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Outline

• Semantic arguments for FOL

• PCNF (ML 9.2) and Clausal Form

• First-order Resolution (ML 10)
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Proofs in first-order logic

Proof systems for FOL are usually extensions of those for PL

For example, we can extend the semantic arguments system by

• replacing the truth assignment v with an interpretation I and

• adding proof rules for quantifiers

• adding proof rules for equality (for FOL with equality)
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Semantic arguments for FOL: propositional rules

I |= ¬α
(a)

I ̸|= α

I ̸|= ¬α
(b)

I |= α

I |= α ∧ β
(c)

I |= α, I |= β

I ̸|= α ∧ β
(d)

I ̸|= α | I ̸|= β

I |= α ∨ β
(e)

I |= α | I |= β

I ̸|= α ∨ β
(f)

I ̸|= α, I ̸|= β

I |= α ⇒ β
(g)

I ̸|= α | I |= β

I ̸|= α ⇒ β
(h)

I |= α, I ̸|= β

I |= α I ̸|= α
(i)

I |= ⊥

I |= α ⇔ β
(k)

I |= α, I |= β | I ̸|= α, I ̸|= β

I ̸|= α ⇔ β
(j)

I ̸|= α, I |= β | v |= α, I ̸|= β
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Semantic arguments for FOL: quantifier rules

Notation: if v is a variable, ε is a term/formula, and t is a term, ε[v ← t] denotes
the term/formula obtained from ε by replacing every free occurrence of v in ε by t
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Semantic arguments for FOL: quantifier rules

Notation: if v is a variable, ε is a term/formula, and t is a term, ε[v ← t] denotes
the term/formula obtained from ε by replacing every free occurrence of v in ε by t

Examples:

x[x ← S(y)] = S(y) (x + y)[x ← y] = y + y

x[x ← S(x)] = S(x) (x .
= y)[x ← 0] = 0 .

= y

x[x ← y] = y (x .
= x)[x ← S(x)] = S(x) .

= S(x)

(x .
= y ∨ x < y)[x ← S(0)] = S(0) .

= y ∨ S(0) < y

(x .
= y ∨ ∀x. x < y)[x ← S(y)] = S(y) .

= y ∨ ∀x. x < y
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Semantic arguments for FOL: quantifier rules

Notation: if v is a variable, ε is a term/formula, and t is a term, ε[v ← t] denotes
the term/formula obtained from ε by replacing every free occurrence of v in ε by t

Quantifier rules

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

5 / 21



Proof by deduction: Example 1

Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∃x. P(x)⇒ ∃y.P(y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x. P(x)⇒ ∃y. P(y)
2. I |= ∃x. P(x) by (h) on 1
3. I ̸|= ∃y. P(y) by (h) on 1
4. I |= P(x0) by (o) on 2
5. I ̸|= P(x0) by (n) on 3
6. I |= ⊥ by (i) on 4, 5
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Proof by deduction: Example 2

Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∀x. (P(x)⇒ ∃y. P(y)) is valid
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Proof by deduction: Example 3

Consider signature Σ with ΣS = { A }, ΣF = {Q }, rank(Q) = ⟨A, A,Bool⟩, and all vars of sort A

Prove that ∃x. ∀y.Q(x, y)⇒ ∀y. ∃x.Q(x, y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y)

2. I |= ∃x.∀y.Q(x, y) by (h) on 1
3. I ̸|= ∀y.∃x.Q(x, y) by (h) on 1
4. I |= ∀y.Q(x0, y) by (o) on 2
5. I ̸|= ∃x.Q(x, y0) by (p) on 3
6. I |= Q(x0, y0) by (m) on 4
7. I ̸|= Q(x0, y0) by (n) on 5
8. I |= ⊥ by (i) on 6,7
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Refutation Soundness and Completeness

Theorem 1 (Soundness)
For all Σ-formulas α, if there is a closed derivation tree with root I ̸|= α then α is valid

Theorem 2 (Completeness)
For all Σ-formulas α without equality, if α is valid, then there is a closed derivation tree with
root I ̸|= α
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Termination?

