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Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0 p

1 is a natural number not equal to 0 ¬q

What facts can we logically deduce? Only: p ∧ ¬q
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Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0 p

1 is a natural number not equal to 0 ¬q

What facts can we logically deduce? Only: p ∧ ¬q

Propositional logic is often too coarse to express information
about individual objects and formalize correct deductions about them

We cannot deduce that 1 is greater than 0 from the two sentences above
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Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0 p

1 is a natural number not equal to 0 ¬q

What facts can we logically deduce? Only: p ∧ ¬q

First-order Logic (FOL) allows us to (dis)prove the validity of sentences like the above or
deduce their consequences (e.g., that 1 is greater than 0)

In this case, we need a first-order language for number theory
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Motivation

“Every positive integer number different from 1 is smaller than its square”
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Motivation

“Every positive integer number different from 1 is smaller than its square”

Intuitively, a first-order language has the following features:

• A sublanguage to denote individual things (numbers, people, colors, . . . )

• A sublanguage to express properties of individuals and relations among them

• A sublanguage to denote groups of individuals with common features and ascribe them to specific
individuals

• A way to quantify statements about individuals
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Motivation

“Every positive integer number different from 1 is smaller than its square”

English FOL language
generic number x

the number 1 1
the square of x square(x)
“x is positive” positive(x)

“x is different from 1” x ̸= 1
“x is smaller than its square” x < square(x)

“every integer number” ∀x : Int
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“x is positive” positive(x)

“x is different from 1” x ̸= 1
“x is smaller than its square” x < square(x)

“every integer number” ∀x : Int

Sentence above in FOL: ∀x : Int. (positive(x) ∧ x ̸= 1 ⇒ x < square(x))
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Motivation

“Every positive integer number different from 1 is smaller than its square”

English FOL language
generic number x

the number 1 1
the square of x square(x)
“x is positive” positive(x)

“x is different from 1” x ̸= 1
“x is smaller than its square” x < square(x)

“every integer number” ∀x : Int

Sentence above in FOL: ∀x : Int. (positive(x) ∧ x ̸= 1 ⇒ x < square(x))

The formula is true in the intended interpretation
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Outline

• Syntax (ML 7.1-2)

• Semantics (ML 7.3)

ML presents a one-sorted first-order logic

We will use a many-sorted first-order logic

This makes it convenient to present Satisfiability Modulo Theories later

Note:
Many-sorted FOL is not more expressive than one-sorted FOL:
It is possible to faithfully encode the former in the latter
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Outline

• Syntax (ML 7.1-2)

• Semantics (ML 7.3)

ML presents a one-sorted first-order logic

We will use a many-sorted first-order logic

This makes it convenient to present Satisfiability Modulo Theories later

Note:
Many-sorted FOL is not more expressive than one-sorted FOL:
It is possible to faithfully encode the former in the latter

However, using different sorts makes it more convenient to rule out non-sensical expressions
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Symbols

Review: what does the syntax of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different first-order languages

The symbols of a first-order language consist of:

1. Logical symbols (⇒,⊤,∧,¬, (, ))

2. Signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

Note: We consider symbols as atomic (not divisible further)
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Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩
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output of sort σn+1
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Intuitively, f denotes a function that takes n values of respective sort σ1, . . . , σn as input and returns an
output of sort σn+1

σ1, . . . , σn are the input sorts of f and σn+1 is the output sort
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The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

Intuitively, f denotes a function that takes n values of respective sort σ1, . . . , σn as input and returns an
output of sort σn+1

We call function symbols a of arity 0 constants and say they have sort σ when rank(a) = ⟨σ⟩
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Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

We also assume an infinite set of variable (symbols) x, y, . . .
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Signature

The syntax of a first-order language is defined w.r.t. a signature, Σ := ⟨ΣS,ΣF⟩, where:
• ΣS is a set of sorts: e.g., Real, Int, Set,
• ΣF is a set of function symbols: e.g., =, +, +[2], <, ≬

We associate each function symbol f ∈ ΣF with:
• an arity n: a natural number denoting the number of arguments f takes
• a rank a (n + 1)-tuple of sorts: rank(f) = ⟨σ1, . . . , σn, σn+1⟩

Example: In the first-order language of number theory
• ΣS contains a sort Nat and ΣF contains a function symbols 0, 1, +
• 0 and 1 have arity 0 and rank(0) = rank(1) = ⟨Nat⟩
• + has arity 2 and rank(+) = ⟨Nat,Nat,Nat⟩
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Signature

We assume for every signature Σ that

• ΣS includes a distinguished sort Bool

• ΣF contains distinguished constants ⊤ and ⊥ with sort(⊥) = sort(⊤) = Bool, and
distinguished functions symbols .

