bar{l}_1, \dots, \bar{l}_n \models_{\mathcal{T}_i} \bar{l} \quad i \in \{1, 2\} \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := l_1 \vee \dots \vee l_n \vee D}$$

Only change: reason locally in each \mathcal{T}_i

\mathcal{I} -Learn

$$\frac{\models_{\mathcal{T}_i} l_1 \vee \dots \vee l_n \quad l_1, \dots, l_n \in M \cup I(M) \quad i \in \{1, 2\}}{F := F \cup \{l_1 \vee \dots \vee l_n\}}$$

New rule: for entailed disjunctions of interface literals

Abstract CDCL Modulo Multiple Theories

\mathcal{T} -Conflict

$$\frac{C = \text{no } l_1, \dots, l_n \in M \quad l_1, \dots, l_n \models_{\mathcal{T}_i} \perp \quad i \in \{1, 2\}}{C := \bar{l}_1 \vee \dots \vee \bar{l}_n}$$

\mathcal{T} -Explain

$$\frac{C = l \vee D \quad \bar{l}_1, \dots, \bar{l}_n \models_{\mathcal{T}_i} \bar{l} \quad i \in \{1, 2\} \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := l_1 \vee \dots \vee l_n \vee D}$$

Only change: reason locally in each \mathcal{T}_i

I-Learn

$$\frac{\models_{\mathcal{T}_i} l_1 \vee \dots \vee l_n \quad l_1, \dots, l_n \in M|_i \cup I(M) \quad i \in \{1, 2\}}{F := F \cup \{l_1 \vee \dots \vee l_n\}}$$

New rule: for entailed disjunctions of interface literals

Example – Convex Theories

$$\Delta := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = v_2}_1 \wedge \underbrace{f(y) = v_3}_2 \wedge \underbrace{f(v_4) = v_5}_3 \wedge \underbrace{x = y}_4 \wedge \underbrace{v_2 - v_3 = v_1}_5 \wedge \underbrace{v_4 = 0}_6 \wedge \underbrace{v_5 > a + 2}_7$$

$$\qquad \qquad \qquad \underbrace{v_2 = v_3}_8 \qquad \underbrace{v_1 = v_4}_9 \qquad \underbrace{a = v_5}_{10}$$

M	Δ	C	rule
0 1 2 3 4 5 6 7	Δ_0	no	by PROPAGATE ⁺
0 1 2 3 4 5 6 7 8	Δ_0	no	by \mathcal{T} -PROPAGATE $(1, 2, 4 \vdash_{\mathcal{EU}F} 8)$
0 1 2 3 4 5 6 7 8 9	Δ_0	no	by \mathcal{T} -PROPAGATE $(5, 6, 8 \vdash_{\mathcal{RA}} 9)$
0 1 2 3 4 5 6 7 8 9 10	Δ_0	no	by \mathcal{T} -PROPAGATE $(0, 3, 9 \vdash_{\mathcal{EU}F} 10)$
0 1 2 3 4 5 6 7 8 9 10	Δ_0	$\overline{7} \vee \overline{10}$	by \mathcal{T} -CONFLICT $(7, 10 \vdash_{\mathcal{RA}} \perp)$
		UNSAT	by Fail.

Example – Convex Theories

$$\Delta := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = v_2}_1 \wedge \underbrace{f(y) = v_3}_2 \wedge \underbrace{f(v_4) = v_5}_3 \wedge \underbrace{x = y}_4 \wedge \underbrace{v_2 - v_3 = v_1}_5 \wedge \underbrace{v_4 = 0}_6 \wedge \underbrace{v_5 > a + 2}_7$$

$$\qquad \qquad \qquad \underbrace{v_2 = v_3}_8 \qquad \underbrace{v_1 = v_4}_9 \qquad \underbrace{a = v_5}_{10}$$

M	Δ	C	rule
	Δ_0	no	
0 1 2 3 4 5 6 7	Δ_0	no	by PROPAGATE ⁺
0 1 2 3 4 5 6 7 8	Δ_0	no	by \mathcal{T} -PROPAGATE(1, 2, 4 $\vdash_{\text{EUF}} 8$)
0 1 2 3 4 5 6 7 8 9	Δ_0	no	by \mathcal{T} -PROPAGATE(5, 6, 8 $\vdash_{\text{EUF}} 9$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	no	by \mathcal{T} -PROPAGATE(0, 3, 9 $\vdash_{\text{EUF}} 10$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	$\overline{7} \vee \overline{10}$	by \mathcal{T} -CONFLICT(7, 10 $\vdash_{\text{EUF}} \perp$)
	UNSAT		by Fan.

