

CS:4980 Topics in Computer Science II
Introduction to Automated Reasoning

Combining Theory Solvers with SAT solvers

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa, and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this T_{UF} -formula?

$$g(a) = c \wedge (f(g(a)) \neq f(c) \vee g(a) = d) \wedge c \neq d$$

What about arbitrary Boolean combinations of literals?

Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this \mathcal{T}_{EUF} -formula?

$$g(a) \doteq c \wedge (f(g(a)) \neq f(c) \vee g(a) \doteq d) \wedge c \neq d$$

What about arbitrary Boolean combinations of literals?

Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this \mathcal{T}_{EUF} -formula?

$$g(a) \doteq c \wedge (f(g(a)) \neq f(c) \vee g(a) \doteq d) \wedge c \neq d$$

What about arbitrary Boolean combinations of literals?

Checking the satisfiability of quantifier-free formulas

Theorem 1

For all theories \mathcal{T} , the \mathcal{T} -satisfiability of **quantifier-free** formulas is decidable iff the \mathcal{T} -satisfiability of conjunctions/sets of literals is decidable.

Proof.

Convert the formula to DNF and check if any of its disjuncts is \mathcal{T} -satisfiable. □

Problem: the DNF conversion is **very inefficient!** (formula size can explode exponentially)

A better solution: exploit propositional satisfiability technology to deal with the Boolean structure

Checking the satisfiability of quantifier-free formulas

Theorem 1

For all theories \mathcal{T} , the \mathcal{T} -satisfiability of **quantifier-free** formulas is decidable iff the \mathcal{T} -satisfiability of conjunctions/sets of literals is decidable.

Proof.

Convert the formula to DNF and check if any of its disjuncts is \mathcal{T} -satisfiable. □

Problem: the DNF conversion is **very inefficient!** (formula size can explode exponentially)

A better solution: exploit propositional satisfiability technology to deal with the Boolean structure

Checking the satisfiability of quantifier-free formulas

Theorem 1

*For all theories \mathcal{T} , the \mathcal{T} -satisfiability of **quantifier-free** formulas is decidable iff the \mathcal{T} -satisfiability of conjunctions/sets of literals is decidable.*

Proof.

Convert the formula to DNF and check if any of its disjuncts is \mathcal{T} -satisfiable. □

Problem: the DNF conversion is **very inefficient!** (formula size can explode exponentially)

A better solution: exploit propositional satisfiability technology to deal with the Boolean structure

Checking the satisfiability of quantifier-free formulas

Theorem 1

*For all theories \mathcal{T} , the \mathcal{T} -satisfiability of **quantifier-free** formulas is decidable iff the \mathcal{T} -satisfiability of conjunctions/sets of literals is decidable.*

Proof.

Convert the formula to DNF and check if any of its disjuncts is \mathcal{T} -satisfiable. □

Problem: the DNF conversion is **very inefficient!** (formula size can explode exponentially)

A better solution: exploit **propositional satisfiability technology** to deal with the Boolean structure

Lifting SAT Technology to SMT

Two main approaches:

1. *Eager*

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

Notable systems: **UCLID**

2. *Lazy*

- abstract the input formula to a propositional one
- feed it to a (CDCL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver

Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3

Lifting SAT Technology to SMT

Two main approaches:

1. *Eager*

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

Notable systems: **UCLID**

2. *Lazy*

- abstract the input formula to a propositional one
- feed it to a (CDCL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver

Notable systems: **Bitwuzla, cvc5, MathSAT, Yices, Z3**

Lazy Approach for SMT

Given a quantifier-free Σ -formula φ , for each **atomic formula** α in φ , we associate a **unique** propositional variable $e(\alpha)$

The **Boolean skeleton** of a formula φ is a propositional logic formula, where each atomic formula α in φ is replaced with $e(\alpha)$

Example:

$$\varphi := x < 0 \vee (x + y < 1 \wedge \neg(x < 0)) \Rightarrow y < 0$$

p_1 p_2 p_3 p_4

Boolean skeleton of φ : $p_1 \vee (p_2 \wedge \neg p_1) \Rightarrow p_4$

with $e := \{(x < 0) \mapsto p_1, (x + y < 1) \mapsto p_2, (y < 0) \mapsto p_4\}$

Lazy Approach for SMT

Given a quantifier-free Σ -formula φ , for each **atomic formula** α in φ , we associate a **unique** propositional variable $e(\alpha)$

The **Boolean skeleton** of a formula φ is a propositional logic formula, where each atomic formula α in φ is replaced with $e(\alpha)$

Example:

$$\varphi := \underbrace{x < 0}_{p_1} \vee \left(\underbrace{x + y < 1}_{p_2} \wedge \neg \underbrace{(x < 0)}_{p_1} \right) \Rightarrow \underbrace{y < 0}_{p_3}$$

Boolean skeleton of φ : $p_1 \vee (p_2 \wedge \neg p_1) \Rightarrow p_3$

with $e := \{ (x < 0) \mapsto p_1, (x + y < 1) \mapsto p_2, (y < 0) \mapsto p_3 \}$

(Very) Lazy Approach for SMT – Example

$$g(a) \doteq c \wedge (f(g(a)) \not\doteq f(c)) \vee g(a) \doteq d \wedge c \not\doteq d$$

Simplest setting:

- Off-line SAT solver
- Non-incremental *theory solver* for conjunctions of equalities and disequalities
- Theory atoms (e.g., $g(a) \doteq c$) abstracted to propositional atoms (e.g., 1)

(Very) Lazy Approach for SMT – Example

$$g(a) \doteq c \wedge (f(g(a)) \not\doteq f(c)) \vee g(a) \doteq d \wedge c \not\doteq d$$

Simplest setting:

- Off-line SAT solver
- Non-incremental *theory solver* for conjunctions of equalities and disequalities
- Theory atoms (e.g., $g(a) \doteq c$) abstracted to propositional atoms (e.g., 1)

(Very) Lazy Approach for SMT – Example

Notation: \bar{p} stands for $\neg p$

$$\underbrace{g(a) \doteq c}_1 \quad \wedge \quad \underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \quad \vee \quad \underbrace{g(a) \doteq d}_3 \quad \wedge \quad \underbrace{c \neq d}_{\bar{4}}$$

(Very) Lazy Approach for SMT – Example

Notation: \bar{p} stands for $\neg p$

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_{\bar{4}}$$

- Send $\{1, \bar{2} \vee 3, \bar{4}\}$ to SAT solver
- SAT solver returns model $\{1, \bar{2}, \bar{4}\}$
- Theory solver finds (concretization of) $\{1, \bar{2}, \bar{4}\}$ unsat in T_{EUR}
(meaning that $\bar{1} \vee \bar{2} \vee \bar{4}$ is valid in T_{EUR})
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \bar{4}\}$
- Theory solver finds $\{1, 3, \bar{4}\}$ unsat
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ to SAT solver
- SAT solver finds $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ unsat

(Very) Lazy Approach for SMT – Example

Notation: \bar{p} stands for $\neg p$

$$\underbrace{g(a) \doteq c}_1 \quad \wedge \quad \underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \quad \vee \quad \underbrace{g(a) \doteq d}_3 \quad \wedge \quad \underbrace{c \neq d}_{\bar{4}}$$

- Send $\{1, \bar{2} \vee 3, \bar{4}\}$ to SAT solver
- SAT solver returns model $\{1, \bar{2}, \bar{4}\}$
- Theory solver finds (concretization of) $\{1, \bar{2}, \bar{4}\}$ unsat in T_{EUR}
(meaning that $\bar{1} \vee \bar{2} \vee \bar{4}$ is valid in T_{EUR})
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \bar{4}\}$
- Theory solver finds $\{1, 3, \bar{4}\}$ unsat
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ to SAT solver
- SAT solver finds $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ unsat

(Very) Lazy Approach for SMT – Example

Notation: \bar{p} stands for $\neg p$

$$\underbrace{g(a) \doteq c}_1 \quad \wedge \quad \underbrace{f(g(a)) \neq f(c)}_2 \quad \vee \quad \underbrace{g(a) \doteq d}_3 \quad \wedge \quad \underbrace{c \neq d}_4$$

- Send $\{1, \bar{2} \vee 3, \bar{4}\}$ to SAT solver
- SAT solver returns model $\{1, \bar{2}, \bar{4}\}$
- Theory solver finds (concretization of) $\{1, \bar{2}, \bar{4}\}$ **unsat** in \mathcal{T}_{EUF}
(meaning that $\bar{1} \vee 2 \vee 4$ is **valid** in \mathcal{T}_{EUF})
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \bar{4}\}$
- Theory solver finds $\{1, 3, \bar{4}\}$ **unsat**
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ to SAT solver
- SAT solver finds $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ **unsat**

(Very) Lazy Approach for SMT – Example

Notation: \bar{p} stands for $\neg p$

$$\underbrace{g(a) \doteq c}_1 \quad \wedge \quad \underbrace{f(g(a)) \neq f(c)}_2 \quad \vee \quad \underbrace{g(a) \doteq d}_3 \quad \wedge \quad \underbrace{c \neq d}_4$$

- Send $\{1, \bar{2} \vee 3, \bar{4}\}$ to SAT solver
- SAT solver returns model $\{1, \bar{2}, \bar{4}\}$
- Theory solver finds (concretization of) $\{1, \bar{2}, \bar{4}\}$ **unsat** in \mathcal{T}_{EUF}
(meaning that $\bar{1} \vee 2 \vee 4$ is **valid** in \mathcal{T}_{EUF})
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \bar{4}\}$
- Theory solver finds $\{1, 3, \bar{4}\}$ **unsat**
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ to SAT solver
- SAT solver finds $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ **unsat**

(Very) Lazy Approach for SMT – Example

Notation: \bar{p} stands for $\neg p$

$$\underbrace{g(a) \doteq c}_1 \quad \wedge \quad \underbrace{f(g(a)) \neq f(c)}_2 \quad \vee \quad \underbrace{g(a) \doteq d}_3 \quad \wedge \quad \underbrace{c \neq d}_4$$

- Send $\{1, \bar{2} \vee 3, \bar{4}\}$ to SAT solver
- SAT solver returns model $\{1, \bar{2}, \bar{4}\}$
- Theory solver finds (concretization of) $\{1, \bar{2}, \bar{4}\}$ **unsat** in \mathcal{T}_{EUF}
(meaning that $\bar{1} \vee 2 \vee 4$ is **valid** in \mathcal{T}_{EUF})
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \bar{4}\}$
- Theory solver finds $\{1, 3, \bar{4}\}$ **unsat**
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ to SAT solver
- SAT solver finds $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ **unsat**

(Very) Lazy Approach for SMT – Example

Notation: \bar{p} stands for $\neg p$

$$\underbrace{g(a) \doteq c}_1 \quad \wedge \quad \underbrace{f(g(a)) \neq f(c)}_2 \quad \vee \quad \underbrace{g(a) \doteq d}_3 \quad \wedge \quad \underbrace{c \neq d}_4$$

