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Checking the satisfiability of quantifier-free formulas

Theory solvers check the satisfiability of conjunctions of literals

What if we have formulas with disjunctions, like this -formula?

What about arbitrary Boolean combinations of literals?
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Theorem 1
For all theories T, the T -satisfiability of quantifier-free formulas is decidable iff the
-satisfiability of conjunctions/sets of literals is decidable.
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Theorem 1
For all theories T, the T -satisfiability of quantifier-free formulas is decidable iff the

-satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is 7 -satisfiable. O]

[ Problem: the DNF conversion is very inefficient!  (formula size can explode exponentially) }

A better solution: exploit propositional satisfiability technology to deal with the Boolean
structure
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Lifting SAT Technology to SMT

Two main approaches:

1.

® translate into an equisatisfiable propositional formula

e feed it to any SAT solver
Notable systems: UCLID

2.

e abstract the input formula to a propositional one
e feed it to a (CDCL-based) SAT solver

® use a theory decision procedure to refine the formula and guide the SAT solver

Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3
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Lazy Approach for SMT

Given a quantifier-free > -formula ¢, for each atomic formula « in ¢, we associate a unique
propositional variable

The of aformula ¢ is a propositional logic formula, where each atomic
formula o in > is replaced with
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Lazy Approach for SMT

Given a quantifier-free > -formula
propositional variable

The of aformula
formula o in > is replaced with

, for each atomic formula o in o, we associate a unique

is a propositional logic formula, where each atomic

Ve

Example:

Boolean skeleton of

with

-
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(Very) Lazy Approach for SMT - Example
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(Very) Lazy Approach for SMT - Example

Simplest setting:
e Off-line SAT solver
® Non-incremental

® Theory atoms (e.g.,

for conjunctions of equalities and disequalities

) abstracted to propositional atoms (e.g., 1)
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(Very) Lazy ApproaCh for SMT - Example [ Notation: p stands for }

® Send to SAT solver
® SAT solver returns model

® Theory solver finds (concretization of) unsatin
(meaning that isvalidin )

® Send 1V 2V 4! to SAT solver

® SAT solver returns model

Done! Theoriginalformulais
® Theory solver finds unsat unsatisfiable in

® Send 1V 3V 4! to SAT solver

® SAT solver finds unsat
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Eager Approach for SMT - Example

[ )

Step 1: Eliminate all function applications (Ackermann’s encoding)

® introduce a constant symbol 7, to replace function application

e for each pair of introduced variables /., f,, add the formula
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Eager Approach for SMT - Example

[

Step 1: Eliminate all function applications (Ackermann’s encoding)

® introduce a constant symbol 7, to replace function application

e for each pair of introduced variables /., f,, add the formula
f(b) =1, f(a)=1,

Now, atomic formulas are equalities between constants/variables
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Eager Approach for SMT - Example

Rename f, ascandf, as d:

becomes

Step 2: Eliminate all equalities

® replace each pair of constants x, v with a unique propositional variable

® add facts about reflexivity, symmetry, transitivity

The resulting propositional formula is equisatisfiable with the original -formula

[ Note: Not all the transitivity cases are needed

9/34



Discussion: eager vs. lazy approach

Eager
¢ translate into an equisatisfiable propositional formula

e feed it to any SAT solver

Lazy

® abstract the input formula to a propositional one
e feed it to a (CDCL-based) SAT solver

® use atheory decision procedure to refine the formula and guide the SAT solver
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Discussion: eager vs. lazy approach

Eager
¢ translate into an equisatisfiable propositional formula

e feed it to any SAT solver

Lazy

® abstract the input formula to a propositional one
e feed it to a (CDCL-based) SAT solver

® use atheory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the two approaches?
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Pros and cons: eager vs. lazy approach

Eager

® Can always use the best SAT solver off the shelf
® Requires care in encoding

® Tends not to scale well

Lazy

® Theory-specific reasoning
® Designing new theory solvers can be challenging

® Might require extension of a SAT solver for more efficiency interplay with theory solver
® Scales much better
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Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

® Check 7 -satisfiability only of full propositional model

12/34



Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

Check 7 -satisfiability of partial assignment / as it grows

12/34



Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

Check 7 -satisfiability of partial assignment / as it grows

e |f Vis T -unsatisfiable, add as a clause

12/34



Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

Check 7 -satisfiability of partial assignment / as it grows

If M is T -unsatisfiable, identify a 7 -unsatisfiable subset V/; of M and
add as a clause