=σ with rank( .=σ) = ⟨σ, σ,Bool⟩ for all σ ∈ ΣS

There are two special kinds of function symbols:

Constant symbols: function symbols of 0 arity (e.g., ⊥, ⊤, π, John, 0)

Predicate symbols: function symbols of return sort Bool (e.g., .
=σ, <)
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First-Order Languages: Examples

Recall that a first-order language is defined wrt a signature Σ := ⟨ΣS,ΣF⟩

Elementary Number Theory

• ΣS : {Nat,Bool }
• ΣF : {<, 0, S,+,×,

.
=Nat } ∪ {⊤,⊥,

.
=Bool }

where:

• rank(<) = ⟨Nat,Nat,Bool⟩
• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
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First-Order Languages: Examples

Set Theory

• ΣS : { Set,Bool }
• ΣF : {∈, ∅,∪,∩, .=Set } ∪ {⊤,⊥,

.
=Bool }

where:

• rank(∅) = ⟨Set⟩
• rank(∪) = rank(∩) = ⟨Set, Set, Set⟩
• rank(∈) = ⟨Set, Set,Bool⟩
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First-Order Languages: Examples

Propositional logic formulas

• ΣS : {Bool }
• ΣF : {¬,∧,∨, . . . , p1, p2, . . . } ∪ {⊤,⊥,

.
=Bool }

where:

• rank(pi) = ⟨Bool⟩
• rank(¬) = ⟨Bool,Bool⟩
• rank(∧) = rank(∨) = ⟨Bool,Bool,Bool⟩
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Expressions

Recall that an expression is any finite sequence of symbols

Example

• ∀x1. ((< 0 x1) ⇒ (¬∀x2. (< x1 x2)))

• x1 < ∀x2))

• x1 < x2 ⇒ ∀x:Nat. x > 0

Most expressions are not well-formed

Expressions of interest in FOL are terms and well-formed formulas (wffs)
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Terms

Expressions built up from function symbols, variables, and parentheses ((, ))

Formally, let B be the set of all variables and all constant symbols in some signature Σ

For each function symbol f ∈ ΣF of arity n > 0, we define a term-building operation Tf :

Tf (ε1, . . . , εn) := (f ε1 · · · εn)

Terms are expressions that are generated from B by T = { Tf | f ∈ ΣF }

Examples of terms in the language of number theory:

✓ (+ x2 (S 0))
✓ (S (S (S (S 0))))
✗ (S (0 0))

✗ (x2 + 0)
✗ (S 0 0)
✓ (S (< 0 0))

✓ (+ x2 ⊥)

✓ (S ⊥)

✓ (
.
= 0 ⊥)
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Well-sorted terms

Not all well-formed terms are meaningful

We consider only terms that are well-sorted wrt a given signature Σ
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Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over
sequents of the form Γ ⊢ t : σ
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Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over
sequents of the form Γ ⊢ t : σ

where

• Γ = x1 : σ1, . . . , xn : σn is sort context, a set of sorted variables

• t is a well-formed term

• σ is a sort of Σ
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Well-sortedness

We formulate the notion of well-sortedness wrt Σ with a sort system, a proof system over
sequents of the form Γ ⊢ t : σ

VAR
x : σ ∈ Γ

Γ ⊢ x : σ
CONST

c ∈ ΣF rank(c) = ⟨σ⟩
Γ ⊢ c : σ

FUN
f ∈ ΣF rank(f) = ⟨σ1, . . . , σn, σ⟩ Γ ⊢ t1 : σ1 · · · Γ ⊢ tn : σn

Γ ⊢ (f t1 · · · tn) : σ

A term t is well-sorted wrt Σ and has sort σ in a sort context Γ
if Γ ⊢ t : σ is derivable in the sort system above
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Γ ⊢ (f t1 · · · tn) : σ