- Send $\{1, \bar{2} \vee 3, \bar{4}\}$ to SAT solver
- SAT solver returns model $\{1, \bar{2}, \bar{4}\}$
- Theory solver finds (concretization of) $\{1, \bar{2}, \bar{4}\}$ **unsat** in \mathcal{T}_{EUF}
(meaning that $\bar{1} \vee 2 \vee 4$ is **valid** in \mathcal{T}_{EUF})
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \bar{4}\}$
- Theory solver finds $\{1, 3, \bar{4}\}$ **unsat**
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ to SAT solver
- SAT solver finds $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ **unsat**

(Very) Lazy Approach for SMT – Example

Notation: \bar{p} stands for $\neg p$

$$\underbrace{g(a) \doteq c}_1 \quad \wedge \quad \underbrace{f(g(a)) \neq f(c)}_2 \quad \vee \quad \underbrace{g(a) \doteq d}_3 \quad \wedge \quad \underbrace{c \neq d}_4$$

- Send $\{1, \bar{2} \vee 3, \bar{4}\}$ to SAT solver
- SAT solver returns model $\{1, \bar{2}, \bar{4}\}$
- Theory solver finds (concretization of) $\{1, \bar{2}, \bar{4}\}$ **unsat** in \mathcal{T}_{EUF}
(meaning that $\bar{1} \vee 2 \vee 4$ is **valid** in \mathcal{T}_{EUF})
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \bar{4}\}$
- Theory solver finds $\{1, 3, \bar{4}\}$ **unsat**
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ to SAT solver
- SAT solver finds $\{\bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{1} \vee \bar{2} \vee \bar{4}, \bar{1} \vee \bar{3} \vee \bar{4}\}$ **unsat**

(Very) Lazy Approach for SMT – Example

Notation: \bar{p} stands for $\neg p$

$$\underbrace{g(a) \doteq c}_1 \quad \wedge \quad \underbrace{f(g(a)) \neq f(c)}_2 \quad \vee \quad \underbrace{g(a) \doteq d}_3 \quad \wedge \quad \underbrace{c \neq d}_4$$

- Send $\{1, \bar{2} \vee 3, \bar{4}\}$ to SAT solver
- SAT solver returns model $\{1, \bar{2}, \bar{4}\}$
- Theory solver finds (concretization of) $\{1, \bar{2}, \bar{4}\}$ **unsat** in \mathcal{T}_{EUF}
(meaning that $\bar{1} \vee 2 \vee 4$ is **valid** in \mathcal{T}_{EUF})
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \bar{4}\}$
- Theory solver finds $\{1, 3, \bar{4}\}$ **unsat**
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ to SAT solver
- SAT solver finds $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ **unsat**

(Very) Lazy Approach for SMT – Example

Notation: \bar{p} stands for $\neg p$

$$\underbrace{g(a) \doteq c}_1 \quad \wedge \quad \underbrace{f(g(a)) \neq f(c)}_2 \quad \vee \quad \underbrace{g(a) \doteq d}_3 \quad \wedge \quad \underbrace{c \neq d}_4$$

- Send $\{1, \bar{2} \vee 3, \bar{4}\}$ to SAT solver
- SAT solver returns model $\{1, \bar{2}, \bar{4}\}$
- Theory solver finds (concretization of) $\{1, \bar{2}, \bar{4}\}$ **unsat** in \mathcal{T}_{EUF}
(meaning that $\bar{1} \vee 2 \vee 4$ is **valid** in \mathcal{T}_{EUF})
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \bar{4}\}$
- Theory solver finds $\{1, 3, \bar{4}\}$ **unsat**
- Send $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ to SAT solver
- SAT solver finds $\{1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4\}$ **unsat**

Done! The original formula is unsatisfiable in \mathcal{T}_{EUF}

Eager Approach for SMT – Example

$$f(b) \doteq a \vee f(a) \not\doteq a$$

Step 1: Eliminate all function applications (Ackermann's encoding)

- introduce a constant symbol f_x to replace function application $f(x)$
- for each pair of introduced variables f_x, f_y , add the formula $x \doteq y \Rightarrow f_x \doteq f_y$

$$\begin{aligned} f(b) &\doteq f_b \quad f(a) \doteq f_a \\ (f_b \doteq a \vee f_a \not\doteq a) \wedge (a \doteq b \Rightarrow f_a \doteq f_b) \end{aligned}$$

Now, atomic formulas are equalities between constants/variables

Eager Approach for SMT – Example

$$f(b) \doteq a \vee f(a) \not\doteq a$$

Step 1: Eliminate all function applications (Ackermann's encoding)

- introduce a constant symbol f_x to replace function application $f(x)$
- for each pair of introduced variables f_x, f_y , add the formula $x \doteq y \Rightarrow f_x \doteq f_y$

$$f(b) \Rightarrow f_b \quad f(a) \Rightarrow f_a$$

$$(f_b \doteq a \vee f_a \not\doteq a) \wedge (a \doteq b \Rightarrow f_a \doteq f_b)$$

Now, atomic formulas are equalities between constants/variables

Eager Approach for SMT – Example

$$f(b) \doteq a \vee f(a) \not\doteq a$$

Step 1: Eliminate all function applications (Ackermann's encoding)

- introduce a constant symbol f_x to replace function application $f(x)$
- for each pair of introduced variables f_x, f_y , add the formula $x \doteq y \Rightarrow f_x \doteq f_y$

$$f(b) \Rightarrow f_b \quad f(a) \Rightarrow f_a$$

$$(f_b \doteq a \vee f_a \not\doteq a) \wedge (a \doteq b \Rightarrow f_a \doteq f_b)$$

Now, **atomic formulas** are equalities between constants/variables

Eager Approach for SMT – Example

Rename f_b as c and f_a as d :

$$(f_b \doteq a \vee f_a \not\doteq a) \wedge (a \doteq b \Rightarrow f_a \doteq f_b)$$

becomes

$$(c \doteq a \vee d \not\doteq a) \wedge (a \doteq b \Rightarrow d \doteq c)$$

Step 2: Eliminate all equalities

- replace each pair of constants x, y with a unique propositional variable $p_{x,y}$
- add facts about reflexivity, symmetry, transitivity

$$\begin{aligned} & (p_{c,a} \vee \neg p_{d,a}) \wedge (p_{a,b} \Rightarrow p_{d,c}) \\ & \wedge (p_{a,a} \wedge p_{b,b} \wedge p_{c,c} \wedge p_{d,d}) \wedge (p_{a,b} \Leftrightarrow p_{b,a}) \wedge (p_{a,c} \Leftrightarrow p_{c,a}) \wedge (p_{a,d} \Leftrightarrow p_{d,a}) \wedge \dots \\ & \wedge ((p_{a,b} \wedge p_{b,c}) \Rightarrow p_{a,c}) \wedge ((p_{a,c} \wedge p_{c,d}) \Rightarrow p_{a,d}) \wedge \dots \end{aligned}$$

The resulting propositional formula is equisatisfiable with the original T_{SMT} -formula

Note: Not all the transitivity cases are needed

Eager Approach for SMT – Example

Rename f_b as c and f_a as d :

$$(f_b \doteq a \vee f_a \not\doteq a) \wedge (a \doteq b \Rightarrow f_a \doteq f_b)$$

becomes

$$(c \doteq a \vee d \not\doteq a) \wedge (a \doteq b \Rightarrow d \doteq c)$$

Step 2: Eliminate all equalities

- replace each pair of constants x, y with a unique propositional variable $p_{x,y}$
- add facts about **reflexivity, symmetry, transitivity**

$$\begin{aligned} & (p_{c,a} \vee \neg p_{d,a}) \wedge (p_{a,b} \Rightarrow p_{d,c}) \\ & \wedge (p_{a,a} \wedge p_{b,b} \wedge p_{c,c} \wedge p_{d,d}) \wedge (p_{a,b} \Rightarrow p_{b,a}) \wedge (p_{a,c} \Rightarrow p_{c,a}) \wedge (p_{a,d} \Rightarrow p_{d,a}) \wedge \dots \\ & \wedge ((p_{a,b} \wedge p_{b,c}) \Rightarrow p_{a,c}) \wedge ((p_{a,c} \wedge p_{c,d}) \Rightarrow p_{a,d}) \wedge \dots \end{aligned}$$

The resulting propositional formula is equisatisfiable with the original T_{SMT} -formula

Note: Not all the transitivity cases are needed

Eager Approach for SMT – Example

Rename f_b as c and f_a as d :

$$(f_b \doteq a \vee f_a \not\doteq a) \wedge (a \doteq b \Rightarrow f_a \doteq f_b)$$

becomes

$$(c \doteq a \vee d \not\doteq a) \wedge (a \doteq b \Rightarrow d \doteq c)$$

Step 2: Eliminate all equalities

- replace each pair of constants x, y with a unique propositional variable $p_{x,y}$
- add facts about **reflexivity, symmetry, transitivity**

$$\begin{aligned} & (p_{c,a} \vee \neg p_{d,a}) \wedge (p_{a,b} \Rightarrow p_{d,c}) \\ & \wedge p_{a,a} \wedge p_{b,b} \wedge p_{c,c} \wedge p_{d,d} \wedge (p_{a,b} \Leftrightarrow p_{b,a}) \wedge (p_{a,c} \Leftrightarrow p_{c,a}) \wedge (p_{a,d} \Leftrightarrow p_{d,a}) \wedge \dots \\ & \wedge ((p_{a,b} \wedge p_{b,c}) \Rightarrow p_{a,c}) \wedge ((p_{a,c} \wedge p_{c,d}) \Rightarrow p_{a,d}) \wedge \dots \end{aligned}$$

The resulting propositional formula is equisatisfiable with the original T_{EUF} -formula

Note: Not all the transitivity cases are needed

Eager Approach for SMT – Example

Rename f_b as c and f_a as d :

$$(f_b \doteq a \vee f_a \not\doteq a) \wedge (a \doteq b \Rightarrow f_a \doteq f_b)$$

becomes

$$(c \doteq a \vee d \not\doteq a) \wedge (a \doteq b \Rightarrow d \doteq c)$$

Step 2: Eliminate all equalities

- replace each pair of constants x, y with a unique propositional variable $p_{x,y}$
- add facts about **reflexivity, symmetry, transitivity**

$$\begin{aligned} & (p_{c,a} \vee \neg p_{d,a}) \wedge (p_{a,b} \Rightarrow p_{d,c}) \\ & \wedge p_{a,a} \wedge p_{b,b} \wedge p_{c,c} \wedge p_{d,d} \wedge (p_{a,b} \Leftrightarrow p_{b,a}) \wedge (p_{a,c} \Leftrightarrow p_{c,a}) \wedge (p_{a,d} \Leftrightarrow p_{d,a}) \wedge \dots \\ & \wedge ((p_{a,b} \wedge p_{b,c}) \Rightarrow p_{a,c}) \wedge ((p_{a,c} \wedge p_{c,d}) \Rightarrow p_{a,d}) \wedge \dots \end{aligned}$$

The resulting propositional formula is equisatisfiable with the original T_{EUF} -formula

Note: Not all the transitivity cases are needed

Discussion: eager vs. lazy approach

Eager

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

Lazy

- abstract the input formula to a propositional one
- feed it to a (CDCL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the two approaches?

