CS:4980 Topics in Computer Science |l
Introduction to Automated Reasoning

Combining Theory Solvers with SAT solvers

Cesare Tinelli

Spring 2024
L

ThE m

UINIVERSITY
OF lowa

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of lowa, and by
Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

1/34

Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

2/34

Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this -formula?

2/34

Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this -formula?

What about arbitrary Boolean combinations of literals?

2/34

Checking the satisfiability of quantifier-free formulas

Theorem 1
For all theories T, the T -satisfiability of quantifier-free formulas is decidable iff the
-satisfiability of conjunctions/sets of literals is decidable.

3/34

Checking the satisfiability of quantifier-free formulas

Theorem 1
For all theories T, the T -satisfiability of quantifier-free formulas is decidable iff the
-satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is 7 -satisfiable. O]

3/34

Checking the satisfiability of quantifier-free formulas

Theorem 1
For all theories T, the T -satisfiability of quantifier-free formulas is decidable iff the

-satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is 7 -satisfiable. O]

[Problem: the DNF conversion is very inefficient! (formula size can explode exponentially) }

3/34

Checking the satisfiability of quantifier-free formulas

Theorem 1
For all theories T, the T -satisfiability of quantifier-free formulas is decidable iff the

-satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is 7 -satisfiable. O]

[Problem: the DNF conversion is very inefficient! (formula size can explode exponentially) }

A better solution: exploit propositional satisfiability technology to deal with the Boolean
structure

3/34

Lifting SAT Technology to SMT

Two main approaches:

1.

® translate into an equisatisfiable propositional formula

e feed it to any SAT solver
Notable systems: UCLID

4/34

Lifting SAT Technology to SMT

Two main approaches:

1.

® translate into an equisatisfiable propositional formula

e feed it to any SAT solver
Notable systems: UCLID

2.

e abstract the input formula to a propositional one
e feed it to a (CDCL-based) SAT solver

® use a theory decision procedure to refine the formula and guide the SAT solver

Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3

4/34

Lazy Approach for SMT

Given a quantifier-free > -formula ¢, for each atomic formula « in ¢, we associate a unique
propositional variable

The of aformula ¢ is a propositional logic formula, where each atomic
formula o in > is replaced with

5/34

Lazy Approach for SMT

Given a quantifier-free > -formula
propositional variable

The of aformula
formula o in > is replaced with

, for each atomic formula o in o, we associate a unique

is a propositional logic formula, where each atomic

Ve

Example:

Boolean skeleton of

with

-

5/34

(Very) Lazy Approach for SMT - Example

6/34

(Very) Lazy Approach for SMT - Example

Simplest setting:
e Off-line SAT solver
® Non-incremental

® Theory atoms (e.g.,

for conjunctions of equalities and disequalities

) abstracted to propositional atoms (e.g., 1)

6/34

(Very) Lazy ApproaCh for SMT - Example [Notation: p stands for }

7/34

(Very) Lazy ApproaCh for SMT - Example [Notation: p stands for }

® Send to SAT solver

7/34

(Very) Lazy ApproaCh for SMT - Example [Notation: p stands for }

® Send to SAT solver

® SAT solver returns model

7/34

(Very) Lazy ApproaCh for SMT - Example [Notation: p stands for }

® Send to SAT solver
® SAT solver returns model

® Theory solver finds (concretization of) unsatin
(meaning that isvalidin)

7/34

(Very) Lazy ApproaCh for SMT - Example [Notation: p stands for }

® Send to SAT solver

SAT solver returns model

Theory solver finds (concretization of) unsatin
(meaning that isvalidin)

® Send 1V 2V 4! to SAT solver

7/34

(Very) Lazy ApproaCh for SMT - Example [Notation: p stands for }

® Send to SAT solver

SAT solver returns model

Theory solver finds (concretization of) unsatin
(meaning that isvalidin)

® Send 1V 2V 4! to SAT solver

SAT solver returns model

7/34

(Very) Lazy ApproaCh for SMT - Example [Notation: p stands for }

® Send to SAT solver
® SAT solver returns model

® Theory solver finds (concretization of) unsatin
(meaning that isvalidin)

