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Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like

a = b + 2 ∧ A .
= write(B, a, 4) ∧ (read(A, b + 3) .

= b − 2 ∨ f(a − b) ̸ .= f(b + 1))

Solving that formula requires reasoning over

• the theory of integer arithmetic (TLIA)

• the theory of arrays (TA)

• the theory of uninterpreted functions (TEUF)

Given solvers for each theory, can we combine them modularly into one for a theory that
combines TLIA, TA and TEUF?

The answer is yes, under certain conditions
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First-order theories and their combination

Recall: A theory T is a pair (Σ, I), where:
• Σ is a signature, consisting of a set ΣS of sort symbols and a set ΣF of function symbols
• I is a class of Σ-interpretations closed under variable re-assignment

We limit interpretations of Σ-formulas to those in I
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• Σ is a signature, consisting of a set ΣS of sort symbols and a set ΣF of function symbols
• I is a class of Σ-interpretations closed under variable re-assignment

Two signatures Σ1 and Σ2 are compatible if each of their shared function symbols, those in
ΣF

1 ∩ ΣF
2, has the same rank in both Σ1 and Σ2

The combination of two compatible signatures Σ1 and Σ2, is the signature

Σ1 ⊕ Σ2 = (ΣS
1 ∪ ΣS

2,Σ
F
1 ∪ ΣF

2)

Note: Signatures with no shared function symbols are trivially compatible
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First-order theories and their combination

Recall: A theory T is a pair (Σ, I), where:
• Σ is a signature, consisting of a set ΣS of sort symbols and a set ΣF of function symbols
• I is a class of Σ-interpretations closed under variable re-assignment

Let T1 = (Σ1, S1) and T2 = (Σ2, S2) be two theories with compatible signatures
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Recall: A theory T is a pair (Σ, I), where:
• Σ is a signature, consisting of a set ΣS of sort symbols and a set ΣF of function symbols
• I is a class of Σ-interpretations closed under variable re-assignment

Let T1 = (Σ1, S1) and T2 = (Σ2, S2) be two theories with compatible signatures

The combination of T1 and T2 is the theory

T1 ⊕ T2 = (Σ, S)

where Σ = Σ1 ⊕ Σ2 and S = { I | IΣ1 ∈ S1 and IΣ2 ∈ S2 }

Recall: the reduct IΩ of aΣ-interpretationI to a subsignatureΩ ofΣ is anΩ-interpretation defined
exactly as I over the symbols in Ω
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Convex Theories

We want to build theory solvers for combined theory by modularly combining theory solvers
for the individual theories

This is easier to do when individual theories are convex

A T -theory T is convex if for all sets Γ of T -literals over the variables x1, . . . , xn,y1, . . . , yn with
n > 0

Γ |=T x1
.
= y1 ∨ · · · ∨ xn

.
= yn iff Γ |=T xk

.
= yk for some k ∈ 1, ..., n
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Convex Theories: Examples

Linear real arithmetic is convex

This is a consequence of the fact that sets of literals in this theory define convex polytopes
(recall the linear programming slides)

Linear integer arithmetic is non-convex, for instance

x .
= 1, y .

= 2, 1 ≤ z, z ≤ 2 |=LIA z .
= x ∨ z .

= y holds, while neither

x = 1, y = 2, 1 ≤ z, z ≤ 2 |=LIA z = x nor

x = 1, y = 2, 1 ≤ z, z ≤ 2 |=LIA z = y holds

Many theories used in SMT are non-convex, which makes their solvers harder to combine with
other theories, as we will see
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Combining Theory Solvers

Let S1 and S2 be two theory solvers deciding the satisfiability of sets of literals in theories T1
and T2, respectively

We are interested in constructing a theory solver deciding the satisfiability of sets L of literals in
T1 ⊕ T2 by modularly combining S1 and S2

A popular procedure that achieves this combination consists of four main steps:

1. Purification. Purify L into a set L1 of Σ1-literals and a set L2 of Σ2-literals

2. Propagation. Exchange entailed equalities between variables shared by L1 and L2

3. Decision. If either T1 or T2 is non-convex, guess non-entailed equalities and disequalities
between the shared variables. Go to ??

