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Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this TEUF-formula?

g(a) .
= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .

= d) ∧ c ̸ .= d

What about arbitrary Boolean combinations of literals?

2 / 34



Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this TEUF-formula?

g(a) .
= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .

= d) ∧ c ̸ .= d

What about arbitrary Boolean combinations of literals?

2 / 34



Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this TEUF-formula?

g(a) .
= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .

= d) ∧ c ̸ .= d

What about arbitrary Boolean combinations of literals?

2 / 34



Checking the satisfiability of quantifier-free formulas

Theorem 1
For all theories T , the T -satisfiability of quantifier-free formulas is decidable iff the
T -satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is T -satisfiable.

Problem: the DNF conversion is very inefficient! (formula size can explode exponentially)

A better solution: exploit propositional satisfiability technology to deal with the Boolean
structure
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Lifting SAT Technology to SMT

Two main approaches:

1. Eager

• translate into an equisatisfiable propositional formula

• feed it to any SAT solver

Notable systems: UCLID

2. Lazy

• abstract the input formula to a propositional one

• feed it to a (CDCL-based) SAT solver

• use a theory decision procedure to refine the formula and guide the SAT solver

Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3
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Lazy Approach for SMT

Given a quantifier-free Σ-formula φ, for each atomic formula α in φ, we associate a unique
propositional variable e(α)

The Boolean skeleton of a formula φ is a propositional logic formula, where each atomic
formula α in φ is replaced with e(α)

Example:
φ := x < 0︸ ︷︷ ︸

p1

∨ (x + y < 1︸ ︷︷ ︸
p2

∧¬(x < 0︸ ︷︷ ︸
p1

)) ⇒ y < 0︸ ︷︷ ︸
p3

Boolean skeleton of φ : p1 ∨ (p2 ∧ ¬p1) ⇒ p3

with e := { (x < 0) 7→ p1, (x + y < 1) 7→ p2, (y < 0) 7→ p3 }
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(Very) Lazy Approach for SMT – Example

g(a) .
= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .

= d) ∧ c ̸ .= d

Simplest setting:

• Off-line SAT solver

• Non-incremental theory solver for conjunctions of equalities and disequalities

• Theory atoms (e.g., g(a) .
= c) abstracted to propositional atoms (e.g., 1)
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(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF )
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat
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Notation: p̄ stands for ¬p
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Done! The original formula is
unsatisfiable in TEUF



Eager Approach for SMT – Example

f(b) .
= a ∨ f(a) ̸ .= a

Step 1: Eliminate all function applications (Ackermann’s encoding)

• introduce a constant symbol fx to replace function application f(x)
• for each pair of introduced variables fx , fy , add the formula x .

= y ⇒ fx
.
= fy

f(b) ⇒ fb f(a) ⇒ fa

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

Now, atomic formulas are equalities between constants/variables
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Eager Approach for SMT – Example
Rename fb as c and fa as d:

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

becomes
(c .

= a ∨ d ̸ .= a) ∧ (a .
= b ⇒ d .

= c)

Step 2: Eliminate all equalities

• replace each pair of constants x, y with a unique propositional variable px,y

• add facts about reflexivity, symmetry, transitivity
(pc,a ∨ ¬pd,a) ∧ (pa,b ⇒ pd,c)

∧ pa,a ∧ pb,b ∧ pc,c ∧ pd,d ∧ (pa,b ⇔ pb,a) ∧ (pa,c ⇔ pc,a) ∧ (pa,d ⇔ pd,a) ∧ · · ·
∧ ((pa,b ∧ pb,c) ⇒ pa,c) ∧ ((pa,c ∧ pc,d) ⇒ pa,d) ∧ · · ·

The resulting propositional formula is equisatisfiable with the original TEUF -formula

Note: Not all the transitivity cases are needed
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Discussion: eager vs. lazy approach

Eager

• translate into an equisatisfiable propositional formula

• feed it to any SAT solver

Lazy

• abstract the input formula to a propositional one

• feed it to a (CDCL-based) SAT solver

• use a theory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the two approaches?
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Pros and cons: eager vs. lazy approach

