
CS:4980 Topics in Computer Science II

Introduction to Automated Reasoning

First-order Logic: Syntax and Semantics

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of Iowa, and by
Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

1 / 35

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0 p

1 is a natural number not equal to 0 ¬q

What facts can we logically deduce? Only: p ∧ ¬q

2 / 35

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0 p

1 is a natural number not equal to 0 ¬q

What facts can we logically deduce? Only: p ∧ ¬q

2 / 35

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0 p

1 is a natural number not equal to 0 ¬q

What facts can we logically deduce? Only: p ∧ ¬q

Propositional logic is often too coarse to express information
about individual objects and formalize correct deductions about them

We cannot deduce that 1 is greater than 0 from the two sentences above

2 / 35

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0 p

1 is a natural number not equal to 0 ¬q

What facts can we logically deduce? Only: p ∧ ¬q

First-order Logic (FOL) allows us to (dis)prove the validity of sentences like the above or
deduce their consequences (e.g., that 1 is greater than 0)

2 / 35

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0 p

1 is a natural number not equal to 0 ¬q

What facts can we logically deduce? Only: p ∧ ¬q

First-order Logic (FOL) allows us to (dis)prove the validity of sentences like the above or
deduce their consequences (e.g., that 1 is greater than 0)

In this case, we need a first-order language for number theory

2 / 35

Motivation

“Every positive integer number different from 1 is smaller than its square”

3 / 35

Motivation

“Every positive integer number different from 1 is smaller than its square”

Intuitively, a first-order language has the following features:

• A sublanguage to denote individual things (numbers, people, colors, . . .)

• A sublanguage to express properties of individuals and relations among them

• A sublanguage to denote groups of individuals with common features and ascribe them to specific
individuals

• A way to quantify statements about individuals

3 / 35

Motivation

“Every positive integer number different from 1 is smaller than its square”

Intuitively, a first-order language has the following features:

• A sublanguage to denote individual things (numbers, people, colors, . . .)

• A sublanguage to express properties of individuals and relations among them

• A sublanguage to denote groups of individuals with common features and ascribe them to specific
individuals

• A way to quantify statements about individuals

3 / 35

Motivation

“Every positive integer number different from 1 is smaller than its square”

Intuitively, a first-order language has the following features:

• A sublanguage to denote individual things (numbers, people, colors, . . .)

• A sublanguage to express properties of individuals and relations among them

• A sublanguage to denote groups of individuals with common features and ascribe them to specific
individuals

• A way to quantify statements about individuals

3 / 35

Motivation

“Every positive integer number different from 1 is smaller than its square”

Intuitively, a first-order language has the following features:

• A sublanguage to denote individual things (numbers, people, colors, . . .)

• A sublanguage to express properties of individuals and relations among them

• A sublanguage to denote groups of individuals with common features and ascribe them to specific
individuals

• A way to quantify statements about individuals

3 / 35

Motivation

“Every positive integer number different from 1 is smaller than its square”

English FOL language
generic number x

the number 1 1
the square of x square(x)
“x is positive” positive(x)

“x is different from 1” x ̸= 1
“x is smaller than its square” x < square(x)

“every integer number” ∀x : Int

3 / 35

Motivation

“Every positive integer number different from 1 is smaller than its square”

English FOL language
generic number x

the number 1 1
the square of x square(x)
“x is positive” positive(x)

“x is different from 1” x ̸= 1
“x is smaller than its square” x < square(x)

“every integer number” ∀x : Int

Sentence above in FOL: ∀x : Int. (positive(x) ∧ x ̸= 1 ⇒ x < square(x))

3 / 35

Motivation

“Every positive integer number different from 1 is smaller than its square”

English FOL language
generic number x

the number 1 1
the square of x square(x)
“x is positive” positive(x)

“x is different from 1” x ̸= 1
“x is smaller than its square” x < square(x)

“every integer number” ∀x : Int

Sentence above in FOL: ∀x : Int. (positive(x) ∧ x ̸= 1 ⇒ x < square(x))

The formula is true in the intended interpretation

3 / 35

Outline

• Syntax (ML 7.1-2)

• Semantics (ML 7.3)

ML presents a one-sorted first-order logic

We will use a many-sorted first-order logic

This makes it convenient to present Satisfiability Modulo Theories later

Note:
Many-sorted FOL is not more expressive than one-sorted FOL:
It is possible to faithfully encode the former in the latter

4 / 35

Outline

• Syntax (ML 7.1-2)

• Semantics (ML 7.3)

ML presents a one-sorted first-order logic

We will use a many-sorted first-order logic

This makes it convenient to present Satisfiability Modulo Theories later

Note:
Many-sorted FOL is not more expressive than one-sorted FOL:
It is possible to faithfully encode the former in the latter

4 / 35

Outline

• Syntax (ML 7.1-2)

• Semantics (ML 7.3)

ML presents a one-sorted first-order logic

We will use a many-sorted first-order logic

This makes it convenient to present Satisfiability Modulo Theories later

Note:
Many-sorted FOL is not more expressive than one-sorted FOL:
It is possible to faithfully encode the former in the latter

However, using different sorts makes it more convenient to rule out non-sensical expressions

4 / 35

Symbols

Review: what does the syntax of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different first-order languages

The symbols of a first-order language consist of:

1. Logical symbols (⇒,⊤,∧,¬, (,))

2. Signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

Note: We consider symbols as atomic (not divisible further)

5 / 35

Symbols

Review: what does the syntax of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different first-order languages

The symbols of a first-order language consist of:

1. Logical symbols (⇒,⊤,∧,¬, (,))

2. Signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

Note: We consider symbols as atomic (not divisible further)

5 / 35

Symbols

Review: what does the syntax of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different first-order languages

The symbols of a first-order language consist of:

1. Logical symbols (⇒,⊤,∧,¬, (,))

2. Signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

Note: We consider symbols as atomic (not divisible further)

5 / 35

Symbols

Review: what does the syntax of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different first-order languages

The symbols of a first-order language consist of:

1. Logical symbols (⇒,⊤,∧,¬, (,))

2. Signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

Note: We consider symbols as atomic (not divisible further)

5 / 35

Symbols

Review: what does the syntax of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different first-order languages

The symbols of a first-order language consist of:

1. Logical symbols (⇒,⊤,∧,¬, (,))

2. Signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

Note: We consider symbols as atomic (not divisible further)

5 / 35

Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

6 / 35

Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

6 / 35

Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

6 / 35

Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

Intuitively, f denotes a function that takes n values of respective sort σ1, . . . , σn as input and returns an
output of sort σn+1

6 / 35

Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

Intuitively, f denotes a function that takes n values of respective sort σ1, . . . , σn as input and returns an
output of sort σn+1

σ1, . . . , σn are the input sorts of f and σn+1 is the output sort

6 / 35

Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

Intuitively, f denotes a function that takes n values of respective sort σ1, . . . , σn as input and returns an
output of sort σn+1

We call function symbols a of arity 0 constants and say they have sort σ when rank(a) = ⟨σ⟩

6 / 35

Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

We also assume an infinite set of variable (symbols) x, y, . . .

6 / 35

Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

Example: In the first-order language of number theory
• ΣS contains a sort Nat and ΣF contains a function symbols 0, 1, +
• 0 and 1 have arity 0 and rank(0) = rank(1) = ⟨Nat⟩
• + has arity 2 and rank(+) = ⟨Nat,Nat,Nat⟩

6 / 35

Signature

We assume for every signature Σ that

• ΣS includes a distinguished sort Bool

• ΣF contains distinguished constants ⊤ and ⊥ with sort(⊥) = sort(⊤) = Bool, and
distinguished functions symbols .

=σ with rank(.=σ) = ⟨σ, σ,Bool⟩ for all σ ∈ ΣS

There are two special kinds of function symbols:

Constant symbols: function symbols of 0 arity (e.g., ⊥, ⊤, π, John, 0)

Predicate symbols: function symbols of return sort Bool (e.g., .
=σ, <)

7 / 35

Signature

We assume for every signature Σ that

• ΣS includes a distinguished sort Bool

• ΣF contains distinguished constants ⊤ and ⊥ with sort(⊥) = sort(⊤) = Bool, and
distinguished functions symbols .