12/34



Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

Check 7 -satisfiability of partial assignment / as it grows

If M is T -unsatisfiable, identify a 7 -unsatisfiable subset V/; of M and
add as a clause

e |f M is 7 -unsatisfiable, add clause and restart
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Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

Check 7 -satisfiability of partial assignment / as it grows

If M is T -unsatisfiable, identify a 7 -unsatisfiable subset V/; of M and
add as a clause

If Vis 7 -unsatisfiable, backtrack to some point
where the assignment was still 7 -satisfiable
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Lazy Approach - Main Benefits

Every tool does what it is good at:

® SAT solver takes care of Boolean information

® Theory solver takes care of theory information
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Lazy Approach - Main Benefits

Every tool does what it is good at:

® SAT solver takes care of Boolean information

® Theory solver takes care of theory information

The theory solver works only with conjunctions of literals
Modular approach:
® SAT and theory solvers communicate via a simple API
® SMT for a new theory only requires new theory solver

e An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort
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An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled a satisfiability proof system like those for Abstract DPLL and Abstract
CDCL
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Review: Abstract DPLL
States:

where

® Visa and (o) denoting a partial variable assignment

e Nisa denoting a CNF formula
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Review: Abstract DPLL

States:

where
® Visa and (o) denoting a partial variable assignment
e Nisa denoting a CNF formula

p
Note: When convenient, we treat // as a set

Provided // contains no complementary literals it determines the assignment
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Review: Abstract DPLL

States:
where
® Visa and (o) denoting a partial variable assignment
e Nisa denoting a CNF formula
Notation: If where each ; contains no decision points
® V;is of

] denotes the subsequence , from decision level 0 through decision level
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o if /\y is unsatisfiable

° otherwise, where /\, is equisatisfiable with 2\, and satisfied by
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States:

where

e \/and /A are as in Abstract DPLL

® (Ciseithernoora
Initial state:

° ,where /\; is to be checked for satisfiability

Expected final states:

° if /\y is unsatisfiable

[ otherwise, where is equisatisfiable with

and satisfied by
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Review: CDCL proof rules

PROPAGATE
DECIDE
EXPLAIN
FAIL
BACKJUMP
RESTART
is a clause Conflict
LEARN
FORGET
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Review: CDCL proof rules

PROPAGATE
DECIDE
EXPLAIN
FAIL
BACKJUMP
RESTART
is a clause Conflict
LEARN
FORGET

[ We are going to extend this abstract framework to lazy SMT ]
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Same state components and transitions as in Abstract CDCL except that
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From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

e /\ contains quantifier-free clauses in some theory

® \lisasequence of theory literals (i.e., atomic formulas or their negations) and decision points

CDCL Rules operate on the Boolean skeleton of A,
given by a mapping from theory literals to propositional literals

The proofs system is augmented with SMT-specific rules based on
-Conflict, 7 -PROPAGATE and 7 -EXPLAIN

® We assume an oracle, the theory solver, for over theory literals

Invariant: either or A =7 C and (with =, propositional entailment)
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SMT-level Rules

At SAT level:

Conflict

At SMT level:

=T

-Conflict

If a set of literals in M are unsatisfiable in

, make their negation a conflict clause
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SMT-level Rules

At SAT level:

PROPAGATE

At SMT level:

=T

-PROPAGATE

If M entails some literal / in 7, extend it with
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SMT-level Rules

At SAT level:

EXPLAIN

At SMT level:

-EXPLAIN 7

If the complement / of a literal in the conflict clause is entailed in 7 by some literals
at lower decision levels, derive a new conflict clause by resolution with
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CDCL Modulo Theories proof rules

Er

-Conflict
DECIDE
-EXPLAIN
FAIL
RESTART
PROPAGATE
isaclause
LEARN
EXPLAIN
FORGET
BACKJUMP
=7
-PROPAGATE
Conflict
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Modeling the Very Lazy Theory Approach