A term t is well-sorted wrt Σ and has sort σ in a sort context Γ
if Γ ⊢ t : σ is derivable in the sort system above We call t a Σ-term

Note: Every well-sorted term is also well-formed
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Well-sorted terms example: Elementary number theory

Let ΣS = {Nat } ( ∪ {Bool }) and ΣF = { 0, S,+,×, <,
.
=Nat } ( ∪ {⊤,⊥,

.
=Bool })

• rank(0) = ⟨Nat⟩
• rank(S) = ⟨Nat,Nat⟩
• rank(+) = rank(×) = ⟨Nat,Nat,Nat⟩
• rank(<) = rank( .=Nat) = ⟨Nat,Nat,Bool⟩

Are these well-formed terms also well-sorted in context Γ = { x1 : Bool, x2 : Nat, x3 : Nat } ?
1. (+ 0 x2) ✓

2. (+ (+ 0 x1) x2) ✗

3. (S (+ 0 x5)) ✓

4. (< (S x3) (+ (S 0) x1)) ✓

5. (
.
=Nat (S x3) (+ (S 0) x1)) ✓
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Note: As a notational convention, we will use an
infix notation for parentheses and common op-
erators like .

=, <, + and so on

So we will often write S(x3)
.
=Nat S(0) + x1

instead of (
.
=Nat (S x3) (+ (S 0) x1))



Σ-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool
under some sort context Γ
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.
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Σ-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool
under some sort context Γ

We define the following formula-building operations, denoted F :

F∨(α, β) := (α ∨ β) F∧(α, β) := (α ∧ β) F¬(α) := (¬α)
F⇒(α, β) := (α ⇒ β) F⇔(α, β) := (α ⇔ β)

Ex,σ(α) := (∃ x : σ. α) for each var x and sort σ ∈ ΣS

Ax,σ(α) := (∀ x : σ. α) for each var x and sort σ ∈ ΣS
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Ax,σ(α) := (∀ x : σ. α) for each var x and sort σ ∈ ΣS

The set of well-formed formulas is the set of expressions generated
from the atomic Σ-formulas by F
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Ax,σ(α) := (∀ x : σ. α) for each var x and sort σ ∈ ΣS

Each ∃ x : σ is an existential quantifier
Each ∀ x : σ is a universal quantifier
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Σ-Formulas

Given a signature Σ, an atomic Σ-formula is any term that is a Σ-term t of sort Bool
under some sort context Γ

We define the following formula-building operations, denoted F :

F∨(α, β) := (α ∨ β) F∧(α, β) := (α ∧ β) F¬(α) := (¬α)
F⇒(α, β) := (α ⇒ β) F⇔(α, β) := (α ⇔ β)

Ex,σ(α) := (∃ x : σ. α) for each var x and sort σ ∈ ΣS

Ax,σ(α) := (∀ x : σ. α) for each var x and sort σ ∈ ΣS

We simplify the notation as in PL by
• forgoing parentheses around top-level formulas — e.g., (x .

= y) ∨ ((y .
= z) ∨ (x .

= z))
• forgoing parenths around atomic formulas in infix form — e.g., x .

= y ∨ (y .
= z ∨ x .

= z)
• treating the binary connectives as n-ary and right associative — e.g., x .

= y ∨ y .
= z ∨ x .

= z
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Σ-Formulas: Examples

Let Σ = ⟨ΣS := {Nat},ΣF := { 0, S,+,×, <,
.
=Nat }⟩ a xi be variables for all i
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.
=Nat }⟩ a xi be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. (
.
=Nat (+ x1 0) x2) ✓

2. (
.
=Nat (+ x1 0) x2) ⇒ ⊥ ✓

3. (+ 0 x3) ∧ (< 0 (S 0)) ✗

4. ∀ x3 : Nat. (+ (+ 0 x3) x2) ✗

5. ∀ x3 : Bool. ( .=Nat (+ 0 x3) x2) ✓

6. ¬∃ x0 : Nat. (< 0 x0 (S 0)) ✗
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Note: Formula (5) is well-formed but not
well-sorted