=σ with rank(.=σ) = ⟨σ, σ,Bool⟩ for all σ ∈ ΣS

There are two special kinds of function symbols:

Constant symbols: function symbols of 0 arity (e.g., ⊥, ⊤, π, John, 0)

Predicate symbols: function symbols of return sort Bool (e.g., .
=σ, <)

7 / 35

Signature

We assume for every signature Σ that

• ΣS includes a distinguished sort Bool

• ΣF contains distinguished constants ⊤ and ⊥ with sort(⊥) = sort(⊤) = Bool, and
distinguished functions symbols .

=σ with rank(.=σ) = ⟨σ, σ,Bool⟩ for all σ ∈ ΣS

There are two special kinds of function symbols:

Constant symbols: function symbols of 0 arity (e.g., ⊥, ⊤, π, John, 0)

Predicate symbols: function symbols of return sort Bool (e.g., .
=σ, <)

7 / 35

Signature

We assume for every signature Σ that

• ΣS includes a distinguished sort Bool

• ΣF contains distinguished constants ⊤ and ⊥ with sort(⊥) = sort(⊤) = Bool, and
distinguished functions symbols .

=σ with rank(.=σ) = ⟨σ, σ,Bool⟩ for all σ ∈ ΣS

There are two special kinds of function symbols:

Constant symbols: function symbols of 0 arity (e.g., ⊥, ⊤, π, John, 0)

Predicate symbols: function symbols of return sort Bool (e.g., .
=σ, <)

7 / 35

First-Order Languages: Examples

Recall that a first-order language is defined wrt a signature Σ := ⟨ΣS,ΣF⟩

Elementary Number Theory

• ΣS : {Nat,Bool }
• ΣF : {<, 0, S,+,×,

.
=Nat } ∪ {⊤,⊥,

.
=Bool }

where:

• rank(<) = ⟨Nat,Nat,Bool⟩
• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩

8 / 35

First-Order Languages: Examples

Set Theory

• ΣS : { Set,Bool }
• ΣF : {∈, ∅,∪,∩, .=Set } ∪ {⊤,⊥,

.
=Bool }

where:

• rank(∅) = ⟨Set⟩
• rank(∪) = rank(∩) = ⟨Set, Set, Set⟩
• rank(∈) = ⟨Set, Set,Bool⟩

9 / 35

First-Order Languages: Examples

Propositional logic formulas

• ΣS : {Bool }
• ΣF : {¬,∧,∨, . . . , p1, p2, . . . } ∪ {⊤,⊥,

.
=Bool }

where:

• rank(pi) = ⟨Bool⟩
• rank(¬) = ⟨Bool,Bool⟩
• rank(∧) = rank(∨) = ⟨Bool,Bool,Bool⟩

10 / 35

Expressions

Recall that an expression is any finite sequence of symbols

Example

• ∀x1. ((< 0 x1) ⇒ (¬∀x2. (< x1 x2)))

• x1 < ∀x2))

• x1 < x2 ⇒ ∀x:Nat. x > 0

Most expressions are not well-formed

Expressions of interest in FOL are terms and well-formed formulas (wffs)

11 / 35

Expressions

Recall that an expression is any finite sequence of symbols

Example

• ∀x1. ((< 0 x1) ⇒ (¬∀x2. (< x1 x2)))

• x1 < ∀x2))

• x1 < x2 ⇒ ∀x:Nat. x > 0

Most expressions are not well-formed

Expressions of interest in FOL are terms and well-formed formulas (wffs)

11 / 35

Terms

Expressions built up from function symbols, variables, and parentheses ((,))

Formally, let B be the set of all variables and all constant symbols in some signature Σ

For each function symbol f ∈ ΣF of arity n > 0, we define a term-building operation Tf :

Tf (ε1, . . . , εn) := (f ε1 · · · εn)

Terms are expressions that are generated from B by T = { Tf | f ∈ ΣF }

Examples of terms in the language of number theory:

✓ (+ x2 (S 0))
✓ (S (S (S (S 0))))
✗ (S (0 0))

✗ (x2 + 0)
✗ (S 0 0)
✓ (S (< 0 0))

✓ (+ x2 ⊥)

✓ (S ⊥)

✓ (
.
= 0 ⊥)

12 / 35

Terms

Expressions built up from function symbols, variables, and parentheses ((,))

Formally, let B be the set of all variables and all constant symbols in some signature Σ

For each function symbol f ∈ ΣF of arity n > 0, we define a term-building operation Tf :

Tf (ε1, . . . , εn) := (f ε1 · · · εn)

Terms are expressions that are generated from B by T = { Tf | f ∈ ΣF }

Examples of terms in the language of number theory:

✓ (+ x2 (S 0))
✓ (S (S (S (S 0))))
✗ (S (0 0))

✗ (x2 + 0)
✗ (S 0 0)
✓ (S (< 0 0))

✓ (+ x2 ⊥)

✓ (S ⊥)

✓ (
.
= 0 ⊥)

12 / 35

Terms

Expressions built up from function symbols, variables, and parentheses ((,))

Formally, let B be the set of all variables and all constant symbols in some signature Σ

For each function symbol f ∈ ΣF of arity n > 0, we define a term-building operation Tf :

Tf (ε1, . . . , εn) := (f ε1 · · · εn)

Terms are expressions that are generated from B by T = { Tf | f ∈ ΣF }

Examples of terms in the language of number theory:

✓ (+ x2 (S 0))
✓ (S (S (S (S 0))))
✗ (S (0 0))

✗ (x2 + 0)
✗ (S 0 0)
✓ (S (< 0 0))

✓ (+ x2 ⊥)

✓ (S ⊥)

✓ (
.
= 0 ⊥)

12 / 35

Terms

Expressions built up from function symbols, variables, and parentheses ((,))

Formally, let B be the set of all variables and all constant symbols in some signature Σ

For each function symbol f ∈ ΣF of arity n > 0, we define a term-building operation Tf :

Tf (ε1, . . . , εn) := (f ε1 · · · εn)

Terms are expressions that are generated from B by T = { Tf | f ∈ ΣF }

Examples of terms in the language of number theory:

✓ (+ x2 (S 0))
✓ (S (S (S (S 0))))
✗ (S (0 0))

✗ (x2 + 0)
✗ (S 0 0)
✓ (S (< 0 0))

✓ (+ x2 ⊥)

✓ (S ⊥)

✓ (
.
= 0 ⊥)

12 / 35

Terms

Expressions built up from function symbols, variables, and parentheses ((,))

Formally, let B be the set of all variables and all constant symbols in some signature Σ

For each function symbol f ∈ ΣF of arity n > 0, we define a term-building operation Tf :

Tf (ε1, . . . , εn) := (f ε1 · · · εn)

Terms are expressions that are generated from B by T = { Tf | f ∈ ΣF }

Examples of terms in the language of number theory:

✓ (+ x2 (S 0))
✓ (S (S (S (S 0))))
✗ (S (0 0))

✗ (x2 + 0)
✗ (S 0 0)
✓ (S (< 0 0))

✓ (+ x2 ⊥)

✓ (S ⊥)

✓ (
.
= 0 ⊥)

12 / 35

Well-sorted terms

Not all well-formed terms are meaningful

We consider only terms that are well-sorted wrt a given signature Σ

13 / 35

Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over
sequents of the form Γ ⊢ t : σ

14 / 35

Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over
sequents of the form Γ ⊢ t : σ

where

• Γ = x1 : σ1, . . . , xn : σn is sort context, a set of sorted variables

• t is a well-formed term

• σ is a sort of Σ

14 / 35

Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over
sequents of the form Γ ⊢ t : σ

VAR
x : σ ∈ Γ

Γ ⊢ x : σ
CONST

c ∈ ΣF rank(c) = ⟨σ⟩
Γ ⊢ c : σ

FUN
f ∈ ΣF rank(f) = ⟨σ1, . . . , σn, σ⟩ Γ ⊢ t1 : σ1 · · · Γ ⊢ tn : σn

Γ ⊢ (f t1 · · · tn) : σ

A term t is well-sorted wrt Σ and has sort σ in a sort context Γ
if Γ ⊢ t : σ is derivable in the sort system above

