CS:4980 Topics in Computer Science |l
Introduction to Automated Reasoning

Theory Solvers

Cesare Tinelli

Spring 2024
L

The m

UNIVERSITY
OF lowa

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of lowa, and by
Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

1/26

Roadmap for Today

e Strings

2/26

Motivation: Symbolic Execution

Symbolic Execution

e Fnumerate program paths that end in a bad state
® (e.g.,invalid memory access)

Represent program inputs as SMT variables

Translate statements in the path into constraints on the variables

Constraints represent all possible executions along the path

Solving the constraints determines whether the path is feasible

|

—>

Symbolic SMT

Code 4 —
Execution Formula

—»

Safe

3/26

Example: Symbolic Execution for Security

Security Vulnerabilities
® Input: code and security policy

® Symbolic execution: generates formula
satisfiable iff code can violate security policy

® SMT solver: returns a solution or proves

Security that none exists

Security Policy

Policies

—>

Symbolic SMT

Code — 4 -
Execution Formula

—»

Safe

4/26

String Analysis

Strings in Symbolic Execution

® Input code may manipulate strings

Security

Security Policy

Policies

—

Symbolic SMT
Code] -
Execution Formula

—>

Safe

5/26

Basic Theory of Strings

Alphabet

6/26

Basic Theory of Strings

Alphabet
Constants
Empty string €
Character string ¢ for all

Integer numeral n forall

6/26

Basic Theory of Strings

Alphabet
Constants
Empty string € (i.e.,
Character string ¢ forall
Integer numeral n for all
Operators
Concatenation _ - _ (i.e.,
Length | _|
Membership _ € _
Addition +

Comparison _>

6/26

Basic Theory of Strings

Alphabet -

Constants
Empty string €
Character string ¢
Integer numeral n

Challenge: complexity

concatenation + equality:
® Decidable in PSPACE
+length

® Decidability open
+ replace (all instances of some substring)
® Undecidable

Operators
Concatenation _ - _
Length | _|
Membership _ € _
Addition +

Comparison _>

6/26

Basic Theory of Strings

Alphabet

e

Constants
Empty string €
Character string ¢

Pragmatic approach
® Rule-based proof system

® Use existing arithmetic theory solver

® Embrace incompleteness

Integer numeral n fQ
Operators

Concatenation _ - _

Length | _|

Membership _ € _

Addition +

Comparison _>

(i.e.,

6/26

Satisfiability Proof System for Strings

Proof States
A is either:

® One of the distinguished states saT,
® A pair , Where S contains constraints and A contains constraints
Assumptions

e All literals are flat
® For every string variable x in S, there exists a variable /,, such that

® Ignore regular expression membership for now

7/26

Notation

Definitions
. denotes all terms in
. means that o follows from S using the rules of
o means that o follows from A in the theory of linear integer arithmetic

Normalization function for length

) for all

8/26

Core Rules

A-CONF M A-PROP A ‘:L/A s=t S,.t € T(S)
UNSAT S:=S§,s=t
s-Conk S-Prop oL oo Tl s, tare ¥ -terms
UNSAT A=As=t

X, yeT(S)nT(A) x,y:Int

SA A=Ax=y A=Ax=y

seT(S) s:String L.VALID x€T(S) x:String

SEc=d ceA de A\{c}

UNSAT

CONST-CONF

no other rule applies
SAT

SAT

9/26

Example Derivation

Let

10/26

Example Derivation

Let

For each derivation step, we show only the difference between the derived state and the previous one

10/26

Concatenation Rules

If x is a variable of S, we can recursively expand x by substituting using equalities from S whose
right-hand sides are concatenation terms until this is no longer possible

11/26

Concatenation Rules

If x is a variable of S, we can recursively expand x by substituting using equalities from S whose
right-hand sides are concatenation terms until this is no longer possible