® Send 1V 2V 4! to SAT solver
® SAT solver returns model

® Theory solver finds unsat

7/34

(Very) Lazy ApproaCh for SMT - Example [Notation: p stands for }

® Send to SAT solver
® SAT solver returns model

® Theory solver finds (concretization of) unsatin
(meaning that isvalidin)

® Send 1V 2V 4} to SAT solver

® SAT solver returns model

® Theory solver finds unsat

® Send 1V 3V 4] to SAT solver

7/34

(Very) Lazy ApproaCh for SMT - Example [Notation: p stands for }

® Send to SAT solver
® SAT solver returns model

® Theory solver finds (concretization of) unsatin
(meaning that isvalidin)

® Send 1V 2V 4} to SAT solver

® SAT solver returns model

® Theory solver finds unsat

® Send 1V 3V 4] to SAT solver

® SAT solver finds unsat

7/34

(Very) Lazy ApproaCh for SMT - Example [Notation: p stands for }

® Send to SAT solver
® SAT solver returns model

® Theory solver finds (concretization of) unsatin
(meaning that isvalidin)

® Send 1V 2V 4! to SAT solver

® SAT solver returns model

Done! Theoriginalformulais
® Theory solver finds unsat unsatisfiable in

® Send 1V 3V 4! to SAT solver

® SAT solver finds unsat

7/34

Eager Approach for SMT - Example

[)

Step 1: Eliminate all function applications (Ackermann’s encoding)

® introduce a constant symbol 7, to replace function application

e for each pair of introduced variables /., f,, add the formula

8/34

Eager Approach for SMT - Example

[

Step 1: Eliminate all function applications (Ackermann’s encoding)

® introduce a constant symbol 7, to replace function application

e for each pair of introduced variables /., f,, add the formula
f(b) =1, f(a)=1,

8/34

Eager Approach for SMT - Example

[

Step 1: Eliminate all function applications (Ackermann’s encoding)

® introduce a constant symbol 7, to replace function application

e for each pair of introduced variables /., f,, add the formula
f(b) =1, f(a)=1,

Now, atomic formulas are equalities between constants/variables

8/34

Eager Approach for SMT - Example

Rename f, ascandf, as d:

becomes

9/34

Eager Approach for SMT - Example

Rename f, ascandf, as d:

becomes

Step 2: Eliminate all equalities

® replace each pair of constants x, v with a unique propositional variable

® add facts about reflexivity, symmetry, transitivity

9/34

Eager Approach for SMT - Example

Rename f, ascandf, as d:

becomes

Step 2: Eliminate all equalities

® replace each pair of constants x, v with a unique propositional variable

® add facts about reflexivity, symmetry, transitivity

The resulting propositional formula is equisatisfiable with the original -formula

9/34

Eager Approach for SMT - Example

Rename f, ascandf, as d:

becomes

Step 2: Eliminate all equalities

® replace each pair of constants x, v with a unique propositional variable

® add facts about reflexivity, symmetry, transitivity

The resulting propositional formula is equisatisfiable with the original -formula

[Note: Not all the transitivity cases are needed

9/34

Discussion: eager vs. lazy approach

Eager
¢ translate into an equisatisfiable propositional formula

e feed it to any SAT solver

Lazy

® abstract the input formula to a propositional one
e feed it to a (CDCL-based) SAT solver

® use atheory decision procedure to refine the formula and guide the SAT solver

10/34

Discussion: eager vs. lazy approach

Eager
¢ translate into an equisatisfiable propositional formula

e feed it to any SAT solver

Lazy

® abstract the input formula to a propositional one
e feed it to a (CDCL-based) SAT solver

® use atheory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the two approaches?