14 / 35

Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over
sequents of the form Γ ⊢ t : σ

VAR
x : σ ∈ Γ

Γ ⊢ x : σ
CONST

c ∈ ΣF rank(c) = ⟨σ⟩
Γ ⊢ c : σ

FUN
f ∈ ΣF rank(f) = ⟨σ1, . . . , σn, σ⟩ Γ ⊢ t1 : σ1 · · · Γ ⊢ tn : σn

Γ ⊢ (f t1 · · · tn) : σ

A term t is well-sorted wrt Σ and has sort σ in a sort context Γ
if Γ ⊢ t : σ is derivable in the sort system above We call t a Σ-term

14 / 35

Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over
sequents of the form Γ ⊢ t : σ

VAR
x : σ ∈ Γ

Γ ⊢ x : σ
CONST

c ∈ ΣF rank(c) = ⟨σ⟩
Γ ⊢ c : σ

FUN
f ∈ ΣF rank(f) = ⟨σ1, . . . , σn, σ⟩ Γ ⊢ t1 : σ1 · · · Γ ⊢ tn : σn

Γ ⊢ (f t1 · · · tn) : σ

A term t is well-sorted wrt Σ and has sort σ in a sort context Γ
if Γ ⊢ t : σ is derivable in the sort system above We call t a Σ-term

Note: Every well-sorted term is also well-formed

14 / 35

Well-sorted terms example: Elementary number theory

Let ΣS = {Nat } (∪ {Bool }) and ΣF = { 0, S,+,×, <,
.
=Nat } (∪ {⊤,⊥,

.
=Bool })

• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
• rank(<) = rank(.=Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 : Bool, x2 : Nat, x3 : Nat } ?
1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (
.
=Nat (S x3) (+ (S 0) x1)) ✓

15 / 35

Well-sorted terms example: Elementary number theory

Let ΣS = {Nat } (∪ {Bool }) and ΣF = { 0, S,+,×, <,
.
=Nat } (∪ {⊤,⊥,

.
=Bool })

• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
• rank(<) = rank(.=Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 : Bool, x2 : Nat, x3 : Nat } ?
1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (
.
=Nat (S x3) (+ (S 0) x1)) ✓

15 / 35

Well-sorted terms example: Elementary number theory

Let ΣS = {Nat } (∪ {Bool }) and ΣF = { 0, S,+,×, <,
.
=Nat } (∪ {⊤,⊥,

.
=Bool })

• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
• rank(<) = rank(.=Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 : Bool, x2 : Nat, x3 : Nat } ?
1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (
.
=Nat (S x3) (+ (S 0) x1)) ✓

15 / 35

Well-sorted terms example: Elementary number theory

Let ΣS = {Nat } (∪ {Bool }) and ΣF = { 0, S,+,×, <,
.
=Nat } (∪ {⊤,⊥,

.
=Bool })

• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
• rank(<) = rank(.=Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 : Bool, x2 : Nat, x3 : Nat } ?
1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (
.
=Nat (S x3) (+ (S 0) x1)) ✓

15 / 35

Well-sorted terms example: Elementary number theory

Let ΣS = {Nat } (∪ {Bool }) and ΣF = { 0, S,+,×, <,
.
=Nat } (∪ {⊤,⊥,

.
=Bool })

• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
• rank(<) = rank(.=Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 : Bool, x2 : Nat, x3 : Nat } ?
1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (
.
=Nat (S x3) (+ (S 0) x1)) ✓

15 / 35

Well-sorted terms example: Elementary number theory

Let ΣS = {Nat } (∪ {Bool }) and ΣF = { 0, S,+,×, <,
.
=Nat } (∪ {⊤,⊥,

.
=Bool })

• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
• rank(<) = rank(.=Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 : Bool, x2 : Nat, x3 : Nat } ?
1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (
.
=Nat (S x3) (+ (S 0) x1)) ✓

15 / 35

Well-sorted terms example: Elementary number theory

Let ΣS = {Nat } (∪ {Bool }) and ΣF = { 0, S,+,×, <,
.
=Nat } (∪ {⊤,⊥,

.
=Bool })

• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
• rank(<) = rank(.=Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 : Bool, x2 : Nat, x3 : Nat } ?
1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (
.
=Nat (S x3) (+ (S 0) x1)) ✓

15 / 35

Well-sorted terms example: Elementary number theory

Let ΣS = {Nat } (∪ {Bool }) and ΣF = { 0, S,+,×, <,
.
=Nat } (∪ {⊤,⊥,

.
=Bool })

• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
• rank(<) = rank(.=Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 : Bool, x2 : Nat, x3 : Nat } ?
1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (
.
=Nat (S x3) (+ (S 0) x1)) ✓

15 / 35

Well-sorted terms example: Elementary number theory

Let ΣS = {Nat } (∪ {Bool }) and ΣF = { 0, S,+,×, <,
.
=Nat } (∪ {⊤,⊥,

.
=Bool })

• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
• rank(<) = rank(.=Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 : Bool, x2 : Nat, x3 : Nat } ?
1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (
.
=Nat (S x3) (+ (S 0) x1)) ✓

15 / 35

Well-sorted terms example: Elementary number theory

Let ΣS = {Nat } (∪ {Bool }) and ΣF = { 0, S,+,×, <,
.
=Nat } (∪ {⊤,⊥,

.
=Bool })

• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
• rank(<) = rank(.=Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 : Bool, x2 : Nat, x3 : Nat } ?
1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (
.
=Nat (S x3) (+ (S 0) x1)) ✓

15 / 35

Note: As a notational convention, we will use an
infix notation for parentheses and common op-
erators like .

=, <, + and so on

So we will often write S(x3)
.
=Nat S(0) + x1

instead of (
.
=Nat (S x3) (+ (S 0) x1))

Σ-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool
under some sort context Γ

16 / 35

Σ-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool
under some sort context Γ

Examples: (
.
=Nat 0 (S 0)), (< (S x3) (+ (S 0) x1))

16 / 35

Σ-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool
under some sort context Γ

We define the following formula-building operations, denoted F :

F∨(α, β) := (α ∨ β) F∧(α, β) := (α ∧ β) F¬(α) := (¬α)
F⇒(α, β) := (α ⇒ β) F⇔(α, β) := (α ⇔ β)

Ex,σ(α) := (∃ x : σ. α) for each var x and sort σ ∈ ΣS

Ax,σ(α) := (∀ x : σ. α) for each var x and sort σ ∈ ΣS

16 / 35

Σ-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool
under some sort context Γ

We define the following formula-building operations, denoted F :

F∨(α, β) := (α ∨ β) F∧(α, β) := (α ∧ β) F¬(α) := (¬α)
F⇒(α, β) := (α ⇒ β) F⇔(α, β) := (α ⇔ β)

Ex,σ(α) := (∃ x : σ. α) for each var x and sort σ ∈ ΣS

Ax,σ(α) := (∀ x : σ. α) for each var x and sort σ ∈ ΣS

The set of well-formed formulas is the set of expressions generated
from the atomic Σ-formulas by F

16 / 35

Σ-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool
under some sort context Γ

We define the following formula-building operations, denoted F :

F∨(α, β) := (α ∨ β) F∧(α, β) := (α ∧ β) F¬(α) := (¬α)
F⇒(α, β) := (α ⇒ β) F⇔(α, β) := (α ⇔ β)

Ex,σ(α) := (∃ x : σ. α) for each var x and sort σ ∈ ΣS

Ax,σ(α) := (∀ x : σ. α) for each var x and sort σ ∈ ΣS

Each ∃ x : σ is an existential quantifier
Each ∀ x : σ is a universal quantifier

16 / 35

Σ-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool
under some sort context Γ

We define the following formula-building operations, denoted F :

F∨(α, β) := (α ∨ β) F∧(α, β) := (α ∧ β) F¬(α) := (¬α)
F⇒(α, β) := (α ⇒ β) F⇔(α, β) := (α ⇔ β)

Ex,σ(α) := (∃ x : σ. α) for each var x and sort σ ∈ ΣS

Ax,σ(α) := (∀ x : σ. α) for each var x and sort σ ∈ ΣS

We simplify the notation as in PL by
• forgoing parentheses around top-level formulas — e.g., (x .

