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Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like

+2 write 4 read +3 -2 — +1
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o the theory of integer arithmetic (7.a)
e the theory of arrays (74)

® the theory of uninterpreted functions ( )
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Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like

+2 write 4 read +3 -2 — +1

Solving that formula requires reasoning over

o the theory of integer arithmetic (7.a)
e the theory of arrays (74)

® the theory of uninterpreted functions ( )

Given solvers for each theory, can we combine them modularly into one for a theory that
combines 7, 7a and ?

The answer is yes, under certain conditions
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First-order theories and their combination

Recall: A is a pair , where:
® ) isasignature, consisting of a set >~ of and a set " of function symbols

® /isaclass of > -interpretations closed under variable re-assignment

We limit interpretations of > -formulas to those in
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First-order theories and their combination

Recall: A is a pair , where:
® ) isasignature, consisting of a set >~ of and a set " of function symbols

® /isaclass of > -interpretations closed under variable re-assignment

Two signatures > ; and >, are if each of their function symbols, those in
, has the same rank in both >_; and

The of two compatible signatures >-; and ., is the signature

E Note: Signatures with no shared function symbols are trivially compatible
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First-order theories and their combination

Recall: A is a pair , where:
® ) isasignature, consisting of a set >~ of and a set " of function symbols

® /isaclass of > -interpretations closed under variable re-assignment

Let and be two theories with compatible signatures
The of 71 and 75 is the theory
where and

Recall: thereduct 7" of a > -interpretation 7 to a subsignature () of >_ is an (-interpretation defined
exactly as 7 over the symbols in
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Convex Theories

We want to build theory solvers for combined theory by modularly combining theory solvers
for the individual theories
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Convex Theories

We want to build theory solvers for combined theory by modularly combining theory solvers
for the individual theories

This is easier to do when individual theories are convex

AT -theory 7 is if for all sets I of 7 -literals over the variables with

iff for some
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Convex Theories: Examples

Linear real arithmetic is convex

This is a consequence of the fact that sets of literals in this theory define convex polytopes
(recall the linear programming slides)

5/21
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This is a consequence of the fact that sets of literals in this theory define convex polytopes
(recall the linear programming slides)

Linear integer arithmetic is non-convex, for instance
holds, while neither
nor
holds
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Convex Theories: Examples

Linear real arithmetic is convex

This is a consequence of the fact that sets of literals in this theory define convex polytopes
(recall the linear programming slides)

Linear integer arithmetic is non-convex, for instance
holds, while neither
nor
holds

Many theories used in SMT are non-convex, which makes their solvers harder to combine with
other theories, as we will see
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Combining Theory Solvers

Let S; and S, be two theory solvers deciding the satisfiability of sets of literals in theories
and 7, respectively
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Combining Theory Solvers

Let S; and S, be two theory solvers deciding the satisfiability of sets of literals in theories
and 7, respectively

We are interested in constructing a theory solver deciding the satisfiability of sets | of literals in
by modularly combining S; and

A popular procedure that achieves this combination consists of four main steps:
1. Purification. Purify [ into a set /; of >_;-literals and a set [, of >_,-literals
2. Propagation. Exchange entailed equalities between variables shared by /; and

3. Decision. If either 77 or 7 is non-convex, guess non-entailed equalities and disequalities
between the shared variables. Go to ??

4. Check. Check the satisfiability of /; locally in 7; for
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Combining Theory Solvers: Step 1 Example

Let and7; — Tira

1. Purify and partition input set
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Combining Theory Solvers: Step 1

An is a non-variable term of signature >, for or
Purification: Given a set | of -literals:
1. Find an /-term t that is a subterm of a non->_-literal
2. Replace tin [ with a fresh variable v, and add to
3. Repeat Steps 1 and 2 until every literal is (i.e,iseithera > ;-ora
4. Partition L into aset [ of >;-literals and a set |, of »_,-literals

-literal)
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Combining Theory Solvers: Step 1

An is a non-variable term of signature >, for or
Purification: Given a set | of -literals:
1. Find an /-term t that is a subterm of a non->_-literal
2. Replace tin [ with a fresh variable v, and add to
3. Repeat Steps 1 and 2 until every literal is (i.e,iseithera > ;-ora
4. Partition L into aset [ of >;-literals and a set |, of »_,-literals

-literal)

[ Note: | is equisatisfiable with in
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Combining Theory Solvers: Step 2-4 Example

Let and 7, — Tira
2. Propagate entailed equalities between the shared variables

Ly

>a+2
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Combining Theory Solvers: Step 2-4 Example