Example – Convex Theories

$$\Delta := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = v_2}_1 \wedge \underbrace{f(y) = v_3}_2 \wedge \underbrace{f(v_4) = v_5}_3 \wedge \underbrace{x = y}_4 \wedge \underbrace{v_2 - v_3 = v_1}_5 \wedge \underbrace{v_4 = 0}_6 \wedge \underbrace{v_5 > a + 2}_7$$

$$\qquad \qquad \qquad \underbrace{v_2 = v_3}_8 \qquad \underbrace{v_1 = v_4}_9 \qquad \underbrace{a = v_5}_{10}$$

M	Δ	C	rule
0 1 2 3 4 5 6 7	Δ_0	no	
0 1 2 3 4 5 6 7 8	Δ_0	no	by PROPAGATE ⁺
0 1 2 3 4 5 6 7 8 9	Δ_0	no	by \mathcal{T} -PROPAGATE($1, 2, 4 \vdash_{\mathcal{EUF}} 8$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	no	by \mathcal{T} -PROPAGATE($5, 6, 8 \vdash_{\mathcal{EUF}} 9$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	$\overline{7} \vee \overline{10}$	by \mathcal{T} -PROPAGATE($0, 3, 9 \vdash_{\mathcal{EUF}} 10$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	UNSAT	by \mathcal{T} -Conflict($7, 10 \vdash_{\mathcal{EUF}} \perp$)
			by Fail.

Example – Convex Theories

$$\Delta := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = v_2}_1 \wedge \underbrace{f(y) = v_3}_2 \wedge \underbrace{f(v_4) = v_5}_3 \wedge \underbrace{x = y}_4 \wedge \underbrace{v_2 - v_3 = v_1}_5 \wedge \underbrace{v_4 = 0}_6 \wedge \underbrace{v_5 > a + 2}_7$$

$$\qquad \qquad \qquad \underbrace{v_2 = v_3}_8 \qquad \underbrace{v_1 = v_4}_9 \qquad \underbrace{a = v_5}_{10}$$

M	Δ	C	rule
0 1 2 3 4 5 6 7	Δ_0	no	
0 1 2 3 4 5 6 7 8	Δ_0	no	by PROPAGATE ⁺
0 1 2 3 4 5 6 7 8 9	Δ_0	no	by \mathcal{T} - PROPAGATE (1, 2, 4 $\vdash_{\text{EUF}} 8$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	no	by \mathcal{T} - PROPAGATE (0, 3, 9 $\vdash_{\text{EUF}} 10$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	$\overline{7} \vee \overline{10}$	by \mathcal{T} - Conflict (7, 10 $\vdash_{\text{TA}} \perp$)
		UNSAT	by Fail.

Example – Convex Theories

$$\Delta := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = v_2}_1 \wedge \underbrace{f(y) = v_3}_2 \wedge \underbrace{f(v_4) = v_5}_3 \wedge \underbrace{x = y}_4 \wedge \underbrace{v_2 - v_3 = v_1}_5 \wedge \underbrace{v_4 = 0}_6 \wedge \underbrace{v_5 > a + 2}_7$$

$$\quad \quad \quad \underbrace{v_2 = v_3}_8 \quad \underbrace{v_1 = v_4}_9 \quad \underbrace{a = v_5}_ {10}$$

M	Δ	C	rule
0 1 2 3 4 5 6 7	Δ_0	no	
0 1 2 3 4 5 6 7 8	Δ_0	no	by PROPAGATE ⁺
0 1 2 3 4 5 6 7 8 9	Δ_0	no	by \mathcal{T}-PROPAGATE (1, 2, 4 $\vdash_{\text{EUF}} 8$)
0 1 2 3 4 5 6 7 8 9	Δ_0	no	by \mathcal{T}-PROPAGATE (5, 6, 8 $\vdash_{\text{LRA}} 9$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	no	by \mathcal{T}-PROPAGATE (10, 3, 9 $\vdash_{\text{EUF}} 10$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	7 \vee 10	by \mathcal{T}-CONFLICT (7, 10 $\vdash_{\text{EUF}} \perp$)
		UNSAT	by Fail.

