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Overview

SMT solvers can be used to solve arithmetic problems

are a particularly interesting class of arithmetic problems, with
stand-alone solvers

Many interesting applications: robotic planning, formal verification, operations research

Some of the slides are contributed by Guy Katz.
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Outline

* QF_LRA
® Linear Programming

® The Simplex algorithm

Readings: DP 5.1-5.2
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Review: Theory of Real Arithmetics (7:,)

All interpret as the set [® of real numbers, and the function symbols in the usual
way

(QF_LRA):

1. no quantifiers

2. all occurrences of « have at least one argument that is a decimal numeral

Many SMT solvers (e.g., cvc5, Z3) use a version of the Simplex method as the theory solver for
QF_LRA
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Linear Programming

A consists of:

1. An matrix A, the
2. An m-dimensional vector

3. Ann-dimensional vector ¢, the

Let x a vector of n variables

Goal: Find a solution x that maximizes subject to the linear constraints
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Example and Terminology

Maximize subject to:

Here:

Find x that maximizes ¢’ x, subject to
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Example and Terminology
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solutions
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Example and Terminology

An

is feasible solution with a maximal objective value, over all feasible
solutions

If a linear program has no feasible solutions, the linear program is

The linear program is if the objective value of the optimal solution is
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Geometric Interpretation

A polytope the generalization of polyhedron from 3-dimensional space to higher dimensions

A polytope Pis convexifforall vy, v, € R7 P, Avy +
(I —X)vy e Pforall A < [0.1]

In other words, every point on the line segment con-
necting two pointsin Pis also in P

Note: For an /m < n constraint matrix A, the set of points » — { x | Ax < b | form a convex
polytope in n-dimensional space
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A polytope the generalization of polyhedron from 3-dimensional space to higher dimensions

A polytope Pis convexifforall vy, v, € R7 P, Avy +
(I —X)vy e Pforall A < [0.1]

In other words, every point on the line segment con-
necting two pointsin Pis also in P

Note: For an /m < n constraint matrix A, the set of points » — { x | Ax < b | form a convex
polytope in n-dimensional space

LP goals: find a point in the polytope that maximizes ¢’ x for a given ¢
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Geometric Interpretation

The LP is infeasible iff the polytope is empty
The LP is unbounded iff the polytope is open in the direction of the objective function

The optimal solution for a bounded LP must lie on a vertex of the polytope

10/39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear 7,-literals
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Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear

: convert equalities to inequalities
A linear 7rx-equality can be written to have the form

We rewrite this further as and

And finally to )

-literals
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: handle inequalities

A Tra-literal of the form is already in the desired form

A Trp-literal of the form is transformed as follows

where y is a fresh variable used for all negated inequalities

Example: rewrites to
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Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear 7,-literals

: handle inequalities

A Tra-literal of the form is already in the desired form

A Trp-literal of the form is transformed as follows

where y is a fresh variable used for all negated inequalities
If there are no negated inequalities, add the inequality where yis a fresh var

In either case, we have the set of the form
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Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear 7,-literals

: check the satisfiability of

Encode that as the LP: maximize y subject to

[ The final system is satisfiable iff the optimal value for y is positive J
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Methods for solving LP problems

o (Dantzig, 1949) Exponential time (probably)
[ (Khachian, 1979)  Polynomial time

° (Karmarkar, 1984)  Polynomial time
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Methods for solving LP problems

o (Dantzig, 1949) Exponential time (probably)
. (Khachian, 1979)  Polynomial time
° (Karmarkar, 1984)  Polynomial time

Although the Simplex method is the oldest and the least efficient in theory
it can be implemented to be quite efficient in practice

It remains the most popular and we focus on it next
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Standard Form

The general form of LP is to maximize objective function subject to a system of inequalities
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Standard Form

The general form of LP is to maximize objective function subject to a system of inequalities

However, the Simplex method is easier to present
if we make the additional assumption that all variables are non-negative:

We call this the

This causes no loss of generality since any LP can be transformed to standard form
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Standard Form

n
maximize E CjXj
j=1

n
s.t. Za[/xj <pb; fori=1,..., m
j=1

x>0 forj=1,....n

Running example:
maxXx 5X1 + 4X2 -+ 3X3

21+ 3% +x3 <5

4x1 + X, +2x3 < 11
3x1 +4x, +2x3 < 8
X1,X2,X3 > 0

s.t.
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Slack Variables

Observe the first inequation

Define a new variable to represent the

Do this to every each constraint so everything
becomes equalities
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Slack Variables