If tis the result, we write

11/26

Concatenation Rules

If x is a variable of S, we can recursively expand x by substituting using equalities from S whose
right-hand sides are concatenation terms until this is no longer possible

If tis the result, we write

We write z as a short-hand for a concatenation of zero or more variables (,
with when)

11/26

Concatenation Rules

If x is a variable of S, we can recursively expand x by substituting using equalities from S whose
right-hand sides are concatenation terms until this is no longer possible

If tis the result, we write

We write z as a short-hand for a concatenation of zero or more variables (,
with when)

C-EQ

C-SpLIT

Note: k is a fresh variable

11/26

Example of C-Split

SE*x=w-u-z SE*xX=w-v-7

A=Al >0,;,S =S u=v-k
A=Al </l,; S:=Sv=u-k
A=A/l =0,;,S=Su=v

C-SpLIT

- [
x=

12/26

Core and Concat Rules

ACong Ut Aprop A AS =L S EETIS)
UNSAT S =§s=t
S-CONF SEL $-PROP SEs=t steT(S) _s.tare Y u-terms
UNSAT A=As=t
Const-Conp ¢4 co A de A gp XYET(S)ATA) x.y:int
UNSAT A=AXx=Yy A=Ax=y
seT(S) s:String x€T(S) x:String
L-INTRO S—5, ‘S‘ = ‘SH L-VALID S —Sx=c A=Al >0
i L% - |3k -
sar ° other rule applies CEo SE*x=z S \'f, y=2z
SAT S =Sx=y

SE*x=w-u-z SE*x=w-v-Z
A=ALl,>"l,;,S:=Su=v-k
=Al,<l,;S:=S,v=u-k
A=Al =10, S =S u=v

C-SPLIT

13/26

Properties of the proof system

Is the proof system sound? terminating?

14/26

Properties of the proof system

The proof system is

15/26

Properties of the proof system

The proof system is

e refutation sound
® easily checkable by examining each proof rule

15/26

Properties of the proof system

The proof system is

e refutation sound
® easily checkable by examining each proof rule

® solution sound
® proving this is highly non-trivial

15/26

Properties of the proof system

The proof system is
e refutation sound
® easily checkable by examining each proof rule
® solution sound
® proving this is highly non-trivial

® not terminating
® for pathological unsat cases, C-SPLIT can be applied infinitely often

15/26

Properties of the proof system

The proof system is
e refutation sound
® easily checkable by examining each proof rule
® solution sound
® proving this is highly non-trivial

® not terminating
® for pathological unsat cases, C-SPLIT can be applied infinitely often

® incomplete
® aconsequence of non-termination

15/26

Iterating to Improve the Solver: More String Operators

1. Extend the theory by adding

16/26

Iterating to Improve the Solver: More String Operators

1. Extend the theory by adding

. , the maximal substring of x, starting at position 1, with length
. , true iff x contains y as a substring
. , position of the first occurrence of y in x, starting from position

. , the result of replacing the first occurrence of x in y by

16/26

Iterating to Improve the Solver: More String Operators

1. Extend the theory by adding

. , the maximal substring of x, starting at position 1, with length
. , true iff x contains y as a substring

. , position of the first occurrence of y in x, starting from position
. , the result of replacing the first occurrence of x in y by

2. Implement them by reduction to the core theory

16/26

New Operators as Macros

X=Yy

17/26

New Operators as Macros

X=Yy

X = substr(y,n,m)

17/26

New Operators as Macros

X=Yy

X = substr(y,n,m)

contains(y, z)

17/26

New Operators as Macros

X=Yy

X = substr(y,n,m)

contains(y, z)

x = index_of(y,z,n)

max(x — y,0)

ite(0<n<ly|A0<m,
Y zxzalnl < nalzl =yl = (m),
X=c¢)

