
CS:4980 Topics in Computer Science II

Introduction to Automated Reasoning

Combining Theory Solvers with SAT solvers

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of Iowa, and by
Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

1 / 34

Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this TEUF-formula?

g(a) .
= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .

= d) ∧ c ̸ .= d

What about arbitrary Boolean combinations of literals?

2 / 34

Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this TEUF-formula?

g(a) .
= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .

= d) ∧ c ̸ .= d

What about arbitrary Boolean combinations of literals?

2 / 34

Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this TEUF-formula?

g(a) .
= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .

= d) ∧ c ̸ .= d

What about arbitrary Boolean combinations of literals?

2 / 34

Checking the satisfiability of quantifier-free formulas

Theorem 1
For all theories T , the T -satisfiability of quantifier-free formulas is decidable iff the
T -satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is T -satisfiable.

Problem: the DNF conversion is very inefficient! (formula size can explode exponentially)

A better solution: exploit propositional satisfiability technology to deal with the Boolean
structure

3 / 34

Checking the satisfiability of quantifier-free formulas

Theorem 1
For all theories T , the T -satisfiability of quantifier-free formulas is decidable iff the
T -satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is T -satisfiable.

Problem: the DNF conversion is very inefficient! (formula size can explode exponentially)

A better solution: exploit propositional satisfiability technology to deal with the Boolean
structure

3 / 34

Checking the satisfiability of quantifier-free formulas

Theorem 1
For all theories T , the T -satisfiability of quantifier-free formulas is decidable iff the
T -satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is T -satisfiable.

Problem: the DNF conversion is very inefficient! (formula size can explode exponentially)

A better solution: exploit propositional satisfiability technology to deal with the Boolean
structure

3 / 34

Checking the satisfiability of quantifier-free formulas

Theorem 1
For all theories T , the T -satisfiability of quantifier-free formulas is decidable iff the
T -satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is T -satisfiable.

Problem: the DNF conversion is very inefficient! (formula size can explode exponentially)

A better solution: exploit propositional satisfiability technology to deal with the Boolean
structure

3 / 34

Lifting SAT Technology to SMT

Two main approaches:

1. Eager

• translate into an equisatisfiable propositional formula

• feed it to any SAT solver

Notable systems: UCLID

2. Lazy

• abstract the input formula to a propositional one

• feed it to a (CDCL-based) SAT solver

• use a theory decision procedure to refine the formula and guide the SAT solver

Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3

4 / 34

Lifting SAT Technology to SMT

Two main approaches:

1. Eager

• translate into an equisatisfiable propositional formula

• feed it to any SAT solver

Notable systems: UCLID

2. Lazy

• abstract the input formula to a propositional one

• feed it to a (CDCL-based) SAT solver

• use a theory decision procedure to refine the formula and guide the SAT solver

Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3

4 / 34

Lazy Approach for SMT

Given a quantifier-free Σ-formula φ, for each atomic formula α in φ, we associate a unique
propositional variable e(α)

The Boolean skeleton of a formula φ is a propositional logic formula, where each atomic
formula α in φ is replaced with e(α)

Example:
φ := x < 0︸ ︷︷ ︸

p1

∨ (x + y < 1︸ ︷︷ ︸
p2

∧¬(x < 0︸ ︷︷ ︸
p1

)) ⇒ y < 0︸ ︷︷ ︸
p3

Boolean skeleton of φ : p1 ∨ (p2 ∧ ¬p1) ⇒ p3

with e := { (x < 0) 7→ p1, (x + y < 1) 7→ p2, (y < 0) 7→ p3 }

5 / 34

Lazy Approach for SMT

Given a quantifier-free Σ-formula φ, for each atomic formula α in φ, we associate a unique
propositional variable e(α)

The Boolean skeleton of a formula φ is a propositional logic formula, where each atomic
formula α in φ is replaced with e(α)

Example:
φ := x < 0︸ ︷︷ ︸

p1

∨ (x + y < 1︸ ︷︷ ︸
p2

∧¬(x < 0︸ ︷︷ ︸
p1

)) ⇒ y < 0︸ ︷︷ ︸
p3

Boolean skeleton of φ : p1 ∨ (p2 ∧ ¬p1) ⇒ p3

with e := { (x < 0) 7→ p1, (x + y < 1) 7→ p2, (y < 0) 7→ p3 }

5 / 34

(Very) Lazy Approach for SMT – Example

g(a) .
= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .

= d) ∧ c ̸ .= d

Simplest setting:

• Off-line SAT solver

• Non-incremental theory solver for conjunctions of equalities and disequalities

• Theory atoms (e.g., g(a) .
= c) abstracted to propositional atoms (e.g., 1)

6 / 34

(Very) Lazy Approach for SMT – Example

g(a) .
= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .

= d) ∧ c ̸ .= d

Simplest setting:

• Off-line SAT solver

• Non-incremental theory solver for conjunctions of equalities and disequalities

• Theory atoms (e.g., g(a) .
= c) abstracted to propositional atoms (e.g., 1)

6 / 34

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

7 / 34

Notation: p̄ stands for ¬p

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

7 / 34

Notation: p̄ stands for ¬p

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

7 / 34

Notation: p̄ stands for ¬p

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

7 / 34

Notation: p̄ stands for ¬p

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

7 / 34

Notation: p̄ stands for ¬p

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

7 / 34

Notation: p̄ stands for ¬p

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

7 / 34

Notation: p̄ stands for ¬p

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

7 / 34

Notation: p̄ stands for ¬p

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

7 / 34

Notation: p̄ stands for ¬p

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

7 / 34

Notation: p̄ stands for ¬p

Done! The original formula is
unsatisfiable in TEUF

Eager Approach for SMT – Example

f(b) .
= a ∨ f(a) ̸ .= a

Step 1: Eliminate all function applications (Ackermann’s encoding)

• introduce a constant symbol fx to replace function application f(x)
• for each pair of introduced variables fx , fy , add the formula x .

= y ⇒ fx
.
= fy

f(b) ⇒ fb f(a) ⇒ fa

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

Now, atomic formulas are equalities between constants/variables

8 / 34

Eager Approach for SMT – Example

f(b) .
= a ∨ f(a) ̸ .= a

Step 1: Eliminate all function applications (Ackermann’s encoding)

• introduce a constant symbol fx to replace function application f(x)
• for each pair of introduced variables fx , fy , add the formula x .

= y ⇒ fx
.
= fy

f(b) ⇒ fb f(a) ⇒ fa

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

Now, atomic formulas are equalities between constants/variables

8 / 34

Eager Approach for SMT – Example

f(b) .
= a ∨ f(a) ̸ .= a

Step 1: Eliminate all function applications (Ackermann’s encoding)

• introduce a constant symbol fx to replace function application f(x)
• for each pair of introduced variables fx , fy , add the formula x .

= y ⇒ fx
.
= fy

f(b) ⇒ fb f(a) ⇒ fa

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

Now, atomic formulas are equalities between constants/variables

8 / 34

Eager Approach for SMT – Example
Rename fb as c and fa as d:

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

becomes
(c .

= a ∨ d ̸ .= a) ∧ (a .
= b ⇒ d .

= c)

Step 2: Eliminate all equalities

• replace each pair of constants x, y with a unique propositional variable px,y

• add facts about reflexivity, symmetry, transitivity
(pc,a ∨ ¬pd,a) ∧ (pa,b ⇒ pd,c)

∧ pa,a ∧ pb,b ∧ pc,c ∧ pd,d ∧ (pa,b ⇔ pb,a) ∧ (pa,c ⇔ pc,a) ∧ (pa,d ⇔ pd,a) ∧ · · ·
∧ ((pa,b ∧ pb,c) ⇒ pa,c) ∧ ((pa,c ∧ pc,d) ⇒ pa,d) ∧ · · ·

The resulting propositional formula is equisatisfiable with the original TEUF -formula

Note: Not all the transitivity cases are needed

9 / 34

Eager Approach for SMT – Example
Rename fb as c and fa as d:

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

becomes
(c .

= a ∨ d ̸ .= a) ∧ (a .
= b ⇒ d .

= c)

Step 2: Eliminate all equalities

• replace each pair of constants x, y with a unique propositional variable px,y

• add facts about reflexivity, symmetry, transitivity
(pc,a ∨ ¬pd,a) ∧ (pa,b ⇒ pd,c)

∧ pa,a ∧ pb,b ∧ pc,c ∧ pd,d ∧ (pa,b ⇔ pb,a) ∧ (pa,c ⇔ pc,a) ∧ (pa,d ⇔ pd,a) ∧ · · ·
∧ ((pa,b ∧ pb,c) ⇒ pa,c) ∧ ((pa,c ∧ pc,d) ⇒ pa,d) ∧ · · ·

The resulting propositional formula is equisatisfiable with the original TEUF -formula

Note: Not all the transitivity cases are needed

9 / 34

Eager Approach for SMT – Example
Rename fb as c and fa as d:

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

becomes
(c .

= a ∨ d ̸ .= a) ∧ (a .
= b ⇒ d .

