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Roadmap for Today

Theory Solvers

‚ Strings
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Motivation: Symbolic Execution

Symbolic Execution
‚ Enumerate program paths that end in a bad state

‚ (e.g., invalid memory access)

‚ Represent program inputs as SMT variables

‚ Translate statements in the path into constraints on the variables

‚ Constraints represent all possible executions along the path

‚ Solving the constraints determines whether the path is feasible
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Example: Symbolic Execution for Security

Security Vulnerabilities
‚ Input: code and security policy

‚ Symbolic execution: generates formula
satisfiable iff code can violate security policy

‚ SMT solver: returns a solution or proves
that none exists
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String Analysis

Strings in Symbolic Execution
‚ Input code may manipulate strings
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Basic Theory of Strings

Alphabet

A fixed finite set of characters

Constants
Empty string ϵ : String (i.e., rankpϵq “ xStringy)
Character string c : String for all c P A
Integer numeral n : Int for all n ě 0

Operators

Concatenation _ ¨ _ : Stringˆ String Ñ String (i.e., rankp¨q “ xString, String, Stringy)
Length | _ | : String Ñ Int
Membership _ P _ : Stringˆ RegEx Ñ Bool
Addition _` _ : Intˆ Int Ñ Int
Comparison _ ą _ : Intˆ Int Ñ Int
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Challenge: complexity
concatenation + equality: word equations problem

‚ Decidable in PSPACE
+ length

‚ Decidability open

+ replace (all instances of some substring)
‚ Undecidable
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Pragmatic approach
‚ Rule-based proof system

‚ Use existing arithmetic theory solver

‚ Embrace incompleteness



Satisfiability Proof System for Strings

Proof States

A proof state is either:

‚ One of the distinguished states SAT, UNSAT

‚ A pair xS; Ay, where S contains string constraints and A contains arithmetic constraints

Assumptions

‚ All literals are flat

‚ For every string variable x in S, there exists a variable ℓx, such that ℓx “ |x| P S

‚ Ignore regular expression membership for now
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Notation

Definitions

‚ T pSq denotes all terms in S

‚ S |ù α means that α follows from S using the rules of QF_UF

‚ A |ùLIA α means that α follows from A in the theory of linear integer arithmetic

Normalization function for length

‚ |ϵ|Ó “ 0

‚ |c|Ó “ 1 for all c P A
‚ |s1 ¨ ¨ ¨ ¨ ¨ sn|Ó “ |s1|Ó ` ¨ ¨ ¨ ` |sn|Ó
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Core Rules

A-CONF
A |ùLIA K

UNSAT A-PROP
A |ùLIA s .

“ t s, t P T pSq
S :“ S, s .

“ t

S-CONF
S |ù K
UNSAT S-PROP

S |ù s .
“ t s, t P T pSq s, t are ΣLIA-terms

A :“ A, s .
“ t

S-A
x, y P T pSq X T pAq x, y : Int

A :“ A, x .
“ y A :“ A, x .

“ y

L-INTRO
s P T pSq s : String

S :“ S, |s| .“ |s|Ó L-VALID
x P T pSq x : String

S :“ S, x .
“ ϵ A :

.
“ A, ℓx ą 0

CONST-CONF
S |ù c .

“ d c P A d P Aztcu
UNSAT

SAT
no other rule applies

SAT
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Example Derivation

Let S0 “ t x .
“ y ¨ x ¨ z, y .

“ “a”, ℓx
.
“ |x|, ℓy

.
“ |y|, ℓz

.
“ |z| u

A0 “ H

xS0; A0y

x|y ¨ x ¨ z| .“ |y| ` |x| ` |z|; Hy
x|“a”| .“ 1; Hy

xH; ℓx
.
“ ℓy ` ℓx ` ℓzy

xH; ℓy
.
“ 1y

xz .
“ ϵ; Hy

x|ϵ|
.
“ 0; Hy

xH; ℓz
.
“ 0y

UNSAT

xH; ℓz ą 0y
UNSAT

For each derivation step, we show only the difference between the derived state and the previous one
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Concatenation Rules

If x is a variable of S, we can recursively expand x by substituting using equalities from S whose
right-hand sides are concatenation terms until this is no longer possible

If t is the result, we write S |ù˚
¨ x “ t

We write z as a short-hand for a concatenation of zero or more variables (z “ z1 ¨ z2 ¨ ¨ ¨ ¨ ¨ zn,
with z “ ϵ when n “ 0)

C-EQ
S |ù˚

¨ x .
“ z S |ù˚

¨ y .
“ z

S :“ S, x .
“ y

C-SPLIT

S |ù˚
¨ x .
“ w ¨ u ¨ z S |ù˚

¨ x .
“ w ¨ v ¨ z1

A :“ A, ℓu ą ℓv; S :“ S, u .
“ v ¨ k

A :“ A, ℓu ă ℓv; S :“ S, v .
“ u ¨ k

A :“ A, ℓu
.
“ ℓv; S :“ S, u .