-ConflicT is enough to model the naive integration of SAT solvers and theory solvers seen in
the earlier EUF example
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Modeling the Very Lazy Theory Approach

glay=c r flg(a)) #f(c) vgla)=d N c#d

1 2 3 4

M A C rule
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142 1,2V3, 4 no by DECIDE
142 1,2V3, 4 1Vv2V4 byT-Conflict
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Modeling the Very Lazy Theory Approach

gla)=c A f(g(a)) #f(c) Vgla)=d N c#d
1 2 3 4
M A C rule
1,2Vv3, 4 no
14 1,2Vv3 4 no by PROPAGATE™
142 1,2V3, 4 no by DECIDE
142 1,2V3, 4 1Vv2V4 byT-Conflict
142 1,2V3,4,1V2V4 1V2V4 byLEARN
14 1,2Vv3,4,1v2V4 no by RESTART
1423 1,2V3,4,1Vv2V4 no by PROPAGATE™
1423 1,2V3,4,1Vv2V4 1v3Vv4 byT-Conflict
1423 1,2V3,4,1v2V4,1Vv3Vva no by LEARN
UNSAT by FAIL
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A Better Lazy Approach

The very lazy approach can be improved considerably with

® an SAT engine that accept new input clauses on the fly
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A Better Lazy Approach

The very lazy approach can be improved considerably with

® an SAT engine that accept new input clauses on the fly

® an -solver that can
1. check the 7 -satisfiability of M as it is extended and

2. identify a small 7 -unsatisfiable subset of M once M becomes 7 -unsatisfiable
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A Better Lazy Approach

gla)=c A f(g(a))#f(c) Vgla)=d A c#d
Hl/—/ _._,—/ | \-Z‘,—/
2
M A C rule
1,2V3, 4 no
14 1,2Vv3, 4 no by PROPAGATE™
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Lazy Approach - Strategies

Ignoring RESTART (for simplicity), a common strategy is to apply the rules using the following
priorities:

1. Ifaclauseis (propositionally) falsified by the current assignment IV,
apply Conflict

2. If Mis 7 -unsatisfiable, apply 7 -ConflicT

3. Apply FAIL or EXPLAIN+LEARN+BACKJUMP as appropriate
4. Apply PROPAGATE

5. Apply DECIDE
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Lazy Approach - Strategies

Ignoring RESTART (for simplicity), a common strategy is to apply the rules using the following
priorities:

1. Ifaclauseis (propositionally) falsified by the current assignment IV,
apply Conflict

2. If Mis 7 -unsatisfiable, apply 7 -ConflicT

3. Apply FAIL or EXPLAIN+LEARN+BACKJUMP as appropriate
4. Apply PROPAGATE

5. Apply DECIDE

Depending on the cost of checking the 7 -satisfiability of M,
Step (2) can be applied with lower frequency or priority
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Theory Propagation

With 7 -ConflicT as the only theory rule, the theory solver is used just to validate the choices of
the SAT engine
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Theory Propagation
With 7 -ConflicT as the only theory rule, the theory solver is used just to validate the choices of

the SAT engine

With 7 -PROPAGATE and 7 -EXPLAIN, it can also be used to guide the engine’s search

=T

-PROPAGATE

=7

-EXPLAIN
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Theory Propagation Example

gla)=c A f(g(a)) #f(c) Vv gla)=d A gjfg

\—\,—/
1 3 3 2
M A C rule
1,2V3,4 no
14 1,2V3,4 no byPROPAGATE™
142 1,2V3,4 no byT7-PROPAGATE (asl =7 2)
1423 1,2Vv3,4 no byT7-PROPAGATE (asl, 4 =7 3)
1423 1,2V3,4 2Vv3 byConflict
UNSAT by FAIL

7 -propagation eliminates search altogetherin this case!
No applications of DECIDE are needed
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Theory Propagation Features

® With theory propagation, every assignment M is 7 -satisfiable
(since M is T -unsatisfiable iff )
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Theory Propagation Features

® With theory propagation, every assignment M is 7 -satisfiable
(since M is T -unsatisfiable iff )

® For theory propagation to be effective in practice, it needs specialized theory solvers

® For some theories, e.g., difference logic, detecting 7 -entailed literals is cheap and so exhaustive
theory propagation is extremely effective

® For others, e.g., the theory of equality, detecting 7 -entailed equalities is cheap but detecting
-entailed disequalities is quite expensive

o |f 7-PROPAGATE is not applied exhaustively, 7 -ConflicT is needed to repair 7 -unsatisfiable
assignments