Discussion: eager vs. lazy approach

Eager

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

Lazy

- abstract the input formula to a propositional one
- feed it to a (CDCL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver

What are the **pros and cons** of the two approaches?

Pros and cons: eager vs. lazy approach

Eager

- Can always use the best SAT solver off the shelf
- Requires care in encoding
- Tends not to scale well

Lazy

- Theory-specific reasoning
- Designing new theory solvers can be challenging
- Might require extension of a SAT solver for more efficiency interplay with theory solver
- Scales much better

Lazy Approach – Enhancements

Several **enhancements** are possible to **increase efficiency**:

- Check \mathcal{T} -satisfiability only of full propositional model

Check \mathcal{T} -satisfiability of partial assignment M as it grows

- If M is \mathcal{T} -unsatisfiable, add $\neg M$ as a clause

If M is \mathcal{T} -unsatisfiable, identify a \mathcal{T} -unsatisfiable subset M_0 of M and add $\neg M_0$ as a clause

- If M is \mathcal{T} -unsatisfiable, add clause and restart

If M is \mathcal{T} -unsatisfiable, backtrack to some point where the assignment was still \mathcal{T} -satisfiable

Lazy Approach – Enhancements

Several **enhancements** are possible to **increase efficiency**:

- Check \mathcal{T} -satisfiability only of full propositional model
Check \mathcal{T} -satisfiability of **partial** assignment M as it grows
- If M is \mathcal{T} -unsatisfiable, add $\neg M$ as a clause
If M is \mathcal{T} -unsatisfiable, identify a \mathcal{T} -unsatisfiable subset M_0 of M and add $\neg M_0$ as a clause
- If M is \mathcal{T} -unsatisfiable, add clause and restart
If M is \mathcal{T} -unsatisfiable, backtrack to some point where the assignment was still \mathcal{T} -satisfiable

Lazy Approach – Enhancements

Several **enhancements** are possible to **increase efficiency**:

- Check \mathcal{T} -satisfiability only of full propositional model
Check \mathcal{T} -satisfiability of **partial** assignment M as it grows
- If M is \mathcal{T} -unsatisfiable, add $\neg M$ as a clause
If M is \mathcal{T} -unsatisfiable, identify a \mathcal{T} -unsatisfiable subset M_0 of M and add $\neg M_0$ as a clause
- If M is \mathcal{T} -unsatisfiable, add clause and restart
If M is \mathcal{T} -unsatisfiable, backtrack to some point where the assignment was still \mathcal{T} -satisfiable

Lazy Approach – Enhancements

Several **enhancements** are possible to **increase efficiency**:

- Check \mathcal{T} -satisfiability only of full propositional model
Check \mathcal{T} -satisfiability of **partial** assignment M as it grows
- If M is \mathcal{T} -unsatisfiable, add $\neg M$ as a clause
If M is \mathcal{T} -unsatisfiable, identify a \mathcal{T} -unsatisfiable **subset** M_0 of M and add $\neg M_0$ as a clause
- If M is \mathcal{T} -unsatisfiable, add clause and restart
If M is \mathcal{T} -unsatisfiable, backtrack to some point where the assignment was still \mathcal{T} -satisfiable

Lazy Approach – Enhancements

Several **enhancements** are possible to **increase efficiency**:

- Check \mathcal{T} -satisfiability only of full propositional model
Check \mathcal{T} -satisfiability of **partial** assignment M as it grows
- If M is \mathcal{T} -unsatisfiable, add $\neg M$ as a clause
If M is \mathcal{T} -unsatisfiable, identify a \mathcal{T} -unsatisfiable **subset** M_0 of M and add $\neg M_0$ as a clause
- If M is \mathcal{T} -unsatisfiable, add clause and restart
If M is \mathcal{T} -unsatisfiable, **backtrack** to some point where the assignment was still \mathcal{T} -satisfiable

Lazy Approach – Enhancements

Several **enhancements** are possible to **increase efficiency**:

- Check \mathcal{T} -satisfiability only of full propositional model
Check \mathcal{T} -satisfiability of **partial** assignment M as it grows
- If M is \mathcal{T} -unsatisfiable, add $\neg M$ as a clause
If M is \mathcal{T} -unsatisfiable, identify a \mathcal{T} -unsatisfiable **subset** M_0 of M and add $\neg M_0$ as a clause
- If M is \mathcal{T} -unsatisfiable, add clause and restart
If M is \mathcal{T} -unsatisfiable, **backtrack** to some point where the assignment was still \mathcal{T} -satisfiable

Lazy Approach – Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

- SAT and theory solvers communicate via a simple API
- SMT for a new theory only requires new theory solver
- An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

Lazy Approach – Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

- SAT and theory solvers communicate via a simple API
- SMT for a new theory only requires new theory solver
- An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

Lazy Approach – Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

- SAT and theory solvers communicate via a simple API
- SMT for a new theory only requires new theory solver
- An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled a **satisfiability proof system** like those for Abstract DPLL and Abstract CDCL

Review: Abstract DPLL

States:

UNSAT $\langle M, \Delta \rangle$

where

- M is a *sequence of literals* and *decision points* (•) denoting a *partial variable assignment*
- Δ is a *set of clauses* denoting a CNF formula

Review: Abstract DPLL

States:

UNSAT $\langle M, \Delta \rangle$

where

- M is a *sequence of literals* and *decision points* (•) denoting a **partial variable assignment**
- Δ is a *set of clauses* denoting a CNF formula

Note: When convenient, we treat M as a set

Provided M contains no complementary literals it determines the assignment

$$v_M(p) = \begin{cases} \text{true} & \text{if } p \in M \\ \text{false} & \text{if } \neg p \in M \\ \text{undef} & \text{otherwise} \end{cases}$$

Review: Abstract DPLL

States:

UNSAT $\langle M, \Delta \rangle$

where

- M is a *sequence of literals* and *decision points* (•) denoting a **partial variable assignment**
- Δ is a *set of clauses* denoting a CNF formula

Notation: If $M = M_0 \bullet M_1 \bullet \dots \bullet M_n$ where each M_i contains no decision points

- M_i is *decision level i* of M
- $M^{[i]}$ denotes the subsequence $M_0 \bullet \dots \bullet M_i$, from decision level 0 through decision level i

Review: Abstract DPLL

States:

UNSAT

$\langle M, \Delta \rangle$

Initial state:

- $\langle \epsilon, \Delta_0 \rangle$ where ϵ is the empty assignment and Δ_0 is to be checked for satisfiability

Review: Abstract DPLL

States:

UNSAT

$\langle M, \Delta \rangle$

Initial state:

- $\langle \epsilon, \Delta_0 \rangle$ where ϵ is the empty assignment and Δ_0 is to be checked for satisfiability

Expected final states:

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

Review: Abstract CDCL

States:

UNSAT $\langle M, \Delta, C \rangle$

where

- M and Δ are as in Abstract DPLL
- C is either no or a *conflict clause*

Initial state:

- $\langle \epsilon, \Delta_0, \text{no} \rangle$, where Δ_0 is to be checked for satisfiability

Expected final states:

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n, \text{no} \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

Review: Abstract CDCL

States:

UNSAT $\langle M, \Delta, C \rangle$

where

- M and Δ are as in Abstract DPLL
- C is either no or a *conflict clause*

Initial state:

- $\langle \epsilon, \Delta_0, \text{no} \rangle$, where Δ_0 is to be checked for satisfiability

Expected final states:

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n, \text{no} \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

Review: Abstract CDCL

States:

UNSAT $\langle M, \Delta, C \rangle$

where

- M and Δ are as in Abstract DPLL
- C is either no or a *conflict clause*

Initial state:

- $\langle \epsilon, \Delta_0, \text{no} \rangle$, where Δ_0 is to be checked for satisfiability

Expected final states:

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n, \text{no} \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

Review: CDCL proof rules

$$\text{DECIDE} \quad \frac{l \in \text{Lits}(\Delta) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

$$\text{FAIL} \quad \frac{C \neq \text{no} \quad \bullet \notin M}{\text{UNSAT}}$$

$$\text{RESTART} \quad \frac{}{M := M^{[0]} \quad C := \text{no}}$$

$$\text{LEARN} \quad \frac{D \text{ is a clause} \quad \Delta \models D \quad D \notin \Delta}{\Delta := \Delta \cup \{D\}}$$

$$\text{PROPAGATE} \quad \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\text{EXPLAIN} \quad \frac{C = \{l\} \cup C' \quad \{l_1, \dots, l_n, \bar{l}\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n, \bar{l} \in M \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup C'}$$

$$\text{BACKJUMP} \quad \frac{C = D \quad D = \{l_1, \dots, l_n, l\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M \setminus l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

$$\text{CONFLICT} \quad \frac{C = \text{no} \quad \{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M}{C := \{l_1, \dots, l_n\}}$$

$$\text{FORGET} \quad \frac{C = \text{no} \quad \Delta = \Delta' \cup \{C\} \quad \Delta' \models C}{\Delta := \Delta'}$$

We are going to extend this abstract framework to lazy SMT

Review: CDCL proof rules

$$\text{DECIDE} \quad \frac{l \in \text{Lits}(\Delta) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

$$\text{FAIL} \quad \frac{C \neq \text{no} \quad \bullet \notin M}{\text{UNSAT}}$$

$$\text{RESTART} \quad \frac{}{M := M^{[0]} \quad C := \text{no}}$$

$$\text{LEARN} \quad \frac{D \text{ is a clause} \quad \Delta \models D \quad D \notin \Delta}{\Delta := \Delta \cup \{D\}}$$

$$\text{PROPAGATE} \quad \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\text{EXPLAIN} \quad \frac{C = \{l\} \cup C' \quad \{l_1, \dots, l_n, \bar{l}\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n, \bar{l} \in M \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup C'}$$

$$\text{BACKJUMP} \quad \frac{C = D \quad D = \{l_1, \dots, l_n, l\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M \setminus l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

$$\text{Conflict} \quad \frac{C = \text{no} \quad \{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M}{C := \{l_1, \dots, l_n\}}$$

$$\text{FORGET} \quad \frac{C = \text{no} \quad \Delta = \Delta' \cup \{C\} \quad \Delta' \models C}{\Delta := \Delta'}$$