= y) ∨ ((y .
= z) ∨ (x .

= z))
• forgoing parenths around atomic formulas in infix form — e.g., x .

= y ∨ (y .
= z ∨ x .

= z)
• treating the binary connectives as n-ary and right associative — e.g., x .

= y ∨ y .
= z ∨ x .

= z

16 / 35

Σ-Formulas: Examples

Let Σ = ⟨ΣS := {Nat},ΣF := { 0, S,+,×, <,
.
=Nat }⟩ a xi be variables for all i

17 / 35

Σ-Formulas: Examples

Let Σ = ⟨ΣS := {Nat},ΣF := { 0, S,+,×, <,
.
=Nat }⟩ a xi be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. (
.
=Nat (+ x1 0) x2) ✓

2. (
.
=Nat (+ x1 0) x2) ⇒ ⊥ ✓

3. (+ 0 x3) ∧ (< 0 (S 0)) ✗

4. ∀ x3 : Nat. (+ (+ 0 x3) x2) ✗

5. ∀ x3 : Bool. (.=Nat (+ 0 x3) x2) ✓

6. ¬∃ x0 : Nat. (< 0 x0 (S 0)) ✗

17 / 35

Σ-Formulas: Examples

Let Σ = ⟨ΣS := {Nat},ΣF := { 0, S,+,×, <,
.
=Nat }⟩ a xi be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. (
.
=Nat (+ x1 0) x2) ✓

2. (
.
=Nat (+ x1 0) x2) ⇒ ⊥ ✓

3. (+ 0 x3) ∧ (< 0 (S 0)) ✗

4. ∀ x3 : Nat. (+ (+ 0 x3) x2) ✗

5. ∀ x3 : Bool. (.=Nat (+ 0 x3) x2) ✓

6. ¬∃ x0 : Nat. (< 0 x0 (S 0)) ✗

17 / 35

Σ-Formulas: Examples

Let Σ = ⟨ΣS := {Nat},ΣF := { 0, S,+,×, <,
.
=Nat }⟩ a xi be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. (
.
=Nat (+ x1 0) x2) ✓

2. (
.
=Nat (+ x1 0) x2) ⇒ ⊥ ✓

3. (+ 0 x3) ∧ (< 0 (S 0)) ✗

4. ∀ x3 : Nat. (+ (+ 0 x3) x2) ✗

5. ∀ x3 : Bool. (.=Nat (+ 0 x3) x2) ✓

6. ¬∃ x0 : Nat. (< 0 x0 (S 0)) ✗

17 / 35

Σ-Formulas: Examples

Let Σ = ⟨ΣS := {Nat},ΣF := { 0, S,+,×, <,
.
=Nat }⟩ a xi be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. (
.
=Nat (+ x1 0) x2) ✓

2. (
.
=Nat (+ x1 0) x2) ⇒ ⊥ ✓

3. (+ 0 x3) ∧ (< 0 (S 0)) ✗

4. ∀ x3 : Nat. (+ (+ 0 x3) x2) ✗

5. ∀ x3 : Bool. (.=Nat (+ 0 x3) x2) ✓

6. ¬∃ x0 : Nat. (< 0 x0 (S 0)) ✗

17 / 35

Σ-Formulas: Examples

Let Σ = ⟨ΣS := {Nat},ΣF := { 0, S,+,×, <,
.
=Nat }⟩ a xi be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. (
.
=Nat (+ x1 0) x2) ✓

2. (
.
=Nat (+ x1 0) x2) ⇒ ⊥ ✓

3. (+ 0 x3) ∧ (< 0 (S 0)) ✗

4. ∀ x3 : Nat. (+ (+ 0 x3) x2) ✗

5. ∀ x3 : Bool. (.=Nat (+ 0 x3) x2) ✓

6. ¬∃ x0 : Nat. (< 0 x0 (S 0)) ✗

17 / 35

Σ-Formulas: Examples

Let Σ = ⟨ΣS := {Nat},ΣF := { 0, S,+,×, <,
.
=Nat }⟩ a xi be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. (
.
=Nat (+ x1 0) x2) ✓

2. (
.
=Nat (+ x1 0) x2) ⇒ ⊥ ✓

3. (+ 0 x3) ∧ (< 0 (S 0)) ✗

4. ∀ x3 : Nat. (+ (+ 0 x3) x2) ✗

5. ∀ x3 : Bool. (.=Nat (+ 0 x3) x2) ✓

6. ¬∃ x0 : Nat. (< 0 x0 (S 0)) ✗

17 / 35

Σ-Formulas: Examples

Let Σ = ⟨ΣS := {Nat},ΣF := { 0, S,+,×, <,
.
=Nat }⟩ a xi be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. (
.
=Nat (+ x1 0) x2) ✓

2. (
.
=Nat (+ x1 0) x2) ⇒ ⊥ ✓

3. (+ 0 x3) ∧ (< 0 (S 0)) ✗

4. ∀ x3 : Nat. (+ (+ 0 x3) x2) ✗

5. ∀ x3 : Bool. (.=Nat (+ 0 x3) x2) ✓

6. ¬∃ x0 : Nat. (< 0 x0 (S 0)) ✗

17 / 35

Σ-Formulas: Examples

Let Σ = ⟨ΣS := {Nat},ΣF := { 0, S,+,×, <,
.
=Nat }⟩ a xi be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. (
.
=Nat (+ x1 0) x2) ✓

2. (
.
=Nat (+ x1 0) x2) ⇒ ⊥ ✓

3. (+ 0 x3) ∧ (< 0 (S 0)) ✗

4. ∀ x3 : Nat. (+ (+ 0 x3) x2) ✗

5. ∀ x3 : Bool. (.=Nat (+ 0 x3) x2) ✓

6. ¬∃ x0 : Nat. (< 0 x0 (S 0)) ✗

17 / 35

Note: Formula (5) is well-formed but not
well-sorted

To know which formulas are well-sorted
we need to extend our sort system to the
logical operators

Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and quantifiers

18 / 35

Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and quantifiers

BCONST
c ∈ {⊤,⊥}
Γ ⊢ c : Bool NOT

Γ ⊢ α : Bool
Γ ⊢ (¬α) : Bool

CONN
Γ ⊢ α : Bool Γ ⊢ β : Bool ▷◁ ∈ {∧,∨,⇒,⇔}

Γ ⊢ (α ▷◁ β) : Bool

QUANT
Γ[x : σ] ⊢ α : Bool σ ∈ ΣS Q ∈ {∀, ∃ }

Γ ⊢ (Q x : σ. α) : Bool

Γ[x : σ] is a context that assigns sort σ to x and is otherwise identical to Γ

18 / 35

Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and quantifiers

BCONST
c ∈ {⊤,⊥}
Γ ⊢ c : Bool NOT

Γ ⊢ α : Bool
Γ ⊢ (¬α) : Bool

CONN
Γ ⊢ α : Bool Γ ⊢ β : Bool ▷◁ ∈ {∧,∨,⇒,⇔}

Γ ⊢ (α ▷◁ β) : Bool

QUANT
Γ[x : σ] ⊢ α : Bool σ ∈ ΣS Q ∈ {∀, ∃ }

Γ ⊢ (Q x : σ. α) : Bool

A formula α is well-sorted wrt Σ in a sort context Γ
if Γ ⊢ α : Bool is derivable in the sort system above

18 / 35

Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and quantifiers

BCONST
c ∈ {⊤,⊥}
Γ ⊢ c : Bool NOT

Γ ⊢ α : Bool
Γ ⊢ (¬α) : Bool

CONN
Γ ⊢ α : Bool Γ ⊢ β : Bool ▷◁ ∈ {∧,∨,⇒,⇔}

Γ ⊢ (α ▷◁ β) : Bool

QUANT
Γ[x : σ] ⊢ α : Bool σ ∈ ΣS Q ∈ {∀, ∃ }

Γ ⊢ (Q x : σ. α) : Bool

A formula α is well-sorted wrt Σ in a sort context Γ
if Γ ⊢ α : Bool is derivable in the sort system above We call α a Σ-formula

18 / 35

Exercise

Draw two Venn Diagram that illustrate the relations between

A: terms

B: well-formed terms

C: well-sorted terms

D: well-sorted atomic formulas

and between

D: well-sorted atomic formulas

E: well-formed formulas

F: well-sorted formulas

19 / 35

Notational conventions for formulas

From now on, to improve readability:

• We will use the infix notation for logical operators and function symbols typically written in that
notation (.=σ , <, +, . . .)