Example – Convex Theories

$$\Delta := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = v_2}_1 \wedge \underbrace{f(y) = v_3}_2 \wedge \underbrace{f(v_4) = v_5}_3 \wedge \underbrace{x = y}_4 \wedge \underbrace{v_2 - v_3 = v_1}_5 \wedge \underbrace{v_4 = 0}_6 \wedge \underbrace{v_5 > a + 2}_7$$

$$\quad \quad \quad \underbrace{v_2 = v_3}_8 \quad \underbrace{v_1 = v_4}_9 \quad \underbrace{a = v_5}_ {10}$$

M	Δ	C	rule
0 1 2 3 4 5 6 7	Δ_0	no	
0 1 2 3 4 5 6 7 8	Δ_0	no	by PROPAGATE ⁺
0 1 2 3 4 5 6 7 8 9	Δ_0	no	by \mathcal{T}-PROPAGATE (1, 2, 4 \models_{EUF} 8)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	no	by \mathcal{T}-PROPAGATE (5, 6, 8 \models_{LRA} 9)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	no	by \mathcal{T}-PROPAGATE (0, 3, 9 \models_{EUF} 10)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	UNSAT	by \mathcal{T}-COMBINE (7, 10 \vdash_{EUF} 1)
			by Fail

Example – Convex Theories

$$\Delta := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = v_2}_1 \wedge \underbrace{f(y) = v_3}_2 \wedge \underbrace{f(v_4) = v_5}_3 \wedge \underbrace{x = y}_4 \wedge \underbrace{v_2 - v_3 = v_1}_5 \wedge \underbrace{v_4 = 0}_6 \wedge \underbrace{v_5 > a + 2}_7$$

$$\quad \quad \quad \underbrace{v_2 = v_3}_8 \quad \underbrace{v_1 = v_4}_9 \quad \underbrace{a = v_5}_ {10}$$

M	Δ	C	rule
0 1 2 3 4 5 6 7	Δ_0	no	
0 1 2 3 4 5 6 7 8	Δ_0	no	by PROPAGATE ⁺
0 1 2 3 4 5 6 7 8 9	Δ_0	no	by \mathcal{T}-PROPAGATE ($1, 2, 4 \models_{\text{EUF}} 8$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	no	by \mathcal{T}-PROPAGATE ($5, 6, 8 \models_{\text{LRA}} 9$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	$\bar{7} \vee \bar{10}$	by \mathcal{T}-PROPAGATE ($0, 3, 9 \models_{\text{EUF}} 10$)
		UNSAT	by Fail.

Example – Convex Theories

$$\Delta := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = v_2}_1 \wedge \underbrace{f(y) = v_3}_2 \wedge \underbrace{f(v_4) = v_5}_3 \wedge \underbrace{x = y}_4 \wedge \underbrace{v_2 - v_3 = v_1}_5 \wedge \underbrace{v_4 = 0}_6 \wedge \underbrace{v_5 > a + 2}_7$$

$$\quad \quad \quad \underbrace{v_2 = v_3}_8 \quad \underbrace{v_1 = v_4}_9 \quad \underbrace{a = v_5}_ {10}$$

M	Δ	C	rule
0 1 2 3 4 5 6 7	Δ_0	no	
0 1 2 3 4 5 6 7 8	Δ_0	no	by PROPAGATE ⁺
0 1 2 3 4 5 6 7 8 9	Δ_0	no	by \mathcal{T}-PROPAGATE ($1, 2, 4 \models_{\text{EUF}} 8$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	no	by \mathcal{T}-PROPAGATE ($5, 6, 8 \models_{\text{LRA}} 9$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	no	by \mathcal{T}-PROPAGATE ($0, 3, 9 \models_{\text{EUF}} 10$)
0 1 2 3 4 5 6 7 8 9 10	Δ_0	$\bar{7} \vee \bar{10}$	by \mathcal{T}-CONFLICT ($7, 10 \models_{\text{LRA}} \perp$)
		UNSAT	by FAIL