Eager

• Can always use the best SAT solver off the shelf

• Requires care in encoding

• Tends not to scale well

Lazy

• Theory-specific reasoning

• Designing new theory solvers can be challenging

• Might require extension of a SAT solver for more efficiency interplay with theory solver

• Scales much better
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Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable
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Lazy Approach – Main Benefits

Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

• SAT and theory solvers communicate via a simple API

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort
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An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled a satisfiability proof system like those for Abstract DPLL and Abstract
CDCL

14 / 34



Review: Abstract DPLL

States:
UNSAT ⟨M,∆⟩

where

• M is a sequence of literals and decision points (•) denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula
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UNSAT ⟨M,∆⟩

where

• M is a sequence of literals and decision points (•) denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula

Note: When convenient, we treat M as a set

Provided M contains no complementary literals it determines the assignment

vM(p) =


true if p ∈ M
false if ¬p ∈ M
undef otherwise
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where

• M is a sequence of literals and decision points (•) denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula

Notation: If M = M0 • M1 • · · · • Mn where each Mi contains no decision points

• Mi is decision level i of M

• M[i] denotes the subsequence M0 • · · · • Mi, from decision level 0 through decision level i
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Review: Abstract CDCL

States:
UNSAT ⟨M,∆, C⟩

where

• M and ∆ are as in Abstract DPLL

• C is either no or a conflict clause

Initial state:

• ⟨ϵ,∆0, no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• UNSAT if ∆0 is unsatisfiable

• ⟨M,∆n, no⟩ otherwise, where ∆n is equisatisfiable with ∆0 and satisfied by M
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Review: CDCL proof rules

l ∈ Lits(∆) l, l̄ /∈ M
DECIDE

M := M • l

C ̸= no • /∈ M
FAIL UNSAT

RESTART
M := M[0] C := no

D is a clause ∆ |= D D /∈ ∆
LEARN

∆ := ∆ ∪ {D}

{l1, . . . , ln, l} ∈ ∆ l̄1, . . . , l̄n ∈ M l, l̄ /∈ M
PROPAGATE

M := M l

C = {l} ∪ C′ {l1, . . . , ln, l̄} ∈ ∆ l̄1, . . . , l̄n, l̄ ∈ M l̄1, . . . , l̄n ≺M l̄
EXPLAIN

C := {l1, . . . , ln} ∪ C′

C = D D = {l1, . . . , ln, l} lev(̄l1), . . . , lev(̄ln) ≤ i < lev(̄l)
BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}

C = no {l1, . . . , ln} ∈ ∆ l̄1, . . . , l̄n ∈ M
CONflICT

C := {l1, . . . , ln}

C = no ∆ = ∆′ ∪ {C} ∆′ |= C
FORGET

∆ := ∆′

We are going to extend this abstract framework to lazy SMT
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From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

• ∆ contains quantifier-free clauses in some theory T

• M is a sequence of theory literals (i.e., atomic formulas or their negations) and decision points

• CDCL Rules operate on the Boolean skeleton of ∆,
given by a mapping from theory literals to propositional literals

• The proofs system is augmented with SMT-specific rules based on |=T :
T -CONflICT, T -PROPAGATE and T -EXPLAIN

• We assume an oracle, the theory solver, for |=T over theory literals

• Invariant: either C ̸= no or ∆ |=T C and M |=p ¬C (with |=p propositional entailment)
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SMT-level Rules

At SAT level:

C = no {l1, . . . , ln} ∈ ∆ l̄1, . . . , l̄n ∈ M
CONflICT C := {l1, . . . , ln}

At SMT level:

C = no l̄1 ∧ · · · ∧ l̄n |=T ⊥ l̄1, . . . , l̄n ∈ M
T -CONflICT

C := {l1, . . . , ln}

If a set of literals in M are unsatisfiable in T , make their negation a conflict clause
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SMT-level Rules

At SAT level:

{l1, . . . , ln, l} ∈ ∆ l̄1, . . . , l̄n ∈ M l, l̄ /∈ M
PROPAGATE M := M l

At SMT level:

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE

M := M l

If M entails some literal l in T , extend it with l
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SMT-level Rules

At SAT level:

C = {l} ∪ C′ {l1, . . . , ln, l̄} ∈ ∆ l̄1, . . . , l̄n, l̄ ∈ M l̄1, . . . , l̄n ≺M l̄
EXPLAIN C := {l1, . . . , ln} ∪ C′

At SMT level:

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

If the complement l̄ of a literal in the conflict clause is entailed in T by some literals l̄1, . . . , l̄n
at lower decision levels, derive a new conflict clause by resolution with {l1, . . . , ln, l̄}
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CDCL Modulo Theories proof rules

l ∈ Lits(∆) l, l̄ /∈ M
DECIDE

M := M • l

C ̸= no • /∈ M
FAIL UNSAT

RESTART
M := M[0] C := no

D is a clause ∆ |= D D /∈ ∆
LEARN

∆ := ∆ ∪ {D}

C = no ∆ = ∆′ ∪ {C} ∆′ |= C
FORGET

∆ := ∆′

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE

M := M l

C = no l̄1 ∧ · · · ∧ l̄n |=T ⊥ l̄1, . . . , l̄n ∈ M
T -CONflICT

C := {l1, . . . , ln}

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

{l1, . . . , ln, l} ∈ ∆ l̄1, . . . , l̄n ∈ M l, l̄ /∈ M
PROPAGATE

M := M l

C = {l} ∪ C′ {l1, . . . , ln, l̄} ∈ ∆ l̄1, . . . , l̄n, l̄ ∈ M l̄1, . . . , l̄n ≺M l̄
EXPLAIN

C := {l1, . . . , ln} ∪ C′

C = D D = {l1, . . . , ln, l} lev(̄l1), . . . , lev(̄ln) ≤ i < lev(̄l)
BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}

C = no {l1, . . . , ln} ∈ ∆ l̄1, . . . , l̄n ∈ M
CONflICT

C := {l1, . . . , ln}
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Modeling the Very Lazy Theory Approach

T -CONflICT is enough to model the naive integration of SAT solvers and theory solvers seen in
the earlier EUF example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34



Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34



Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34



Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34



Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34



Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34



Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34



Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34



Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34



Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34



Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34



A Better Lazy Approach

The very lazy approach can be improved considerably with

• an on-line SAT engine that accept new input clauses on the fly

• an incremental and explicating T -solver that can
1. check the T -satisfiability of M as it is extended and

2. identify a small T -unsatisfiable subset of M once M becomes T -unsatisfiable
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Lazy Approach – Strategies

Ignoring RESTART (for simplicity), a common strategy is to apply the rules using the following
priorities:

1. If a clause is (propositionally) falsified by the current assignment M,
apply CONflICT

2. If M is T -unsatisfiable, apply T -CONflICT

3. Apply FAIL or EXPLAIN+LEARN+BACKJUMP as appropriate

4. Apply PROPAGATE

5. Apply DECIDE

Depending on the cost of checking the T -satisfiability of M,
Step (2) can be applied with lower frequency or priority
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Theory Propagation

With T -CONflICT as the only theory rule, the theory solver is used just to validate the choices of
the SAT engine

With T -PROPAGATE and T -EXPLAIN, it can also be used to guide the engine’s search

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE

M := M l

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

27 / 34



Theory Propagation

With T -CONflICT as the only theory rule, the theory solver is used just to validate the choices of
the SAT engine

With T -PROPAGATE and T -EXPLAIN, it can also be used to guide the engine’s search

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE

M := M l

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

27 / 34



Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed
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1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed
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Theory Propagation Features

• With exhaustive theory propagation, every assignment M is T -satisfiable
(since M l is T -unsatisfiable iff M |=T l̄)

• For theory propagation to be effective in practice, it needs specialized theory solvers