• Finally, we will omit the sort symbol in equalities and quantifiers when it is clear from the context
or not important:
Example: ∀ x1. ∀ y1. x1

.
= x2 instead of ∀ x:σ1. ∀ x2:σ2. x1

.
= x2

• We may also omit parentheses by defining precedence:
• Same precedence for propositional connectives as in propositional logic
• Quantifiers have the highest precedence after ¬
Example: ¬∀x. (p x) ∧ (q x) abbreviates (¬(∀x. (p x))) ∧ (q x))

• Finally, we will allow the use of parentheses following function symbols.
Example: ∀x. p(r(x)) ∧ q(x) instead of ∀x. (p (r x)) ∧ (q x)

20 / 35

Notational conventions for formulas

From now on, to improve readability:

• We will use the infix notation for logical operators and function symbols typically written in that
notation (.=σ , <, +, . . .)

• Finally, we will omit the sort symbol in equalities and quantifiers when it is clear from the context
or not important:
Example: ∀ x1. ∀ y1. x1

.
= x2 instead of ∀ x:σ1. ∀ x2:σ2. x1

.
= x2

• We may also omit parentheses by defining precedence:
• Same precedence for propositional connectives as in propositional logic
• Quantifiers have the highest precedence after ¬
Example: ¬∀x. (p x) ∧ (q x) abbreviates (¬(∀x. (p x))) ∧ (q x))

• Finally, we will allow the use of parentheses following function symbols.
Example: ∀x. p(r(x)) ∧ q(x) instead of ∀x. (p (r x)) ∧ (q x)

20 / 35

Notational conventions for formulas

From now on, to improve readability:

• We will use the infix notation for logical operators and function symbols typically written in that
notation (.=σ , <, +, . . .)

• Finally, we will omit the sort symbol in equalities and quantifiers when it is clear from the context
or not important:
Example: ∀ x1. ∀ y1. x1

.
= x2 instead of ∀ x:σ1. ∀ x2:σ2. x1

.
= x2

• We may also omit parentheses by defining precedence:
• Same precedence for propositional connectives as in propositional logic
• Quantifiers have the highest precedence after ¬
Example: ¬∀x. (p x) ∧ (q x) abbreviates (¬(∀x. (p x))) ∧ (q x))

• Finally, we will allow the use of parentheses following function symbols.
Example: ∀x. p(r(x)) ∧ q(x) instead of ∀x. (p (r x)) ∧ (q x)

20 / 35

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

21 / 35

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

21 / 35

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

Examples: Let x, y, z be variables
• FV(x) = { x } (provided x has sort Bool)
• FV(x < S(0) + y) = { x, y }
• FV(x < S(0) + y ∧ x .

= z) = FV(x < S(0) + y) ∪ FV(x .
= z) = { x, y } ∪ { x, z } = { x, y, z }

• FV(∀x : Nat. x < S(0) + y) = FV(x < S(0) + y) \ { x } = { x, y } \ { x } = { y }

21 / 35

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

A variable x occurs free in a Σ-formula α if x ∈ FV(α)

For α = Q v : σ. β, we say that v is bound in α

The scope of x in α is the subformula β

21 / 35

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

A Σ-formula α is closed, or is a (Σ-)sentence, if FV(α) = ∅

21 / 35

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

Can a variable both occur free and be bound in α?

21 / 35

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

Can a variable both occur free and be bound in α? Yes! (e.g., x < x ⇒ ∀x : Nat. 0 < x)

21 / 35

Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

Can a variable both occur free and be bound in α? Yes! (e.g., x < x ⇒ ∀x : Nat. 0 < x)

This can be confusing, so we typically rename the bound variables of a formula so that they are
distinct from its free variables (e.g., x < x ⇒ ∀y : Nat. 0 < y)

21 / 35

FOL Semantics

Recall: The syntax of a first-order language is defined wrt a signature Σ := ⟨ΣS,ΣF⟩ where:

• ΣS is a set of sorts

• ΣF is a set of function symbols

In propositional logic, the truth of a formula depends on the meaning of its variables

In first-order logic, the truth of a Σ-formula depends on:

1. the meaning of each sort symbol σ
2. the meaning of each function symbol f
3. the meaning of each free variable x

in the formula

22 / 35

FOL Semantics

Recall: The syntax of a first-order language is defined wrt a signature Σ := ⟨ΣS,ΣF⟩ where:

• ΣS is a set of sorts

• ΣF is a set of function symbols

In propositional logic, the truth of a formula depends on the meaning of its variables

In first-order logic, the truth of a Σ-formula depends on:

1. the meaning of each sort symbol σ
2. the meaning of each function symbol f
3. the meaning of each free variable x

in the formula

22 / 35

FOL Semantics

Recall: The syntax of a first-order language is defined wrt a signature Σ := ⟨ΣS,ΣF⟩ where:

• ΣS is a set of sorts

• ΣF is a set of function symbols

In propositional logic, the truth of a formula depends on the meaning of its variables

In first-order logic, the truth of a Σ-formula depends on:

1. the meaning of each sort symbol σ
2. the meaning of each function symbol f
3. the meaning of each free variable x

in the formula

22 / 35

Semantics

Let α be a Σ-formula and let Γ be a sorting context that includes α’s free variables

The truth of α is determined by interpretations I of Σ and Γ consisting of:

1. an interpretation σI of each σ ∈ ΣS as a nonempty set, the domain of σ

2. an interpretation fI of each f ∈ ΣF of rank ⟨σ1, . . . , σn, σn+1⟩ as a total n-ary function from
σI

1 × · · · × σI
n to σI

n+1

3. an interpretation xI of each x : σ ∈ Γ as an element of σI

Note: We consider only interpretations I such that
• BoolI = { true, false }, ⊥I = false, ⊤I = true
• for all σ ∈ ΣS, =I

σ maps its two arguments to true iff they are identical

23 / 35

Semantics

Let α be a Σ-formula and let Γ be a sorting context that includes α’s free variables

The truth of α is determined by interpretations I of Σ and Γ consisting of:

1. an interpretation σI of each σ ∈ ΣS as a nonempty set, the domain of σ

2. an interpretation fI of each f ∈ ΣF of rank ⟨σ1, . . . , σn, σn+1⟩ as a total n-ary function from
σI

1 × · · · × σI
n to σI

n+1

3. an interpretation xI of each x : σ ∈ Γ as an element of σI

Note: We consider only interpretations I such that
• BoolI = { true, false }, ⊥I = false, ⊤I = true
• for all σ ∈ ΣS, =I

σ maps its two arguments to true iff they are identical

23 / 35

Semantics: Example

Consider a signature Σ = ⟨ΣS,ΣF⟩ for a fragment of set theory with non-set elements:

ΣS = {Elem, Set}, ΣF = {∅,⊏−}, rank(∅) = ⟨Set⟩, rank(⊏−) = ⟨Elem, Set,Bool⟩
Γ = { ei : Elem | i ≥ 0 } ∪ { si : Set | i ≥ 0 }

24 / 35

Semantics: Example

Consider a signature Σ = ⟨ΣS,ΣF⟩ for a fragment of set theory with non-set elements:

ΣS = {Elem, Set}, ΣF = {∅,⊏−}, rank(∅) = ⟨Set⟩, rank(⊏−) = ⟨Elem, Set,Bool⟩
Γ = { ei : Elem | i ≥ 0 } ∪ { si : Set | i ≥ 0 }

A possible interpretation I of Σ, Γ:

1. ElemI = N, the natural numbers
2. SetI = 2N, all sets of natural numbers
3. ∅I = {}
4. for all n ∈ N and s ⊆ N, ⊏−I(n, s) = true iff n ∈ s
5. for i = 0, 1, . . ., ei

I = i and si
I = [0, i] = { 0, 1, . . . , i }

24 / 35

Semantics: Example

Consider a signature Σ = ⟨ΣS,ΣF⟩ for a fragment of set theory with non-set elements:

ΣS = {Elem, Set}, ΣF = {∅,⊏−}, rank(∅) = ⟨Set⟩, rank(⊏−) = ⟨Elem, Set,Bool⟩
Γ = { ei : Elem | i ≥ 0 } ∪ { si : Set | i ≥ 0 }

Another interpretation I of Σ, Γ:

1. ElemI = SetI = N, the natural numbers
2. ∅I = 0
3. for all m, n ∈ N, ⊏−I(m, n) = true iff m is divisible by n
4. for i = 0, 1, . . ., ei

I = i and si
I = 2

24 / 35

Semantics: Example

Consider a signature Σ = ⟨ΣS,ΣF⟩ for a fragment of set theory with non-set elements:

ΣS = {Elem, Set}, ΣF = {∅,⊏−}, rank(∅) = ⟨Set⟩, rank(⊏−) = ⟨Elem, Set,Bool⟩
Γ = { ei : Elem | i ≥ 0 } ∪ { si : Set | i ≥ 0 }

There is an infinity of interpretations of Σ, Γ !

24 / 35

Term Semantics

Interpretations are analogous to a variable assignments in propositional logic

We define how to determine the truth value of a Σ-formula in an interpretation I in FOL in analogy to
how to determine the truth value of a formula under a variable assignment v in PL

25 / 35

Term Semantics

Interpretations are analogous to a variable assignments in propositional logic

We define how to determine the truth value of a Σ-formula in an interpretation I in FOL in analogy to
how to determine the truth value of a formula under a variable assignment v in PL

The first step is to extend I by structural induction to an interpretation I for well-sorted terms

tI =

{
tI if t is a constant of Σ or a variable
fI(tI1 , . . . , tIn) if t = (f t1 · · · tn)

25 / 35

Term Semantics
The first step is to extend I by structural induction to an interpretation I for well-sorted terms

tI =

{
tI if t is a constant of Σ or a variable
fI(tI1 , . . . , tIn) if t = (f t1 · · · tn)

Example:

ΣS = {Pers }, Σf = {pa,ma,mar }, Γ = { x:Pers, y:Pers, . . . },
rank(pa) = rank(ma) = ⟨Pers,Pers⟩, rank(mar) = ⟨Pers,Pers,Bool⟩

25 / 35

Term Semantics
The first step is to extend I by structural induction to an interpretation I for well-sorted terms

tI =

{
tI if t is a constant of Σ or a variable
fI(tI1 , . . . , tIn) if t = (f t1 · · · tn)

Example:

ΣS = {Pers }, Σf = {pa,ma,mar }, Γ = { x:Pers, y:Pers, . . . },
rank(pa) = rank(ma) = ⟨Pers,Pers⟩, rank(mar) = ⟨Pers,Pers,Bool⟩
Consider I such that

maI = { Jim 7→ Jill, Joe 7→ Jen, . . . }, paI = { Jim 7→ Joe, Jill 7→ Jay, . . . },
marI = { (Jill, Joe) 7→ true, (Joe, Jill) 7→ true, (Jill, Jill) 7→ false, . . . }, xI = Jim, yI = Joe

25 / 35

Term Semantics
The first step is to extend I by structural induction to an interpretation I for well-sorted terms

tI =

{
tI if t is a constant of Σ or a variable
fI(tI1 , . . . , tIn) if t = (f t1 · · · tn)

Example:

ΣS = {Pers }, Σf = {pa,ma,mar }, Γ = { x:Pers, y:Pers, . . . },
rank(pa) = rank(ma) = ⟨Pers,Pers⟩, rank(mar) = ⟨Pers,Pers,Bool⟩
Consider I such that

maI = { Jim 7→ Jill, Joe 7→ Jen, . . . }, paI = { Jim 7→ Joe, Jill 7→ Jay, . . . },
marI = { (Jill, Joe) 7→ true, (Joe, Jill) 7→ true, (Jill, Jill) 7→ false, . . . }, xI = Jim, yI = Joe

(pa (ma x))I = paI((ma x)I) = paI(maI(xI)) = paI(maI(xI))
= paI(maI(Jim)) = paI(Jill) = Jay

25 / 35

Term Semantics
The first step is to extend I by structural induction to an interpretation I for well-sorted terms

tI =

{
tI if t is a constant of Σ or a variable
fI(tI1 , . . . , tIn) if t = (f t1 · · · tn)

Example:

ΣS = {Pers }, Σf = {pa,ma,mar }, Γ = { x:Pers, y:Pers, . . . },
rank(pa) = rank(ma) = ⟨Pers,Pers⟩, rank(mar) = ⟨Pers,Pers,Bool⟩
Consider I such that

maI = { Jim 7→ Jill, Joe 7→ Jen, . . . }, paI = { Jim 7→ Joe, Jill 7→ Jay, . . . },
marI = { (Jill, Joe) 7→ true, (Joe, Jill) 7→ true, (Jill, Jill) 7→ false, . . . }, xI = Jim, yI = Joe

(mar (ma x) y)I = marI((ma x)I , yI) = marI(maI(xI), yI) = marI(maI(xI), Joe)
= marI(maI(Jim), Joe) = marI(Jill, Joe) = true

25 / 35

Formula Semantics

We further extend I to well-sorted non-atomic formulas by structural induction as follows:

• (¬α)I = true iff αI = false

• (α ∧ β)I = true iff αI = βI = true

• (α ∨ β)I = true iff αI = true or βI = true

• (α ⇒ β)I = true iff αI = false or βI = true

• (α ⇔ β)I = true iff αI = βI

• (∃x : σ. α)I = true iff αI[x 7→a] = true for some a ∈ σI

• (∀x : σ. α)I = true iff αI[x 7→a] = true for all a ∈ σI

26 / 35

Formula Semantics

We further extend I to well-sorted non-atomic formulas by structural induction as follows:

• (¬α)I = true iff αI = false

• (α ∧ β)I = true iff αI = βI = true

• (α ∨ β)I = true iff αI = true or βI = true

• (α ⇒ β)I = true iff αI = false or βI = true

• (α ⇔ β)I = true iff αI = βI

• (∃x : σ. α)I = true iff αI[x 7→a] = true for some a ∈ σI

• (∀x : σ. α)I = true iff αI[x 7→a] = true for all a ∈ σI

where I[x 7→ a] denotes the interpretation that maps x to a and is otherwise identical to I

26 / 35

Formula Semantics

We further extend I to well-sorted non-atomic formulas by structural induction as follows:

• (¬α)I = true iff αI = false

• (α ∧ β)I = true iff αI = βI = true

• (α ∨ β)I = true iff αI = true or βI = true

• (α ⇒ β)I = true iff αI = false or βI = true

• (α ⇔ β)I = true iff αI = βI

• (∃x : σ. α)I = true iff αI[x 7→a] = true for some a ∈ σI

• (∀x : σ. α)I = true iff αI[x 7→a] = true for all a ∈ σI

We write I |= α, and say that I satisfies α, to mean that αI = true

26 / 35

Formula Semantics

We further extend I to well-sorted non-atomic formulas by structural induction as follows:

• (¬α)I = true iff αI = false

• (α ∧ β)I = true iff αI = βI = true

• (α ∨ β)I = true iff αI = true or βI = true

• (α ⇒ β)I = true iff αI = false or βI = true

• (α ⇔ β)I = true iff αI = βI

• (∃x : σ. α)I = true iff αI[x 7→a] = true for some a ∈ σI

• (∀x : σ. α)I = true iff αI[x 7→a] = true for all a ∈ σI

We write I |= α, and say that I satisfies α, to mean that αI = true

We write I ̸|= α, and say that I falsifies α, to mean that αI = false

26 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓

27 / 35

Exercise

Let α be a Σ-formula and let Γ be a sorting context that includes α’s free variables

The truth of α is determined by interpretations I of Σ and Γ consisting of:

1. an interpretation σI of each σ ∈ ΣS as a nonempty set, the domain of σ

2. an interpretation fI of each f ∈ ΣF of rank ⟨σ1, . . . , σn, σn+1⟩ as a total n-ary function from σI
1 × · · · × σI

n to
σI

n+1

3. an interpretation xI of each x : σ ∈ Γ as an element of σI

Consider the signature where

ΣS = {σ },ΣF = {Q, .=σ }, Γ = { x : σ, y : σ }, rank(Q) = ⟨σ, σ,Bool⟩
For each of the following Σ-formulas, describe an interpretation that satisfies it

1. ∀ x:σ. ∀ y:σ. x .
= y

2. ∀ x:σ. ∀ y:σ.Q(x, y)
3. ∀ x:σ. ∃ y:σ.Q(x, y)

28 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)

29 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers. ∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers.∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))

30 / 35

Invariance of term values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Lemma 1
If I and J also agree on the variables of a Σ-term t with variables in Γ, then tI = tJ .

Proof.
By structural induction on t.

• If t is a variable or a constant, then tI = tI , tJ = tJ .
Since tI = tJ by assumption, we have that tI = tI = tJ = tJ .

• If t = (f t1 · · · tn) with n > 1, then fI = fJ by assumption and tIi = tJi for i = 1, . . . , n by
induction hypothesis.

It follows that tI = fI(tI1 , . . . , tIn) = fJ (tJ1 , . . . , tJn) = tJ

31 / 35

Invariance of term values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Lemma 1
If I and J also agree on the variables of a Σ-term t with variables in Γ, then tI = tJ .

Proof.
By structural induction on t.

• If t is a variable or a constant, then tI = tI , tJ = tJ .
Since tI = tJ by assumption, we have that tI = tI = tJ = tJ .

• If t = (f t1 · · · tn) with n > 1, then fI = fJ by assumption and tIi = tJi for i = 1, . . . , n by
induction hypothesis.

It follows that tI = fI(tI1 , . . . , tIn) = fJ (tJ1 , . . . , tJn) = tJ

31 / 35

Invariance of term values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Lemma 1
If I and J also agree on the variables of a Σ-term t with variables in Γ, then tI = tJ .

Proof.
By structural induction on t.

• If t is a variable or a constant, then tI = tI , tJ = tJ .
Since tI = tJ by assumption, we have that tI = tI = tJ = tJ .

• If t = (f t1 · · · tn) with n > 1, then fI = fJ by assumption and tIi = tJi for i = 1, . . . , n by
induction hypothesis.

It follows that tI = fI(tI1 , . . . , tIn) = fJ (tJ1 , . . . , tJn) = tJ

31 / 35

Invariance of term values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Lemma 1
If I and J also agree on the variables of a Σ-term t with variables in Γ, then tI = tJ .

Proof.
By structural induction on t.

• If t is a variable or a constant, then tI = tI , tJ = tJ .
Since tI = tJ by assumption, we have that tI = tI = tJ = tJ .

• If t = (f t1 · · · tn) with n > 1, then fI = fJ by assumption and tIi = tJi for i = 1, . . . , n by
induction hypothesis.

It follows that tI = fI(tI1 , . . . , tIn) = fJ (tJ1 , . . . , tJn) = tJ

31 / 35

Invariance of term values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Lemma 1
If I and J also agree on the variables of a Σ-term t with variables in Γ, then tI = tJ .

Proof.
By structural induction on t.

• If t is a variable or a constant, then tI = tI , tJ = tJ .
Since tI = tJ by assumption, we have that tI = tI = tJ = tJ .

• If t = (f t1 · · · tn) with n > 1, then fI = fJ by assumption and tIi = tJi for i = 1, . . . , n by
induction hypothesis.

It follows that tI = fI(tI1 , . . . , tIn) = fJ (tJ1 , . . . , tJn) = tJ

31 / 35

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

32 / 35

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Proof.
By induction on α.

32 / 35

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Proof.
By induction on α.

• If α is an atomic formula, the results holds by the previous lemma since α is then a term,
and all of its variables occur free in it.

32 / 35

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Proof.
By induction on α.

• If α is an atomic formula, the results holds by the previous lemma since α is then a term,
and all of its variables occur free in it.

• If α is ¬β or α1 ▷◁ α2 with ▷◁∈ {∧,∨,⇒,⇔}, the result follows from the inductive
hypothesis.

32 / 35

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Proof.
By induction on α.

• If α = Q s:σ. β with Q ∈ {∀,∃ }. Then FV(β) = FV(α) ∪ { x }.
For any d in σI , I[x 7→ d] and J [x 7→ d] agree on x by construction and on FV(α) by
assumption. The result follows from the inductive hypothesis and the semantics of ∀ and
∃.

32 / 35

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Note: The theorem implies that the interpretation of formula α is independent from the values
assigned to variables that do not occur free in α.

32 / 35

Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Note: The theorem implies that the interpretation of formula α is independent from the values
assigned to variables that do not occur free in α.

Corollary 3
The truth value of sentences is independent from how variables are interpreted.

32 / 35

The Deduction Theorem of FOL
Consider a signature Σ

Theorem 4
For all Σ-formulas α and β, we have that α |= β iff |= α ⇒ β

Proof.
⇒) We argue that every Σ interpretation I satisfies γ := α ⇒ β. If I falsifies α, then it trivially
satisfies γ. If, instead, I satisfies α, then, since α |= β, it must satisfy β as well. Hence, it
satisfies γ.
⇐) We argue that every Σ-interpretation I that satisfies α satisfies β as well. Any such
interpretation must indeed satisfy β; otherwise, it would falsify α ⇒ β, against the assumption
that |= α ⇒ β.

Corollary 5
For all Σ-formulas α and β, we have that α ≡ β iff |= α ⇔ β

33 / 35

The Deduction Theorem of FOL
Consider a signature Σ

Theorem 4
For all Σ-formulas α and β, we have that α |= β iff |= α ⇒ β

Proof.
⇒) We argue that every Σ interpretation I satisfies γ := α ⇒ β. If I falsifies α, then it trivially
satisfies γ. If, instead, I satisfies α, then, since α |= β, it must satisfy β as well. Hence, it
satisfies γ.
⇐) We argue that every Σ-interpretation I that satisfies α satisfies β as well. Any such
interpretation must indeed satisfy β; otherwise, it would falsify α ⇒ β, against the assumption
that |= α ⇒ β.

Corollary 5
For all Σ-formulas α and β, we have that α ≡ β iff |= α ⇔ β

33 / 35

The Deduction Theorem of FOL
Consider a signature Σ

Theorem 4
For all Σ-formulas α and β, we have that α |= β iff |= α ⇒ β

Proof.
⇒) We argue that every Σ interpretation I satisfies γ := α ⇒ β. If I falsifies α, then it trivially
satisfies γ. If, instead, I satisfies α, then, since α |= β, it must satisfy β as well. Hence, it
satisfies γ.
⇐) We argue that every Σ-interpretation I that satisfies α satisfies β as well. Any such
interpretation must indeed satisfy β; otherwise, it would falsify α ⇒ β, against the assumption
that |= α ⇒ β.