We are going to **extend** this abstract framework **to lazy SMT**

From SAT to SMT

Same state components and transitions as in Abstract CDCL **except** that

- Δ contains quantifier-free clauses in some theory \mathcal{T}
- M is a sequence of theory literals (i.e., atomic formulas or their negations) and decision points
- CDCL Rules operate on the Boolean skeleton of Δ , given by a mapping from theory literals to propositional literals
- The proofs system is augmented with SMT-specific rules based on $\vdash_{\mathcal{T}}$: \mathcal{T} -Conflict, \mathcal{T} -PROPAGATE and \mathcal{T} -EXPLAIN
- We assume an oracle, the theory solver, for $\vdash_{\mathcal{T}}$ over theory literals
- Invariant: either $C \neq \text{no}$ or $\Delta \vdash_{\mathcal{T}} C$ and $M \vdash_{\mathcal{P}} \neg C$ (with $\vdash_{\mathcal{P}}$ propositional entailment)

From SAT to SMT

Same state components and transitions as in Abstract CDCL **except** that

- Δ contains **quantifier-free clauses** in some **theory \mathcal{T}**
- M is a sequence of **theory literals** (i.e., atomic formulas or their negations) and decision points
- CDCL Rules operate on the **Boolean skeleton** of Δ , given by a mapping from theory literals to propositional literals
- The proofs system is augmented with SMT-specific rules based on $\vdash_{\mathcal{T}}$: **\mathcal{T} -Conflict**, **\mathcal{T} -PROPAGATE** and **\mathcal{T} -EXPLAIN**
- We assume an oracle, the **theory solver**, for $\vdash_{\mathcal{T}}$ over theory literals
- **Invariant:** either $C \neq \text{no}$ or $\Delta \vdash_{\mathcal{T}} C$ and $M \vdash_{\mathcal{P}} \neg C$ (with $\vdash_{\mathcal{P}}$ propositional entailment)

From SAT to SMT

Same state components and transitions as in Abstract CDCL **except** that

- Δ contains **quantifier-free clauses** in some **theory \mathcal{T}**
- M is a sequence of **theory literals** (i.e., atomic formulas or their negations) and decision points
- CDCL Rules operate on the Boolean skeleton of Δ ,
given by a mapping from theory literals to propositional literals
- The proofs system is augmented with SMT-specific rules based on $\vdash_{\mathcal{T}}$:
 \mathcal{T} -Conflict, \mathcal{T} -PROPAGATE and \mathcal{T} -EXPLAIN
- We assume an oracle, the **theory solver**, for $\vdash_{\mathcal{T}}$ over theory literals
- Invariant: either $C \neq \text{no}$ or $\Delta \vdash_{\mathcal{T}} C$ and $M \vdash_{\mathcal{P}} \neg C$ (with $\vdash_{\mathcal{P}}$ propositional entailment)

From SAT to SMT

Same state components and transitions as in Abstract CDCL **except** that

- Δ contains **quantifier-free clauses** in some **theory \mathcal{T}**
- M is a sequence of **theory literals** (i.e., atomic formulas or their negations) and decision points
- CDCL Rules operate on the **Boolean skeleton** of Δ ,
given by a mapping from **theory literals** to **propositional literals**
- The proofs system is augmented with SMT-specific rules based on $\vdash_{\mathcal{T}}$:
 \mathcal{T} -**CONFFLICT**, \mathcal{T} -**PROPAGATE** and \mathcal{T} -**EXPLAIN**
- We assume an oracle, the **theory solver**, for $\vdash_{\mathcal{T}}$ over theory literals
- Invariant: either $C \neq \text{no}$ or $\Delta \models_{\mathcal{T}} C$ and $M \models_{\mathcal{P}} \neg C$ (with $\models_{\mathcal{P}}$ propositional entailment)

From SAT to SMT

Same state components and transitions as in Abstract CDCL **except** that

- Δ contains **quantifier-free clauses** in some **theory \mathcal{T}**
- M is a sequence of **theory literals** (i.e., atomic formulas or their negations) and decision points
- CDCL Rules operate on the **Boolean skeleton** of Δ ,
given by a mapping from **theory literals** to **propositional literals**
- The proofs system is augmented with SMT-specific rules based on $\models_{\mathcal{T}}$:
 \mathcal{T} -Conflict, **\mathcal{T} -Propagate** and **\mathcal{T} -Explain**
- We assume an oracle, the **theory solver**, for $\models_{\mathcal{T}}$ over theory literals
- Invariant: either $C \neq \text{no}$ or $\Delta \models_{\mathcal{T}} C$ and $M \models_{\mathcal{P}} \neg C$ (with $\models_{\mathcal{P}}$ propositional entailment)

From SAT to SMT

Same state components and transitions as in Abstract CDCL **except** that

- Δ contains **quantifier-free clauses** in some **theory \mathcal{T}**
- M is a sequence of **theory literals** (i.e., atomic formulas or their negations) and decision points
- CDCL Rules operate on the **Boolean skeleton** of Δ ,
given by a mapping from **theory literals** to **propositional literals**
- The proofs system is augmented with SMT-specific rules based on $\models_{\mathcal{T}}$:
 \mathcal{T} -Conflict, **\mathcal{T} -Propagate** and **\mathcal{T} -Explain**
- We assume an oracle, the **theory solver**, for $\models_{\mathcal{T}}$ over theory literals
- Invariant: either $C \neq \text{no}$ or $\Delta \models_{\mathcal{T}} C$ and $M \models_{\mathcal{T}} \neg C$ (with $\models_{\mathcal{T}}$ propositional entailment)

From SAT to SMT

Same state components and transitions as in Abstract CDCL **except** that

- Δ contains **quantifier-free clauses** in some **theory \mathcal{T}**
- M is a sequence of **theory literals** (i.e., atomic formulas or their negations) and decision points
- CDCL Rules operate on the **Boolean skeleton** of Δ ,
given by a mapping from **theory literals** to **propositional literals**
- The proofs system is augmented with SMT-specific rules based on $\models_{\mathcal{T}}$:
 \mathcal{T} -Conflict, **\mathcal{T} -Propagate** and **\mathcal{T} -Explain**
- We assume an oracle, the **theory solver**, for $\models_{\mathcal{T}}$ over theory literals
- **Invariant:** either $C \neq \text{no}$ or $\Delta \models_{\mathcal{T}} C$ and $M \models_p \neg C$ (with \models_p propositional entailment)

SMT-level Rules

At SAT level:

$$\text{Conflict} \frac{C = \text{no} \quad \{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M}{C := \{l_1, \dots, l_n\}}$$

At SMT level:

$$\mathcal{T}\text{-Conflict} \frac{C = \text{no} \quad \bar{l}_1 \wedge \dots \wedge \bar{l}_n \models_{\mathcal{T}} \perp \quad \bar{l}_1, \dots, \bar{l}_n \in M}{C := \{l_1, \dots, l_n\}}$$

If a **set of literals** in **M** are unsatisfiable in \mathcal{T} , make their **negation** a conflict clause

SMT-level Rules

At SAT level:

$$\text{PROPAGATE} \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

At SMT level:

$$\mathcal{T}\text{-PROPAGATE} \frac{l \in \text{Lits}(\Delta) \quad M \models_{\mathcal{T}} l \quad l, \bar{l} \notin M}{M := M \setminus l}$$

If M entails some literal l in \mathcal{T} , extend it with l

SMT-level Rules

At SAT level:

$$\text{EXPLAIN} \frac{C = \{l\} \cup C' \quad \{l_1, \dots, l_n, \bar{l}\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n, \bar{l} \in M \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup C'}$$

At SMT level:

$$\mathcal{T}\text{-EXPLAIN} \frac{C = \{l\} \cup D \quad \bar{l}_1 \wedge \dots \wedge \bar{l}_n \models_{\mathcal{T}} \bar{l} \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup D}$$

If the complement \bar{l} of a literal in the conflict clause is entailed in \mathcal{T} by some literals $\bar{l}_1, \dots, \bar{l}_n$ at lower decision levels, **derive a new conflict clause** by resolution with $\{l_1, \dots, l_n, \bar{l}\}$

CDCL Modulo Theories proof rules

$$\text{DECIDE} \frac{l \in \text{Lits}(\Delta) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

$$\text{FAIL} \frac{C \neq \text{no} \quad \bullet \notin M}{\text{UNSAT}}$$

$$\text{RESTART} \frac{}{M := M^{[0]} \quad C := \text{no}}$$

$$\text{LEARN} \frac{D \text{ is a clause} \quad \Delta \models D \quad D \notin \Delta}{\Delta := \Delta \cup \{D\}}$$

$$\text{FORGET} \frac{C = \text{no} \quad \Delta = \Delta' \cup \{C\} \quad \Delta' \models C}{\Delta := \Delta'}$$

$$\text{TPROPAGATE} \frac{l \in \text{Lits}(\Delta) \quad M \models_{\mathcal{T}} l \quad l, \bar{l} \notin M}{M := M \bullet l}$$

$$\mathcal{T}\text{-CONFLICT} \frac{C = \text{no} \quad \bar{l}_1 \wedge \dots \wedge \bar{l}_n \models_{\mathcal{T}} \perp \quad \bar{l}_1, \dots, \bar{l}_n \in M}{C := \{l_1, \dots, l_n\}}$$

$$\mathcal{T}\text{-EXPLAIN} \frac{C = \{l\} \cup D \quad \bar{l}_1 \wedge \dots \wedge \bar{l}_n \models_{\mathcal{T}} \bar{l} \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup D}$$

$$\text{PROPAGATE} \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \bullet l}$$

$$\text{EXPLAIN} \frac{C = \{l\} \cup C' \quad \{l_1, \dots, l_n, \bar{l}\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n, \bar{l} \in M \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup C'}$$

$$\text{BACKJUMP} \frac{C = D \quad D = \{l_1, \dots, l_n, l\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]} l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

$$\text{Conflict} \frac{C = \text{no} \quad \{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M}{C := \{l_1, \dots, l_n\}}$$

Modeling the Very Lazy Theory Approach

\mathcal{T} -CONFLICT is enough to model the naive integration of SAT solvers and theory solvers seen in the earlier EUF example

$$\begin{array}{c} g(a) = c \quad \wedge \quad (g(a) \neq c) \vee g(a) = d \quad \wedge \quad c \neq d \\ \hline 1 \qquad \qquad \qquad 2 \qquad \qquad \qquad 3 \qquad \qquad \qquad 4 \end{array}$$

M	Δ	C	rule
	$1, 2 \vee 3, 4$	\perp	no
	$1 \bar{4} 1, 2 \vee 3, 4$	\perp	no by PROPAGATE ⁷
	$1 \bar{4} \bar{2} 1, 2 \vee 3, 4$	\perp	no by DECIDE
	$1 \bar{4} \bar{2} 1, \bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2 \vee 4$	by \mathcal{T} -Conflict
	$1 \bar{4} \bar{2} 1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 2 \vee 4$	by LEARN
	$1 \bar{4} 1, 2 \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	\perp	no by RESTART
	$1 \bar{4} 2 \bar{3} 1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	\perp	no by PROPAGATE ⁷
	$1 \bar{4} 2 \bar{3} 1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -Conflict
	$1 \bar{4} 2 \bar{3} 1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4, \bar{1} \vee \bar{3} \vee \bar{4}$	\perp	no by LEARN
			by PROPAGATE ⁷