To know which formulas are well-sorted
we need to extend our sort system to the
logical operators



Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and quantifiers
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Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and quantifiers

BCONST
c ∈ {⊤,⊥}
Γ ⊢ c : Bool NOT

Γ ⊢ α : Bool
Γ ⊢ (¬α) : Bool

CONN
Γ ⊢ α : Bool Γ ⊢ β : Bool ▷◁ ∈ {∧,∨,⇒,⇔}

Γ ⊢ (α ▷◁ β) : Bool

QUANT
Γ[x : σ] ⊢ α : Bool σ ∈ ΣS Q ∈ {∀, ∃ }

Γ ⊢ (Q x : σ. α) : Bool

Γ[x : σ] is a context that assigns sort σ to x and is otherwise identical to Γ
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if Γ ⊢ α : Bool is derivable in the sort system above
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Γ ⊢ (Q x : σ. α) : Bool

A formula α is well-sorted wrt Σ in a sort context Γ
if Γ ⊢ α : Bool is derivable in the sort system above We call α a Σ-formula
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Exercise

Draw two Venn Diagram that illustrate the relations between

A: terms

B: well-formed terms

C: well-sorted terms

D: well-sorted atomic formulas

and between

D: well-sorted atomic formulas

E: well-formed formulas

F: well-sorted formulas
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Notational conventions for formulas

From now on, to improve readability:

• We will use the infix notation for logical operators and function symbols typically written in that
notation ( .=σ , <, +, . . . )

• Finally, we will omit the sort symbol in equalities and quantifiers when it is clear from the context
or not important:
Example: ∀ x1. ∀ y1. x1

.
= x2 instead of ∀ x:σ1. ∀ x2:σ2. x1

.
= x2

• We may also omit parentheses by defining precedence:
• Same precedence for propositional connectives as in propositional logic
• Quantifiers have the highest precedence after ¬
Example: ¬∀x. (p x) ∧ (q x) abbreviates (¬(∀x. (p x))) ∧ (q x))

• Finally, we will allow the use of parentheses following function symbols.
Example: ∀x. p(r(x)) ∧ q(x) instead of ∀x. (p (r x)) ∧ (q x)
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Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }
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{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

Examples: Let x, y, z be variables
• FV(x) = { x } (provided x has sort Bool)
• FV(x < S(0) + y) = { x, y }
• FV(x < S(0) + y ∧ x .

= z) = FV(x < S(0) + y) ∪ FV(x .
= z) = { x, y } ∪ { x, z } = { x, y, z }

• FV(∀x : Nat. x < S(0) + y) = FV(x < S(0) + y) \ { x } = { x, y } \ { x } = { y }
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Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

A variable x occurs free in a Σ-formula α if x ∈ FV(α)

For α = Q v : σ. β, we say that v is bound in α

The scope of x in α is the subformula β
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FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

A Σ-formula α is closed, or is a (Σ-)sentence, if FV(α) = ∅
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FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

Can a variable both occur free and be bound in α?

21 / 35



Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

Can a variable both occur free and be bound in α? Yes! (e.g., x < x ⇒ ∀x : Nat. 0 < x )

21 / 35



Free and Bound Variables

A variable x may occur free in a Σ-formula α or not

We formalize that by defining inductively the set FV of free variables of α

FV(α) :=


{ x | x is a var in α } if α is atomic
FV(β) if α = ¬β
FV(β) ∪ FV(γ) if α = β ▷◁ γ with ▷◁ ∈ {∧,∨,⇒,⇔}
FV(β) \ { v } if α = Q v : σ. β with Q ∈ {∀,∃ }

Can a variable both occur free and be bound in α? Yes! (e.g., x < x ⇒ ∀x : Nat. 0 < x )

This can be confusing, so we typically rename the bound variables of a formula so that they are
distinct from its free variables (e.g., x < x ⇒ ∀y : Nat. 0 < y )
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FOL Semantics

Recall: The syntax of a first-order language is defined wrt a signature Σ := ⟨ΣS,ΣF⟩ where:

• ΣS is a set of sorts

• ΣF is a set of function symbols

In propositional logic, the truth of a formula depends on the meaning of its variables