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula ∀x. q(x, x)

1. I ̸|= ∀x.q(x, x)
2. I ̸|= q(x0, x0) by (m) on 1
3. I ̸|= q(x1, x1) by (m) on 1
4. I ̸|= q(x2, x2) by (m) on 1
5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system
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FOL is only semi-decidable: you can always show
validity algorithmically but not invalidity



Prenex Normal Form (PNF)
For AR purposes, it is useful in FOL too impose syntactic restrictions on formulas

A Σ-formula α is in prenex normal form (PNF) if it has the form

Q1x1. · · · Qnxn. β

where each Qi is a quantifier and β is a quantifier-free formula

Formula α above is in prenex conjunctive normal form (PCNF) if, in addition,
β is in conjunctive normal form1

Example: The formula below is in PCNF

∀y. ∃z. ((
C1︷ ︸︸ ︷

p(f(y))︸ ︷︷ ︸
A1

∨ q(z)︸︷︷︸
A2

) ∧ (

C2︷ ︸︸ ︷
¬ q(z)︸︷︷︸

A2

∨ q(x)︸︷︷︸
A3

))

1If we treat every atomic formula of β as if it was a propositional variable
11 / 21
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Clausal Form

A Σ-formula is in clausal form if

1. it is in PCNF

2. it is closed (i.e., it has no free variables)

3. all of its quantifiers are universal

Exercise: Which of the following formulas are clausal form?

• ∀y. ∃z. (p(f(y)) ∧ ¬q(y, z)) ✗

• ∀y. ∀z. (p(f(y)) ∧ ¬q(x, z)) ✗

• ∀y. ∀z. (p(f(y)) ∧ ¬q(y, z)) ✓
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Clausal Form: transformation

Theorem 3 (Skolem’s Theorem)
Any sentence can be transformed to an equi-satisfiable formula in clausal form.

The high level transformation strategy is the following:

Sentence −→ PNF −→ PCNF −→ Clausal Form

Running example: (∀x.(p(x)⇒ q(x)))⇒ (∀x.p(x)⇒ ∀x.q(x))

13 / 21



Clausal Form: transformation

Theorem 3 (Skolem’s Theorem)
Any sentence can be transformed to an equi-satisfiable formula in clausal form.

The high level transformation strategy is the following:

Sentence −→ PNF −→ PCNF −→ Clausal Form

Running example: (∀x.(p(x)⇒ q(x)))⇒ (∀x.p(x)⇒ ∀x.q(x))

13 / 21



Clausal Form: transformation

Theorem 3 (Skolem’s Theorem)
Any sentence can be transformed to an equi-satisfiable formula in clausal form.

The high level transformation strategy is the following:

Sentence −→ PNF −→ PCNF −→ Clausal Form

Running example: (∀x.(p(x)⇒ q(x)))⇒ (∀x.p(x)⇒ ∀x.q(x))

13 / 21



I: Transforming into PNF

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps
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II: Transforming into PCNF

Transforming a PNF to a logically equivalent PCNF is straightforward

We apply the distributive laws from propositional logic

∃x. ∀z.∃y. ((p(x) ∧ ¬q(x)) ∨ (¬p(y) ∨ q(z)))

becomes

∃x. ∀z.∃y. ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

This formula contains existentials and is therefore not yet in clausal form
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III: Transforming into Clausal Form (Skolemization)

∃x. ∀z.∃y. ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

For every existential quantifier ∃v in the PCNF, let u1, . . . , un be the universally quantified variables
preceding ∃v,

1. introduce a fresh function symbol fv with arity n and ⟨sort(u1), . . . sort(un), sort(v)⟩
2. delete ∃v and replace every occurrence of v by fv(u1, . . . , un)
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The functions fv are called Skolem functions and the process of replacing existential quantifiers by
functions is called Skolemization

Note: Technically, the resulting formula is no longer a Σ-formula, but a ΣE-formula, where ΣS
E = ΣS

and ΣF
E = ΣF ∪

⋃
v{ fv }
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Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form unambiguously as a set of
clauses

Example:

∀z. ((p(f(z)) ∨ ¬p(g(z)) ∨ q(z)) ∧ (¬q(f(z)) ∨ ¬p(g(z)) ∨ q(z))

can be written as

∆ := { {p(f(z)),¬p(g(z)), q(z)}, {¬q(f(z)),¬p(g(z)), q(z)} }

where all variables are implicitly universally quantified

Traditionally, theorem provers for FOL use the latter version of the clausal form

17 / 21



Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form unambiguously as a set of
clauses

Example:

∀z. ((p(f(z)) ∨ ¬p(g(z)) ∨ q(z)) ∧ (¬q(f(z)) ∨ ¬p(g(z)) ∨ q(z))

can be written as

∆ := { {p(f(z)),¬p(g(z)), q(z)}, {¬q(f(z)),¬p(g(z)), q(z)} }

where all variables are implicitly universally quantified

Traditionally, theorem provers for FOL use the latter version of the clausal form