Modeling the Very Lazy Theory Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \not\doteq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \not\doteq d}_{\bar{4}}$$

M	Δ	C	rule
	1, 2 \vee 3, 4	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁷
1 $\bar{4} \vee \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by Decide
1 $\bar{4} \vee \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2 \vee 4$	by \mathcal{T} -Conflict
1 $\bar{4} \vee \bar{2}$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 2 \vee 4$	by LEARN
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by RESTART
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by PROPAGATE ⁷
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -Conflict
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4$	no	by LEARN
	UNSAT		by FAIL

Modeling the Very Lazy Theory Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_{\bar{4}}$$

M	Δ	C	rule
	$1, \bar{2} \vee 3, \bar{4}$	no	
$1\bar{4}$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE [†]
$1\bar{4} = \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	no	by Decide
$1\bar{4} = \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2 \vee 4$	by \mathcal{T} -Conflict
$1\bar{4} = \bar{2}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 2 \vee 4$	by LEARN
$1\bar{4}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by RESTART
$1\bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by PROPAGATE [†]
$1\bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -Conflict
$1\bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4$	no	by LEARN
	\vdots		
	UNSAT		by FAIL

Modeling the Very Lazy Theory Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \not\doteq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \not\doteq d}_{\bar{4}}$$

M	Δ	C	rule
	$1, \bar{2} \vee 3, \bar{4}$	no	
$1\bar{4}$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE⁺
$1\bar{4}\bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	no	by Decr.
$1\bar{4}\bar{2}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 2 \vee 4$	by \mathcal{T} -CONFLICT
$1\bar{4}\bar{2}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 2 \vee 4$	by LEARN
$1\bar{4}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by RESTART
$1\bar{4}23$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by PROPAGATE⁺
$1\bar{4}23$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -Conflict
$1\bar{4}23$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4$	no	by LEARN
	\vdots		
	UNSAT		by FAIL

Modeling the Very Lazy Theory Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \not\doteq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \not\doteq d}_{\bar{4}}$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
$1 \bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
$1 \bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by DECIDE
$1 \bar{4} \bullet 2$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee \bar{2} \vee 4$	by T-CONFLICT
$1 \bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee \bar{2} \vee 4$	by LEARN
$1 \bar{4}$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by RESTART
$1 \bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by PROPAGATE ⁺
$1 \bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by T-CONFLICT
$1 \bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4$	no	by LEARN
	UNSAT		by FAIL

Modeling the Very Lazy Theory Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_{\bar{4}}$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
$1 \bar{4}$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	no	by DECIDE
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2 \vee 4$	by \mathcal{T} -CONFLICT
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 2 \vee 4$	by LEARN
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by DECIDE
$1 \bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by PROPAGATE ⁺
$1 \bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -CONFLICT
$1 \bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4$	no	by LEARN
	UNSAT		by FAIL

Modeling the Very Lazy Theory Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \not\doteq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \not\doteq d}_{\bar{4}}$$

M	Δ	C	rule
	$1, \bar{2} \vee 3, \bar{4}$	no	
$1 \bar{4}$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	no	by DECIDE
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2 \vee 4$	by \mathcal{T} -CONFLICT
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 2 \vee 4$	by LEARN
	$\bar{1} \vee 2 \vee 4$	no	by DECIDE
$1 \bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by PROPAGATE ⁺
$1 \bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -CONFLICT
$1 \bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4$	no	by LEARN
	$\{$		
	UNSAT		by FAIL

Modeling the Very Lazy Theory Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \not\doteq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \not\doteq d}_{\bar{4}}$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by DECIDE
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2 \vee 4$	by \mathcal{T} -CONFLICT
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 2 \vee 4$	by LEARN
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by RESTART
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by PROPAGATE ⁺
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -CONFLICT
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4$	no	by LEARN
	UNSAT		by FAIL

Modeling the Very Lazy Theory Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \not\doteq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \not\doteq d}_{\bar{4}}$$

M	Δ	C	rule
	$1, \bar{2} \vee 3, \bar{4}$	no	
$1 \bar{4}$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	no	by DECIDE
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2 \vee 4$	by \mathcal{T} -CONFLICT
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 2 \vee 4$	by LEARN
$1 \bar{4}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by RESTART
$1 \bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 3 \vee 4$	by \mathcal{T} -CONFLICT
$1 \bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee 3 \vee 4$	no	by LEARN
			by FAIL
	UNSAT		

Modeling the Very Lazy Theory Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \not\doteq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \not\doteq d}_{\bar{4}}$$

M	Δ	C	rule
	$1, \bar{2} \vee 3, \bar{4}$	no	
$1 \bar{4}$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	no	by DECIDE
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2 \vee 4$	by \mathcal{T} -CONFLICT
$1 \bar{4} \bullet \bar{2}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 2 \vee 4$	by LEARN
$1 \bar{4}$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by RESTART
$1 \bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by PROPAGATE ⁺
$1 \bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -CONFLICT
$1 \bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4$	no	by LEARN
	UNSAT	by FAIL	

Modeling the Very Lazy Theory Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \not\doteq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \not\doteq d}_{\bar{4}}$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
$1 \bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
$1 \bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by DECIDE
$1 \bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2 \vee 4$	by \mathcal{T} -CONFLICT
$1 \bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee 2 \vee 4$	by LEARN
$1 \bar{4}$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by RESTART
$1 \bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	no	by PROPAGATE ⁺
$1 \bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -CONFLICT
$1 \bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee 2 \vee 4, \bar{1} \vee \bar{3} \vee 4$	no	by LEARN
	\vdots		
	UNSAT		by FAIL

A Better Lazy Approach

The very lazy approach can be improved considerably with

- an *on-line* SAT engine that accept new input clauses on the fly
- an incremental and explicating T-solver that can

A Better Lazy Approach

The very lazy approach can be improved considerably with

- an *on-line* SAT engine that accept new input clauses on the fly
- an *incremental and explicating \mathcal{T}* -solver that can
 1. check the \mathcal{T} -satisfiability of M as it is extended and
 2. identify a small \mathcal{T} -unsatisfiable subset of M once M becomes \mathcal{T} -unsatisfiable

A Better Lazy Approach

The very lazy approach can be improved considerably with

- an *on-line* SAT engine that accept new input clauses on the fly
- an *incremental and explicating* \mathcal{T} -solver that can
 1. check the \mathcal{T} -satisfiability of M as it is extended and
 2. identify a small \mathcal{T} -unsatisfiable subset of M once M becomes \mathcal{T} -unsatisfiable

A Better Lazy Approach

The very lazy approach can be improved considerably with

- an *on-line* SAT engine that accept new input clauses on the fly
- an *incremental and explicating* \mathcal{T} -solver that can
 1. check the \mathcal{T} -satisfiability of M as it is extended and
 2. identify a small \mathcal{T} -unsatisfiable subset of M once M becomes \mathcal{T} -unsatisfiable

A Better Lazy Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	$1, \bar{2} \vee 3, \bar{4}$	no	
$1\bar{4}$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE [†]
$1\bar{4} * 2$	$1, \bar{2} \vee 3, \bar{4}$	no	by DECIDE
$1\bar{4} * 2$	$1, \bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2$	by \mathcal{T} -Conflict
$1\bar{4} 2$	$1, \bar{2} \vee 3, \bar{4}$	no	by BACKJUMP
$1\bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE
$1\bar{4} 2 3$	$1, \bar{2} \vee 3, \bar{4}$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -Conflict
UNSAT			by FAIL

A Better Lazy Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	$1, \bar{2} \vee 3, \bar{4}$	no	
$\bar{1}\bar{4}$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE [†]
$1\bar{4} \circ \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	no	by DECIDE
$1\bar{4} \circ \bar{2}$	$1, \bar{2} \vee 3, \bar{4}$	$\bar{1} \vee \bar{2}$	by \mathcal{T} -Conflict
$\bar{1}\bar{4}2$	$1, \bar{2} \vee 3, \bar{4}$	no	by BACKJUMP
$\bar{1}\bar{4}23$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE
$\bar{1}\bar{4}23$	$1, \bar{2} \vee 3, \bar{4}$	$\bar{1} \vee \bar{3} \vee \bar{4}$	by \mathcal{T} -Conflict
UNSAT			by FAIL

A Better Lazy Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
$1 \bar{4} * \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by DECIDE
$1 \bar{4} * \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2$	by \mathcal{T} -Conflict
$1 \bar{4} 2$	1, $\bar{2} \vee 3, \bar{4}$	no	by Backjump
$1 \bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE
$1 \bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -Conflict
UNSAT			by FAIL

A Better Lazy Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE⁺
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by DECIDE
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	1 $\vee \bar{2}$	by \mathcal{T} -Conflict
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by BACKJUMP
1 $\bar{4} \bullet \bar{2} \bullet \bar{3}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE
1 $\bar{4} \bullet \bar{2} \bullet \bar{3}$	1, $\bar{2} \vee 3, \bar{4}$	1 $\vee \bar{3} \vee \bar{4}$	by \mathcal{T} -Conflict
UNSAT			by FAIL

A Better Lazy Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by DECIDE
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2$	by \mathcal{T} -Conflict
1 $\bar{4} 2$	1, $\bar{2} \vee 3, \bar{4}$	no	by BACKJUMP
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -Conflict
UNSAT			by FAIL

A Better Lazy Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by DECIDE
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2$	by \mathcal{T} -CONFLICT
1 $\bar{4} 2$	1, $\bar{2} \vee 3, \bar{4}$	no	by BACKJUMP
1 2 3	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE
1 2 3	1, $\bar{2} \vee 3, \bar{4}, \bar{1} \vee \bar{3} \vee 4$		by \mathcal{T} -CONFLICT
UNSAT			by FAIL

A Better Lazy Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by DECIDE
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2$	by \mathcal{T} -Conflict
1 $\bar{4} 2$	1, $\bar{2} \vee 3, \bar{4}$	no	by BACKJUMP
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2$	by \mathcal{T} -Conflict
UNSAT			by FAIL

A Better Lazy Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by DECIDE
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2$	by \mathcal{T} -Conflict
1 $\bar{4} 2$	1, $\bar{2} \vee 3, \bar{4}$	no	by BACKJUMP
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -Conflict
UNSAT			by FAIL

A Better Lazy Approach

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_{\bar{4}}$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	no	by DECIDE
1 $\bar{4} \bullet \bar{2}$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee 2$	by \mathcal{T} -Conflict
1 $\bar{4} 2$	1, $\bar{2} \vee 3, \bar{4}$	no	by BACKJUMP
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE
1 $\bar{4} 2 3$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -Conflict
UNSAT			by FAIL