Let and 7,

2. Propagate entailed equalities between the shared variables

V3iV4

Ly
>a+2
0
VliVZ
GiV5

7~LRA
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Combining Theory Solvers: Step 2-4 Example

Let and 7,

2. Propagate entailed equalities between the shared variables

Ly
>a+2
0
VliVZ
GiV5

V3iV4

3. If either 77 or 75 is non-convexy, ...

No action because both theories are convex

7~LRA
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Combining Theory Solvers: Step 2-4 Example

Let and 7,

2. Propagate entailed equalities between the shared variables

Ly
>a+2
0
VliVZ
GiV5

V3iV4

4. Check for satisfiability of L ; and of L, locally
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Combining Theory Solvers: Step 2-4 Example

Let and 7,

2. Propagate entailed equalities between the shared variables

Ly
>a+2
0
VliVZ
GiV5

V3iV4

4. Check for satisfiability of L ; and of L, locally

and Ly Fira Report

7~LRA
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Combining Theory Solvers: Step 3 Example (non-convex case)

Let and7; — Tia

3. Since 75 is non-convex, guess non-entailed equalities and disequalities between the shared

variables
Ly

IA IA
=N

+2

+3
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Combining Theory Solvers: Step 3 Example (non-convex case)

Let and7; — Tia

3. Since 75 is non-convex, guess non-entailed equalities and disequalities between the shared

variables

Note: No entailed equalities, but L, [=(a

Ly

IA IA
=N

+2

+3
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Combining Theory Solvers: Step 3 Example (non-convex case)

Let and7; — Tia

3. Since 75 is non-convex, guess non-entailed equalities and disequalities between the shared

variables

Consider each case of

Ly

IA IA
=N

+2

+3

separately
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Combining Theory Solvers: Step 3 Example (non-convex case)

Let and7; — Tia

3. Since 75 is non-convex, guess non-entailed equalities and disequalities between the shared

variables

Casel)

Ly

IA IA
=N

+2

+3
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Combining Theory Solvers: Step 3 Example (non-convex case)

Let and7; — Tia

3. Since 75 is non-convex, guess non-entailed equalities and disequalities between the shared
variables

Ly
1<

<2

1
+2

X=V =2
+3

X=V

but Lz,G =b ):LIA
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Combining Theory Solvers: Step 3 Example (non-convex case)

Let and7; — Tia

3. Since 75 is non-convex, guess non-entailed equalities and disequalities between the shared

variables

Case 2)

Ly

IA IA
=N

+2

+3
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Combining Theory Solvers: Step 3 Example (non-convex case)

Let and7; — Tia

3. Since 75 is non-convex, guess non-entailed equalities and disequalities between the shared
variables

Ly
1<

<2

1
+2

X=V =2
+3

X=V

but L;,v3 = b =iia

10/21



The Combination Method

Bare-bones, non-deterministic, non-incremental version:
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Input: with L finite set of 7;-literals
Output: or
1. Guessan ,1.e., a set of equalities and disequalities over the variables

shared by [ ; and [, such that

or forall

2. If is unsatisfiable in 7; for or , return
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The Combination Method

Bare-bones, non-deterministic, non-incremental version:

Input: with L finite set of 7;-literals
Output: or
1. Guessan ,1.e., a set of equalities and disequalities over the variables
shared by [ ; and [, such that
or forall
2. If is unsatisfiable in 7; for or , return

3. Otherwise, return
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Correctness of the Combination Method

Theorem 1 (Refutation Soundness)
If the method returns for every arrangement, the input is unsatisfiable in

Proof.
Because unsatisfiability in is preserved.

O
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Correctness of the Combination Method

Theorem 1 (Refutation Soundness)

If the method returns for every arrangement, the input is unsatisfiable in
Proof.
Because unsatisfiability in is preserved. O
Theorem 2 (Solution Soundness)
If and T, and T, are stably infinite over , when the method returns
for some arrangement, the input is satisfiable in
Proof.
Because satisfiability in is preserved for stably infinite theories. O
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Correctness of the Combination Method

Theorem 3 (Termination)
The method is terminating.

Proof.
Because there is only a finite number of arrangements to guess. O
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Correctness of the Combination Method

Theorem 3 (Termination)
The method is terminating.