Ik.0 < k < |y| — |2| A substr(y, k, |z|) = z

ite(0 < n < |y| A contains(y’, 2),
substr(y’, X, |z|) = z A —contains(substr(y’,0,x" + |z| — 1), 2),
x=-1)

with ' = substr(y.n,|y| —n)andx" = x —n

17/26

New Operators as Macros

X=Yy

X = substr(y,n,m)

contains(y, z)

x = index_of(y,z,n)

x = replace(y, z, w)

max(x — y,0)

ite(0<n<|y|A0<m,
Yy=21-X-Z3 ANMzi| = n A |z = |y| = (m + n),
X=¢€)

Fk.0 < k <|y| —|z| A substr(y,k,|z|) =z

ite(0 < n < |y| A contains(y’, 2),

substr(y’, X, |z|) = z A —contains(substr(y’,0,x" + |z| — 1), 2),

x=-1)
with ' = substr(y.n,|y| —n)andx" = x —n

ite(contains(y,z) A z = ¢,
X=21-W-Zp ANy =21-Z-2 Anindex_of(y,z,0) = |z],
X=y)

17/26

Reasoning about New Operators: Performance

Iterate and Improve

® Extend the implementation to reason directly on the new operators

18/26

Reasoning about New Operators: Performance

Iterate and Improve

® Extend the implementation to reason directly on the new operators

°* How?

18/26

Reasoning about New Operators: Performance

Iterate and Improve

® Extend the implementation to reason directly on the new operators

* How?
® Keep formulas with original new operators

18/26

Reasoning about New Operators: Performance

Iterate and Improve

® Extend the implementation to reason directly on the new operators
* How?

® Keep formulas with original new operators

® Periodically try to simplify them based on new knowledge

18/26

Simplification rules for New Operators

Example: (l1, [, denote string constants)

19/26

Simplification rules for New Operators

Example: (l1, [, denote string constants)

19/26

Simplification rules for New Operators

Example: (l1, [, denote string constants)

19/26

Simplification rules for New Operators

Example: (l1, [, denote string constants)

19/26

Simplification rules for New Operators

Example: (l1, [, denote string constants)

19/26

Simplification rules for New Operators

Example: (l1, [, denote string constants)

19/26

Simplification rules for New Operators

Example: (l1, [, denote string constants)

19/26

Simplification rules for New Operators

Example: contains (/1, , denote string constants)
contains(ly,
contains(ly,

if [; contains [,
if [; does not contain [,

~

contains(ly, 1 - if [; does not contain [,

~

contains(ly, [- if contains(l;\lo, t) —* L
if contains(ly, t) —* L

contains(l; - t, [, if [; contains [,

|
i

)

)

)

)
contains(ly,x - t) —

)

)

contains(x - t, s if contains(t,s) —* T

19/26

Simplification rules for New Operators

Example: contains (/1, I, denote string constants)
contains(l1,L) — if [; contains [,
contains(l1,L) — if [{ does not contain [,
contains(l1, - t) — if [{ does not contain [,
contains(l1, L - t) —> if contains(l1\, t) —™* L

contains(ly,x - t) —> if contains(ly, t) —* |

contains(ly - t, [if [; contains [,

if contains(t,s) —* T

i

)
contains(x - t;s) —>
)

contains(t-s,t-u if contains(s,u) —* T

19/26

Simplification rules for New Operators

Example: contains
contains(ly,
contains(ly,

contains(ly, 1 -

~ ~,

contains(ly, ;-

contains(ly - t, [
contains(x - t, s
contains(t-s,t-u

)
)
)
)
contains(ly, x - t)
)
)
)
)

contains(ly - t, [

i

contains(t,)

(/1, I, denote string constants)
if [, contains [,
if [; does not contain [,
if [; does not contain [,
if contains(l1\, t) —™* L
if contains(ly, t) —* L
if [; contains [,
if contains(t,s) —* T
if contains(s,u) —* T

ifliu b =c¢

19/26

Simplification rules for New Operators

Example: contains
contains(ly,
contains(ly,
contains(ly, - t
contains(ly, - t
contains(ly, x - t

contains(x - t, s
contains(t-s,t-u
contains(ly - t, [,
contains(t - [1, 1,

)
)
)
)
)
contains(l; - t, 1)
)
)
)
)

e e

contains(t,)
contains(t,)