4. Check. Check the satisfiability of Li locally in Ti for i = 1, 2
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Combining Theory Solvers: Step 1 Example

Let T1 = TEUF and T2 = TLRA

1. Purify and partition input set

L =


f(f(x)− f(y)) .

= a
f(0) > a + 2
x .
= y

−→


f(v1 − v2)

.
= a, v1

.
= f(x), v2

.
= f(y)

f(v3) > a + 2, v3
.
= 0

x .
= y

−→


f(v4)

.
= a, v4

.
= v1 − v2, v1

.
= f(x), v2

.
= f(y)

v5 > a + 2, v5
.
= f(v3), v3

.
= 0

x .
= y

L1 = { f(v4)
.
= a, v1

.
= f(x), v2

.
= f(y), v5

.
= f(v3), x .

= y }
L2 = { v4

.
= v1 − v2, v5 > a + 2, v3

.
= 0 }
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Combining Theory Solvers: Step 1

An i-term is a non-variable term of signature Σi for i = 1 or i = 2

Purification: Given a set L of Σ1 ⊕ Σ2-literals:

1. Find an i-term t that is a subterm of a non-Σi-literal l ∈ L

2. Replace t in l with a fresh variable v, and add v .
= t to L

3. Repeat Steps 1 and 2 until every literal is pure (i.e, is either a Σ1- or a Σ2-literal)

4. Partition L into a set L1 of Σ1-literals and a set L2 of Σ2-literals

Note: L is equisatisfiable with L1 ∪ L2 in T1 ⊕ T2
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Combining Theory Solvers: Step 2-4 Example

Let T1 = TEUF and T2 = TLRA

2. Propagate entailed equalities between the shared variables v1, v2, v3, v4, v5, a

L1 L2
f(v4)

.
= a v4

.
= v1 − v2

v1
.
= f(x) v5 > a + 2

v2
.
= f(y) v3

.
= 0

v5
.
= f(v3) v1

.
= v2

x .
= y a .

= v5
v3

.
= v4
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3. If either T1 or T2 is non-convex, . . .
No action because both theories are convex
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Combining Theory Solvers: Step 2-4 Example

Let T1 = TEUF and T2 = TLRA

2. Propagate entailed equalities between the shared variables v1, v2, v3, v4, v5, a

L1 L2
f(v4)

.
= a v4
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= v1 − v2
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= f(x) v5 > a + 2
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.
= f(y) v3

.
= 0

v5
.
= f(v3) v1

.
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x .
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= v5
v3
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4. Check for satisfiability of L1 and of L2 locally

L1 ̸|=EUF ⊥ and L2 |=LRA ⊥ Report UNSAT
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Combining Theory Solvers: Step 3 Example (non-convex case)

Let T1 = TEUF and T2 = TLIA

3. Since T2 is non-convex, guess non-entailed equalities and disequalities between the shared
variables

L1 L2
f(v1)

.
= a 1 ≤ x

f(x) .
= b x ≤ 2

f(v2)
.
= v3 v1

.
= 1

f(v1)
.
= v4 a .

= b + 2
v2

.
= 2

v3
.
= v4 + 3

a .
= v4
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.
= v3 v1

.
= 1

f(v1)
.
= v4 a .

= b + 2
v2

.
= 2

v3
.
= v4 + 3

a .
= v4

Note: No entailed equalities, but L2 |=LIA x .
= v1 ∨ x .

= v2
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a .
= v4

Consider each case of x .
= v1 ∨ x .

= v2 separately
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The Combination Method

Bare-bones, non-deterministic, non-incremental version:

Input: L1 ∪ L2 with Li finite set of Ti-literals
Output: SAT or UNSAT

1. Guess an arrangement A, i.e., a set of equalities and disequalities over the variables V
shared by L1 and L2 such that

u .
= v ∈ A or u ̸ .= v ∈ A for all u, v ∈ V

2. If Li ∪ A is unsatisfiable in Ti for i = 1 or i = 2, return UNSAT

3. Otherwise, return SAT
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Correctness of the Combination Method

Theorem 1 (Refutation Soundness)
If the method returns UNSAT for every arrangement, the input is unsatisfiable in T1 ⊕ T2.