= c)

Step 2: Eliminate all equalities

• replace each pair of constants x, y with a unique propositional variable px,y

• add facts about reflexivity, symmetry, transitivity
(pc,a ∨ ¬pd,a) ∧ (pa,b ⇒ pd,c)

∧ pa,a ∧ pb,b ∧ pc,c ∧ pd,d ∧ (pa,b ⇔ pb,a) ∧ (pa,c ⇔ pc,a) ∧ (pa,d ⇔ pd,a) ∧ · · ·
∧ ((pa,b ∧ pb,c) ⇒ pa,c) ∧ ((pa,c ∧ pc,d) ⇒ pa,d) ∧ · · ·

The resulting propositional formula is equisatisfiable with the original TEUF -formula

Note: Not all the transitivity cases are needed

9 / 34

Eager Approach for SMT – Example
Rename fb as c and fa as d:

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

becomes
(c .

= a ∨ d ̸ .= a) ∧ (a .
= b ⇒ d .

= c)

Step 2: Eliminate all equalities

• replace each pair of constants x, y with a unique propositional variable px,y

• add facts about reflexivity, symmetry, transitivity
(pc,a ∨ ¬pd,a) ∧ (pa,b ⇒ pd,c)

∧ pa,a ∧ pb,b ∧ pc,c ∧ pd,d ∧ (pa,b ⇔ pb,a) ∧ (pa,c ⇔ pc,a) ∧ (pa,d ⇔ pd,a) ∧ · · ·
∧ ((pa,b ∧ pb,c) ⇒ pa,c) ∧ ((pa,c ∧ pc,d) ⇒ pa,d) ∧ · · ·

The resulting propositional formula is equisatisfiable with the original TEUF -formula

Note: Not all the transitivity cases are needed

9 / 34

Discussion: eager vs. lazy approach

Eager

• translate into an equisatisfiable propositional formula

• feed it to any SAT solver

Lazy

• abstract the input formula to a propositional one

• feed it to a (CDCL-based) SAT solver

• use a theory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the two approaches?

10 / 34

Discussion: eager vs. lazy approach

Eager

• translate into an equisatisfiable propositional formula

• feed it to any SAT solver

Lazy

• abstract the input formula to a propositional one

• feed it to a (CDCL-based) SAT solver

• use a theory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the two approaches?

10 / 34

Pros and cons: eager vs. lazy approach

Eager

• Can always use the best SAT solver off the shelf

• Requires care in encoding

• Tends not to scale well

Lazy

• Theory-specific reasoning

• Designing new theory solvers can be challenging

• Might require extension of a SAT solver for more efficiency interplay with theory solver

• Scales much better

11 / 34

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

12 / 34

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

12 / 34

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

12 / 34

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

12 / 34

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

12 / 34

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

12 / 34

Lazy Approach – Main Benefits

Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

• SAT and theory solvers communicate via a simple API

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

13 / 34

Lazy Approach – Main Benefits

Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

• SAT and theory solvers communicate via a simple API

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

13 / 34

Lazy Approach – Main Benefits

Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

• SAT and theory solvers communicate via a simple API

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

13 / 34

An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled a satisfiability proof system like those for Abstract DPLL and Abstract
CDCL

14 / 34

Review: Abstract DPLL

States:
UNSAT ⟨M,∆⟩

where

• M is a sequence of literals and decision points (•) denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula

15 / 34

Review: Abstract DPLL

States:
UNSAT ⟨M,∆⟩

where

• M is a sequence of literals and decision points (•) denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula

Note: When convenient, we treat M as a set

Provided M contains no complementary literals it determines the assignment

vM(p) =


true if p ∈ M
false if ¬p ∈ M
undef otherwise

15 / 34

Review: Abstract DPLL

States:
UNSAT ⟨M,∆⟩

where

• M is a sequence of literals and decision points (•) denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula

Notation: If M = M0 • M1 • · · · • Mn where each Mi contains no decision points

• Mi is decision level i of M

• M[i] denotes the subsequence M0 • · · · • Mi, from decision level 0 through decision level i

15 / 34

Review: Abstract DPLL

States:
UNSAT ⟨M,∆⟩

Initial state:

• ⟨ϵ,∆0⟩ where ϵ is the empty assignment and ∆0 is to be checked for satisfiability

15 / 34

Review: Abstract DPLL

States:
UNSAT ⟨M,∆⟩

Initial state:

• ⟨ϵ,∆0⟩ where ϵ is the empty assignment and ∆0 is to be checked for satisfiability

Expected final states:

• UNSAT if ∆0 is unsatisfiable

• ⟨M,∆n⟩ otherwise, where ∆n is equisatisfiable with ∆0 and satisfied by M

15 / 34

Review: Abstract CDCL

States:
UNSAT ⟨M,∆, C⟩

where

• M and ∆ are as in Abstract DPLL

• C is either no or a conflict clause

Initial state:

• ⟨ϵ,∆0, no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• UNSAT if ∆0 is unsatisfiable

• ⟨M,∆n, no⟩ otherwise, where ∆n is equisatisfiable with ∆0 and satisfied by M

16 / 34

Review: Abstract CDCL

States:
UNSAT ⟨M,∆, C⟩

where

• M and ∆ are as in Abstract DPLL

• C is either no or a conflict clause

Initial state:

• ⟨ϵ,∆0, no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• UNSAT if ∆0 is unsatisfiable

• ⟨M,∆n, no⟩ otherwise, where ∆n is equisatisfiable with ∆0 and satisfied by M

16 / 34

Review: Abstract CDCL

States:
UNSAT ⟨M,∆, C⟩

where

• M and ∆ are as in Abstract DPLL

• C is either no or a conflict clause

Initial state:

• ⟨ϵ,∆0, no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• UNSAT if ∆0 is unsatisfiable

• ⟨M,∆n, no⟩ otherwise, where ∆n is equisatisfiable with ∆0 and satisfied by M

16 / 34

Review: CDCL proof rules

l ∈ Lits(∆) l, l̄ /∈ M
DECIDE

M := M • l

C ̸= no • /∈ M
FAIL UNSAT

RESTART
M := M[0] C := no

D is a clause ∆ |= D D /∈ ∆
LEARN

∆ := ∆ ∪ {D}

{l1, . . . , ln, l} ∈ ∆ l̄1, . . . , l̄n ∈ M l, l̄ /∈ M
PROPAGATE

M := M l

C = {l} ∪ C′ {l1, . . . , ln, l̄} ∈ ∆ l̄1, . . . , l̄n, l̄ ∈ M l̄1, . . . , l̄n ≺M l̄
EXPLAIN

C := {l1, . . . , ln} ∪ C′

C = D D = {l1, . . . , ln, l} lev(̄l1), . . . , lev(̄ln) ≤ i < lev(̄l)
BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}

C = no {l1, . . . , ln} ∈ ∆ l̄1, . . . , l̄n ∈ M
CONflICT

C := {l1, . . . , ln}

C = no ∆ = ∆′ ∪ {C} ∆′ |= C
FORGET

∆ := ∆′

We are going to extend this abstract framework to lazy SMT

17 / 34

Review: CDCL proof rules

l ∈ Lits(∆) l, l̄ /∈ M
DECIDE

M := M • l

C ̸= no • /∈ M
FAIL UNSAT

RESTART
M := M[0] C := no

D is a clause ∆ |= D D /∈ ∆
LEARN

∆ := ∆ ∪ {D}

{l1, . . . , ln, l} ∈ ∆ l̄1, . . . , l̄n ∈ M l, l̄ /∈ M
PROPAGATE

M := M l

C = {l} ∪ C′ {l1, . . . , ln, l̄} ∈ ∆ l̄1, . . . , l̄n, l̄ ∈ M l̄1, . . . , l̄n ≺M l̄
EXPLAIN

C := {l1, . . . , ln} ∪ C′

C = D D = {l1, . . . , ln, l} lev(̄l1), . . . , lev(̄ln) ≤ i < lev(̄l)
BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}

C = no {l1, . . . , ln} ∈ ∆ l̄1, . . . , l̄n ∈ M
CONflICT

C := {l1, . . . , ln}

C = no ∆ = ∆′ ∪ {C} ∆′ |= C
FORGET

∆ := ∆′

We are going to extend this abstract framework to lazy SMT

17 / 34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

• ∆ contains quantifier-free clauses in some theory T

• M is a sequence of theory literals (i.e., atomic formulas or their negations) and decision points

• CDCL Rules operate on the Boolean skeleton of ∆,
given by a mapping from theory literals to propositional literals

• The proofs system is augmented with SMT-specific rules based on |=T :
T -CONflICT, T -PROPAGATE and T -EXPLAIN

• We assume an oracle, the theory solver, for |=T over theory literals

• Invariant: either C ̸= no or ∆ |=T C and M |=p ¬C (with |=p propositional entailment)

18 / 34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

• ∆ contains quantifier-free clauses in some theory T

• M is a sequence of theory literals (i.e., atomic formulas or their negations) and decision points

• CDCL Rules operate on the Boolean skeleton of ∆,
given by a mapping from theory literals to propositional literals

• The proofs system is augmented with SMT-specific rules based on |=T :
T -CONflICT, T -PROPAGATE and T -EXPLAIN

• We assume an oracle, the theory solver, for |=T over theory literals

• Invariant: either C ̸= no or ∆ |=T C and M |=p ¬C (with |=p propositional entailment)

