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Outline

® Semantic arguments for FOL
® PCNF (ML 9.2) and Clausal Form
® First-order Resolution (ML 10)
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Proofs in first-order logic

Proof systems for FOL are usually extensions of those for PL
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Proofs in first-order logic

Proof systems for FOL are usually extensions of those for PL

For example, we can extend the semantic arguments system by
e replacing the truth assignment v with an interpretation 7 and
¢ adding proof rules for quantifiers

e adding proof rules for equality (for FOL with equality)
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Semantic arguments for FOL: propositional rules

(a)

(b)
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Semantic arguments for FOL: quantifier rules

Notation: if v is a variable, = is a term/formula, and ¢ is a term, denotes
the term/formula obtained from = by replacing every free occurrence of v in = by
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Semantic arguments for FOL: quantifier rules

p
Notation: if v is a variable, = is a term/formula, and ¢ is a term, denotes

the term/formula obtained from = by replacing every free occurrence of v in = by

Examples:
S() S() y
S(x S(x) 0 0
y y S(x) S(x) = S(x)
$(0) $(0) $(0)
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Semantic arguments for FOL: quantifier rules

Notation: if v is a variable, = is a term/formula, and ¢ is a term, denotes
the term/formula obtained from = by replacing every free occurrence of v in = by

Quantifier rules

(m) ———  forany term ¢ of sort
() ————  forany term ¢ of sort
(0) ——————— for a fresh variable k of sort

(p) ——— for a fresh variable k of sort
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Proof by deduction: Example 1

Consider signature > with , ,

Prove that is valid
(m) ———— forany term ¢ of sort
(n) ————  forany term ¢ of sort
(0) ———————— fora fresh variable k of sort

(p) ——— for a fresh variable k of sort

,and all vars of sort
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O kW

,and all vars of sort
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Proof by deduction: Example 2

Consider signature > with , ,

Prove that is valid
(m) ———— forany term ¢ of sort
(n) ————  forany term ¢ of sort
(0) ———————— fora fresh variable k of sort

(p) ——— for a fresh variable k of sort

,and all vars of sort

7/21



Proof by deduction: Example 2

Consider signature > with , ,

Prove that is valid
(m) ———— forany term ¢ of sort
(n) ————  forany term ¢ of sort
(0) ———————— fora fresh variable k of sort

(p) ——— for a fresh variable k of sort

,and all vars of sort

7/21



Proof by deduction: Example 2

Consider signature > with , ,

Prove that is valid
(m) ———— forany term ¢ of sort
(n) ————  forany term ¢ of sort
(0) ———————— fora fresh variable k of sort

(p) ——— for a fresh variable k of sort

,and all vars of sort

by (p) on 1

7/21



Proof by deduction: Example 2

Consider signature > with , ,

Prove that is valid
(m) ———— forany term ¢ of sort
(n) ————  forany term ¢ of sort
(0) ———————— fora fresh variable k of sort

(p) ——— for a fresh variable k of sort

Hw N

,and all vars of sort

by (p)on1
by (h)on 2
by (h) on 2

7/21



Proof by deduction: Example 2

Consider signature > with , ,

Prove that is valid
(m) ———— forany term ¢ of sort
(n) ————  forany term ¢ of sort
(0) ———————— fora fresh variable k of sort
(p) ————— forafresh variable k of sort

ok wd e

,and all vars of sort

by (p)on1
by (h)on 2
by (h) on 2
by (n) on 4

7/21



Proof by deduction: Example 2

Consider signature > with , ,

Prove that is valid
(m) ———— forany term ¢ of sort
(n) ————  forany term ¢ of sort
(0) ———————— fora fresh variable k of sort

(p) ——— for a fresh variable k of sort

o kW
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Proof by deduction: Example 3

Consider signature > with , ,

Prove that is valid
(m) ———— forany term ¢ of sort
(n) ————  forany term ¢ of sort