Proof.
Because unsatisfiability in T1 ⊕ T2 is preserved.

Theorem 2 (Solution Soundness)
If ΣF

1 ∩ ΣF
2 = ∅ and T1 and T2 are stably infinite over ΣS

1 ∩ ΣS
2, when the method returns SAT

for some arrangement, the input is satisfiable in T1 ⊕ T2.

Proof.
Because satisfiability in T1 ⊕ T2 is preserved for stably infinite theories.
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Correctness of the Combination Method

Theorem 3 (Termination)
The method is terminating.

Proof.
Because there is only a finite number of arrangements to guess.

Theorem 4 (Decidability)
If ΣF

1 ∩ ΣF
2 = ∅, T1 and T2 are stably infinite over ΣS

1 ∩ ΣS
2, and the satisfiability of

quantifier-free formulas in Ti is decidable for i = 1, 2, then the satisfiability of quantifier-free
formulas in T1 ⊕ T2 is decidable.
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Stably Infinite Theories

Let T be a theory or signature Σ, let S ⊂ ΣS

T is stably-infinite with respect to S if every quantifier-free formula satisfiable in T is satisfiable
in T -interpretation I such that σI is infinite for all σ on S.
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Many interesting theories are stably infinite:

• Theories of an infinite structure (e.g., integer/real arithmetic)

• Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)

• Convex theories (e.g., EUF with uninterpreted sorts, linear real arithmetic)

Recall: With convex theories, arrangements do not need to be guessed as they can be computed by (theory)
propagation
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T is stably-infinite with respect to S if every quantifier-free formula satisfiable in T is satisfiable
in T -interpretation I such that σI is infinite for all σ on S.

Other interesting theories are not stably infinite:

• Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)

• Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

The combination method has been extended to over the years to various classes of non-stably
infinite theories
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Why the combination method needs stably infiniteness

The theory of fixed-size bit-vectors contains sorts whose domains are all finite. Hence, this
theory cannot be stably-infinite.

Example: Consider Tarray where both indices and elements are of the same sort bv, so that the
sorts of Tarray are {array, bv}, and a theory Tbv that requires the sort bv to be interpreted as
bit-vectors of size 1.

• Both theories are decidable and we would like to decide the combination theory in a
Nelson-Oppen-like framework.

• Let a1, ..., a5 be array variables and consider the following constraints: ai ̸= aj, for
1 ≤ i < j ≤ 5.

• These constraints are entirely within Tarray. Array theory solver is given all constraints and
the bit-vector theory solver is given none.

• Problem: Array solver tells us these constraints are SAT, but there are only four possible
different arrays with elements and indices over bit-vectors of size 1.
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SMT Solving with Multiple Theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT solver for T = T1 ⊕ · · · ⊕ Tn?
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Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT solver for T = T1 ⊕ · · · ⊕ Tn?

Quick Solution:

1. Combine S1, . . . , Sn into a theory solver for T

2. Build a CDCL(T ) solver as usual
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SMT Solving with Multiple Theories

Let T1, . . . , Tn be theories with respective solvers S1, . . . , Sn

How can we integrate all of them cooperatively into a single SMT solver for T = T1 ⊕ · · · ⊕ Tn?

Better Solution:

1. Extend CDCL(T ) to CDCL(T1, . . . , Tn)

2. Lift combination method to the CDCL(X1, . . . , Xn) level

3. Build a CDCL(T1, . . . , Tn) solver
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Modeling CDCL(T1, . . . , Tn) Abstractly

• Let n = 2, for simplicity

• Let Ti be of signature Σi for i = 1, 2, with Σ1 ∩ Σ2 = ∅

• Let C be a set of fresh constants

• Assume wlog that each input literal has signature (T1 ∪ C) or (T2 ∪ C) (no mixed literals)