18 / 34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

• ∆ contains quantifier-free clauses in some theory T

• M is a sequence of theory literals (i.e., atomic formulas or their negations) and decision points

• CDCL Rules operate on the Boolean skeleton of ∆,
given by a mapping from theory literals to propositional literals

• The proofs system is augmented with SMT-specific rules based on |=T :
T -CONflICT, T -PROPAGATE and T -EXPLAIN

• We assume an oracle, the theory solver, for |=T over theory literals

• Invariant: either C ̸= no or ∆ |=T C and M |=p ¬C (with |=p propositional entailment)

18 / 34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

• ∆ contains quantifier-free clauses in some theory T

• M is a sequence of theory literals (i.e., atomic formulas or their negations) and decision points

• CDCL Rules operate on the Boolean skeleton of ∆,
given by a mapping from theory literals to propositional literals

• The proofs system is augmented with SMT-specific rules based on |=T :
T -CONflICT, T -PROPAGATE and T -EXPLAIN

• We assume an oracle, the theory solver, for |=T over theory literals

• Invariant: either C ̸= no or ∆ |=T C and M |=p ¬C (with |=p propositional entailment)

18 / 34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

• ∆ contains quantifier-free clauses in some theory T

• M is a sequence of theory literals (i.e., atomic formulas or their negations) and decision points

• CDCL Rules operate on the Boolean skeleton of ∆,
given by a mapping from theory literals to propositional literals

• The proofs system is augmented with SMT-specific rules based on |=T :
T -CONflICT, T -PROPAGATE and T -EXPLAIN

• We assume an oracle, the theory solver, for |=T over theory literals

• Invariant: either C ̸= no or ∆ |=T C and M |=p ¬C (with |=p propositional entailment)

18 / 34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

• ∆ contains quantifier-free clauses in some theory T

• M is a sequence of theory literals (i.e., atomic formulas or their negations) and decision points

• CDCL Rules operate on the Boolean skeleton of ∆,
given by a mapping from theory literals to propositional literals

• The proofs system is augmented with SMT-specific rules based on |=T :
T -CONflICT, T -PROPAGATE and T -EXPLAIN

• We assume an oracle, the theory solver, for |=T over theory literals

• Invariant: either C ̸= no or ∆ |=T C and M |=p ¬C (with |=p propositional entailment)

18 / 34

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

• ∆ contains quantifier-free clauses in some theory T

• M is a sequence of theory literals (i.e., atomic formulas or their negations) and decision points

• CDCL Rules operate on the Boolean skeleton of ∆,
given by a mapping from theory literals to propositional literals

• The proofs system is augmented with SMT-specific rules based on |=T :
T -CONflICT, T -PROPAGATE and T -EXPLAIN

• We assume an oracle, the theory solver, for |=T over theory literals

• Invariant: either C ̸= no or ∆ |=T C and M |=p ¬C (with |=p propositional entailment)

18 / 34

SMT-level Rules

At SAT level:

C = no {l1, . . . , ln} ∈ ∆ l̄1, . . . , l̄n ∈ M
CONflICT C := {l1, . . . , ln}

At SMT level:

C = no l̄1 ∧ · · · ∧ l̄n |=T ⊥ l̄1, . . . , l̄n ∈ M
T -CONflICT

C := {l1, . . . , ln}

If a set of literals in M are unsatisfiable in T , make their negation a conflict clause

19 / 34

SMT-level Rules

At SAT level:

{l1, . . . , ln, l} ∈ ∆ l̄1, . . . , l̄n ∈ M l, l̄ /∈ M
PROPAGATE M := M l

At SMT level:

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE

M := M l

If M entails some literal l in T , extend it with l

20 / 34

SMT-level Rules

At SAT level:

C = {l} ∪ C′ {l1, . . . , ln, l̄} ∈ ∆ l̄1, . . . , l̄n, l̄ ∈ M l̄1, . . . , l̄n ≺M l̄
EXPLAIN C := {l1, . . . , ln} ∪ C′

At SMT level:

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

If the complement l̄ of a literal in the conflict clause is entailed in T by some literals l̄1, . . . , l̄n
at lower decision levels, derive a new conflict clause by resolution with {l1, . . . , ln, l̄}

21 / 34

CDCL Modulo Theories proof rules

l ∈ Lits(∆) l, l̄ /∈ M
DECIDE

M := M • l

C ̸= no • /∈ M
FAIL UNSAT

RESTART
M := M[0] C := no

D is a clause ∆ |= D D /∈ ∆
LEARN

∆ := ∆ ∪ {D}

C = no ∆ = ∆′ ∪ {C} ∆′ |= C
FORGET

∆ := ∆′

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE

M := M l

C = no l̄1 ∧ · · · ∧ l̄n |=T ⊥ l̄1, . . . , l̄n ∈ M
T -CONflICT

C := {l1, . . . , ln}

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

{l1, . . . , ln, l} ∈ ∆ l̄1, . . . , l̄n ∈ M l, l̄ /∈ M
PROPAGATE

M := M l

C = {l} ∪ C′ {l1, . . . , ln, l̄} ∈ ∆ l̄1, . . . , l̄n, l̄ ∈ M l̄1, . . . , l̄n ≺M l̄
EXPLAIN