Observe the first inequation

Define a new variable to represent the

Do this to every each constraint so everything
becomes equalities

Define a new variable to represent the objective value:
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Slack Variables

max  5x; + 4x; + 3x3 max Zz
2x1 4+ 3%, +x3 <5 X4 =5—2X1 —3x) — X3
4X1+X2—|—2X3§]_l X521174X17X272X3
s.t. \
3x1 +4x, +2x3 < 8 s.t. Xg = 8 — 3x7 — 4xy — 2X3

X1,X2,X3 >0 Z=0+45x1 + 4x; + 3x3

X1,X2,X3,X4,X5,X6 = 0

New variables are called slack variables
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Slack Variables

max 5x; + 4xy + 3x3 max Zz
2X1+3x +x3 <5 Xa =5—2x1 —3x, — X3
Ax1 + X7 + 2x3 < 11 X5 = 11 — 4x7 — Xy — 2X3
s.t. \
X1 +4x; + 2x3 < 8 s.t. Xg = 8 — 3x7 — 4xy — 2X3

X1,X2,Xx3 >0 Z=0+45x1 + 4x; + 3x3

X1,X2,X3,X4,X5,Xg > 0

New variables are called slack variables

Optimal solution remains optimal for the new problem
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The Simplex Strategy

e Start with a feasible solution

® Forour example, assign 0 to all original variables
>

® Assign the introduced vars their computed value
>

® [teratively improve the objective value
® Gofrom x to x” only if

What can we improve here?

17/39



The Simplex Strategy

e Start with a feasible solution

® Forour example, assign 0 to all original variables
>

® Assign the introduced vars their computed value
>

® [teratively improve the objective value
® Gofrom x to x” only if
What can we improve here?

One option: make x; larger, leave unchanged

17/39



The Simplex Strategy

e Start with a feasible solution

® Forour example, assign 0 to all original variables
>

® Assign the introduced vars their computed value
>

® [teratively improve the objective value
® Gofrom x to x” only if
What can we improve here?

One option: make x; larger, leave unchanged

17/39



The Simplex Strategy

e Start with a feasible solution

® Forour example, assign 0 to all original variables
>

® Assign the introduced vars their computed value
>

® [teratively improve the objective value
® Gofrom x to x” only if
What can we improve here?
One option: make x; larger, leave unchanged

17/39



The Simplex Strategy

e Start with a feasible solution

® Forour example, assign 0 to all original variables
>

® Assign the introduced vars their computed value
>

® [teratively improve the objective value
® Gofrom x to x” only if
What can we improve here?
One option: make x; larger, leave unchanged

17/39



The Simplex Strategy

e Start with a feasible solution

® Forour example, assign 0 to all original variables
>

® Assign the introduced vars their computed value
>

® [teratively improve the objective value
® Gofrom x to x” only if

What can we improve here?
One option: make x; larger, leave unchanged
[ ]
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The Simplex Strategy

e Start with a feasible solution

® Forour example, assign 0 to all original variables
>

® Assign the introduced vars their computed value
>

® [teratively improve the objective value
® Gofrom x to x” only if
What can we improve here?
One option: make x; larger, leave unchanged

° X no longer feasible!
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The Simplex Strategy

Moral of the story:

® Can’tincrease x; too much
® [ncrease it as much as possible, without compromising feasibility
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The Simplex Strategy

Moral of the story:

® Can’tincrease x; too much
® [ncrease it as much as possible, without compromising feasibility

Select the tightest bound,

® New assignment:

® This indeed improves the value of
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The Simplex Strategy

Currently,

How do we continue?
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The Simplex Strategy

Currently,

How do we continue?
For the first iteration we had:
o Afeasible solution

® An equation system, where

® variables with positive value are expressed
in terms of variables with 0 value

Does the current equation system satisfy this property? No

Need to update the equations
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The Simplex Strategy

What should we change?