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$$\underbrace{a = v_4}_{10} \quad \underbrace{x = v_1}_{11} \quad \underbrace{x = v_2}_{12} \quad \underbrace{a = b}_{13}$$

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$$\underbrace{a = v_4}_{10} \quad \underbrace{x = v_1}_{11} \quad \underbrace{x = v_2}_{12} \quad \underbrace{a = b}_{13}$$

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$$\underbrace{a = v_4}_{10} \quad \underbrace{x = v_1}_{11} \quad \underbrace{x = v_2}_{12} \quad \underbrace{a = b}_{13}$$

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$$\underbrace{a = v_4}_{10} \quad \underbrace{x = v_1}_{11} \quad \underbrace{x = v_2}_{12} \quad \underbrace{a = b}_{13}$$

M	Δ	C	rule
	Δ_0	no	
0 ... 9	Δ_0	no	by PROPAGATE ⁺
0 ... 9 10	Δ_0	no	by \mathcal{T}-PROPAGATE (0, 3 $\models_{\text{EUF}} 10$)
0 ... 9 10	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by 1-TERM ($\neg 0 \wedge 4 \vee \bar{5} \vee 11 \vee 12$)
0 ... 9 10 * 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by DECIDE
0 ... 9 10 * 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T}-PROPAGATE (0, 1, 11 $\models_{\text{EUF}} 13$)
0 ... 9 10 * 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12 \wedge \bar{7} \vee \bar{13}$	no	by \mathcal{T}-CONFLICT (7, 13 $\models_{\text{EUF}} 1$)
0 ... 9 10 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by BACKJUMP
0 ... 9 10 13 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T}-PROPAGATE (0, 1, 13 $\models_{\text{EUF}} 11$)
0 ... 9 10 13 11 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by Propagate (exercise)
...
UNSAT	by Fan

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$\underbrace{a = v_4}_{10} \quad \underbrace{x = v_1}_{11} \quad \underbrace{x = v_2}_{12} \quad \underbrace{a = b}_{13}$

M	Δ	C	rule
	Δ_0	no	
0 ... 9	Δ_0	no	by PROPAGATE ⁺
0 ... 9 10	Δ_0	no	by \mathcal{T}-PROPAGATE (0, 3 \models_{EUF} 10)
0 ... 9 10	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by I-LEARN ($\models_{\text{LIA}} \bar{4} \vee \bar{5} \vee 11 \vee 12$)
0 ... 9 10 * 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by DECIDE
0 ... 9 10 * 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T}-PROPAGATE (0, 1, 11 \models_{EUF} 13)
0 ... 9 10 * 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	$\bar{7} \vee \bar{13}$	by \mathcal{T}-CONFLICT (7, 13 \models_{EUF} 1)
0 ... 9 10 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by BACKJUMP
0 ... 9 10 13 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T}-PROPAGATE (0, 1, 13 \models_{EUF} 11)
0 ... 9 10 13 11 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by Propagate (exercise)
...
UNSAT	by Fan

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$$\underbrace{a = v_4}_{10} \quad \underbrace{x = v_1}_{11} \quad \underbrace{x = v_2}_{12} \quad \underbrace{a = b}_{13}$$

M	Δ	C	rule
	Δ_0	no	
0 ... 9	Δ_0	no	by PROPAGATE ⁺
0 ... 9 10	Δ_0	no	by \mathcal{T}-PROPAGATE (0, 3 \models_{EUF} 10)
0 ... 9 10	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by I-LEARN ($\models_{\text{LIA}} \bar{4} \vee \bar{5} \vee 11 \vee 12$)
0 ... 9 10 • 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by DECIDE
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T}-PROPAGATE (0, 1, 11 \models_{EUF} 13)
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	7 $\vee \bar{13}$	by \mathcal{T}-CONFLICT (7, 13 \models_{EUF} 1)
0 ... 9 10 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by BACKJUMP
0 ... 9 10 13 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T}-PROPAGATE (0, 1, 13 \models_{EUF} 11)
0 ... 9 10 13 11 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by Propagate (exercise)
...	
UNSAT	by Fan

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$\underbrace{a = v_4}_{10} \quad \underbrace{x = v_1}_{11} \quad \underbrace{x = v_2}_{12} \quad \underbrace{a = b}_{13}$