C := {l1, . . . , ln} ∪ C′

C = D D = {l1, . . . , ln, l} lev(̄l1), . . . , lev(̄ln) ≤ i < lev(̄l)
BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}

C = no {l1, . . . , ln} ∈ ∆ l̄1, . . . , l̄n ∈ M
CONflICT

C := {l1, . . . , ln}

22 / 34

Modeling the Very Lazy Theory Approach

T -CONflICT is enough to model the naive integration of SAT solvers and theory solvers seen in
the earlier EUF example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34

Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34

Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34

Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34

Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34

Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34

Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34

Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34

Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34

Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34

Modeling the Very Lazy Theory Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

23 / 34

A Better Lazy Approach

The very lazy approach can be improved considerably with

• an on-line SAT engine that accept new input clauses on the fly

• an incremental and explicating T -solver that can
1. check the T -satisfiability of M as it is extended and

2. identify a small T -unsatisfiable subset of M once M becomes T -unsatisfiable

24 / 34

A Better Lazy Approach

The very lazy approach can be improved considerably with

• an on-line SAT engine that accept new input clauses on the fly

• an incremental and explicating T -solver that can
1. check the T -satisfiability of M as it is extended and

2. identify a small T -unsatisfiable subset of M once M becomes T -unsatisfiable

24 / 34

A Better Lazy Approach

The very lazy approach can be improved considerably with

• an on-line SAT engine that accept new input clauses on the fly

• an incremental and explicating T -solver that can
1. check the T -satisfiability of M as it is extended and

2. identify a small T -unsatisfiable subset of M once M becomes T -unsatisfiable

24 / 34

A Better Lazy Approach

The very lazy approach can be improved considerably with

• an on-line SAT engine that accept new input clauses on the fly

• an incremental and explicating T -solver that can
1. check the T -satisfiability of M as it is extended and

2. identify a small T -unsatisfiable subset of M once M becomes T -unsatisfiable

24 / 34

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

25 / 34

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

25 / 34

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

25 / 34

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

25 / 34

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

25 / 34

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

25 / 34

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

25 / 34

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

25 / 34

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

25 / 34

Lazy Approach – Strategies

Ignoring RESTART (for simplicity), a common strategy is to apply the rules using the following
priorities:

1. If a clause is (propositionally) falsified by the current assignment M,
apply CONflICT

2. If M is T -unsatisfiable, apply T -CONflICT

3. Apply FAIL or EXPLAIN+LEARN+BACKJUMP as appropriate

4. Apply PROPAGATE

5. Apply DECIDE

Depending on the cost of checking the T -satisfiability of M,
Step (2) can be applied with lower frequency or priority

26 / 34

Lazy Approach – Strategies

Ignoring RESTART (for simplicity), a common strategy is to apply the rules using the following
priorities:

1. If a clause is (propositionally) falsified by the current assignment M,
apply CONflICT

2. If M is T -unsatisfiable, apply T -CONflICT

3. Apply FAIL or EXPLAIN+LEARN+BACKJUMP as appropriate

4. Apply PROPAGATE

5. Apply DECIDE

Depending on the cost of checking the T -satisfiability of M,
Step (2) can be applied with lower frequency or priority

26 / 34

Theory Propagation

With T -CONflICT as the only theory rule, the theory solver is used just to validate the choices of
the SAT engine

With T -PROPAGATE and T -EXPLAIN, it can also be used to guide the engine’s search

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE

M := M l

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

27 / 34

Theory Propagation

With T -CONflICT as the only theory rule, the theory solver is used just to validate the choices of
the SAT engine

With T -PROPAGATE and T -EXPLAIN, it can also be used to guide the engine’s search

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE

M := M l

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

27 / 34

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

28 / 34

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

28 / 34

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

28 / 34

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

28 / 34

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

28 / 34

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

28 / 34

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

28 / 34

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f(g(a)) ̸ .= f(c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

28 / 34

Theory Propagation Features

• With exhaustive theory propagation, every assignment M is T -satisfiable
(since M l is T -unsatisfiable iff M |=T l̄)

• For theory propagation to be effective in practice, it needs specialized theory solvers