Initially: x; was 0, x, was positive
Now: x; is positive, x, is
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The Simplex Strategy

X1 — %.Xz — 0,x3+— 0,x4— 0

What should we change? X4 =5—2Xx1 —3X2 — X3
Initially: x; was 0, x, was positive X5 =11 —4x1 — X2 — 2X3
Now: x; is positive, x, is 0 Xe = 8 — 3x1 — 4xy — 2X3

Z = 5x1 + 4x, 4+ 3x3

Isolate x1, eliminate from right-hand-side

X4 =5—2X1 — 33X — X3 — X1:%7%X27%X37%X4

5 3, 1, 1

Xe =5—2x1 —3x) — X3 X1 =35 —35X2— 35X3— 3Xa

Xs = 11 — 4x1 — X — 2X3 Xs =14 5x + 2X4
1 1 1 3

Xg = 8 — 3x1 — 4xy — 2X3 X6:§+§X2*§X3+§X4

25 7 1 5
Z:5Xl+4X2+3X3 2:775)(24*5)(3*5)(4
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The Simplex Strategy

How can we improve 7 further?
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So we increase x; to

® New assignment:
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The Simplex Strategy

How can we improve 7 further?

Option 1: decrease x; or
but we can’t since

Option 2: increase
By how much?

’s bounds: , ,
So we increase x5 to
® New assignment:

® This gives , which is again an improvement
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The Simplex Strategy

Analogously to before, we switch x; and x5, and eliminate x5 from the right-hand sides
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The Simplex Strategy

Can we improve 7 again?
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The Simplex Strategy

Can we improve 7 again?
® No, because and

e all appear with negative signs in the
objective function

So we are done, and the optimal value of 7 is 13

[ The optimal solution is then
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The Simplex Algorithm

Introduce slack variables
Set for
Start with initial, feasible solution  ( in our example)

Hw N

If some addends in the current objective function have positive coefficients, update the feasible
solution to improve the objective value; otherwise, stop

o

Update the equations to maintain the invariant that all right-hand side vars have value

6. Gotostep4
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Updating the Equations: Pivoting

As we progress towards the optimal solution,
equations are updated
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Updating the Equations: Pivoting

As we progress towards the optimal solution,
equations are updated

This computational process of constructing the
new equation system is called

Invariants:

® Number of equations (/1) never changes

® Variables are either on the left-hand side or the right-hand side, never both
® Left-hand side variables are called

® Right-hand side variables are called
® Non-basic variables always pressed against their bounds (always 0)

® Basic variable assignment determined by non-basic assignment and equations
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Updating the Equations: Pivoting

The set of basic variables is the

In the pivoting step:
® A non-basic variable enters the basis (the

® Abasic variable leaves the basis (the

How is the entering variable chosen?

variable)

variable)
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Updating the Equations: Pivoting

The set of basic variables is the

In the pivoting step:
® A non-basic variable enters the basis (the variable)

® Abasic variable leaves the basis (the variable)

How is the entering variable chosen? To increase the value of
One strategy ( ) picks the variable with the largest coefficient
How is the leaving variable chosen? To maintain feasibility

Select the basic variable corresponding to the tightest upper-bound
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Tableau and Implementation

We have presented the equation system as a
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https://optimization.cbe.cornell.edu/index.php?title=Simplex_algorithm

Tableau and Implementation

We have presented the equation system as a

A more popular version uses a matrix, or a

The pivoting process can be understood as a series of matrix operations

See [Guogqing Hu] for a description and example
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Some Challenges

Possible problems of the procedure that we described so far:

Initialization: how to obtain an initial feasible solution?
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Some Challenges

Possible problems of the procedure that we described so far:

Initialization: how to obtain an initial feasible solution?

Termination: can we generate an infinite sequence of dictionaries,
without reaching an optimal z?
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Challenges: initialization
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Challenges: initialization

Easy when all b/’s are non-negative (set all x; to 0)

)

What can we do for negative b;’s?
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Challenges: initialization

Solution: switch to an auxiliary problem with a known feasible solution
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Challenges: initialization

For the auxiliary problem, a feasible solution is easy to find:

set to 0, and make x; sufficiently large

Original problem is feasible iff the optimal solution for the auxiliary problem has
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Initialization: example

The dictionary of the auxiliary problem:

Initial feasible solution:

Any issues? Variables on the right-hand side need to be

Solution: perform a pivot step to move x; into the basis

32/39



Challenges: Termination

Recall the goal of every iteration is to increase the objective function
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Challenges: Termination

Recall the goal of every iteration is to increase the objective function

In each pivoting step, we swap a non-basic variable with a basic variable:
® The non-basic (entering) variable has a positive coefficient in the objective function
¢ |f no such variable exists, the objective function is optimal and we can stop
® The leaving variable is the one imposing the tightest constraint

An iteration will never make 7 worse

So when might we not converge to the optimal 2?
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Challenges: Termination

Theorem 1
The simplex method fails to terminate iff it , i.e., it generates the same dictionary
infinitely often.
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Proof sketch:

1. There are only finitely many bases;
2. each bases uniquely defines the dictionary;

3. therefore, there are only finitely many values of 7 to try
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Challenges: Termination

Theorem 1
The simplex method fails to terminate iff it , i.e., it generates the same dictionary
infinitely often.