10/34

Pros and cons: eager vs. lazy approach

Eager

® Can always use the best SAT solver off the shelf
® Requires care in encoding

® Tends not to scale well

Lazy

® Theory-specific reasoning
® Designing new theory solvers can be challenging

® Might require extension of a SAT solver for more efficiency interplay with theory solver
® Scales much better

11/34

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

® Check 7 -satisfiability only of full propositional model

12/34

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

Check 7 -satisfiability of partial assignment / as it grows

12/34

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

Check 7 -satisfiability of partial assignment / as it grows

e |f Vis T -unsatisfiable, add as a clause

12/34

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

Check 7 -satisfiability of partial assignment / as it grows

If M is T -unsatisfiable, identify a 7 -unsatisfiable subset V/; of M and
add as a clause

12/34

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

Check 7 -satisfiability of partial assignment / as it grows

If M is T -unsatisfiable, identify a 7 -unsatisfiable subset V/; of M and
add as a clause

e |f M is 7 -unsatisfiable, add clause and restart

12/34

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

Check 7 -satisfiability of partial assignment / as it grows

If M is T -unsatisfiable, identify a 7 -unsatisfiable subset V/; of M and
add as a clause

If Vis 7 -unsatisfiable, backtrack to some point
where the assignment was still 7 -satisfiable

12/34

Lazy Approach - Main Benefits

Every tool does what it is good at:

® SAT solver takes care of Boolean information

® Theory solver takes care of theory information

13/34

Lazy Approach - Main Benefits

Every tool does what it is good at:

® SAT solver takes care of Boolean information

® Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

13/34

Lazy Approach - Main Benefits

Every tool does what it is good at:

® SAT solver takes care of Boolean information

® Theory solver takes care of theory information

The theory solver works only with conjunctions of literals
Modular approach:
® SAT and theory solvers communicate via a simple API
® SMT for a new theory only requires new theory solver

e An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

13/34

An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled a satisfiability proof system like those for Abstract DPLL and Abstract
CDCL

14/34

Review: Abstract DPLL
States:

where

® Visa and (o) denoting a partial variable assignment

e Nisa denoting a CNF formula

15/34

Review: Abstract DPLL

States:

where
® Visa and (o) denoting a partial variable assignment
e Nisa denoting a CNF formula

p
Note: When convenient, we treat // as a set

Provided // contains no complementary literals it determines the assignment

15/34

Review: Abstract DPLL

States:
where
® Visa and (o) denoting a partial variable assignment
e Nisa denoting a CNF formula
Notation: If where each ; contains no decision points
® V;is of

] denotes the subsequence , from decision level 0 through decision level

15/34

Review: Abstract DPLL

States:

Initial state:

° where ¢ is the empty assignment and /\ is to be checked for satisfiability

15/34

Review: Abstract DPLL

States:

Initial state:

° where ¢ is the empty assignment and /\ is to be checked for satisfiability

Expected final states:

o if /\y is unsatisfiable

° otherwise, where /\, is equisatisfiable with 2\, and satisfied by

15/34

Review: Abstract CDCL

States:

where

e \/and /A are as in Abstract DPLL

® (Ciseithernoora

16/34

Review: Abstract CDCL

States:

where
e /and A are as in Abstract DPLL
® (Ciseithernoora

Initial state:

° ,where /\; is to be checked for satisfiability

16/34

Review: Abstract CDCL

States:

where

e \/and /A are as in Abstract DPLL

® (Ciseithernoora
Initial state:

° ,where /\; is to be checked for satisfiability

Expected final states:

° if /\y is unsatisfiable

[otherwise, where is equisatisfiable with

and satisfied by

16/34

Review: CDCL proof rules

PROPAGATE
DECIDE
EXPLAIN
FAIL
BACKJUMP
RESTART
is a clause Conflict
LEARN
FORGET

17/34

Review: CDCL proof rules

PROPAGATE
DECIDE
EXPLAIN
FAIL
BACKJUMP
RESTART
is a clause Conflict
LEARN
FORGET

[We are going to extend this abstract framework to lazy SMT]

17/34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

18/34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

e /\ contains quantifier-free clauses in some theory

18/34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

e /\ contains quantifier-free clauses in some theory

® \lisasequence of theory literals (i.e., atomic formulas or their negations) and decision points

18/34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that
e /\ contains quantifier-free clauses in some theory
® \lisasequence of theory literals (i.e., atomic formulas or their negations) and decision points