In first-order logic, the truth of a Σ-formula depends on:

1. the meaning of each sort symbol σ
2. the meaning of each function symbol f
3. the meaning of each free variable x

in the formula
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Semantics

Let α be a Σ-formula and let Γ be a sorting context that includes α’s free variables

The truth of α is determined by interpretations I of Σ and Γ consisting of:

1. an interpretation σI of each σ ∈ ΣS as a nonempty set, the domain of σ

2. an interpretation fI of each f ∈ ΣF of rank ⟨σ1, . . . , σn, σn+1⟩ as a total n-ary function from
σI

1 × · · · × σI
n to σI

n+1

3. an interpretation xI of each x : σ ∈ Γ as an element of σI

Note: We consider only interpretations I such that
• BoolI = { true, false }, ⊥I = false, ⊤I = true
• for all σ ∈ ΣS, =I

σ maps its two arguments to true iff they are identical
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Semantics: Example

Consider a signature Σ = ⟨ΣS,ΣF⟩ for a fragment of set theory with non-set elements:

ΣS = {Elem, Set}, ΣF = {∅,⊏−}, rank(∅) = ⟨Set⟩, rank(⊏−) = ⟨Elem, Set,Bool⟩
Γ = { ei : Elem | i ≥ 0 } ∪ { si : Set | i ≥ 0 }
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ΣS = {Elem, Set}, ΣF = {∅,⊏−}, rank(∅) = ⟨Set⟩, rank(⊏−) = ⟨Elem, Set,Bool⟩
Γ = { ei : Elem | i ≥ 0 } ∪ { si : Set | i ≥ 0 }

A possible interpretation I of Σ, Γ:

1. ElemI = N, the natural numbers
2. SetI = 2N, all sets of natural numbers
3. ∅I = {}
4. for all n ∈ N and s ⊆ N, ⊏−I(n, s) = true iff n ∈ s
5. for i = 0, 1, . . ., ei

I = i and si
I = [0, i] = { 0, 1, . . . , i }
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ΣS = {Elem, Set}, ΣF = {∅,⊏−}, rank(∅) = ⟨Set⟩, rank(⊏−) = ⟨Elem, Set,Bool⟩
Γ = { ei : Elem | i ≥ 0 } ∪ { si : Set | i ≥ 0 }

Another interpretation I of Σ, Γ:

1. ElemI = SetI = N, the natural numbers
2. ∅I = 0
3. for all m, n ∈ N, ⊏−I(m, n) = true iff m is divisible by n
4. for i = 0, 1, . . ., ei

I = i and si
I = 2
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Semantics: Example

Consider a signature Σ = ⟨ΣS,ΣF⟩ for a fragment of set theory with non-set elements:

ΣS = {Elem, Set}, ΣF = {∅,⊏−}, rank(∅) = ⟨Set⟩, rank(⊏−) = ⟨Elem, Set,Bool⟩
Γ = { ei : Elem | i ≥ 0 } ∪ { si : Set | i ≥ 0 }

There is an infinity of interpretations of Σ, Γ !
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Term Semantics

Interpretations are analogous to a variable assignments in propositional logic

We define how to determine the truth value of a Σ-formula in an interpretation I in FOL in analogy to
how to determine the truth value of a formula under a variable assignment v in PL

25 / 35



Term Semantics

Interpretations are analogous to a variable assignments in propositional logic

We define how to determine the truth value of a Σ-formula in an interpretation I in FOL in analogy to
how to determine the truth value of a formula under a variable assignment v in PL

The first step is to extend I by structural induction to an interpretation I for well-sorted terms

tI =

{
tI if t is a constant of Σ or a variable
fI(tI1 , . . . , tIn ) if t = (f t1 · · · tn)

25 / 35



Term Semantics
The first step is to extend I by structural induction to an interpretation I for well-sorted terms

tI =

{
tI if t is a constant of Σ or a variable
fI(tI1 , . . . , tIn ) if t = (f t1 · · · tn)

Example:

ΣS = {Pers }, Σf = {pa,ma,mar }, Γ = { x:Pers, y:Pers, . . . },
rank(pa) = rank(ma) = ⟨Pers,Pers⟩, rank(mar) = ⟨Pers,Pers,Bool⟩