(0) ———————— fora fresh variable k of sort

(p) ——— for a fresh variable k of sort

,and all vars of sort
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Prove that is valid
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for any term ¢ of sort

for a fresh variable k of sort
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,and all vars of sort
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Proof by deduction: Example 3

Consider signature > with , ,
Prove that is valid
(m) for any term ¢ of sort

for any term ¢ of sort

for a fresh variable k of sort

for a fresh variable k of sort

No ok w e

,and all vars of sort

by (h)on1
by (h)on1
by (o) on 2
by (p) on 3
by (m) on 4

by (n)on5
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Proof by deduction: Example 3

Consider signature > with , , ,and all vars of sort
Prove that is valid
(m) ———— forany term ¢ of sort 1.
2. by (h)on1
(n) ————  forany term ¢ of sort 3. by (h)on1
4, by (o) on 2
. 5. by (p) on 3
(0) ——————— for a fresh variable k of sort
6. by (m) on 4
7. by (n)on5
(p) ————— forafresh variable k of sort 8. by (i) on 6,7

8/21



Refutation Soundness and Completeness

Theorem 1 (Soundness)
For all >_-formulas o, if there is a closed derivation tree with root then o is valid
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Refutation Soundness and Completeness

Theorem 1 (Soundness)
For all >_-formulas o, if there is a closed derivation tree with root then o is valid

Theorem 2 (Completeness)

For all >_-formulas o without equality, if o is valid, then there is a closed derivation tree with
root

9/21



Termination?

Does the semantic argument method describe a decision procedure then?
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Termination?
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No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula

by (m)on1
by (m)on1
by (m)on 1

A
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1.

2. by (m)on1
3. by (m)on1
4, by (m)on 1
5. .

There is no strategy that guarantees termination in all cases of invalid formulas
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Termination?

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula

1.

2. FOL is only : you can always show
3. validity algorithmically but not invalidity

4. by (m)on 1

5. ...

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system
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Prenex Normal Form (PNF)

For AR purposes, it is useful in FOL too impose syntactic restrictions on formulas
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Prenex Normal Form (PNF)

A -formula cvisin (PNF) if it has the form

where each O; is a quantifier and /7 is a quantifier-free formula

Formula c above isin (PCNF) if, in addition,
is in conjunctive normal form?

-

Example: The formula below is in PCNF

1If we treat every atomic formula of /7 as if it was a propositional variable
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Clausal Form

A -formulaisin if

1. itisin PCNF
2. itisclosed (i.e., it has no free variables)

3. all of its quantifiers are universal
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Clausal Form: transformation

Theorem 3 (Skolem’s Theorem)
Any sentence can be transformed to an equi-satisfiable formula in clausal form.
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Clausal Form: transformation

Theorem 3 (Skolem’s Theorem)
Any sentence can be transformed to an equi-satisfiable formula in clausal form.

The high level transformation strategy is the following:

Sentence PNF PCNF Clausal Form

Running example:
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I: Transforming into PNF

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps
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I: Transforming into PNF

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

Step 4: Move all quantifiers outward (and so leftwards) using the rewrites:
L (ok because v does not occur free in )

° (ok because v does not occur free in /9)

where and
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I: Transforming into PNF

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

Step 4: Move all quantifiers outward (and so leftwards) using the rewrites:

[ ]
where and

dx

Vz

Jy

Vz

(ok because v does not occur free in

(ok because v does not occur free in

)
)
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ll: Transforming into PCNF

Transforming a PNF to a logically equivalent PCNF is straightforward

We apply the distributive laws from propositional logic
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ll: Transforming into PCNF

Transforming a PNF to a logically equivalent PCNF is straightforward

We apply the distributive laws from propositional logic

becomes

This formula contains existentials and is therefore not yet in clausal form
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lll: Transforming into Clausal Form (Skolemization)
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preceding v,
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lll: Transforming into Clausal Form (Skolemization)

For every existential quantifier 4v in the PCNF, let be the universally quantified variables
preceding v,