® CDCL Rules operate on the Boolean skeleton of A\,
given by a mapping from theory literals to propositional literals

18/34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

e /\ contains quantifier-free clauses in some theory
® \lisasequence of theory literals (i.e., atomic formulas or their negations) and decision points

® CDCL Rules operate on the Boolean skeleton of A\,
given by a mapping from theory literals to propositional literals

® The proofs system is augmented with SMT-specific rules based on
-Conflict, 7 -PROPAGATE and 7 -EXPLAIN

18/34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

e /\ contains quantifier-free clauses in some theory

® \lisasequence of theory literals (i.e., atomic formulas or their negations) and decision points

CDCL Rules operate on the Boolean skeleton of A,
given by a mapping from theory literals to propositional literals

The proofs system is augmented with SMT-specific rules based on
-Conflict, 7 -PROPAGATE and 7 -EXPLAIN

® We assume an oracle, the theory solver, for over theory literals

18/34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

e /\ contains quantifier-free clauses in some theory

® \lisasequence of theory literals (i.e., atomic formulas or their negations) and decision points

CDCL Rules operate on the Boolean skeleton of A,
given by a mapping from theory literals to propositional literals

The proofs system is augmented with SMT-specific rules based on
-Conflict, 7 -PROPAGATE and 7 -EXPLAIN

® We assume an oracle, the theory solver, for over theory literals

Invariant: either or A =7 C and (with =, propositional entailment)

18/34

SMT-level Rules

At SAT level:

Conflict

At SMT level:

=T

-Conflict

If a set of literals in M are unsatisfiable in

, make their negation a conflict clause

19/34

SMT-level Rules

At SAT level:

PROPAGATE

At SMT level:

=T

-PROPAGATE

If M entails some literal / in 7, extend it with

20/34

SMT-level Rules

At SAT level:

EXPLAIN

At SMT level:

-EXPLAIN 7

If the complement / of a literal in the conflict clause is entailed in 7 by some literals
at lower decision levels, derive a new conflict clause by resolution with

21/34

CDCL Modulo Theories proof rules

Er

-Conflict
DECIDE
-EXPLAIN
FAIL
RESTART
PROPAGATE
isaclause
LEARN
EXPLAIN
FORGET
BACKJUMP
=7
-PROPAGATE
Conflict

22/34

Modeling the Very Lazy Theory Approach

-ConflicT is enough to model the naive integration of SAT solvers and theory solvers seen in
the earlier EUF example

23/34

Modeling the Very Lazy Theory Approach

23/34

Modeling the Very Lazy Theory Approach

23/34

Modeling the Very Lazy Theory Approach

23/34

Modeling the Very Lazy Theory Approach

23/34

Modeling the Very Lazy Theory Approach

glay=c r flg(a)) #f(c) vgla)=d N c#d

1 2 3 4

M A C rule
1,2Vv3, 4 no
14 1,2Vv3 4 no by PROPAGATE™"
142 1,2V3, 4 no by DECIDE
142 1,2V3, 4 1Vv2V4 byT-Conflict

23/34

Modeling the Very Lazy Theory Approach

gla)=c A f(g(a)) #f(c) vgla)=d A c#d
M A C rule
1,2Vv3, 4 no
14 1,2Vv3 4 no by PROPAGATE™
142 1,2V3, 4 no by DECIDE
142 1,2V3, 4 1Vv2V4 byT-Conflict
142 1,2V3,4,1V2V4 1V2V4 byLEARN

23/34

Modeling the Very Lazy Theory Approach

gla)=c A f(g(a)) #f(c) vgla)=d AN c#d
M A C rule
1,2Vv3, 4 no

14 1,2Vv3 4 no by PROPAGATE™
142 1,2V3, 4 no by DECIDE
142 1,2V3,4 1V2V4 byT-Conflict
142 1,2V3,4,1V2V4 1V2V4 byLEARN