M	Δ	C	rule
	Δ_0	no	
0 ... 9	Δ_0	no	by PROPAGATE ⁺
0 ... 9 10	Δ_0	no	by \mathcal{T} - PROPAGATE (0, 3 \models_{EUF} 10)
0 ... 9 10	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by I-LEARN ($\models_{\text{LIA}} \bar{4} \vee \bar{5} \vee 11 \vee 12$)
0 ... 9 10 • 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by DECIDE
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T} - PROPAGATE (0, 1, 11 \models_{EUF} 13)
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$?	by \mathcal{T} - CONFLICT (7, 13 \models_{EUF} 1)
0 ... 9 10 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by BACKJUMP
0 ... 9 10 13 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T} - PROPAGATE (0, 1, 13 \models_{EUF} 11)
0 ... 9 10 13 11 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by Propagate (exercise)
...
UNSAT	by Fail

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$$a = v_4 \quad x = v_1 \quad x = v_2 \quad a = b$$

$$10 \quad 11 \quad 12 \quad 13$$

M	Δ	C	rule
	Δ_0	no	
0 ... 9	Δ_0	no	by PROPAGATE ⁺
0 ... 9 10	Δ_0	no	by \mathcal{T} -PROPAGATE (0, 3 \models_{EUF} 10)
0 ... 9 10	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by I-LEARN ($\models_{LIA} \bar{4} \vee \bar{5} \vee 11 \vee 12$)
0 ... 9 10 • 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by DECIDE
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T} -PROPAGATE (0, 1, 11 \models_{EUF} 13)
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	$\bar{7} \vee \bar{13}$	by \mathcal{T} -Conflict (7, 13 $\models_{EUF} \perp$)
0 ... 9 10 13 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by PROPAGATE
0 ... 9 10 13 11 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T} -PROPAGATE (0, 1, 13 \models_{EUF} 11)
0 ... 9 10 13 11 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by PROPAGATE (exercise)
UNSAT	by Fan

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$$a = v_4 \quad x = v_1 \quad x = v_2 \quad a = b$$

$$10 \quad 11 \quad 12 \quad 13$$

M	Δ	C	rule
	Δ_0	no	
0 ... 9	Δ_0	no	by PROPAGATE ⁺
0 ... 9 10	Δ_0	no	by \mathcal{T} -PROPAGATE (0, 3 \models_{EUF} 10)
0 ... 9 10	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by I-LEARN ($\models_{LIA} \bar{4} \vee \bar{5} \vee 11 \vee 12$)
0 ... 9 10 • 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by DECIDE
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T} -PROPAGATE (0, 1, 11 \models_{EUF} 13)
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	$\bar{7} \vee \bar{13}$	by \mathcal{T} -CONFLICT (7, 13 $\models_{EUF} \perp$)
0 ... 9 10 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by BACKJUMP
0 ... 9 10 13 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T} -PROPAGATE (0, 1, 13 \models_{EUF} 11)
0 ... 9 10 13 11 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by PROPAGATE (exercise)
UNSAT	by Fan

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$$a = v_4 \quad x = v_1 \quad x = v_2 \quad a = b$$

$$10 \quad 11 \quad 12 \quad 13$$

M	Δ	C	rule
	Δ_0	no	
0 ... 9	Δ_0	no	by PROPAGATE ⁺
0 ... 9 10	Δ_0	no	by \mathcal{T}-PROPAGATE (0, 3 $\models_{\text{EUF}} 10$)
0 ... 9 10	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by I-LEARN ($\models_{\text{LIA}} \bar{4} \vee \bar{5} \vee 11 \vee 12$)
0 ... 9 10 • 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by DECIDE
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T}-PROPAGATE (0, 1, 11 $\models_{\text{EUF}} 13$)
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	$\bar{7} \vee \bar{13}$	by \mathcal{T}-Conflict (7, 13 $\models_{\text{EUF}} \perp$)
0 ... 9 10 13 $\bar{13}$	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by BACKJUMP
0 ... 9 10 13 $\bar{13}$ 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T}-PROPAGATE (0, 1, $\bar{13}$ $\models_{\text{EUF}} \bar{11}$)
0 ... 9 10 13 11 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by PROPAGATE (conflict)
UNSAT	by Fail