29/34



Theory Propagation Exercise
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Scenario 1: propagating only 7 -entailed equalities (no disequalities)
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Theory Propagation Exercise
Scenario 1: propagating only 7 -entailed equalities (no disequalities)

a=b AN a=cVc=b AN a#bVfla)#f(c) N c#bV gla)=g(c
1 SVl # ()5_&() # 9()59()
4 3

Ny :=1,2Vv3 1V4 3V5

M A C rule
JANY no
14 A, no by PROPAGATE "
14 ¢2 Ay no by DECIDE
14 62 A 2V4  byT-ConflicT (as2,4 =7 1)

142 Ay, 2V4 no by BACKJUMP
1423 Ay, 2V4 no by PROPAGATE
1423 Ay, 2V4 1V3V4 byT-Conflict (asl,3,4 =7 1)
UNSAT by FAIL
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Theory Propagation Exercise

Scenario 2: propagating 7 -entailed equalities and disequalities
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Theory Propagation Exercise
Scenario 2: propagating 7 -entailed equalities and disequalities

a=b AN a=cVc=b AN a#bVfla)#f(c) N c#bV gla)=g(c
1 SVl # ()5_&() # 9()59()
4 3

No =1, 2V3, 1V4 3V5

M A C rule
JAN no
14 A no by PROPAGATE"
142 Ny, 2V4 no by T-PROPAGATE (as1,4 =7 2)
1423 Ny, 2V4 no by PROPAGATE
1423 Ag, 2V4 1vV3Vv4 byT-Conflict (asl,3,4 =7 1)

UNSAT by FAIL
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Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:
(1) PROPAGATE, DECIDE, CONflicT, EXPLAIN, BACKJUMP, FAIL
(2) 7-ConflicT, 7 -PROPAGATE, 7 -EXPLAIN

(3) LEARN, FORGET, RESTART
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Correctness

state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
a (single-branch) derivation tree starting with and
execution ending in an irreducible state
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Theorem 2 (Strong Termination)

Every execution in which (/) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.
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Correctness

state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
a (single-branch) derivation tree starting with and
execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (/) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

Lemma 3
Every exhausted execution ends with either or
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state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
a (single-branch) derivation tree starting with and
execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (/) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.
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Correctness

state to which no Basic CDCL Modulo Theories rules apply (updated terminology)
a (single-branch) derivation tree starting with and
execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (/) LEARN/FORGET are applied only finitely many times and (ii) RESTART is
applied with increased periodicity is finite.

- J
e N
Theorem 3 (Refutation Soundness)
For every exhausted execution starting with and ending with , the clause set /\ is
-unsatisfiable.
. J
e N
Theorem 4 (Refutation Completeness)
For every exhausted execution starting with and ending with , the clause set /\ is

-satisfiable; specifically, \ is T -satisfiable and
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CDCL(7) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(7) but currently known as

CDCL(7) = CDCL(X) engine + 7 -solver
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CDCL(7) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(7) but currently known as

CDCL(7) = CDCL(X) engine + 7 -solver

CDCL(X):
® Very similar to a SAT solver, enumerates Boolean models
e Not allowed: pure literal rule (and other SAT specific optimizations)
® Required: incremental addition of clauses

® Desirable: partial model detection
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CDCL(7) Architecture

The approach formalized so far can be implemented with a simple architecture originally
named DPLL(7) but currently known as

CDCL(7) = CDCL(X) engine + 7 -solver

-solver:

® Checks the 7 -satisfiability of conjunctions of literals

® Computes theory propagations

® Produces explanations of 7 -unsatisfiability/propagation

® Must be incremental and backtrackable
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Typical SMT solver architecture

| explanations |
+ conflicts

. lemmas

| propagations |
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Typical SMT solver architecture

1 explanations |
_________ + conflicts

EasserlionSE : lemmas E SAT Solver

......... . propagations
""""""" ® Only sees Boolean skeleton of problem

® Builds partial model by assigning truth values to
literals

® Sends these literals to the core as assertions
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Typical SMT solver architecture

NS/

UF —
K.k

: conflicts
» lemmas

Core
® Sends each assertion to the
appropriate theory

® Sends deduced literals to other
theories/SAT solver

® Handles theory combination

| propagations |

ap—
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Typical SMT solver architecture

Theory Solvers

- Arrays ® Check 7 -satisfiability of sets of

theory literals

'\\< // ® |ncremental
—
T—

___— Backtrackable

Conflict Generation

UF

|
i

Core

® Theory Propagation

1 explanations |
+ conflicts
| lemmas
......... | propagations |

..............
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