• For some theories, e.g., difference logic, detecting T -entailed literals is cheap and so exhaustive
theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting T -entailed equalities is cheap but detecting
T -entailed disequalities is quite expensive

• If T -PROPAGATE is not applied exhaustively, T -CONflICT is needed to repair T -unsatisfiable
assignments

29 / 34

Theory Propagation Features

• With exhaustive theory propagation, every assignment M is T -satisfiable
(since M l is T -unsatisfiable iff M |=T l̄)

• For theory propagation to be effective in practice, it needs specialized theory solvers

• For some theories, e.g., difference logic, detecting T -entailed literals is cheap and so exhaustive
theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting T -entailed equalities is cheap but detecting
T -entailed disequalities is quite expensive

• If T -PROPAGATE is not applied exhaustively, T -CONflICT is needed to repair T -unsatisfiable
assignments

29 / 34

Theory Propagation Features

• With exhaustive theory propagation, every assignment M is T -satisfiable
(since M l is T -unsatisfiable iff M |=T l̄)

• For theory propagation to be effective in practice, it needs specialized theory solvers

• For some theories, e.g., difference logic, detecting T -entailed literals is cheap and so exhaustive
theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting T -entailed equalities is cheap but detecting
T -entailed disequalities is quite expensive

• If T -PROPAGATE is not applied exhaustively, T -CONflICT is needed to repair T -unsatisfiable
assignments

29 / 34

Theory Propagation Features

• With exhaustive theory propagation, every assignment M is T -satisfiable
(since M l is T -unsatisfiable iff M |=T l̄)

• For theory propagation to be effective in practice, it needs specialized theory solvers

• For some theories, e.g., difference logic, detecting T -entailed literals is cheap and so exhaustive
theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting T -entailed equalities is cheap but detecting
T -entailed disequalities is quite expensive

• If T -PROPAGATE is not applied exhaustively, T -CONflICT is needed to repair T -unsatisfiable
assignments

29 / 34

Theory Propagation Features

• With exhaustive theory propagation, every assignment M is T -satisfiable
(since M l is T -unsatisfiable iff M |=T l̄)

• For theory propagation to be effective in practice, it needs specialized theory solvers

• For some theories, e.g., difference logic, detecting T -entailed literals is cheap and so exhaustive
theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting T -entailed equalities is cheap but detecting
T -entailed disequalities is quite expensive

• If T -PROPAGATE is not applied exhaustively, T -CONflICT is needed to repair T -unsatisfiable
assignments

29 / 34

Theory Propagation Exercise

a .
= b︸ ︷︷ ︸
1

∧ a .
= c︸ ︷︷ ︸
2

∨ c .
= b︸ ︷︷ ︸
3

∧ a ̸ .= b︸ ︷︷ ︸
1̄

∨ f(a) ̸ .= f(c)︸ ︷︷ ︸
4̄

∧ c ̸ .= b︸ ︷︷ ︸
3̄

∨ g(a) .
= g(c)︸ ︷︷ ︸
5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5

30 / 34

Theory Propagation Exercise

Scenario 1: propagating only T -entailed equalities (no disequalities)

a .
= b︸ ︷︷ ︸
1

∧ a .
= c︸ ︷︷ ︸
2

∨ c .
= b︸ ︷︷ ︸
3

∧ a ̸ .= b︸ ︷︷ ︸
1̄

∨ f(a) ̸ .= f(c)︸ ︷︷ ︸
4̄

∧ c ̸ .= b︸ ︷︷ ︸
3̄

∨ g(a) .
= g(c)︸ ︷︷ ︸
5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5

30 / 34

Theory Propagation Exercise

Scenario 1: propagating only T -entailed equalities (no disequalities)

a .
= b︸ ︷︷ ︸
1

∧ a .
= c︸ ︷︷ ︸
2

∨ c .
= b︸ ︷︷ ︸
3

∧ a ̸ .= b︸ ︷︷ ︸
1̄

∨ f(a) ̸ .= f(c)︸ ︷︷ ︸
4̄

∧ c ̸ .= b︸ ︷︷ ︸
3̄

∨ g(a) .
= g(c)︸ ︷︷ ︸
5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5

M ∆ C rule
∆0 no

1 4̄ ∆0 no by PROPAGATE+

1 4̄ • 2 ∆0 no by DECIDE
1 4̄ • 2 ∆0 2̄ ∨ 4 by T -CONflICT (as 2, 4̄ |=T ⊥)

1 4̄ 2̄ ∆0, 2̄ ∨ 4 no by BACKJUMP
1 4̄ 2̄ 3 ∆0, 2̄ ∨ 4 no by PROPAGATE
1 4̄ 2̄ 3 ∆0, 2̄ ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT (as 1, 3̄, 4̄ |=T ⊥)
UNSAT by FAIL