25 / 35



Term Semantics
The first step is to extend I by structural induction to an interpretation I for well-sorted terms

tI =

{
tI if t is a constant of Σ or a variable
fI(tI1 , . . . , tIn ) if t = (f t1 · · · tn)

Example:

ΣS = {Pers }, Σf = {pa,ma,mar }, Γ = { x:Pers, y:Pers, . . . },
rank(pa) = rank(ma) = ⟨Pers,Pers⟩, rank(mar) = ⟨Pers,Pers,Bool⟩
Consider I such that

maI = { Jim 7→ Jill, Joe 7→ Jen, . . . }, paI = { Jim 7→ Joe, Jill 7→ Jay, . . . },
marI = { (Jill, Joe) 7→ true, (Joe, Jill) 7→ true, (Jill, Jill) 7→ false, . . . }, xI = Jim, yI = Joe

25 / 35



Term Semantics
The first step is to extend I by structural induction to an interpretation I for well-sorted terms

tI =

{
tI if t is a constant of Σ or a variable
fI(tI1 , . . . , tIn ) if t = (f t1 · · · tn)

Example:

ΣS = {Pers }, Σf = {pa,ma,mar }, Γ = { x:Pers, y:Pers, . . . },
rank(pa) = rank(ma) = ⟨Pers,Pers⟩, rank(mar) = ⟨Pers,Pers,Bool⟩
Consider I such that

maI = { Jim 7→ Jill, Joe 7→ Jen, . . . }, paI = { Jim 7→ Joe, Jill 7→ Jay, . . . },
marI = { (Jill, Joe) 7→ true, (Joe, Jill) 7→ true, (Jill, Jill) 7→ false, . . . }, xI = Jim, yI = Joe

(pa (ma x))I = paI((ma x)I) = paI(maI(xI)) = paI(maI(xI))
= paI(maI(Jim)) = paI(Jill) = Jay

25 / 35



Term Semantics
The first step is to extend I by structural induction to an interpretation I for well-sorted terms

tI =

{
tI if t is a constant of Σ or a variable
fI(tI1 , . . . , tIn ) if t = (f t1 · · · tn)

Example:

ΣS = {Pers }, Σf = {pa,ma,mar }, Γ = { x:Pers, y:Pers, . . . },
rank(pa) = rank(ma) = ⟨Pers,Pers⟩, rank(mar) = ⟨Pers,Pers,Bool⟩
Consider I such that

maI = { Jim 7→ Jill, Joe 7→ Jen, . . . }, paI = { Jim 7→ Joe, Jill 7→ Jay, . . . },
marI = { (Jill, Joe) 7→ true, (Joe, Jill) 7→ true, (Jill, Jill) 7→ false, . . . }, xI = Jim, yI = Joe

(mar (ma x) y)I = marI((ma x)I , yI) = marI(maI(xI), yI) = marI(maI(xI), Joe)
= marI(maI(Jim), Joe) = marI(Jill, Joe) = true
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Formula Semantics

We further extend I to well-sorted non-atomic formulas by structural induction as follows:

• (¬α)I = true iff αI = false

• (α ∧ β)I = true iff αI = βI = true

• (α ∨ β)I = true iff αI = true or βI = true

• (α ⇒ β)I = true iff αI = false or βI = true

• (α ⇔ β)I = true iff αI = βI

• (∃x : σ. α)I = true iff αI[x 7→a] = true for some a ∈ σI

• (∀x : σ. α)I = true iff αI[x 7→a] = true for all a ∈ σI
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Entailment, validity

Let Φ be a set of Σ-formulas. We write I |= Φ to mean that I |= α for every α ∈ Φ

If Φ is a set of Σ-formulas and α is a Σ-formula, then Φ entails or logically implies α, written Φ |= α, if
I |= α for every interpretation I of Σ such that I |= Φ

We write α |= β as an abbreviation for {α} |= β

α and β are logically equivalent, written α ≡ β, iff α |= β and β |= α

A Σ-formula α is valid, written |= α if {} |= α iff I |= α for every interpretation I

Exercise Suppose that ΣS = { A }, ΣF = {p, q }, rank(p) = ⟨A,Bool⟩, rank(q) = ⟨A, A,Bool⟩, and all
variables vi have sort A. Do the following entailment actually hold?