1. introduce a fresh function symbol /, with arity n and
2. delete v and replace every occurrence of v by

For the formula above, introduce nullary function (i.e., a constant) symbol f, and unary function symbol
for -x and -y, respectively

fx f,(2) fx f,(2)
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The functions f, are called and the process of replacing existential quantifiers by
functions is called
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lll: Transforming into Clausal Form (Skolemization)

For every existential quantifier 4v in the PCNF, let be the universally quantified variables
preceding v,

1. introduce a fresh function symbol /, with arity n and
2. delete v and replace every occurrence of v by

The functions f, are called and the process of replacing existential quantifiers by
functions is called

Note: Technically, the resulting formula is no longer a > -formula, but a > -formula, where
and
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Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form unambiguously as a set of
clauses
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Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form unambiguously as a set of
clauses

Ve

Example:

can be written as

where all variables are implicitly universally quantified

Traditionally, theorem provers for FOL use the latter version of the clausal form
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A resolution-based proof system for PL

Recall: The satisfiability proof system consisting of the rules below is sound, complete and
terminating for clause setsin PL

RESOLVE
CLASH

UNSAT SAT
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A resolution-based proof system for PL

Recall: The satisfiability proof system consisting of the rules below is sound, complete and
terminating for clause setsin PL

RESOLVE
CLASH

UNSAT SAT

[ Can we extend this proof system to FOL? ]
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A resolution-based proof system for FOL?

RESOLVE

CLASH UNSAT SAT
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A resolution-based proof system for FOL?

RESOLVE

CLASH UNSAT SAT

Consider the FOL clause set below where x, 7 are variables and ¢ is a constant symbol

Note that A is equivalent to , Which is unsatisfiable
However, no rules above apply to

We need another rule to deal with variables
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A resolution-based proof system for FOL

-

RESOLVE

CLASH

UNSAT

SAT

INST
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A resolution-based proof system for FOL

-

RESOLVE

CLASH INST

UNSAT SAT

-

Example:

C{~P(a), Q(a)}
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A resolution-based proof system for FOL

GL,GeA peG —peC C=(GN\{pHU(G\{-p}) CEZAUS

RESOLVE A—AULCT
CeA p,pecC CeA veFY(C) sort(t) = sort(v)
CLASH "X = A\ {CT d.=oU{C] INST A =AU«
UNSAT {}eA SAT No other rules apply
UNSAT SAT

Example: C, - {P(2).0(2)} ¢ - {Pla)} Cy: {00}

¢ |A |

{}]{C.G, G} |

{ } ] {C1.C. G5, Ce{~P(a),Q(a)} } | byINsToONnCywithz < a
{ } ‘ {Cl Gy, C3 C4 C5 {Q( )}} ‘ by RESOLVE on (5, Cy
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A resolution-based proof system for FOL

GL,GeA peG —peC C=(GN\{pHU(G\{-p}) CEZAUS

RESOLVE A=A U{C}

A p,— / sort(t) = sort
CLASH Ce p,—p€EeC CeA veFY(C) sort(t) = sort(v)

INST

A:=A\{C} ®:=0U{C}
{}eA SAT No other rules apply
UNSAT SAT

A =AU{Cv <t}

UNSAT

Example: C, : {-P(2).0(z)} G :{P(a)} C5:{=0(x)}

¢ | A |

{}]{C,G,C} \

{ } ] {C1.C. G5, Ce{~P(a),Q(a)} } | byINsToONnCywithz < a
{ } ‘ {Cl.Cz C3 C4 C5 {Q( )}} ‘ by RESOLVE on Cz,C4
{}]{C1,C,C3,C4,Cs,Co:{=Q(a)} } | by INSTON C3 withx < a
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A resolution-based proof system for FOL

GL,GeA peG —peC C=(GN\{pHU(G\{-p}) CEZAUS

RESOLVE A=A U{C}

A p,- sort(£) — sort
CLASH Ce p,—p€EeC INST CeA veFY(C) sort(t) = sort(v)