14 1,2Vv3,4,1v2V4 no by RESTART

23/34

Modeling the Very Lazy Theory Approach

gla)=c A f(g(a)) #f(c) v gla)=d A c#d
1 2 3 4
M A C rule
1,2Vv3, 4 no
14 1,2Vv3 4 no by PROPAGATE™
142 1,2V3, 4 no by DECIDE
142 1,2V3,4 1V2V4 byT-Conflict
142 1,2V3,4,1V2V4 1V2V4 byLEARN
14 1,2Vv3,4,1Vv2V4 no by RESTART
1423 1,2Vv3, 4, 1Vv2V4 no by PROPAGATE™

23/34

Modeling the Very Lazy Theory Approach

gla)=c ~ flgla)) #f(c)vgla)=d A c#d
1 2 3 4
M A C rule
1,2Vv3, 4 no
14 1,2Vv3 4 no by PROPAGATE™
142 1,2V3, 4 no by DECIDE
142 1,2V3,4 1V2V4 byT-Conflict
142 1,2V3,4,1V2V4 1V2V4 byLEARN
14 1,2V3,4,1v2V4 no by RESTART
1423 1,2Vv3, 4, 1Vv2V4 no by PROPAGATE™
1423 1,2V3,4,1Vv2V4 1v3Vv4 byT-Conflict
1423 1,2V3,4,1Vv2V4,1Vv3Vv4 no by LEARN

23/34

Modeling the Very Lazy Theory Approach

gla)=c A f(g(a)) #f(c) Vgla)=d N c#d
1 2 3 4
M A C rule
1,2Vv3, 4 no
14 1,2Vv3 4 no by PROPAGATE™
142 1,2V3, 4 no by DECIDE
142 1,2V3, 4 1Vv2V4 byT-Conflict
142 1,2V3,4,1V2V4 1V2V4 byLEARN
14 1,2Vv3,4,1v2V4 no by RESTART
1423 1,2V3,4,1Vv2V4 no by PROPAGATE™
1423 1,2V3,4,1Vv2V4 1v3Vv4 byT-Conflict
1423 1,2V3,4,1v2V4,1Vv3Vva no by LEARN
UNSAT by FAIL

23/34

A Better Lazy Approach

The very lazy approach can be improved considerably with

® an SAT engine that accept new input clauses on the fly

24/34

A Better Lazy Approach

The very lazy approach can be improved considerably with

® an SAT engine that accept new input clauses on the fly

® an -solver that can

24/34

A Better Lazy Approach

The very lazy approach can be improved considerably with

® an SAT engine that accept new input clauses on the fly

® an -solver that can

1. check the 7 -satisfiability of M as it is extended and

24/34

A Better Lazy Approach

The very lazy approach can be improved considerably with

® an SAT engine that accept new input clauses on the fly

® an -solver that can
1. check the 7 -satisfiability of M as it is extended and

2. identify a small 7 -unsatisfiable subset of M once M becomes 7 -unsatisfiable

24/34

A Better Lazy Approach

25/34

A Better Lazy Approach

25/34

A Better Lazy Approach

gla)=c A f(g(a))#f(c) Vgla)=d A c#d
Hl/—/ _._,—/ | \-Z‘,—/
2
M A C rule
1,2V3, 4 no
14 1,2Vv3, 4 no by PROPAGATE™

25/34

A Better Lazy Approach

gla)=c A f(g(a)) #f(c) vgla)=d N c#d
M A C rule
1,2Vv3, 4 no
14 1,2Vv3, 4 no by PROPAGATE "
142 1,2V3,4 no by DECIDE

25/34

A Better Lazy Approach

gla)=c A f(g(a)) #f(c) v gla)=d N c#d
M A C rule
1,2V3, 4 no
14 1,2Vv3, 4 no by PROPAGATE "
142 1,2V3,4 no by DECIDE
142 1,2Vv3,4 1Vv2 byT7-Conflict

25/34

A Better Lazy Approach

gla)=c A f(g(a)) #f(c) vgla)=d N c#d
M A C rule
1,2Vv3 4 no
14 1,2Vv3, 4 no by PROPAGATE ™
142 1,2V3, 4 no by DECIDE
142 1,2Vv3,4 1Vv2 byT7-Conflict
142 1,2V3,4 no by BACKJUMP