• For some theories, e.g., difference logic, detecting T -entailed literals is cheap and so exhaustive
theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting T -entailed equalities is cheap but detecting
T -entailed disequalities is quite expensive

• If T -PROPAGATE is not applied exhaustively, T -CONflICT is needed to repair T -unsatisfiable
assignments
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Theory Propagation Exercise

a .
= b︸ ︷︷ ︸
1

∧ a .
= c︸ ︷︷ ︸
2

∨ c .
= b︸ ︷︷ ︸
3

∧ a ̸ .= b︸ ︷︷ ︸
1̄

∨ f(a) ̸ .= f(c)︸ ︷︷ ︸
4̄

∧ c ̸ .= b︸ ︷︷ ︸
3̄

∨ g(a) .
= g(c)︸ ︷︷ ︸
5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5
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Theory Propagation Exercise

Scenario 1: propagating only T -entailed equalities (no disequalities)
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5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5

M ∆ C rule
∆0 no

1 4̄ ∆0 no by PROPAGATE+

1 4̄ • 2 ∆0 no by DECIDE
1 4̄ • 2 ∆0 2̄ ∨ 4 by T -CONflICT (as 2, 4̄ |=T ⊥)

1 4̄ 2̄ ∆0, 2̄ ∨ 4 no by BACKJUMP
1 4̄ 2̄ 3 ∆0, 2̄ ∨ 4 no by PROPAGATE
1 4̄ 2̄ 3 ∆0, 2̄ ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT (as 1, 3̄, 4̄ |=T ⊥)
UNSAT by FAIL
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Theory Propagation Exercise

Scenario 2: propagating T -entailed equalities and disequalities
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Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:

(1) PROPAGATE, DECIDE, CONflICT, EXPLAIN, BACKJUMP, FAIL

(2) T -CONflICT, T -PROPAGATE, T -EXPLAIN

(3) LEARN, FORGET, RESTART

Basic CDCL Modulo Theories def
= (1) + (2)

CDCL Modulo Theories def
= (1) + (2) + (3)
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Correctness
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.
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Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

Lemma 3
Every exhausted execution ends with either C = no or UNSAT.
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Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

Theorem 3 (Refutation Soundness)
For every exhausted execution starting with ∆ = ∆0 and ending with UNSAT, the clause set ∆0 is
T -unsatisfiable.

32 / 34



Correctness
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

Theorem 3 (Refutation Soundness)
For every exhausted execution starting with ∆ = ∆0 and ending with UNSAT, the clause set ∆0 is
T -unsatisfiable.

Theorem 4 (Refutation Completeness)
For every exhausted execution starting with ∆ = ∆0 and ending with C = no, the clause set ∆0 is
T -satisfiable; specifically, M is T -satisfiable and M |=p ∆0.
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CDCL(T ) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(T) but currently known as CDCL(T )

CDCL(T ) = CDCL(X) engine + T -solver
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CDCL(T ) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(T) but currently known as CDCL(T )

CDCL(T ) = CDCL(X) engine + T -solver

CDCL(X):

• Very similar to a SAT solver, enumerates Boolean models

• Not allowed: pure literal rule (and other SAT specific optimizations)

• Required: incremental addition of clauses

• Desirable: partial model detection
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CDCL(T ) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(T) but currently known as CDCL(T )

CDCL(T ) = CDCL(X) engine + T -solver

T -solver:

• Checks the T -satisfiability of conjunctions of literals

• Computes theory propagations

• Produces explanations of T -unsatisfiability/propagation

• Must be incremental and backtrackable
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Typical SMT solver architecture
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SAT Solver
• Only sees Boolean skeleton of problem
• Builds partial model by assigning truth values to

literals
• Sends these literals to the core as assertions



Typical SMT solver architecture
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Core
• Sends each assertion to the

appropriate theory
• Sends deduced literals to other

theories/SAT solver
• Handles theory combination



Typical SMT solver architecture
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Theory Solvers
• Check T -satisfiability of sets of

theory literals
• Incremental
• Backtrackable
• Conflict Generation
• Theory Propagation