“ v

Note: k is a fresh variable
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Example of C-Split

C-SPLIT

S |ù˚
¨ x .
“ w ¨ u ¨ z S |ù˚

¨ x .
“ w ¨ v ¨ z1

A :“ A, ℓu ą ℓv; S :“ S, u .
“ v ¨ k

A :“ A, ℓu ă ℓv; S :“ S, v .
“ u ¨ k

A :“ A, ℓu
.
“ ℓv; S :“ S, u .

“ v

u z

v z1

u k z1

x .
“

x .
“

x .
“
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Core and Concat Rules

A-CONF A |ùLIA K

UNSAT A-PROP A |ùLIA s .
“ t s, t P T pSq

S :“ S, s .
“ t

S-CONF S |ù K
UNSAT S-PROP S |ù s .

“ t s, t P T pSq s, t are ΣLIA-terms
A :“ A, s .

“ t

CONST-CONF S |ù c .
“ d c P A d P Aztcu

UNSAT S-A x, y P T pSq X T pAq x, y : Int
A :“ A, x .

“ y A :“ A, x .
“ y

L-INTRO s P T pSq s : String
S :“ S, |s| .“ |s|Ó L-VALID x P T pSq x : String

S :“ S, x .
“ ϵ A :

.
“ A, ℓx ą 0

SAT no other rule applies
SAT C-EQ S |ù˚

¨ x .
“ z S |ù˚

¨ y .
“ z

S :“ S, x .
“ y

C-SPLIT

S |ù˚
¨ x .

“ w ¨ u ¨ z S |ù˚
¨ x .

“ w ¨ v ¨ z1

A :“ A, ℓu ą ℓv; S :“ S, u .
“ v ¨ k

A :“ A, ℓu ă ℓv; S :“ S, v .
“ u ¨ k

A :“ A, ℓu
.
“ ℓv; S :“ S, u .

“ v
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Properties of the proof system

Is the proof system sound? terminating?
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Properties of the proof system

The proof system is

‚ refutation sound
‚ easily checkable by examining each proof rule

‚ solution sound
‚ proving this is highly non-trivial

‚ not terminating
‚ for pathological unsat cases, C-SPLIT can be applied infinitely often

‚ incomplete
‚ a consequence of non-termination
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Iterating to Improve the Solver: More String Operators

1. Extend the theory by adding new operators
‚ substrpx, n,mq : String, the maximal substring of x, starting at position n, with lengthď m
‚ containspx, yq : Bool, true iff x contains y as a substring
‚ index_ofpx, y, nq : Int, position of the first occurrence of y in x, starting from position n
‚ replacepx, y, zq : String, the result of replacing the first occurrence of x in y by z

2. Implement them by reduction to the core theory
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New Operators as Macros

x ´ y ” maxpx ´ y, 0q

x .
“ substrpy, n,mq ” itep 0 ď n ă |y| ^ 0 ă m,

y .
“ z1 ¨ x ¨ z2 ^ |z1|

.
“ n^ |z2|

.
“ |y|´ pm` nq,

x .
“ ϵ q

containspy, zq ” D k. 0 ď k ď |y| ´ |z| ^ substrpy, k, |z|q .
“ z

x .
“ index_ofpy, z, nq ” itep 0 ď n ď |y| ^ containspy1, zq,

substrpy1, x1, |z|q .
“ z ^␣containspsubstrpy1, 0, x1 ` |z| ´ 1q, zq,

x .
“ ´1 q

with y1 .
“ substrpy, n, |y| ´ nq and x1 .

“ x ´ n

x .
“ replacepy, z,wq ” itep containspy, zq ^ z .

“ ϵ,
x .
“ z1 ¨ w ¨ z2 ^ y .