Lazy Approach – Strategies

Ignoring **RESTART** (for simplicity), a **common strategy** is to apply the rules using the following priorities:

1. If a clause is (propositionally) falsified by the current assignment M , apply **CONFLICT**
2. If M is \mathcal{T} -unsatisfiable, apply \mathcal{T} -**CONFLICT**
3. Apply **FAIL** or **EXPLAIN+LEARN+BACKJUMP** as appropriate
4. Apply **PROPAGATE**
5. Apply **DECIDE**

Depending on the cost of checking the \mathcal{T} -satisfiability of M , Step (2) can be applied with lower frequency or priority

Lazy Approach – Strategies

Ignoring **RESTART** (for simplicity), a **common strategy** is to apply the rules using the following priorities:

1. If a clause is (propositionally) falsified by the current assignment M , apply **CONFLICT**
2. If M is \mathcal{T} -unsatisfiable, apply \mathcal{T} -**CONFLICT**
3. Apply **FAIL** or **EXPLAIN+LEARN+BACKJUMP** as appropriate
4. Apply **PROPAGATE**
5. Apply **DECIDE**

Depending on the cost of checking the \mathcal{T} -satisfiability of M , Step (2) can be applied with lower frequency or priority

Theory Propagation

With \mathcal{T} -CONFLICT as the **only theory rule**, the theory solver is used just to **validate** the choices of the SAT engine

With \mathcal{T} -PROPAGATE and \mathcal{T} -EXPLAIN, it can also be used to **guide** the engine's search

$$\mathcal{T}\text{-PROPAGATE} \quad \frac{l \in \text{Lits}(\Delta) \quad M \models_T l \quad l, \bar{l} \notin M}{M \vdash M \top}$$

$$\mathcal{T}\text{-EXPLAIN} \quad \frac{C = \{l\} \cup D \quad \bar{l} \wedge \cdots \wedge \bar{l}_n \models_T \bar{l} \quad \bar{l}, \dots, \bar{l}_n \not\leq \bar{l}}{C = \{l_1, \dots, l_k\} \cup D}$$

Theory Propagation

With \mathcal{T} -**CONFLICT** as the **only theory rule**, the theory solver is used just to **validate** the choices of the SAT engine

With \mathcal{T} -**PROPAGATE** and \mathcal{T} -**EXPLAIN**, it can also be used to **guide** the engine's search

$$\mathcal{T}\text{-PROPAGATE} \quad \frac{l \in \text{Lits}(\Delta) \quad M \models_{\mathcal{T}} l \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\mathcal{T}\text{-EXPLAIN} \quad \frac{C = \{l\} \cup D \quad \bar{l}_1 \wedge \dots \wedge \bar{l}_n \models_{\mathcal{T}} \bar{l} \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup D}$$

Theory Propagation Example

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	$1, 2 \vee 3, 4$	no	
	$1 \bar{4}$	$1, \bar{2} \vee 3, \bar{4}$	no by PROPAGATE ¹
	$1 \bar{4} 2$	$1, \bar{2} \vee 3, \bar{4}$	no by T -PROPAGATE (as $1 \dashv \neg 2$)
	$1 \bar{4} 2 \bar{3}$	$1, \bar{2} \vee 3, \bar{4}$	no by T -PROPAGATE (as $1, \bar{4} \dashv \neg 3$)
	$1 \bar{4} 2 \bar{3}$	$1, \bar{2} \vee 3, \bar{4} \wedge \bar{2} \vee 3$	by Conflict
UNSAT			by Fail

T -propagation eliminates search altogether in this case!
No applications of **DECIDE** are needed

Theory Propagation Example

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_{\bar{4}}$$

M	Δ	C	rule
	$1, \bar{2} \vee 3, \bar{4}$	no	
$1\bar{4}$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ¹
$1\bar{4}2$	$1, \bar{2} \vee 3, \bar{4}$	no	by T -PROPAGATE (as $1 \dashv \bar{2}$)
$1\bar{4}2\bar{3}$	$1, \bar{2} \vee 3, \bar{4}$	no	by T -PROPAGATE (as $1, \bar{4} \dashv \bar{3}$)
$1\bar{4}2\bar{3}$	$1, \bar{2} \vee 3, \bar{4}, \bar{2} \vee 3$	by Conflict	
UNSAT			by FAIL

T -propagation eliminates search altogether in this case!
No applications of **DECIDE** are needed

Theory Propagation Example

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 4	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
1 4 2	1, $\bar{2} \vee 3, \bar{4}$	no	by T -PROPAGATE (as $1 \dashv \neg 2$)
1 4 2 3	1, $\bar{2} \vee 3, \bar{4}$	no	by T -PROPAGATE (as $1, \bar{4} \dashv \neg 3$)
1 4 2 3	1, $\bar{2} \vee 3, \bar{4}, \bar{2} \vee 3$	by Conflict	
UNSAT			by Fail

T -propagation eliminates search altogether in this case!
No applications of **DECIDE** are needed

Theory Propagation Example

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
1 $\bar{4}$ 2	1, $\bar{2} \vee 3, \bar{4}$	no	by \mathcal{T}-PROPAGATE (as $1 \models_{\mathcal{T}} 2$)
1 $\bar{4}$ 2 $\bar{3}$	1, $\bar{2} \vee 3, \bar{4}$	no	by \mathcal{T}-PROPAGATE (as $1, 4 \models_{\mathcal{T}} 3$)
1 $\bar{4}$ 2 $\bar{3}$	1, $\bar{2} \vee 3, \bar{4}, \bar{2} \vee 3$	by Conflict	
UNSAT			by Fail

\mathcal{T} -propagation eliminates search altogether in this case!
No applications of **DECIDE** are needed

Theory Propagation Example

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_{\bar{4}}$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
1 $\bar{4}$ 2	1, $\bar{2} \vee 3, \bar{4}$	no	by \mathcal{T}-PROPAGATE (as $1 \models_{\mathcal{T}} 2$)
1 $\bar{4}$ 2 $\bar{3}$	1, $\bar{2} \vee 3, \bar{4}$	no	by \mathcal{T}-PROPAGATE (as $1, \bar{4} \models_{\mathcal{T}} \bar{3}$)
1 $\bar{4}$ 2 $\bar{3}$	1, $\bar{2} \vee 3, \bar{4}$	by Conflict	
UNSAT			by FAIL

\mathcal{T} -propagation eliminates search altogether in this case!
No applications of **DECIDE** are needed

Theory Propagation Example

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_{\bar{2}} \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_{\bar{4}}$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
1 $\bar{4}$ 2	1, $\bar{2} \vee 3, \bar{4}$	no	by \mathcal{T}-PROPAGATE (as $1 \models_{\mathcal{T}} 2$)
1 $\bar{4}$ 2 $\bar{3}$	1, $\bar{2} \vee 3, \bar{4}$	no	by \mathcal{T}-PROPAGATE (as $1, \bar{4} \models_{\mathcal{T}} \bar{3}$)
1 $\bar{4}$ 2 $\bar{3}$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{2} \vee 3$	by Conflict
UNSAT			by FAIL

\mathcal{T} -propagation eliminates search altogether in this case!
No applications of **DECIDE** are needed

Theory Propagation Example

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	1, $\bar{2} \vee 3, \bar{4}$	no	
1 $\bar{4}$	1, $\bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
1 $\bar{4}$ 2	1, $\bar{2} \vee 3, \bar{4}$	no	by \mathcal{T}-PROPAGATE (as $1 \models_{\mathcal{T}} 2$)
1 $\bar{4}$ 2 $\bar{3}$	1, $\bar{2} \vee 3, \bar{4}$	no	by \mathcal{T}-PROPAGATE (as $1, \bar{4} \models_{\mathcal{T}} \bar{3}$)
1 $\bar{4}$ 2 $\bar{3}$	1, $\bar{2} \vee 3, \bar{4}$	$\bar{2} \vee 3$	by CONFFLICT
UNSAT			by FAIL

\mathcal{T} -propagation eliminates search altogether in this case!
No applications of **DECIDE** are needed

Theory Propagation Example

$$\underbrace{g(a) \doteq c}_1 \wedge \underbrace{f(g(a)) \neq f(c)}_2 \vee \underbrace{g(a) \doteq d}_3 \wedge \underbrace{c \neq d}_4$$

M	Δ	C	rule
	$1, \bar{2} \vee 3, \bar{4}$	no	
$1 \bar{4}$	$1, \bar{2} \vee 3, \bar{4}$	no	by PROPAGATE ⁺
$1 \bar{4} 2$	$1, \bar{2} \vee 3, \bar{4}$	no	by \mathcal{T}-PROPAGATE (as $1 \models_{\mathcal{T}} 2$)
$1 \bar{4} 2 \bar{3}$	$1, \bar{2} \vee 3, \bar{4}$	no	by \mathcal{T}-PROPAGATE (as $1, \bar{4} \models_{\mathcal{T}} \bar{3}$)
$1 \bar{4} 2 \bar{3}$	$1, \bar{2} \vee 3, \bar{4}$	$\bar{2} \vee 3$	by Conflict
UNSAT			by FAIL

\mathcal{T} -propagation eliminates search altogether in this case!
No applications of **DECIDE** are needed

Theory Propagation Features

- With *exhaustive* theory propagation, every assignment M is \mathcal{T} -satisfiable (since $M \perp$ is \mathcal{T} -unsatisfiable iff $M \models_{\mathcal{T}} \perp$)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting \mathcal{T} -entailed literals is cheap and so exhaustive theory propagation is extremely effective
- For others, e.g., the theory of equality, detecting \mathcal{T} -entailed equalities is cheap but detecting \mathcal{T} -entailed disequalities is quite expensive
- If \mathcal{T} -PROPAGATE is not applied exhaustively, \mathcal{T} -CONFLICT is needed to repair \mathcal{T} -unsatisfiable assignments

Theory Propagation Features

- With *exhaustive* theory propagation, every assignment M is \mathcal{T} -satisfiable (since $M \models$ is \mathcal{T} -unsatisfiable iff $M \models_{\mathcal{T}} \bar{l}$)
- For theory propagation to be effective in practice, it needs **specialized** theory solvers
- For some theories, e.g., difference logic, detecting \mathcal{T} -entailed literals is cheap and so exhaustive theory propagation is **extremely effective**
- For others, e.g., the theory of equality, detecting \mathcal{T} -entailed equalities is cheap but detecting \mathcal{T} -entailed disequalities is quite **expensive**
- If \mathcal{T} -PROPAGATE is not applied exhaustively, \mathcal{T} -CONFLICT is needed to repair \mathcal{T} -unsatisfiable assignments