• Let M|i
def
= {Σi∪C-literals of M and their complement}

• Let I(M)
def
= {c = d | c, d occur in C, M|1 and M|2} ∪

{c ̸= d | c, d occur in C, M|1 and M|2}
(interface literals)
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Abstract CDCL Modulo Multiple Theories

PROPAGATE, CONflICT, EXPLAIN, BACKJUMP, FAIL (unchanged)

DECIDE
l ∈ Lits(F) ∪ I(M) l, l /∈ M

M := M • l

Only change: decide on interface equalities as well

T -PROPAGATE
l ∈ Lits(F) ∪ I(M) i ∈ {1, 2} M |=Ti l l, l /∈ M

M := M l

Only change: propagate interface equalities as well, but reason locally in each Ti
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Abstract CDCL Modulo Multiple Theories

T -CONflICT

C = no l1, . . . , ln ∈ M l1, . . . , ln |=Ti ⊥ i ∈ {1, 2}
C := l1 ∨ · · · ∨ ln

T -EXPLAIN

C = l ∨ D l1, . . . , ln |=Ti l i ∈ {1, 2} l1, . . . , ln ≺M l
C := l1 ∨ · · · ∨ ln ∨ D

Only change: reason locally in each Ti

I-LEARN
|=Ti l1 ∨ · · · ∨ ln l1, . . . , ln ∈ M|i ∪ I(M) i ∈ {1, 2}

F := F ∪ {l1 ∨ · · · ∨ ln}

New rule: for entailed disjunctions of interface literals
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Example — Convex Theories

∆ := f(v1) = a︸ ︷︷ ︸
0

∧ f(x) = v2︸ ︷︷ ︸
1

∧ f(y) = v3︸ ︷︷ ︸
2

∧ f(v4) = v5︸ ︷︷ ︸
3

∧ x = y︸ ︷︷ ︸
4

∧ v2 − v3 = v1︸ ︷︷ ︸
5

∧ v4 = 0︸ ︷︷ ︸
6

∧ v5 > a + 2︸ ︷︷ ︸
7

v2 = v3︸ ︷︷ ︸
8

v1 = v4︸ ︷︷ ︸
9

a = v5︸ ︷︷ ︸
10

M ∆ C rule
∆0 no

0 1 2 3 4 5 6 7 ∆0 no by PROPAGATE+

0 1 2 3 4 5 6 7 8 ∆0 no by T -PROPAGATE (1, 2, 4 |=EUF 8)
0 1 2 3 4 5 6 7 8 9 ∆0 no by T -PROPAGATE (5, 6, 8 |=LRA 9)

0 1 2 3 4 5 6 7 8 9 10 ∆0 no by T -PROPAGATE (0, 3, 9 |=EUF 10)
0 1 2 3 4 5 6 7 8 9 10 ∆0 7 ∨ 10 by T -CONflICT (7, 10 |=LRA ⊥)

UNSAT by FAIL
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0 · · · 9 10 ∆0, 4 ∨ 5 ∨ 11 ∨ 12 no by I-LEARN (|=LIA 4 ∨ 5 ∨ 11 ∨ 12)

0 · · · 9 10 • 11 ∆0, 4 ∨ 5 ∨ 11 ∨ 12 no by DECIDE
0 · · · 9 10 • 11 13 ∆0, 4 ∨ 5 ∨ 11 ∨ 12 no by T -PROPAGATE (0, 1, 11 |=EUF 13)
0 · · · 9 10 • 11 13 ∆0, 4 ∨ 5 ∨ 11 ∨ 12 7 ∨ 13 by T -CONflICT (7, 13 |=EUF ⊥)

0 · · · 9 10 13 ∆0, 4 ∨ 5 ∨ 11 ∨ 12 no by BACKJUMP
0 · · · 9 10 13 11 ∆0, 4 ∨ 5 ∨ 11 ∨ 12 no by T -PROPAGATE (0, 1, 13 |=EUF 11)

0 · · · 9 10 13 11 12 ∆0, 4 ∨ 5 ∨ 11 ∨ 12 no by PROPAGATE
. . . (exercise)
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