25/34

A Better Lazy Approach

gla)=c A f(g(a)) #f(c) vgla)=d N c#d
M A C rule
1,2Vv3 4 no

14 1,2Vv3, 4 no by PROPAGATE ™

142 1,2V3, 4 no by DECIDE

142 1,2Vv3,4 1Vv2 byT7-Conflict

142 1,2V3,4 no by BACKJUMP
1423 1,2V3, 4 no by PROPAGATE

25/34

A Better Lazy Approach

gla)=c A flgla)) #f(c) vgla)=d r c#d
M A C rule
1,2Vv3 4 no
14 1,2Vv3, 4 no by PROPAGATE ™
142 1,2V3, 4 no by DECIDE
142 1,2Vv3,4 1Vv2 byT7-Conflict
142 1,2V3,4 no by BACKJUMP
1423 1,2V3, 4 no by PROPAGATE
1423 1,2V3,4 1vV3Vv4 byT-Conflict

25/34

A Better Lazy Approach

gla)=c A f(g(a)) #f(c) vgla)=d N c#d
M A C rule
1,2Vv3 4 no
14 1,2Vv3 4 no by PROPAGATE™
142 1,2V3, 4 no by DECIDE
142 1,2Vv3,4 1Vv2 byT7-Conflict
142 1,2V3,4 no by BACKJUMP
1423 1,2V3, 4 no by PROPAGATE
1423 1,2V3,4 1vV3Vv4 byT-Conflict

UNSAT by FAIL

25/34

Lazy Approach - Strategies

Ignoring RESTART (for simplicity), a common strategy is to apply the rules using the following
priorities:

1. Ifaclauseis (propositionally) falsified by the current assignment IV,
apply Conflict

2. If Mis 7 -unsatisfiable, apply 7 -ConflicT

3. Apply FAIL or EXPLAIN+LEARN+BACKJUMP as appropriate
4. Apply PROPAGATE

5. Apply DECIDE

26/34

Lazy Approach - Strategies

Ignoring RESTART (for simplicity), a common strategy is to apply the rules using the following
priorities:

1. Ifaclauseis (propositionally) falsified by the current assignment IV,
apply Conflict

2. If Mis 7 -unsatisfiable, apply 7 -ConflicT

3. Apply FAIL or EXPLAIN+LEARN+BACKJUMP as appropriate
4. Apply PROPAGATE

5. Apply DECIDE

Depending on the cost of checking the 7 -satisfiability of M,
Step (2) can be applied with lower frequency or priority

26/34

Theory Propagation

With 7 -ConflicT as the only theory rule, the theory solver is used just to validate the choices of
the SAT engine

27/34

Theory Propagation
With 7 -ConflicT as the only theory rule, the theory solver is used just to validate the choices of

the SAT engine

With 7 -PROPAGATE and 7 -EXPLAIN, it can also be used to guide the engine’s search

=T

-PROPAGATE

=7

-EXPLAIN

27/34

Theory Propagation Example

28/34

Theory Propagation Example

28/34

Theory Propagation Example

gla)=c A f(g(a))#f(c) vgla)=d N c#d
2
M A C rule
1,2V3,4 no
14 1,2V3, 4 no byPROPAGATE"

28/34

Theory Propagation Example

gla)=c A f(g(a)) #f(c) v gla)=d N c#d
M A C rule
1,2V3,4 no
14 1,2V3, 4 no byPROPAGATE"
142 1,2Vv3,4 no byT7-PROPAGATE (asl =7 2)

28/34

Theory Propagation Example

gla)=c A flgla)) #f(c) vgla)=d r c#d
M A C rule
1,2V3,4 no
14 1,2V3, 4 no byPROPAGATE"
142 1,2V3,4 no byT7-PROPAGATE (asl =7 2)
1423 1,2V3,4 no byT-PROPAGATE (asl, 4 =7 3)