“ z1 ¨ z ¨ z2 ^ index_ofpy, z, 0q .
“ |z1|,

x .
“ y q
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Reasoning about New Operators: Performance

Iterate and Improve
‚ Extend the implementation to reason directly on the new operators

‚ How?
‚ Keep formulas with original new operators
‚ Periodically try to simplify them based on new knowledge
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Simplification rules for New Operators

Example: contains (l1, l2 denote string constants)

containspl1, l2q ÝÑ J if l1 contains l2

containspl1, l2q ÝÑ K if l1 does not contain l2

containspl1, l2 ¨ tq ÝÑ K if l1 does not contain l2

containspl1, l2 ¨ tq ÝÑ K if containspl1zl2, tq ÝÑ˚ K

containspl1, x ¨ tq ÝÑ K if containspl1, tq ÝÑ˚ K

containspl1 ¨ t, l2q ÝÑ J if l1 contains l2

containspx ¨ t, sq ÝÑ J if containspt, sq ÝÑ˚ J

containspt ¨ s, t ¨ uq ÝÑ J if containsps, uq ÝÑ˚ J

containspl1 ¨ t, l2q ÝÑ containspt, l2q if l1 \l l2 “ ϵ

containspt ¨ l1, l2q ÝÑ containspt, l2q if l1 \r l2 “ ϵ

containspϵ, tq “ J ÝÑ ϵ “ t
. . .
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containspl1, l2 ¨ tq ÝÑ K if containspl1zl2, tq ÝÑ˚ K

containspl1, x ¨ tq ÝÑ K if containspl1, tq ÝÑ˚ K

containspl1 ¨ t, l2q ÝÑ J if l1 contains l2

containspx ¨ t, sq ÝÑ J if containspt, sq ÝÑ˚ J

containspt ¨ s, t ¨ uq ÝÑ J if containsps, uq ÝÑ˚ J

containspl1 ¨ t, l2q ÝÑ containspt, l2q if l1 \l l2 “ ϵ

containspt ¨ l1, l2q ÝÑ containspt, l2q if l1 \r l2 “ ϵ

containspϵ, tq “ J ÝÑ ϵ “ t
. . .
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Reasoning about New Operators: More Performance

Iterate and Improve
‚ Supercharge the simplifier

‚ Many simplifications are conditional

‚ Build a mini-inference engine inside the simplifier to verify
simplification conditions
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Conditional Simplifications based on String Length

Notation: $ C states that simplifier can prove simplification condition C

t .
“ s ÝÑ K if $ |t| ą |s|

t .
“ s ¨ r ¨ q ÝÑ t .

“ s ¨ q^ r .
“ ϵ if $ |s| ` |q| ě |t|

containspt, sq ÝÑ t .
“ s if $ |s| ě |t|

substrpt, v,wq ÝÑ ϵ if $ 0 ą v _ v ě |t| _ 0 ě w

substrpt ¨ s, v,wq ÝÑ substrps, v ´ |t|,wq if $ v ě |t|

substrps ¨ t, v,wq ÝÑ substrps, v,wq if $ |s| ě v ` w

substrpt ¨ s, 0,wq ÝÑ t ¨ substrps, 0,w´ |t|q if $ w ě |t|

index_ofpt, s, vq ÝÑ itepsubstrpt, vq .
“ s, v,´1q if $ v ` |s| ě |t|

. . .
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Reasoning about Regular Expressions

Regular Expression Membership Example

x P r0..9s˚ ¨ "a" ¨A˚ ¨ "b" ¨A˚ ^

x R r0..9s˚ ¨ "a" ¨A˚

Automata-based approach

x P R1 x R R2
x P R1 X comppR2q

Problem:
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Automata-based approach

x P R1 x R R2
x P R1 X comppR2q

Problem: Membership constraints may lead to non-terminating unfolding:

Example: x1 P r0..9s˚ is equivalent to

x .
“ ϵ _ x P r0..9s _ pDu, v,w. x .