Theory Propagation Features

- With *exhaustive* theory propagation, every assignment M is \mathcal{T} -satisfiable (since $M \models$ is \mathcal{T} -unsatisfiable iff $M \models_{\mathcal{T}} \bar{l}$)
- For theory propagation to be effective in practice, it needs **specialized** theory solvers
- For some theories, e.g., **difference logic**, detecting \mathcal{T} -entailed literals is cheap and so exhaustive theory propagation is **extremely effective**
- For others, e.g., the **theory of equality**, detecting \mathcal{T} -entailed equalities is cheap but detecting \mathcal{T} -entailed disequalities is quite expensive
- If \mathcal{T} -PROPAGATE is not applied exhaustively, \mathcal{T} -CONFLICT is needed to repair \mathcal{T} -unsatisfiable assignments

Theory Propagation Features

- With *exhaustive* theory propagation, every assignment M is \mathcal{T} -satisfiable (since $M \models$ is \mathcal{T} -unsatisfiable iff $M \models_{\mathcal{T}} \bar{l}$)
- For theory propagation to be effective in practice, it needs **specialized** theory solvers
- For some theories, e.g., **difference logic**, detecting \mathcal{T} -entailed literals is cheap and so exhaustive theory propagation is **extremely effective**
- For others, e.g., the **theory of equality**, detecting \mathcal{T} -entailed equalities is **cheap** but detecting \mathcal{T} -entailed **disequalities** is quite **expensive**
- If γ -**PROPAGATE** is not applied exhaustively, γ -**CONFFLICT** is needed to repair \mathcal{T} -unsatisfiable assignments

Theory Propagation Features

- With *exhaustive* theory propagation, every assignment M is \mathcal{T} -satisfiable (since $M \models$ is \mathcal{T} -unsatisfiable iff $M \models_{\mathcal{T}} \bar{l}$)
- For theory propagation to be effective in practice, it needs **specialized** theory solvers
- For some theories, e.g., **difference logic**, detecting \mathcal{T} -entailed literals is cheap and so exhaustive theory propagation is **extremely effective**
- For others, e.g., the **theory of equality**, detecting \mathcal{T} -entailed equalities is **cheap** but detecting \mathcal{T} -entailed **disequalities** is quite **expensive**
- If \mathcal{T} -**PROPAGATE** is not applied exhaustively, \mathcal{T} -**CONFICT** is **needed** to repair \mathcal{T} -unsatisfiable assignments

Theory Propagation Exercise

$$\underbrace{a \doteq b}_1 \quad \wedge \quad \underbrace{a \doteq c}_2 \vee \underbrace{c \doteq b}_3 \quad \wedge \quad \underbrace{a \neq b}_{\bar{1}} \vee \underbrace{f(a) \neq f(c)}_{\bar{4}} \quad \wedge \quad \underbrace{c \neq b}_{\bar{3}} \vee \underbrace{g(a) \doteq g(c)}_5$$

$$\Delta_0 := 1, 2 \vee 3, \bar{1} \vee \bar{4}, \bar{3} \vee 5$$

Theory Propagation Exercise

Scenario 1: propagating **only** \mathcal{T} -entailed **equalities** (no disequalities)

$$\underbrace{a \doteq b}_1 \quad \wedge \quad \underbrace{a \doteq c}_2 \vee \underbrace{c \doteq b}_3 \quad \wedge \quad \underbrace{a \neq b}_{\bar{1}} \vee \underbrace{f(a) \neq f(c)}_{\bar{4}} \quad \wedge \quad \underbrace{c \neq b}_{\bar{3}} \vee \underbrace{g(a) \doteq g(c)}_5$$

$$\Delta_0 := 1, 2 \vee 3, \bar{1} \vee \bar{4}, \bar{3} \vee 5$$

Theory Propagation Exercise

Scenario 1: propagating only \mathcal{T} -entailed equalities (no disequalities)

$$\underbrace{a \doteq b}_1 \wedge \underbrace{a \doteq c}_2 \vee \underbrace{c \doteq b}_3 \wedge \underbrace{a \neq b}_{\bar{1}} \vee \underbrace{f(a) \neq f(c)}_{\bar{4}} \wedge \underbrace{c \neq b}_{\bar{3}} \vee \underbrace{g(a) \doteq g(c)}_5$$

$$\Delta_0 := 1, 2 \vee 3, \bar{1} \vee \bar{4}, \bar{3} \vee 5$$

M	Δ	C	rule
	Δ_0	no	
$1 \bar{4}$	Δ_0	no	by PROPAGATE ⁺
$1 \bar{4} \bullet 2$	Δ_0	no	by DECIDE
$1 \bar{4} \bullet 2$	Δ_0	$\bar{2} \vee 4$	by \mathcal{T} -CONFLICT (as $2, \bar{4} \models_{\mathcal{T}} \perp$)
$1 \bar{4} \bar{2}$	$\Delta_0, \bar{2} \vee 4$	no	by BACKJUMP
$1 \bar{4} \bar{2} 3$	$\Delta_0, \bar{2} \vee 4$	no	by PROPAGATE
$1 \bar{4} \bar{2} 3$	$\Delta_0, \bar{2} \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -CONFLICT (as $1, \bar{3}, \bar{4} \models_{\mathcal{T}} \perp$)
UNSAT			by FAIL

Theory Propagation Exercise

Scenario 2: propagating \mathcal{T} -entailed equalities and disequalities

$$\underbrace{a \doteq b}_1 \quad \wedge \quad \underbrace{a \doteq c}_2 \vee \underbrace{c \doteq b}_3 \quad \wedge \quad \underbrace{a \neq b}_{\bar{1}} \vee \underbrace{f(a) \neq f(c)}_{\bar{4}} \quad \wedge \quad \underbrace{c \neq b}_{\bar{3}} \vee \underbrace{g(a) \doteq g(c)}_5$$

$$\Delta_0 := 1, 2 \vee 3, \bar{1} \vee \bar{4}, \bar{3} \vee 5$$

Theory Propagation Exercise

Scenario 2: propagating \mathcal{T} -entailed equalities and disequalities

$$\underbrace{a \doteq b}_1 \wedge \underbrace{a \doteq c}_2 \vee \underbrace{c \doteq b}_3 \wedge \underbrace{a \neq b}_{\bar{1}} \vee \underbrace{f(a) \neq f(c)}_{\bar{4}} \wedge \underbrace{c \neq b}_{\bar{3}} \vee \underbrace{g(a) \doteq g(c)}_{5}$$

$$\Delta_0 := 1, 2 \vee 3, \bar{1} \vee \bar{4}, \bar{3} \vee 5$$

M	Δ	C	rule
	Δ_0	no	
$1 \bar{4}$	Δ_0	no	by PROPAGATE ⁺
$1 \bar{4} \bar{2}$	$\Delta_0, \bar{2} \vee 4$	no	by \mathcal{T} -PROPAGATE (as $1, \bar{4} \models_{\mathcal{T}} \bar{2}$)
$1 \bar{4} \bar{2} 3$	$\Delta_0, \bar{2} \vee 4$	no	by PROPAGATE
$1 \bar{4} \bar{2} 3$	$\Delta_0, \bar{2} \vee 4$	$\bar{1} \vee \bar{3} \vee 4$	by \mathcal{T} -CONFLICT (as $1, 3, \bar{4} \models_{\mathcal{T}} \perp$)
UNSAT			by FAIL

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:

- (1) **PROPAGATE, DECIDE, CONFLICT, EXPLAIN, BACKJUMP, FAIL**
- (2) \mathcal{T} -**CONFFLICT, \mathcal{T} -PROPAGATE, \mathcal{T} -EXPLAIN**
- (3) **LEARN, FORGET, RESTART**

Basic CDCL Modulo Theories $\stackrel{\text{def}}{=}$ (1) + (2)

CDCL Modulo Theories $\stackrel{\text{def}}{=}$ (1) + (2) + (3)

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:

(1) **PROPAGATE, DECIDE, CONFLICT, EXPLAIN, BACKJUMP, FAIL**

(2) \mathcal{T} -**CONFFLICT, PROPAGATE, EXPLAIN**

(3) **LEARN, FORGET, RESTART**

Basic CDCL Modulo Theories $\stackrel{\text{def}}{=}$ (1) + (2)

CDCL Modulo Theories $\stackrel{\text{def}}{=}$ (1) + (2) + (3)

Correctness

Irreducible state: state to which no **Basic CDCL Modulo Theories** rules apply (updated terminology)

Execution: a (single-branch) derivation tree starting with $M = \emptyset$ and $C = \text{no}$

Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART is applied with increased periodicity is finite.

Correctness

Irreducible state: state to which no **Basic CDCL Modulo Theories** rules apply (updated terminology)

Execution: a (single-branch) derivation tree starting with $M = \emptyset$ and $C = \text{no}$

Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) **LEARN**/**FORGET** are applied only *finitely many times* and (ii) **RESTART** is applied with *increased periodicity* is finite.

Correctness

Irreducible state: state to which no **Basic CDCL Modulo Theories** rules apply (updated terminology)

Execution: a (single-branch) derivation tree starting with $M = \emptyset$ and $C = \text{no}$

Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)

*Every execution in which (i) **LEARN**/**FORGET** are applied only **finitely many times** and (ii) **RESTART** is applied with **increased periodicity** is finite.*

Lemma 3

Every exhausted execution ends with either $C = \text{no}$ or UNSAT .

Correctness

Irreducible state: state to which no **Basic CDCL Modulo Theories** rules apply (updated terminology)

Execution: a (single-branch) derivation tree starting with $M = \emptyset$ and $C = \text{no}$

Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) **LEARN**/**FORGET** are applied only *finitely many times* and (ii) **RESTART** is applied with *increased periodicity* is finite.

Theorem 3 (Refutation Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with **UNSAT**, the clause set Δ_0 is \mathcal{T} -unsatisfiable.

Correctness

Irreducible state: state to which no **Basic CDCL Modulo Theories** rules apply (updated terminology)

Execution: a (single-branch) derivation tree starting with $M = \emptyset$ and $C = \text{no}$

Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) **LEARN**/**FORGET** are applied only *finitely many times* and (ii) **RESTART** is applied with *increased periodicity* is finite.

Theorem 3 (Refutation Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with **UNSAT**, the clause set Δ_0 is \mathcal{T} -unsatisfiable.

Theorem 4 (Refutation Completeness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with $C = \text{no}$, the clause set Δ_0 is \mathcal{T} -satisfiable; specifically, M is \mathcal{T} -satisfiable and $M \models_p \Delta_0$.