28/34

Theory Propagation Example

gla)=c A f(g(a)) #f(c) v gla)=d A c#d
1 2 3 4
M A C rule
1,2Vv3,4 no
14 1,2v3,4 no byPROPAGATE"
142 1,2V3,4 no byT7-PROPAGATE (asl =7 2)
1423 1,2V3,4 no byT-PROPAGATE (asl, 4 =7 3)
1423 1,2V3,4 2Vv3 byConflict

28/34

Theory Propagation Example

gla)=c A f(g(a)) #f(c) v gla)=d A c#d
1 2 3 4
M A C rule
1,2Vv3,4 no
14 1,2v3,4 no byPROPAGATE"

142 1,2V3,4 no byT7-PROPAGATE (asl =7 2)
1423 1,2V3,4 no byT-PROPAGATE (asl, 4 =7 3)
1423 1,2V3,4 2Vv3 byConflict
UNSAT by FAIL

28/34

Theory Propagation Example

gla)=c A f(g(a)) #f(c) Vv gla)=d A gjfg

\—\,—/
1 3 3 2
M A C rule
1,2V3,4 no
14 1,2V3,4 no byPROPAGATE™
142 1,2V3,4 no byT7-PROPAGATE (asl =7 2)
1423 1,2Vv3,4 no byT7-PROPAGATE (asl, 4 =7 3)
1423 1,2V3,4 2Vv3 byConflict
UNSAT by FAIL

7 -propagation eliminates search altogetherin this case!
No applications of DECIDE are needed

28/34

Theory Propagation Features

® With theory propagation, every assignment M is 7 -satisfiable
(since M is T -unsatisfiable iff)

29/34

Theory Propagation Features

® With theory propagation, every assignment M is 7 -satisfiable
(since M is T -unsatisfiable iff)

® For theory propagation to be effective in practice, it needs specialized theory solvers

29/34

Theory Propagation Features

® With theory propagation, every assignment M is 7 -satisfiable
(since M is T -unsatisfiable iff)

® For theory propagation to be effective in practice, it needs specialized theory solvers

® For some theories, e.g., difference logic, detecting 7 -entailed literals is cheap and so exhaustive
theory propagation is extremely effective

29/34

Theory Propagation Features

® With theory propagation, every assignment M is 7 -satisfiable
(since M is T -unsatisfiable iff)

For theory propagation to be effective in practice, it needs specialized theory solvers

® For some theories, e.g., difference logic, detecting 7 -entailed literals is cheap and so exhaustive
theory propagation is extremely effective

For others, e.g., the theory of equality, detecting 7 -entailed equalities is cheap but detecting
-entailed disequalities is quite expensive

29/34

Theory Propagation Features

® With theory propagation, every assignment M is 7 -satisfiable
(since M is T -unsatisfiable iff)

® For theory propagation to be effective in practice, it needs specialized theory solvers

® For some theories, e.g., difference logic, detecting 7 -entailed literals is cheap and so exhaustive
theory propagation is extremely effective

® For others, e.g., the theory of equality, detecting 7 -entailed equalities is cheap but detecting
-entailed disequalities is quite expensive

o |f 7-PROPAGATE is not applied exhaustively, 7 -ConflicT is needed to repair 7 -unsatisfiable
assignments

29/34

Theory Propagation Exercise

30/34

Theory Propagation Exercise

Scenario 1: propagating only 7 -entailed equalities (no disequalities)

30/34

Theory Propagation Exercise
Scenario 1: propagating only 7 -entailed equalities (no disequalities)

a=b AN a=cVc=b AN a#bVfla)#f(c) N c#bV gla)=g(c
1 SVl # ()5_&() # 9()59()
4 3

Ny :=1,2Vv3 1V4 3V5

M A C rule
JANY no
14 A, no by PROPAGATE "
14 ¢2 Ay no by DECIDE
14 62 A 2V4 byT-ConflicT (as2,4 =7 1)