Corollary 5
For all Σ-formulas α and β, we have that α ≡ β iff |= α ⇔ β

33 / 35

The Deduction Theorem of FOL
Consider a signature Σ

Theorem 4
For all Σ-formulas α and β, we have that α |= β iff |= α ⇒ β

Proof.
⇒) We argue that every Σ interpretation I satisfies γ := α ⇒ β. If I falsifies α, then it trivially
satisfies γ. If, instead, I satisfies α, then, since α |= β, it must satisfy β as well. Hence, it
satisfies γ.
⇐) We argue that every Σ-interpretation I that satisfies α satisfies β as well. Any such
interpretation must indeed satisfy β; otherwise, it would falsify α ⇒ β, against the assumption
that |= α ⇒ β.

Corollary 5
For all Σ-formulas α and β, we have that α ≡ β iff |= α ⇔ β

33 / 35

The Free Variables Theorem 1

Consider a signature Σ and a Σ-context Γ

Let Φ be a set of Σ-formulas, let α be Σ-formula with free variables from Γ, and let x ∈ FV(α)
where x : σ ∈ Γ.

Theorem 6
Suppose x occurs free in no formulas of Φ. Then, Φ |= α iff Φ |= ∀x:σ. α

Proof.
⇒) Let I be any interpretation that satisfies Φ. Since x does not occur free in any formula of Φ
we can conclude that I[x 7→ a] |= Φ for all a ∈ σI . Since Φ |= α, we have that I[x 7→ a] |= α
for all a ∈ σI . But then I |= ∀x:σ. α by definition of ∀. Hence, every interpretation that
satisfies Φ also satisfies ∀x:σ. α, that is, Φ |= ∀x:σ. α.
⇐) Let I be any interpretation that satisfies Φ. By assumption I |= ∀x:σ. α. This implies that
I |= α regardless of what xI is. Hence Φ |= α.

34 / 35

The Free Variables Theorem 1

Consider a signature Σ and a Σ-context Γ

Let Φ be a set of Σ-formulas, let α be Σ-formula with free variables from Γ, and let x ∈ FV(α)
where x : σ ∈ Γ.

Theorem 6
Suppose x occurs free in no formulas of Φ. Then, Φ |= α iff Φ |= ∀x:σ. α

Proof.
⇒) Let I be any interpretation that satisfies Φ. Since x does not occur free in any formula of Φ
we can conclude that I[x 7→ a] |= Φ for all a ∈ σI . Since Φ |= α, we have that I[x 7→ a] |= α
for all a ∈ σI . But then I |= ∀x:σ. α by definition of ∀. Hence, every interpretation that
satisfies Φ also satisfies ∀x:σ. α, that is, Φ |= ∀x:σ. α.
⇐) Let I be any interpretation that satisfies Φ. By assumption I |= ∀x:σ. α. This implies that
I |= α regardless of what xI is. Hence Φ |= α.

34 / 35

The Free Variables Theorem 1

Consider a signature Σ and a Σ-context Γ

Let Φ be a set of Σ-formulas, let α be Σ-formula with free variables from Γ, and let x ∈ FV(α)
where x : σ ∈ Γ.

Theorem 6
Suppose x occurs free in no formulas of Φ. Then, Φ |= α iff Φ |= ∀x:σ. α

Proof.
⇒) Let I be any interpretation that satisfies Φ. Since x does not occur free in any formula of Φ
we can conclude that I[x 7→ a] |= Φ for all a ∈ σI . Since Φ |= α, we have that I[x 7→ a] |= α
for all a ∈ σI . But then I |= ∀x:σ. α by definition of ∀. Hence, every interpretation that
satisfies Φ also satisfies ∀x:σ. α, that is, Φ |= ∀x:σ. α.
⇐) Let I be any interpretation that satisfies Φ. By assumption I |= ∀x:σ. α. This implies that
I |= α regardless of what xI is. Hence Φ |= α.

34 / 35

The Free Variables Theorem 1

Consider a signature Σ and a Σ-context Γ

Let Φ be a set of Σ-formulas, let α be Σ-formula with free variables from Γ, and let x ∈ FV(α)
where x : σ ∈ Γ.

Theorem 6
Suppose x occurs free in no formulas of Φ. Then, Φ |= α iff Φ |= ∀x:σ. α

Proof.
⇒) Let I be any interpretation that satisfies Φ. Since x does not occur free in any formula of Φ
we can conclude that I[x 7→ a] |= Φ for all a ∈ σI . Since Φ |= α, we have that I[x 7→ a] |= α
for all a ∈ σI . But then I |= ∀x:σ. α by definition of ∀. Hence, every interpretation that
satisfies Φ also satisfies ∀x:σ. α, that is, Φ |= ∀x:σ. α.
⇐) Let I be any interpretation that satisfies Φ. By assumption I |= ∀x:σ. α. This implies that
I |= α regardless of what xI is. Hence Φ |= α.

34 / 35

The Free Variables Theorem 2

Consider a signature Σ and a Σ-context Γ

Let β be Σ-formula, let α be a Σ-formula with free variables from Γ, and let x ∈ FV(α) where
x : σ ∈ Γ.

Theorem 7
Suppose x does not occur free in β. Then, α |= β iff ∃x:σ. α |= β

Proof.
⇒) Let I be any interpretation that satisfies ∃x:σ. α. This means that I[x 7→ a] |= α for some
a ∈ σI . By assumption, I[x 7→ a] satisfies β as well. Since x does not occur free in β, changing
the value assigned to x does not matter. It follows that I |= β. Since I was arbitrary, this
shows that ∃x:σ. α |= β.
⇐) Let I be any interpretation that satisfies α. Then, trivially, I |= ∃x:σ. α. By assumption,
I |= β. Since I was arbitrary, we can conclude that α |= β.

35 / 35

The Free Variables Theorem 2

Consider a signature Σ and a Σ-context Γ

Let β be Σ-formula, let α be a Σ-formula with free variables from Γ, and let x ∈ FV(α) where
x : σ ∈ Γ.

Theorem 7
Suppose x does not occur free in β. Then, α |= β iff ∃x:σ. α |= β

Proof.
⇒) Let I be any interpretation that satisfies ∃x:σ. α. This means that I[x 7→ a] |= α for some
a ∈ σI . By assumption, I[x 7→ a] satisfies β as well. Since x does not occur free in β, changing
the value assigned to x does not matter. It follows that I |= β. Since I was arbitrary, this
shows that ∃x:σ. α |= β.
⇐) Let I be any interpretation that satisfies α. Then, trivially, I |= ∃x:σ. α. By assumption,
I |= β. Since I was arbitrary, we can conclude that α |= β.

35 / 35

The Free Variables Theorem 2

Consider a signature Σ and a Σ-context Γ

Let β be Σ-formula, let α be a Σ-formula with free variables from Γ, and let x ∈ FV(α) where
x : σ ∈ Γ.

Theorem 7
Suppose x does not occur free in β. Then, α |= β iff ∃x:σ. α |= β

Proof.
⇒) Let I be any interpretation that satisfies ∃x:σ. α. This means that I[x 7→ a] |= α for some
a ∈ σI . By assumption, I[x 7→ a] satisfies β as well. Since x does not occur free in β, changing
the value assigned to x does not matter. It follows that I |= β. Since I was arbitrary, this
shows that ∃x:σ. α |= β.
⇐) Let I be any interpretation that satisfies α. Then, trivially, I |= ∃x:σ. α. By assumption,
I |= β. Since I was arbitrary, we can conclude that α |= β.

35 / 35

The Free Variables Theorem 2

Consider a signature Σ and a Σ-context Γ

Let β be Σ-formula, let α be a Σ-formula with free variables from Γ, and let x ∈ FV(α) where
x : σ ∈ Γ.

Theorem 7
Suppose x does not occur free in β. Then, α |= β iff ∃x:σ. α |= β

Proof.
⇒) Let I be any interpretation that satisfies ∃x:σ. α. This means that I[x 7→ a] |= α for some
a ∈ σI . By assumption, I[x 7→ a] satisfies β as well. Since x does not occur free in β, changing
the value assigned to x does not matter. It follows that I |= β. Since I was arbitrary, this
shows that ∃x:σ. α |= β.
⇐) Let I be any interpretation that satisfies α. Then, trivially, I |= ∃x:σ. α. By assumption,
I |= β. Since I was arbitrary, we can conclude that α |= β.

35 / 35