30 / 34

Theory Propagation Exercise

Scenario 2: propagating T -entailed equalities and disequalities

a .
= b︸ ︷︷ ︸
1

∧ a .
= c︸ ︷︷ ︸
2

∨ c .
= b︸ ︷︷ ︸
3

∧ a ̸ .= b︸ ︷︷ ︸
1̄

∨ f(a) ̸ .= f(c)︸ ︷︷ ︸
4̄

∧ c ̸ .= b︸ ︷︷ ︸
3̄

∨ g(a) .
= g(c)︸ ︷︷ ︸
5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5

30 / 34

Theory Propagation Exercise

Scenario 2: propagating T -entailed equalities and disequalities

a .
= b︸ ︷︷ ︸
1

∧ a .
= c︸ ︷︷ ︸
2

∨ c .
= b︸ ︷︷ ︸
3

∧ a ̸ .= b︸ ︷︷ ︸
1̄

∨ f(a) ̸ .= f(c)︸ ︷︷ ︸
4̄

∧ c ̸ .= b︸ ︷︷ ︸
3̄

∨ g(a) .
= g(c)︸ ︷︷ ︸
5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5

M ∆ C rule
∆0 no

1 4̄ ∆0 no by PROPAGATE+

1 4̄ 2̄ ∆0, 2̄ ∨ 4 no by T -PROPAGATE (as 1, 4̄ |=T 2̄)
1 4̄ 2̄ 3 ∆0, 2̄ ∨ 4 no by PROPAGATE
1 4̄ 2̄ 3 ∆0, 2̄ ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT (as 1, 3, 4̄ |=T ⊥)
UNSAT by FAIL

30 / 34

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:

(1) PROPAGATE, DECIDE, CONflICT, EXPLAIN, BACKJUMP, FAIL

(2) T -CONflICT, T -PROPAGATE, T -EXPLAIN

(3) LEARN, FORGET, RESTART

Basic CDCL Modulo Theories def
= (1) + (2)

CDCL Modulo Theories def
= (1) + (2) + (3)

31 / 34

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:

(1) PROPAGATE, DECIDE, CONflICT, EXPLAIN, BACKJUMP, FAIL

(2) T -CONflICT, T -PROPAGATE, T -EXPLAIN

(3) LEARN, FORGET, RESTART

Basic CDCL Modulo Theories def
= (1) + (2)

CDCL Modulo Theories def
= (1) + (2) + (3)

31 / 34

Correctness
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

32 / 34

Correctness
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

32 / 34

Correctness
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

Lemma 3
Every exhausted execution ends with either C = no or UNSAT.

32 / 34

Correctness
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

Theorem 3 (Refutation Soundness)
For every exhausted execution starting with ∆ = ∆0 and ending with UNSAT, the clause set ∆0 is
T -unsatisfiable.

32 / 34

Correctness
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

Theorem 3 (Refutation Soundness)
For every exhausted execution starting with ∆ = ∆0 and ending with UNSAT, the clause set ∆0 is
T -unsatisfiable.

Theorem 4 (Refutation Completeness)
For every exhausted execution starting with ∆ = ∆0 and ending with C = no, the clause set ∆0 is
T -satisfiable; specifically, M is T -satisfiable and M |=p ∆0.

32 / 34

CDCL(T) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(T) but currently known as CDCL(T)

CDCL(T) = CDCL(X) engine + T -solver

33 / 34

CDCL(T) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(T) but currently known as CDCL(T)

CDCL(T) = CDCL(X) engine + T -solver

CDCL(X):

• Very similar to a SAT solver, enumerates Boolean models

• Not allowed: pure literal rule (and other SAT specific optimizations)

• Required: incremental addition of clauses

• Desirable: partial model detection

33 / 34

CDCL(T) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(T) but currently known as CDCL(T)

CDCL(T) = CDCL(X) engine + T -solver

T -solver:

• Checks the T -satisfiability of conjunctions of literals

• Computes theory propagations

• Produces explanations of T -unsatisfiability/propagation

• Must be incremental and backtrackable

33 / 34

Typical SMT solver architecture

34 / 34

Typical SMT solver architecture

34 / 34

SAT Solver
• Only sees Boolean skeleton of problem
• Builds partial model by assigning truth values to

literals
• Sends these literals to the core as assertions

Typical SMT solver architecture

34 / 34

Core
• Sends each assertion to the

appropriate theory
• Sends deduced literals to other

theories/SAT solver
• Handles theory combination

Typical SMT solver architecture

34 / 34

Theory Solvers
• Check T -satisfiability of sets of

theory literals
• Incremental
• Backtrackable
• Conflict Generation
• Theory Propagation