17 / 21



Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form unambiguously as a set of
clauses

Example:

∀z. ((p(f(z)) ∨ ¬p(g(z)) ∨ q(z)) ∧ (¬q(f(z)) ∨ ¬p(g(z)) ∨ q(z))

can be written as

∆ := { {p(f(z)),¬p(g(z)), q(z)}, {¬q(f(z)),¬p(g(z)), q(z)} }

where all variables are implicitly universally quantified

Traditionally, theorem provers for FOL use the latter version of the clausal form

17 / 21



A resolution-based proof system for PL

Recall: The satisfiability proof system consisting of the rules below is sound, complete and
terminating for clause sets in PL

RESOLVE
C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ

∆ := ∆ ∪ { C }

CLASH
C ∈ ∆ p,¬p ∈ C

∆ := ∆ \ { C } Φ := Φ ∪ { C }

UNSAT
{} ∈ ∆

UNSAT SAT
No other rules apply

SAT

Can we extend this proof system to FOL?
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A resolution-based proof system for FOL?

RESOLVE
C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ

∆ := ∆ ∪ { C }

CLASH
C ∈ ∆ p,¬p ∈ C

∆ := ∆ \ { C } Φ := Φ ∪ { C } UNSAT
{} ∈ ∆

UNSAT SAT
No other rules apply

SAT

Consider the FOL clause set below where x, z are variables and a is a constant symbol

∆ := { {¬P(z),Q(z)}, {P(a)}, {¬Q(x)} }

Note that ∆ is equivalent to ∀z. (P(z)⇒ Q(z)) ∧ P(a) ∧ ∀x.¬Q(x), which is unsatisfiable

However, no rules above apply to ∆

We need another rule to deal with variables
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A resolution-based proof system for FOL
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∆ := ∆ ∪ { C }

CLASH
C ∈ ∆ p,¬p ∈ C

∆ := ∆ \ { C } Φ := Φ ∪ { C } INST
C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT
{} ∈ ∆

UNSAT SAT
No other rules apply

SAT

Example: C1 : {¬P(z),Q(z)} C2 : {P(a)} C3 : {¬Q(x)}

Φ ∆
{ } { C1, C2, C3 }
{ } { C1, C2, C3, C4:{¬P(a),Q(a)} } by INST on C1 with z← a
{ } { C1, C2, C3, C4, C5:{Q(a)} } by RESOLVE on C2, C4
{ } { C1, C2, C3, C4, C5, C6:{¬Q(a)} } by INST on C3 with x ← a
{ } { C1, C2, C3, C4, C5, C6, C7:{} } by RESOLVE on C5, C6

UNSAT by UNSAT on C7
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This system is refutation-sound and complete for FOL clause sets without equality:

• If a clause set ∆0 is unsatisfiable, there is a derivation of UNSAT from ∆0

The system is also solution-sound:

• There is a derivation of SAT from ∆0 only if ∆0 is satisfiable
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No other rules apply

SAT

This system is refutation-sound and complete for FOL clause sets without equality:

• If a clause set ∆0 is unsatisfiable, there is a derivation of UNSAT from ∆0

The system is not, and cannot be, terminating:

• if ∆0 is satisfiable, it is possible for SAT to never apply
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Note: This proof system is challenging to implement efficiently because INST is not con-
strained enough

21 / 21



A resolution-based proof system for FOL

RESOLVE
C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ

∆ := ∆ ∪ { C }

CLASH
C ∈ ∆ p,¬p ∈ C

∆ := ∆ \ { C } Φ := Φ ∪ { C } INST
C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT
{} ∈ ∆

UNSAT SAT
No other rules apply

SAT

Automated theorem provers for FOL use instead a more sophisticated RESOLVE rule

where two literals in different clauses are instantiated directly, and only as needed, to make
them complementary (see ML Chap. 10)
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Example: {P(x, y),Q(a, f(y))}, {¬Q(z, f(b)),R(g(z))} resolve to {P(x, b), R(g(a))}
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Problem: How do we prove the unsatisfiability of these clause sets?
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We need specialized rules for equality reasoning!
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Another Problem: How to we prove the unsatisfiability of these clause sets?
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= y + x)} } { {¬(x + 0 .
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The thing is: each of these clause set is actually satisfiable in FOL!
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However, they are unsatisfiable in the theory of arithmetic
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We need proof systems for satisfiability modulo theories
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