Proof sketch:

1. There are only finitely many bases;
2. each bases uniquely defines the dictionary;

3. therefore, there are only finitely many values of 7 to try

If Simplex is cycling, then z has to stop increasing
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Degenerate Pivots Example

Current feasible solution:

Dantzig’s rule: pick x, as the entering variable
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Degenerate Pivots Example

Current feasible solution:

Dantzig’s rule: pick x, as the entering variable
Leaving variable is x1, but the highest x, can be is

So the value of 2 does not change after switching x; and

A pivotis if it does not change the objective value

Cycling can only occur in the presence of a degenerate pivot

[ Note: Degenerate pivots are empirically rare
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Pivoting Strategies
There are variable selection strategies that guarantee termination

(1977): the simplex method terminates as long as the entering and leaving
variables are selected by the smallest-subscript rule in each iteration
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Pivoting Strategies

There are variable selection strategies that guarantee termination

(1977): the simplex method terminates as long as the entering and leaving
variables are selected by the smallest-subscript rule in each iteration

Example:

The entering variable is:
Leaving variable: still the one imposing the tightest constraint but break tie by picking the
smaller subscript
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Pivoting Strategies

There are variable selection strategies that guarantee termination

(1977): the simplex method terminates as long as the entering and leaving
variables are selected by the smallest-subscript rule in each iteration

Modern solvers use more sophisticated heuristics (e.g., Steepest Edge) that might not prevent
cycling

When cycling is detected: switch to Bland’s rule for a while

Complexity: the common strategies all have worse-case exponential time
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Possible improvements

More sophisticated pivoting strategy

Use rational-number instead of floating-point representation
(to handle numerical instability and avoid solutions unsoundness)

Handle general Linear Programs
(variables can have non-zero lower bounds and/or finite upper bounds)

Extract irreducible infeasible subset in case of infeasibility
(theory explanations)
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Application: Neural Network Verification

1 ReLU a -
1

2

! ReLU 1
1 &

Property to verify: V.0 (xp © [~ 2. 1] A € [-2.2] =y <)

1. Encoding of the neural network o, (linear + Rectified Linear Units):
Mp=X1+X2 Ip=2X1—X (rip <OArf=0)V(rp >0Ar=ryp)
Yi=—nf+nrr Yo=1Ii— I (rap <O Ay =0)V(rap > 0Ary=ry)
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Application: Neural Network Verification

1 ReLU Q -
1

2

! ReLU 1
1 &

Property to verify: Vx;.x. (0 € [=2. 1] Axp € [=2.2] = v <))

1. Encoding of the neural network o, (linear + Rectified Linear Units):

N =X1+X2 Ip=2X1—X (e <OArF=0)V (rp >0Arys=ry)
Yi=-—nf+hr Y2=1Iif— I (rap SOAr=0)V (rap > 0Ary=ry)
2. Encoding of the the property —2<x <1 —-2<x<2 y1>=W

3. Property holds iff o, /\ «, is unsatisfiable
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Practical properties

Robustness: V' |[x — x| < ¢ = [[N(x) — N[ <o

+ 007 There is no adversarial input within ¢ dis-
tance
“panda” noise “gibbon”
57.7% confidence 993% confidence
Reachability:  vx. x < [x. x| — v e v, v
, 24
B \% Whenever intruder is near and to the right
LT p Tntrder advise strong left

A Ownship.”
PR
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Practical properties

<0

Robustness: v’ [[x — x| < ¢ = [[N(x) — N(xX)

007 There is no adversarial input within ¢ dis-
tance
“panda” noise “gibbon”
57.7% confidence 993% confidence
Reachability:  vx. x < [x. x| — v e v, v
, 24
; \% Whenever intruder is near and to the right
PPC I advise strong left

AN Ownship.”
PRI

[ A lot of attention in recent years ]
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