142 Ay, 2V4 no by BACKJUMP
1423 Ay, 2V4 no by PROPAGATE
1423 Ay, 2V4 1V3V4 byT-Conflict (asl,3,4 =7 1)
UNSAT by FAIL

30/34

Theory Propagation Exercise

Scenario 2: propagating 7 -entailed equalities and disequalities

30/34

Theory Propagation Exercise
Scenario 2: propagating 7 -entailed equalities and disequalities

a=b AN a=cVc=b AN a#bVfla)#f(c) N c#bV gla)=g(c
1 SVl # ()5_&() # 9()59()
4 3

No =1, 2V3, 1V4 3V5

M A C rule
JAN no
14 A no by PROPAGATE"
142 Ny, 2V4 no by T-PROPAGATE (as1,4 =7 2)
1423 Ny, 2V4 no by PROPAGATE
1423 Ag, 2V4 1vV3Vv4 byT-Conflict (asl,3,4 =7 1)

UNSAT by FAIL

30/34

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:
(1) PROPAGATE, DECIDE, CONflicT, EXPLAIN, BACKJUMP, FAIL
(2) 7-ConflicT, 7 -PROPAGATE, 7 -EXPLAIN

(3) LEARN, FORGET, RESTART

31/34

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:
(1) PROPAGATE, DECIDE, CONflicT, EXPLAIN, BACKJUMP, FAIL
(2) 7-ConflicT, 7 -PROPAGATE, 7 -EXPLAIN

(3) LEARN, FORGET, RESTART

31/34

Correctness

state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
a (single-branch) derivation tree starting with and
execution ending in an irreducible state

32/34

Correctness

state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
a (single-branch) derivation tree starting with and
execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (/) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

32/34

Correctness

state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
a (single-branch) derivation tree starting with and
execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (/) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

Lemma 3
Every exhausted execution ends with either or

32/34

Correctness

state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
a (single-branch) derivation tree starting with and
execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (/) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

- J
e N
Theorem 3 (Refutation Soundness)
For every exhausted execution starting with and ending with , the clause set /\ is
-unsatisfiable.

32/34

Correctness

state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
a (single-branch) derivation tree starting with and
execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (/) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

- J
e N
Theorem 3 (Refutation Soundness)
For every exhausted execution starting with and ending with , the clause set /\ is
-unsatisfiable.
. J
e N
Theorem 4 (Refutation Completeness)
For every exhausted execution starting with and ending with , the clause set /\ is

-satisfiable; specifically, \ is T -satisfiable and

32/34

CDCL(7) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(7) but currently known as

CDCL(7) = CDCL(X) engine + 7 -solver

33/34

CDCL(7) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(7) but currently known as

CDCL(7) = CDCL(X) engine + 7 -solver

CDCL(X):
® Very similar to a SAT solver, enumerates Boolean models
e Not allowed: pure literal rule (and other SAT specific optimizations)
® Required: incremental addition of clauses

® Desirable: partial model detection

33/34

CDCL(7) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(7) but currently known as

CDCL(7) = CDCL(X) engine + 7 -solver

-solver:

® Checks the 7 -satisfiability of conjunctions of literals

® Computes theory propagations

® Produces explanations of 7 -unsatisfiability/propagation

® Must be incremental and backtrackable

33/34

Typical SMT solver architecture

| explanations |
+ conflicts

. lemmas

| propagations |

34/34

Typical SMT solver architecture

1 explanations |
_________ + conflicts

EasserlionSE : lemmas E SAT Solver

......... . propagations
""""""" ® Only sees Boolean skeleton of problem

® Builds partial model by assigning truth values to
literals

® Sends these literals to the core as assertions

34/34

Typical SMT solver architecture

NS/

UF —
K.k

: conflicts
» lemmas

Core
® Sends each assertion to the
appropriate theory

® Sends deduced literals to other
theories/SAT solver

® Handles theory combination

| propagations |

ap—

34/34

Typical SMT solver architecture

Theory Solvers

- Arrays ® Check 7 -satisfiability of sets of

theory literals

'\\< // ® |ncremental
—
T—

___— Backtrackable

Conflict Generation

UF

|
i

Core

® Theory Propagation

1 explanations |
+ conflicts
| lemmas
......... | propagations |

..............

34/34