1. ∀ v1. p(v1) |= p(v2) ✓ 2. p(v1) |= ∀ v1. p(v1) ✗

3. ∀ v1. p(v1) |= ∃ v2. p(v2) ✓ 4. ∃ v2. ∀ v1. q(v1, v2) |= ∀ v1. ∃ v2. q(v1, v2) ✓

5. ∀ v1. ∃ v2. q(v1, v2) |= ∃ v2. ∀ v1. q(v1, v2) ✗ 6. |= ∃ v1. (p(v1) ⇒ ∀ v2. p(v2)) ✓
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Exercise

Let α be a Σ-formula and let Γ be a sorting context that includes α’s free variables

The truth of α is determined by interpretations I of Σ and Γ consisting of:

1. an interpretation σI of each σ ∈ ΣS as a nonempty set, the domain of σ

2. an interpretation fI of each f ∈ ΣF of rank ⟨σ1, . . . , σn, σn+1⟩ as a total n-ary function from σI
1 × · · · × σI

n to
σI

n+1

3. an interpretation xI of each x : σ ∈ Γ as an element of σI

Consider the signature where

ΣS = {σ },ΣF = {Q, .=σ }, Γ = { x : σ, y : σ }, rank(Q) = ⟨σ, σ,Bool⟩
For each of the following Σ-formulas, describe an interpretation that satisfies it

1. ∀ x:σ. ∀ y:σ. x .
= y

2. ∀ x:σ. ∀ y:σ.Q(x, y)
3. ∀ x:σ. ∃ y:σ.Q(x, y)
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From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
∃x:Nat. ∀y:Nat. (x .

= y ∨ x < y)
2. For every natural number there is a greater one ∀x:Nat. ∃y:Nat. x < y
3. Two natural numbers are equal only if their respective successors are equal

∀x:Nat. ∀y:Nat. (x .
= y ⇒ S(x) .

= S(y))
4. Two natural numbers are equal if their respective successors are equal

∀x:Nat. ∀y:Nat. (S(x) .
= S(y) ⇒ x .

= y)
5. No two distinct natural numbers have the same successor

∀x:Nat. ∀y:Nat. (¬(x .
= y) ⇒ ¬(S(x) .

= S(y)))
6. There are at least two natural numbers smaller than 3

∃x:Nat. ∃y:Nat. (¬(x .
= y) ∧ (x < S(S(S(0)))) ∧ (y < S(S(S(0)))))

7. There is no largest natural number ¬∃x:Nat. ∀y:Nat. (y .
= x ∨ y < x)
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From English to FOL: Examples 2

1. Everyone has a father and a mother ∀x:Pers. ∃y:Pers. ∃z:Pers. (y .
= pa(x) ∧ z .

= ma(x))
2. The married relation is symmetric ∀x:Pers. ∀y:Pers. (mar(x, y) ⇒ mar(y, x))
3. No one can be married to themselves ∀x:Pers.¬mar(x, x)
4. Not all people are married ¬∀x:Pers. ∃y:Pers.mar(x, y)
5. Some people have a father and a mother who are not married to each other

∃x:Pers.¬mar(ma(x),pa(x))
6. You cannot marry more than one person

∀x:Pers. ∀y:Pers. ∀z:Pers. (mar(x, y) ∧ mar(x, z) ⇒ y .
= z)

7. Some people are not mothers ∃x:Pers.∀y:Pers.¬(x .
= ma(y))

8. Nobody can be both a father and a mother ∀x:Pers.¬∃y:Pers.¬∃z:Pers. (x .
= pa(y) ∧ z .

= ma(z))
9. You can’t be your own father or father’s father ∀x:Pers.¬(x .

= pa(x) ∨ x .
= pa(pa(x)))

10. Some people are childless ∃x:Pers. ∀y:Pers. (¬(x .
= pa(y)) ∧ ∧(x .

= ma(y)))
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From English to FOL: Examples 2
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Invariance of term values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Lemma 1
If I and J also agree on the variables of a Σ-term t with variables in Γ, then tI = tJ .

Proof.
By structural induction on t.