A:=A\{C} ®:=0U{C} A:=AU{C[v+t]}
{}eA SAT No other rules apply
UNSAT SAT

UNSAT

Example: C, - [ P(2).0(z)} C, [P(a)} Cs: {000

¢ | A |

{}{C,C, G} \

{ } ] {C1.C. G5, Ce{~P(a),Q(a)} } | byINsToONnCywithz < a
{ } ‘ {Cl.Cz,Cg C4 C5 {Q( )}} ‘ by RESOLVE on Cz,C4
{}]{C1,C,C3,C4,Cs,Co:{—Q(a)} } | by INST on C3 withx < a
{3} ]{C1,C2,C5,C4,C5,C6,C7:{}} | by RESOLVE on Cs, Co
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A resolution-based proof system for FOL

{}eA

UNSAT SAT

A:=A\{C} ®:=0U{C}

Cl¢C2€A p€C1 ﬁ[3€C2 C:(Cl\{p})U(CZ\{ﬁp}) C%AU(D
RESOLVE A=A U{C}
CLASH CeA p,pecC INST CeA veFY(C) sort(t) = sort(v)

No other rules apply

UNSAT

SAT

A =AU{Cv <t}

Example: C, - [ P(2).0(z)} C, [P(a)} Cs: {000

o | A

e Y Y Yae e
R S e A S

UNSAT

G
G
G
G

(C1.C. Gyl
{ Ci1, Gy,
{C1, G,
{C1, G,
{C1, G,

- Car{=P(a), Q(a)} |
,Ca, Cs:{Q(a)}
,Cq,Cs, CGZ{ﬁQ(G)} }
s C4, C5, C6, C7Z{} }

by INST on C; withz < a
by RESOLVE on C,, C4

by INST on C3 with x < a
by RESOLVE on Cs, Cg

by UNSAT on C7
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This system is refutation-sound and complete for FOL clause sets without equality:

e |faclause set /\; is unsatisfiable, there is a derivation of from
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RESOLVE

CLASH INST

UNSAT SAT

.

This system is refutation-sound and complete for FOL clause sets without equality:

e |faclause set /\; is unsatisfiable, there is a derivation of from

The system is also solution-sound:

® There is a derivation of saT from 2\, only if A\ is satisfiable
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A resolution-based proof system for FOL
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RESOLVE

CLASH INST

UNSAT SAT

.

This system is refutation-sound and complete for FOL clause sets without equality:

e |faclause set /\; is unsatisfiable, there is a derivation of from

The system is not, and cannot be, terminating:

e if /\;is satisfiable, it is possible for SAT to never apply
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Note: This proof system is challenging to implement efficiently because INST is not con-
strained enough

. J
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Automated theorem provers for FOL use instead a more sophisticated RESOLVE rule

where two literals in different clauses are instantiated directly, and only as needed, to make
them complementary (see ML Chap. 10)
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Automated theorem provers for FOL use instead a more sophisticated RESOLVE rule

where two literals in different clauses are instantiated directly, and only as needed, to make
them complementary (see ML Chap. 10)

EExample: y a,f(y))}, z.f(b 7))} resolve to b a }
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Problem: How do we prove the unsatisfiability of these clause sets?

We need specialized rules for equality reasoning!
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Another Problem: How to we prove the unsatisfiability of these clause sets?
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Another Problem: How to we prove the unsatisfiability of these clause sets?

The thing is: each of these clause set is actually satisfiable in FOL!
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A resolution-based proof system for FOL
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RESOLVE

CLASH INST

UNSAT SAT

.

Another Problem: How to we prove the unsatisfiability of these clause sets?

The thing is: each of these clause set is actually satisfiable in FOL!

However, they are unsatisfiable in the theory of arithmetic
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Another Problem: How to we prove the unsatisfiability of these clause sets?

[ We need proof systems for satisfiability modulo theories ]
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