Proof.
Because there is only a finite number of arrangements to guess. O

Theorem 4 (Decidability)

If , [1 and T, are stably infinite over , and the satisfiability of
quantifier-free formulas in J; is decidable for , then the satisfiability of quantifier-free
formulas in is decidable.
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Stably Infinite Theories

Let 7 be a theory or signature >, let

is if every quantifier-free formula satisfiable in 7 is satisfiable
in 7 -interpretation 7 such that o is infinite for all
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Stably Infinite Theories

Let 7 be a theory or signature >, let

is if every quantifier-free formula satisfiable in 7 is satisfiable
in 7 -interpretation 7 such that o is infinite for all

Many interesting theories are stably infinite:

® Theories of an infinite structure (e.g., integer/real arithmetic)

® Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
® Convex theories (e.g., EUF with uninterpreted sorts, linear real arithmetic)

Recall: With convex theories, arrangements do not need to be guessed as they can be computed by (theory)
propagation
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Stably Infinite Theories

Let 7 be a theory or signature >, let

is if every quantifier-free formula satisfiable in 7 is satisfiable
in 7 -interpretation 7 such that o is infinite for all

Other interesting theories are not stably infinite:

® Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo 1)

® Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

The combination method has been extended to over the years to various classes of non-stably
infinite theories
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Why the combination method needs stably infiniteness
The theory of fixed-size bit-vectors contains sorts whose domains are all finite. Hence, this
theory cannot be stably-infinite.

Example: Consider where both indices and elements are of the same sort bv, so that the
sorts of are {array, bv}, and a theory 7,, that requires the sort bv to be interpreted as
bit-vectors of size 1.

® Both theories are decidable and we would like to decide the combination theoryin a
Nelson-Oppen-like framework.

® Let be array variables and consider the following constraints: , for

® These constraints are entirely within . Array theory solver is given all constraints and
the bit-vector theory solver is given none.

® Problem: Array solver tells us these constraints are SAT, but there are only four possible
different arrays with elements and indices over bit-vectors of size 1.
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SMT Solving with Multiple Theories

Let be theories with respective solvers

How can we integrate all of them cooperatively into a single SMT solver for ?
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SMT Solving with Multiple Theories

Let be theories with respective solvers
How can we integrate all of them cooperatively into a single SMT solver for

Quick Solution:
1. Combine into a theory solver for

2. Build a CDCL(7) solver as usual
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SMT Solving with Multiple Theories

Let be theories with respective solvers
How can we integrate all of them cooperatively into a single SMT solver for

Better Solution:
1. Extend CDCL(7) to CDCL( )
2. Lift combination method to the CDCL( ) level

3. Build a CDCL( ) solver
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Modeling CDCL( ) Abstractly

Let , for simplicity
® Let 7 be of signature > for , with

® |et C be aset of fresh constants

Assume wlog that each input literal has signature or (no literals)
® |et

® |et
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Abstract CDCL Modulo Multiple Theories

PROPAGATE, CONflicT, EXPLAIN, BACKJUMP, FAIL (unchanged)
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Abstract CDCL Modulo Multiple Theories

PROPAGATE, CONflicT, EXPLAIN, BACKJUMP, FAIL (unchanged)

U I(M
DECIDE (M)

Only change: decide on interface equalities as well

UI(M) ieq{1,2 =7
-PROPAGATE (M) {1,2} =7

Only change: propagate interface equalities as well, but reason locally in each
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Abstract CDCL Modulo Multiple Theories

-Conflict

=7

-EXPLAIN

|:77 i€ {172}

Only change: reason locally in each

ie{1,2}
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Abstract CDCL Modulo Multiple Theories

-ConflicT
Fr L ie{1,2}
-EXPLAIN
|:77 i€ {172}
Only change: reason locally in each
-LEARN
= M;UI(M) i€ {1,2)

New rule: for entailed disjunctions of interface literals
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Example — Convex Theories
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Example — Convex Theories

A=fln)=a ANf(x)=vu Afy)=va A f(u)=vs AX=Yy AVva—vi=vi A Vva=0A Vs >a+2
5 ; - 5 6 7
4

Vo) = V3 Vi=VWs a= Vs
~——

M A C rule
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Vo) = V3 Vi=VWs a= Vs

—_—— e —  ——

10

M A C rule
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Example — Convex Theories

A=fln)=a ANf(x)=v, Afy)=va A f(va)=vs AX=Yy AN Va—Vvi=Vvi A V4
N—— N— — S— — N—— N~ N———

Vo =V3 Vi=Vs a=Vs
—— N—— Hla_/
M A C rule
JAY no
01234567 Ay no  byPROPAGATE"
012345678 Ay no  byT-PROPAGATE (1, 2, 4 =ur 8)
0123456789 A, no  byT-PROPAGATE (5, 6,8 =g 9)