• If t is a variable or a constant, then tI = tI , tJ = tJ .
Since tI = tJ by assumption, we have that tI = tI = tJ = tJ .

• If t = (f t1 · · · tn) with n > 1, then fI = fJ by assumption and tIi = tJi for i = 1, . . . , n by
induction hypothesis.

It follows that tI = fI(tI1 , . . . , tIn ) = fJ (tJ1 , . . . , tJn ) = tJ
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Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .
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then αI = αJ .

Proof.
By induction on α.

• If α is an atomic formula, the results holds by the previous lemma since α is then a term,
and all of its variables occur free in it.

• If α is ¬β or α1 ▷◁ α2 with ▷◁∈ {∧,∨,⇒,⇔}, the result follows from the inductive
hypothesis.
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Invariance of truth values

Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Proof.
By induction on α.

• If α = Q s:σ. β with Q ∈ {∀,∃ }. Then FV(β) = FV(α) ∪ { x }.
For any d in σI , I[x 7→ d] and J [x 7→ d] agree on x by construction and on FV(α) by
assumption. The result follows from the inductive hypothesis and the semantics of ∀ and
∃.
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Consider a signature Σ, a Σ-context Γ, and two Σ-interpretations I and J that agree on the
sorts and symbols of Σ.

Theorem 2
If I and J also agree on the free variables of a Σ-formula α with free variables in Γ,
then αI = αJ .

Note: The theorem implies that the interpretation of formula α is independent from the values
assigned to variables that do not occur free in α.

Corollary 3
The truth value of sentences is independent from how variables are interpreted.
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The Deduction Theorem of FOL
Consider a signature Σ

Theorem 4
For all Σ-formulas α and β, we have that α |= β iff |= α ⇒ β

Proof.
⇒) We argue that every Σ interpretation I satisfies γ := α ⇒ β. If I falsifies α, then it trivially
satisfies γ. If, instead, I satisfies α, then, since α |= β, it must satisfy β as well. Hence, it
satisfies γ.
⇐) We argue that every Σ-interpretation I that satisfies α satisfies β as well. Any such
interpretation must indeed satisfy β; otherwise, it would falsify α ⇒ β, against the assumption
that |= α ⇒ β.

Corollary 5
For all Σ-formulas α and β, we have that α ≡ β iff |= α ⇔ β
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The Free Variables Theorem 1

Consider a signature Σ and a Σ-context Γ

Let Φ be a set of Σ-formulas, let α be Σ-formula with free variables from Γ, and let x ∈ FV(α)
where x : σ ∈ Γ.

Theorem 6
Suppose x occurs free in no formulas of Φ. Then, Φ |= α iff Φ |= ∀x:σ. α

Proof.
⇒) Let I be any interpretation that satisfies Φ. Since x does not occur free in any formula of Φ
we can conclude that I[x 7→ a] |= Φ for all a ∈ σI . Since Φ |= α, we have that I[x 7→ a] |= α
for all a ∈ σI . But then I |= ∀x:σ. α by definition of ∀. Hence, every interpretation that
satisfies Φ also satisfies ∀x:σ. α, that is, Φ |= ∀x:σ. α.
⇐) Let I be any interpretation that satisfies Φ. By assumption I |= ∀x:σ. α. This implies that
I |= α regardless of what xI is. Hence Φ |= α.
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The Free Variables Theorem 2

Consider a signature Σ and a Σ-context Γ

Let β be Σ-formula, let α be a Σ-formula with free variables from Γ, and let x ∈ FV(α) where
x : σ ∈ Γ.

Theorem 7
Suppose x does not occur free in β. Then, α |= β iff ∃x:σ. α |= β

Proof.
⇒) Let I be any interpretation that satisfies ∃x:σ. α. This means that I[x 7→ a] |= α for some
a ∈ σI . By assumption, I[x 7→ a] satisfies β as well. Since x does not occur free in β, changing
the value assigned to x does not matter. It follows that I |= β. Since I was arbitrary, this
shows that ∃x:σ. α |= β.
⇐) Let I be any interpretation that satisfies α. Then, trivially, I |= ∃x:σ. α. By assumption,
I |= β. Since I was arbitrary, we can conclude that α |= β.
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