(/1, I, denote string constants)
if [, contains [,
if [, does not contain [,
if [; does not contain [,
if contains(l1\, t) —™* L
if contains(ly, t) —™* L
if [; contains [,
if contains(t,s) —* T
if contains(s,u) —* T
ifliu b =c¢

ifli U, L =c¢

19/26

Simplification rules for New Operators

Example: contains
contains(ly,
contains(ly,
contains(ly, - t
contains(ly, - t
contains(ly, x - t

contains(x - t, s
contains(t-s,t-u
contains(ly - t, [,
contains(t - [1, 1,

)
)
)
)
)
contains(l; - t, 1)
)
)
)
)

contains(e, t)

—

—

e e

contains(t,)
contains(t,)

=T —

(/1, I, denote string constants)

if [, contains [,
if [, does not contain [,
if [; does not contain [,
if contains(l1\, t) —™* L
if contains(ly, t) —™* L
if [; contains [,
if contains(t,s) —* T
if contains(s,u) —* T
ifliu b =c¢
ifli U, L =c¢

e=t

19/26

Simplification rules for New Operators

Example: contains
contains(ly,
contains(ly,
contains(ly, - t
contains(ly, - t
contains(ly, x - t

contains(x - t, s
contains(t-s,t-u
contains(ly - t, [,
contains(t - [1, 1,

)
)
)
)
)
contains(l; - t, 1)
)
)
)
)

contains(e, t)

—

—

e e

contains(t,)
contains(t,)

=T —

(/1, I, denote string constants)

if [, contains [,
if [, does not contain [,
if [; does not contain [,
if contains(l1\, t) —™* L
if contains(ly, t) —™* L
if [; contains [,
if contains(t,s) —* T
if contains(s,u) —* T
ifliu b =c¢
ifli U, L =c¢

e=t

19/26

Reasoning about New Operators: More Performance

Iterate and Improve
e Supercharge the simplifier
* Many simplifications are conditional

® Build a mini-inference engine inside the simplifier to verify

20/26

Conditional Simplifications based on String Length

[Notation: states that simplifier can prove simplification condition }

21/26

Conditional Simplifications based on String Length

[Notation: states that simplifier can prove simplification condition }

21/26

Conditional Simplifications based on String Length

[Notation: states that simplifier can prove simplification condition }

21/26

Conditional Simplifications based on String Length

[Notation: states that simplifier can prove simplification condition }

21/26

Conditional Simplifications based on String Length

[Notation: states that simplifier can prove simplification condition }

21/26

Conditional Simplifications based on String Length

[Notation: states that simplifier can prove simplification condition }

21/26

Conditional Simplifications based on String Length

[Notation: states that simplifier can prove simplification condition }

21/26

Conditional Simplifications based on String Length

[Notation: states that simplifier can prove simplification condition }

21/26

Conditional Simplifications based on String Length

[Notation: states that simplifier can prove simplification condition }

21/26

Reasoning about Regular Expressions

Regular Expression Membership Example

Automata-based approach

22/26

Reasoning about Regular Expressions

Regular Expression Membership Example

Automata-based approach

Problem: Complement and intersection are expensive

22/26

Reasoning about Regular Expressions

Regular Expression Membership Example

Automata-based approach

Problem: Membership constraints may lead to non-terminating unfolding:

22/26

Reasoning about Regular Expressions

Regular Expression Membership Example

Automata-based approach

Problem: Membership constraints may lead to non-terminating unfolding:

Example: is equivalent to

v e [0.9]*

22/26

Reasoning about Regular Expressions

Regular Expression Membership Example

Word-based approach with incomplete procedures

Use fast, incomplete procedure to verify

[Notation: denotes the language generated by regex

23/26

Proving L(R,) — L(R,)

forallx e L(R), |x| =1

@ L(R) < L(A)

L(R) < L(R)

24/26

Proving L(R,) — L(R,)

(1) (2) (3)

LR S LR L S LRY LR < L(A)
ﬁ(Rl) - E(Rz)
W Zrmccay ¥ Imccr) © Zeh ok

24/26

Proving L(R,) — L(R,)

(1) (2) (3)

LR CL® £(6) € LR L(R) < L(A)
L(R1) € L(Ry)
@ zmerar © Zmerw) © LR ik

L(R) € L(Ry) L(Ry) < L(Rs)

() L(R1) < L(Rs)

24/26

Proving L(R,) — L(R,)

forallx € L(R), |x
L(R) = L(A)
L(R1) = L(
L(RY) < £(

=1

(1) (2) (3)

L(R) < L(R) L(e) L(R¥)

(@ () () &)

NN

L(R) < L(A") L(R) < L(R¥)

ﬁ(Rl) - ﬁ(Rz) ﬁ(Rz) - ﬁ(R3)

Y L(Ry) < L(R3)

ﬁ(Rl) = E(Sl) .C(Rz) = E(Sz)
ﬁ(Rl . Rz) - [,(S]_ -Sz)

3xXC X

“ (e c2)) L(cs..ca])

(9)

¢ < diff c equals d or precedes d lexicographically (c. d € A)

24/26

Exercise

Using the proof rules above, prove that

25/26

Exercise

Using the proof rules above, prove that

L([0.1]* - A% "p" - A*) = £([0..9]" - A¥)

0 1<9 ©)
L1 < £(0.9) " “
£([0-1]%) < £([0..9]) LA o A S £
L([0..1]* - A* - "b" - A%) € £(]0..9]" - A*)

25/26

More Information

Strings Papers

“A DPLL(T) Theory Solver for a Theory of Strings and Regular Expressions” by Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. In
Proceedings of the International Conference on Computer Aided Verification (CAV ’14), (Armin Biere and Roderick Bloem, eds.), July 2014, pp. 646-662. Vienna,
Austria.

“An Efficient SMT Solver for String Constraints” by Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark Barrett, and Morgan Deters. Formal
Methods in System Design, vol. 48, no. 3, June 2016, pp. 206-234, Springer US.

“Scaling up DPLL(T) String Solvers Using Context-Dependent Simplification” by Andrew Reynolds, Maverick Woo, Clark Barrett, David Brumley, Tianyi Liang, and
Cesare Tinelli. In Proceedings of the International Conference on Computer Aided Verification (CAV ’17), (Rupak Majumdar and Viktor Kuncak, eds.), July 2017,
pp. 453-474. Heidelberg, Germany.

“High-Level Abstractions for Simplifying Extended String Constraints in SMT” by Andrew Reynolds, Andres Nétzli, Clark Barrett, and Cesare Tinelli. In Proceedings of
the International Conference on Computer Aided Verification (CAV ’19), (Isil Dillig and Serdar Tasiran, eds.), July 2019, pp. 23-42. New York, New York.

“Even Faster Conflicts and Lazier Reductions for String Solvers” by Andres Notzli, Andrew Reynolds, Haniel Barbosa, Clark Barrett, and Cesare Tinelli. In Proceedings
of the International Conference on Computer Aided Verification (CAV ’22), (Sharon Shoham and Yakir Vizel, eds.), Aug. 2022, pp. 205-226. Haifa, Israel.

Amazon’s Zelkova Tool

J. Backes et al., “Semantic-based Automated Reasoning for AWS Access Policies using SMT,” 2018 Formal Methods in Computer Aided Design (FMCAD), Austin, TX,
2018.

26/26