0 ANVvs>a+2
—_———

7
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Example — Convex Theories

A:=fln)=a A f(x)=va Af(y)=vs A f(u)=vs AX=Yy Ava—v3=vi Avy=0 A vs >a+2
—— —— —— —— —— ——— —— —_——

Vo =V3 Vi=Vs a=Vs
—— N—— \16_/
M A C rule
JAY no
01234567 Ay, no byPROPAGATE"
012345678 /Ay, no by T-PROPAGATE (1, 2, 4 |=¢yr 8)
0123456789 /A, no by 7-PROPAGATE (5, 6, 8 =_ra 9)
012345678910 A, no by T-PROPAGATE (0, 3, 9 =gyr 10)

7
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Example — Convex Theories

A:=fln)=a A f(x)=va Af(y)=vs A f(u)=vs AX=Yy Ava—v3=vi Avy=0 A vs >a+2
N—— N— — S— — N—— N~ SNe— — SN— = A e —

V2 = V3
——

Vi = Vs a= Vs

10

M A C rule
JAY no
01234567 Ay, no byPROPAGATE"
012345678 /Ay, no by T-PROPAGATE (1, 2, 4 |=¢yr 8)
0123456789 /A, no by 7-PROPAGATE (5, 6, 8 =_ra 9)
012345678910 A, no by T-PROPAGATE (0, 3, 9 =gyr 10)
012345678910 A, 7V10 byT-ConflicT (7, 10 Fra L)

7

20/21



Example — Convex Theories

A:=fln)=a A f(x)=va Af(y)=vs A f(u)=vs AX=Yy Ava—v3=vi Avy=0 A vs >a+2
N—— N—— N—— —— N——" —— N—— —

V2 = V3
——

Vi = Vs a= Vs

10

M A C rule
JAY no
01234567 Ay, no byPROPAGATE"
012345678 /Ay, no by T-PROPAGATE (1, 2, 4 |=¢yr 8)
0123456789 /A, no by 7-PROPAGATE (5, 6, 8 =_ra 9)
012345678910 A, no by T-PROPAGATE (0, 3, 9 =gyr 10)
012345678910 A, 7V10 byT-ConflicT (7, 10 Fra L)

UNSAT

by FAIL

7
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Example — Non-convex Theories

10 11 12 13
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Example — Non-convex Theories

Ao =

—

fli)=a A f(x)=b A f(va) =v3 A f(v1)
——

=V AN1I<XxAX<2AvV=1Aa=b+2 A v=2Av
~— —_— —_—— —— ~—— \_\6,_/ —— ~——
0 1 2

a=v4 X=Vi X=V, a=»>b

N~ N N~ =

10 11 12 13
M A C rule
JAY) no
0---9 Ay

no by PROPAGATE™

=vs+3
——
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Example — Non-convex Theories

Ng:=f(vi)=a ANfx)=b A f(n)=vzs Af(vi)=w AN1<XAX<2AvV=1Aa=b+2AVv=2Av=
—— ~— — —— —— —— N——

~— ~—— ——
0 5 6

a=v4 X=Vi X=V, a=»>b
N~ N N~ =

10 11 12 13
M A C rule
JAY no
0---9 A no by PROPAGATE"
0---910 A, no by 7-PROPAGATE (0, 3 |=eur 10)

V4+3
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Example — Non-convex Theories

Do :=f(vi)=a ANf(x)=b A f(n)=v3s Af(1)=va N1<XAX<2Av=1Aa=b+2Avn=2Av3i=v+3
S— N—— N—— — N~ \5,_/ \_\6,—/ S— N — N——ro
0

a=v4 X=Vi X=V, a=»>b
—— N N —

10 11 12 13
M A C rule
Ao no
0---9 A no by PROPAGATE"
0---910 Ay no by 7-PROPAGATE (0, 3 |=eur 10)
0---910 Ay, 4V5V11V12 no byI-LEARN (s 4V 5V 11V 12)
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Example — Non-convex Theories

Do :=f(vi)=a ANf(x)=b A f(n)=v3s Af(1)=va N1<XAX<2Av=1Aa=b+2Avn=2Av3i=v+3
—— — — —_— N \5,./ \_\6,_/ —— —— —_——
0

a=v4 X=Vi X=V, a=»>b
—— N N —
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0---910e1113 A, 4V5V11V12 no byT-PROPAGATE (0, 1, 11 =y 13)

X<2Avi=1Aa=b+2 A v=2Av3i=vs+3
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UNSAT

(exercise)
by FAIL
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