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$$a = v_4 \quad x = v_1 \quad x = v_2 \quad a = b$$

$$10 \quad 11 \quad 12 \quad 13$$

M	Δ	C	rule
	Δ_0	no	
0 ... 9	Δ_0	no	by PROPAGATE ⁺
0 ... 9 10	Δ_0	no	by \mathcal{T} -PROPAGATE (0, 3 \models_{EUF} 10)
0 ... 9 10	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by I-LEARN ($\models_{LIA} \bar{4} \vee \bar{5} \vee 11 \vee 12$)
0 ... 9 10 • 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by DECIDE
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T} -PROPAGATE (0, 1, 11 \models_{EUF} 13)
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	$\bar{7} \vee \bar{13}$	by \mathcal{T} -Conflict (7, 13 $\models_{EUF} \perp$)
0 ... 9 10 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by BACKJUMP
0 ... 9 10 13 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T} -PROPAGATE (0, 1, $\bar{13}$ $\models_{EUF} \bar{11}$)
0 ... 9 10 13 11 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by PROPAGATE
			UNSAT

by Fail

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$$a = v_4 \quad x = v_1 \quad x = v_2 \quad a = b$$

$$10 \quad 11 \quad 12 \quad 13$$

M	Δ	C	rule
	Δ_0	no	
0 ... 9	Δ_0	no	by PROPAGATE ⁺
0 ... 9 10	Δ_0	no	by \mathcal{T} -PROPAGATE (0, 3 \models_{EUF} 10)
0 ... 9 10	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by I-LEARN ($\models_{LIA} \bar{4} \vee \bar{5} \vee 11 \vee 12$)
0 ... 9 10 • 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by DECIDE
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T} -PROPAGATE (0, 1, 11 \models_{EUF} 13)
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	$\bar{7} \vee \bar{13}$	by \mathcal{T} -CONFLICT (7, 13 $\models_{EUF} \perp$)
0 ... 9 10 13 $\bar{13}$	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by BACKJUMP
0 ... 9 10 13 $\bar{13}$ 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T} -PROPAGATE (0, 1, $\bar{13}$ \models_{EUF} $\bar{11}$)
0 ... 9 10 $\bar{13}$ 11 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by PROPAGATE (exercise)
...			
UNSAT			By FAIL

Example – Non-convex Theories

$$\Delta_0 := \underbrace{f(v_1) = a}_0 \wedge \underbrace{f(x) = b}_1 \wedge \underbrace{f(v_2) = v_3}_2 \wedge \underbrace{f(v_1) = v_4}_3 \wedge \underbrace{1 \leq x}_4 \wedge \underbrace{x \leq 2}_5 \wedge \underbrace{v_1 = 1}_6 \wedge \underbrace{a = b + 2}_7 \wedge \underbrace{v_2 = 2}_8 \wedge \underbrace{v_3 = v_4 + 3}_9$$

$$a = v_4 \quad x = v_1 \quad x = v_2 \quad a = b$$

$$10 \quad 11 \quad 12 \quad 13$$

M	Δ	C	rule
	Δ_0	no	
0 ... 9	Δ_0	no	by PROPAGATE ⁺
0 ... 9 10	Δ_0	no	by \mathcal{T}-PROPAGATE (0, 3 \models_{EUF} 10)
0 ... 9 10	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by I-LEARN ($\models_{LIA} \bar{4} \vee \bar{5} \vee 11 \vee 12$)
0 ... 9 10 • 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by DECIDE
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T}-PROPAGATE (0, 1, 11 \models_{EUF} 13)
0 ... 9 10 • 11 13	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	$\bar{7} \vee \bar{13}$	by \mathcal{T}-CONFLICT (7, 13 $\models_{EUF} \perp$)
0 ... 9 10 13 $\bar{13}$	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by BACKJUMP
0 ... 9 10 13 $\bar{13}$ 11	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by \mathcal{T}-PROPAGATE (0, 1, $\bar{13}$ \models_{EUF} $\bar{11}$)
0 ... 9 10 13 $\bar{13}$ 11 12	$\Delta_0, \bar{4} \vee \bar{5} \vee 11 \vee 12$	no	by PROPAGATE (exercise)
...	by FAIL
UNSAT	