CDCL(\mathcal{T}) Architecture

The approach formalized so far can be implemented with a simple architecture originally named DPLL(\mathcal{T}) but currently known as $CDCL(\mathcal{T})$

$CDCL(\mathcal{T}) = CDCL(\mathcal{X}) \text{ engine} + \mathcal{T}\text{-solver}$

CDCL(\mathcal{T}) Architecture

The approach formalized so far can be implemented with a simple architecture originally named DPLL(\mathcal{T}) but currently known as $CDCL(\mathcal{T})$

$$CDCL(\mathcal{T}) = CDCL(\mathcal{X}) \text{ engine} + \mathcal{T}\text{-solver}$$

$CDCL(\mathcal{X})$:

- Very **similar to a SAT solver**, enumerates Boolean models
- **Not allowed**: pure literal rule (and other SAT specific optimizations)
- **Required**: incremental addition of clauses
- **Desirable**: partial model detection

CDCL(\mathcal{T}) Architecture

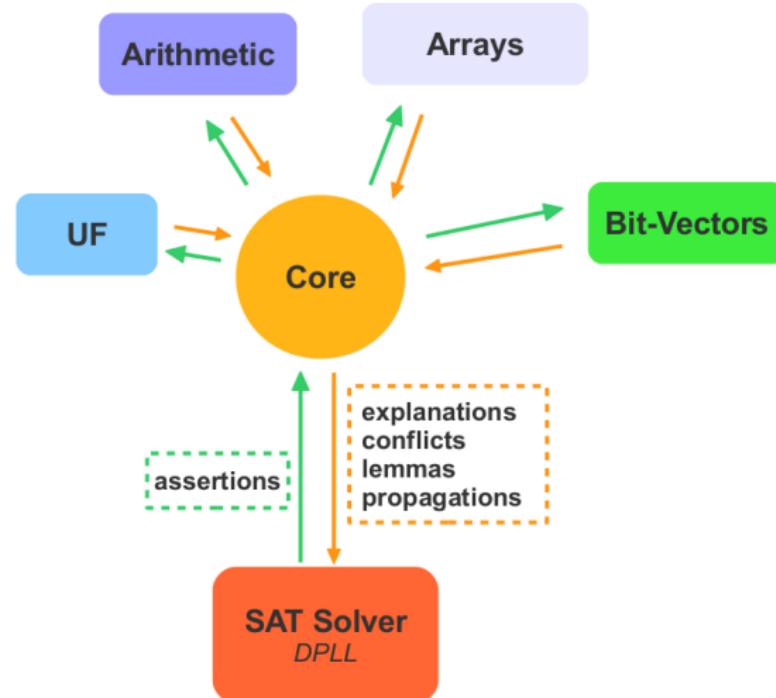
The approach formalized so far can be implemented with a simple architecture originally named DPLL(\mathcal{T}) but currently known as $CDCL(\mathcal{T})$

$$CDCL(\mathcal{T}) = CDCL(\mathcal{X}) \text{ engine} + \mathcal{T}\text{-solver}$$

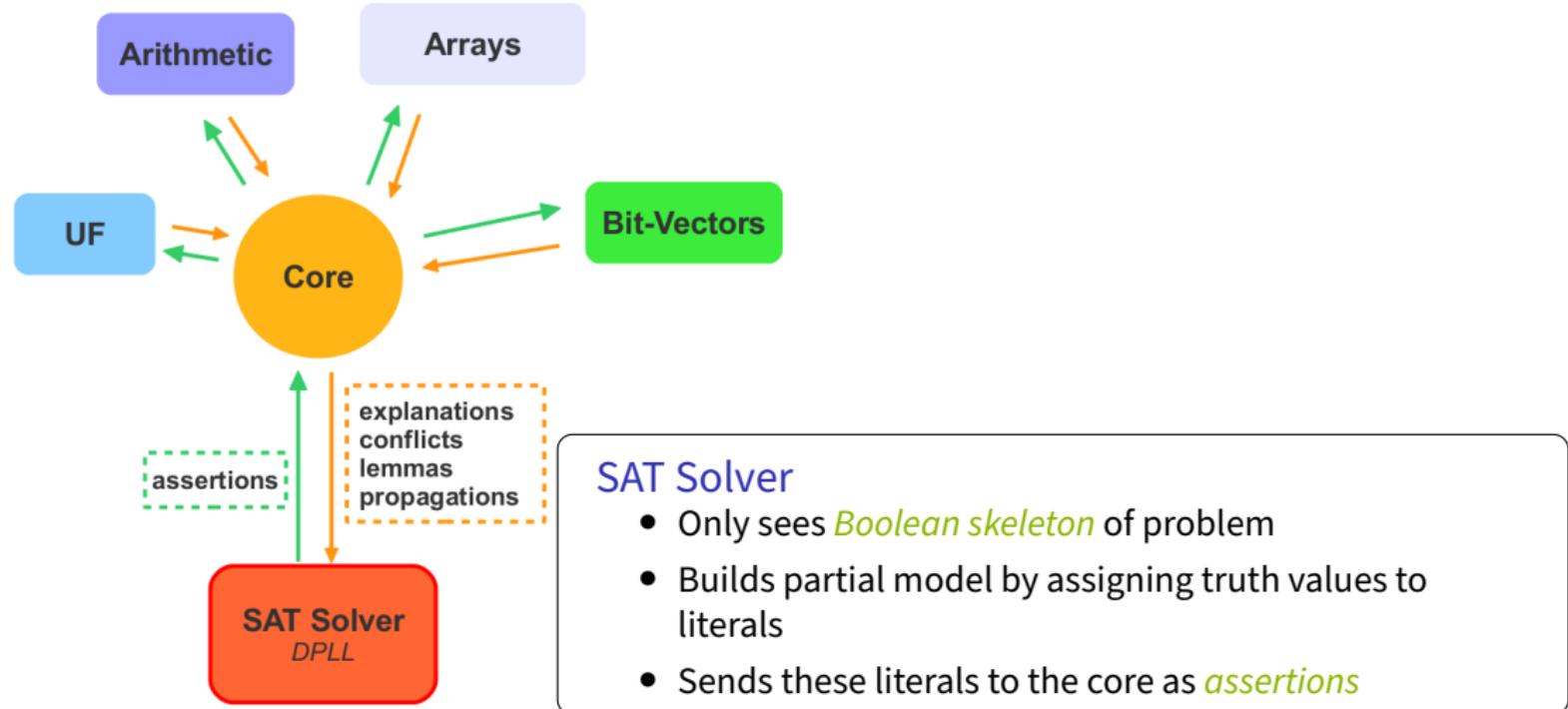
\mathcal{T} -solver:

- Checks the \mathcal{T} -satisfiability of conjunctions of literals
- Computes theory propagations
- Produces explanations of \mathcal{T} -unsatisfiability/propagation
- Must be incremental and backtrackable

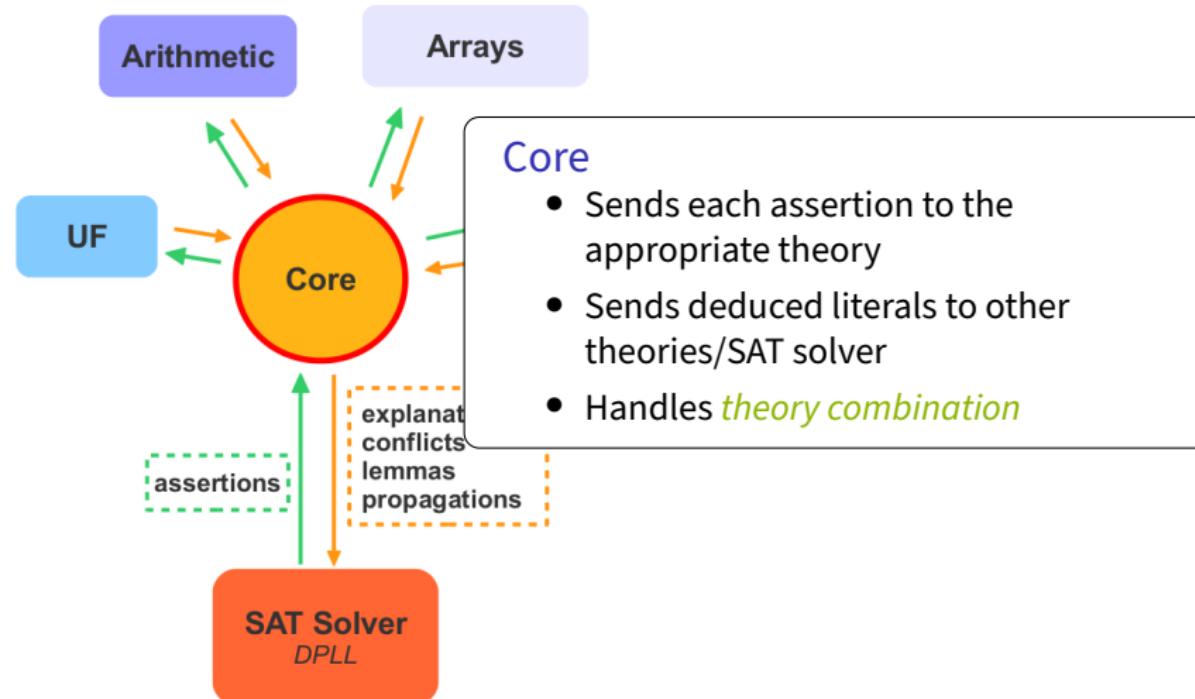
Typical SMT solver architecture



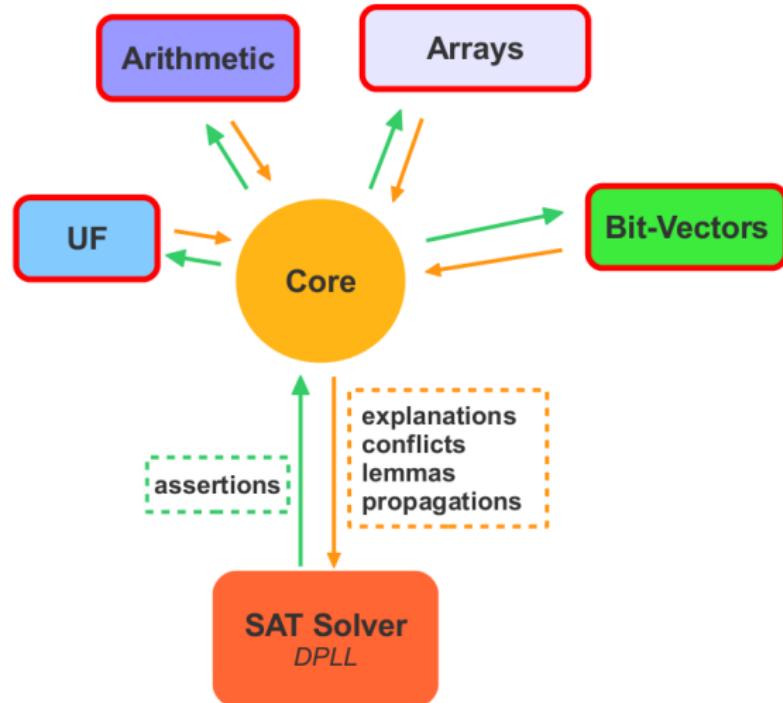
Typical SMT solver architecture



Typical SMT solver architecture



Typical SMT solver architecture



Theory Solvers

- Check \mathcal{T} -satisfiability of sets of theory literals
- Incremental
- Backtrackable
- Conflict Generation
- Theory Propagation