“ u ¨ v ¨ w ^ u P r0..9s ^ v P r0..9s˚ ^ w P r0..9sq
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Reasoning about Regular Expressions

Regular Expression Membership Example

x P r0..9s˚ ¨ "a" ¨A˚ ¨ "b" ¨A˚ ^

x R r0..9s˚ ¨ "a" ¨A˚

Word-based approach with incomplete procedures

x P R1 x R R2 LpR1q Ď LpR2q

UNSAT

Use fast, incomplete procedure to verify LpR1q Ď LpR2q

Notation: LpRq denotes the language generated by regex R
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Proving LpR1q Ď LpR2q

(1) LpRq Ď LpRq (2) Lpϵq Ď LpR˚q
(3)

for all x P LpRq, |x| “ 1
LpRq Ď LpAq

(4) LpRq Ď LpA˚q
(5) LpRq Ď LpR˚q

(6)
LpR1q Ď LpR2q

LpR˚
1 q Ď LpR˚

2 q

(7)
LpR1q Ď LpR2q LpR2q Ď LpR3q

LpR1q Ď LpR3q

(8)
LpR1q Ď LpS1q LpR2q Ď LpS2q

LpR1 ¨ R2q Ď LpS1 ¨ S2q
(9)

c3 ĺ c1 c2 ĺ c4
Lprc1..c2sq Ď Lprc3..c4sq

c ĺ d iff c equals d or precedes d lexicographically (c, d P A)
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(3)

for all x P LpRq, |x| “ 1
LpRq Ď LpAq

(4) LpRq Ď LpA˚q
(5) LpRq Ď LpR˚q

(6)
LpR1q Ď LpR2q

LpR˚
1 q Ď LpR˚

2 q

(7)
LpR1q Ď LpR2q LpR2q Ď LpR3q

LpR1q Ď LpR3q

(8)
LpR1q Ď LpS1q LpR2q Ď LpS2q

LpR1 ¨ R2q Ď LpS1 ¨ S2q
(9)

c3 ĺ c1 c2 ĺ c4
Lprc1..c2sq Ď Lprc3..c4sq

c ĺ d iff c equals d or precedes d lexicographically (c, d P A)
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Exercise

Using the proof rules above, prove that

Lpr0..1s˚ ¨A˚ ¨ "b" ¨A˚q Ď Lpr0..9s˚ ¨A˚q

0 ĺ 0 1 ĺ 9 (9)
Lpr0..1sq Ď Lpr0..9sq

(6)
Lpr0..1s˚q Ď Lpr0..9s˚q

(4)
LpA˚ ¨ "b" ¨A˚q Ď LpA˚q

(8)
Lpr0..1s˚ ¨A˚ ¨ "b" ¨A˚q Ď Lpr0..9s˚ ¨A˚q
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More Information

Strings Papers
‚ “A DPLL(T) Theory Solver for a Theory of Strings and Regular Expressions” by Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. In

Proceedings of the 26th International Conference on Computer Aided Verification (CAV ’14), (Armin Biere and Roderick Bloem, eds.), July 2014, pp. 646-662. Vienna,
Austria.

‚ “An Efficient SMT Solver for String Constraints” by Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark Barrett, and Morgan Deters. Formal
Methods in System Design, vol. 48, no. 3, June 2016, pp. 206-234, Springer US.

‚ “Scaling up DPLL(T) String Solvers Using Context-Dependent Simplification” by Andrew Reynolds, Maverick Woo, Clark Barrett, David Brumley, Tianyi Liang, and
Cesare Tinelli. In Proceedings of the 29th International Conference on Computer Aided Verification (CAV ’17), (Rupak Majumdar and Viktor Kuncak, eds.), July 2017,
pp. 453-474. Heidelberg, Germany.

‚ “High-Level Abstractions for Simplifying Extended String Constraints in SMT” by Andrew Reynolds, Andres Nötzli, Clark Barrett, and Cesare Tinelli. In Proceedings of
the 31st International Conference on Computer Aided Verification (CAV ’19), (Isil Dillig and Serdar Tasiran, eds.), July 2019, pp. 23-42. New York, New York.

‚ “Even Faster Conflicts and Lazier Reductions for String Solvers” by Andres Nötzli, Andrew Reynolds, Haniel Barbosa, Clark Barrett, and Cesare Tinelli. In Proceedings
of the 34th International Conference on Computer Aided Verification (CAV ’22), (Sharon Shoham and Yakir Vizel, eds.), Aug. 2022, pp. 205-226. Haifa, Israel.

Amazon’s Zelkova Tool
‚ J. Backes et al., “Semantic-based Automated Reasoning for AWS Access Policies using SMT,” 2018 Formal Methods in Computer Aided Design (FMCAD), Austin, TX,

2018.
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