

CS:4980 Topics in Computer Science II
Introduction to Automated Reasoning

First-order Logic: Syntax and Semantics

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa, and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English	PL
Every natural number is greater than 0	<i>p</i>
1 is a natural number not equal to 0	$\neg q$

What facts can we logically deduce? Only: $p \wedge \neg q$

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English	PL
Every natural number is greater than 0	p
1 is a natural number not equal to 0	$\neg q$

What facts can we logically deduce? Only: $p \wedge \neg q$

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English	PL
Every natural number is greater than 0	p
1 is a natural number not equal to 0	$\neg q$

What facts can we logically deduce? Only: $p \wedge \neg q$

Propositional logic is often too **coarse** to express information about individual objects and formalize **correct deductions** about them

We cannot deduce that 1 is greater than 0 from the two sentences above

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English	PL
Every natural number is greater than 0	p
1 is a natural number not equal to 0	$\neg q$

What facts can we logically deduce? Only: $p \wedge \neg q$

First-order Logic (FOL) allows us to (dis)prove the validity of sentences like the above or deduce their consequences (e.g., that 1 is greater than 0)

Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English	PL
Every natural number is greater than 0	<i>p</i>
1 is a natural number not equal to 0	<i>¬q</i>

What facts can we logically deduce? Only: *p* \wedge *¬q*

First-order Logic (FOL) allows us to (dis)prove the validity of sentences like the above or deduce their consequences (e.g., that 1 is greater than 0)

In this case, we need a **first-order language** for number theory

Motivation

“Every positive integer number different from 1 is smaller than its square”

Motivation

“Every positive integer **number** different from **1** is smaller than **its square**”

Intuitively, a first-order language has the following features:

- A sublanguage to denote **individual things** (numbers, people, colors, ...)
- A sublanguage to express properties of individuals and relations among them
- A sublanguage to denote groups of individuals with common features and ascribe them to specific individuals
- A way to quantify statements about individuals

Motivation

“Every positive integer number **different from 1** is **smaller than** its square”

Intuitively, a first-order language has the following features:

- A sublanguage to denote individual things (numbers, people, colors, ...)
- A sublanguage to express **properties** of individuals and **relations** among them
- A sublanguage to denote groups of individuals with common features and ascribe them to specific individuals
- A way to quantify statements about individuals

Motivation

“Every positive **integer** number different from 1 is smaller than its square”

Intuitively, a first-order language has the following features:

- A sublanguage to denote individual things (numbers, people, colors, ...)
- A sublanguage to express properties of individuals and relations among them
- A sublanguage to denote **groups** of individuals with common features and ascribe them to specific individuals
- A way to quantify statements about individuals

Motivation

“**Every** positive integer number different from 1 is smaller than its square”

Intuitively, a first-order language has the following features:

- A sublanguage to denote individual things (numbers, people, colors, ...)
- A sublanguage to express properties of individuals and relations among them
- A sublanguage to denote groups of individuals with common features and ascribe them to specific individuals
- A way to **quantify** statements about individuals

Motivation

“Every positive integer number different from 1 is smaller than its square”

English	FOL language
generic number	x
the number 1	1
the square of x	$\text{square}(x)$
“ x is positive”	$\text{positive}(x)$
“ x is different from 1”	$x \neq 1$
“ x is smaller than its square”	$x < \text{square}(x)$
“every integer number”	$\forall x : \text{Int}$

Motivation

“Every positive integer number different from 1 is smaller than its square”

English	FOL language
generic number	x
the number 1	1
the square of x	$\text{square}(x)$
“ x is positive”	$\text{positive}(x)$
“ x is different from 1”	$x \neq 1$
“ x is smaller than its square”	$x < \text{square}(x)$
“every integer number”	$\forall x : \text{Int}$

Sentence above in FOL: $\forall x : \text{Int. } (\text{positive}(x) \wedge x \neq 1 \Rightarrow x < \text{square}(x))$

Motivation

“Every positive integer number different from 1 is smaller than its square”

English	FOL language
generic number	x
the number 1	1
the square of x	$\text{square}(x)$
“ x is positive”	$\text{positive}(x)$
“ x is different from 1”	$x \neq 1$
“ x is smaller than its square”	$x < \text{square}(x)$
“every integer number”	$\forall x : \text{Int}$

Sentence above in FOL: $\forall x : \text{Int}. (\text{positive}(x) \wedge x \neq 1 \Rightarrow x < \text{square}(x))$

The formula is **true** in the intended interpretation

Outline

- Syntax (ML 7.1-2)
- Semantics (ML 7.3)

ML presents a **one-sorted** first-order logic

We will use a **many-sorted** first-order logic

This makes it convenient to present **Satisfiability Modulo Theories** later

Note:

Many-sorted FOL is not more expressive than one-sorted FOL:

It is possible to faithfully encode the former in the latter

Outline

- Syntax (ML 7.1-2)
- Semantics (ML 7.3)

ML presents a **one-sorted** first-order logic

We will use a **many-sorted** first-order logic

This makes it convenient to present **Satisfiability Modulo Theories** later

Note:

Many-sorted FOL is **not more expressive** than one-sorted FOL:

It is possible to faithfully encode the former in the latter

Outline

- Syntax (ML 7.1-2)
- Semantics (ML 7.3)

ML presents a **one-sorted** first-order logic

We will use a **many-sorted** first-order logic

This makes it convenient to present **Satisfiability Modulo Theories** later

Note:

Many-sorted FOL is **not more expressive** than one-sorted FOL:

It is possible to faithfully encode the former in the latter

However, using different sorts makes it more convenient to rule out non-sensical expressions

Symbols

Review: what does the **syntax** of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different *first-order languages*

The *symbols* of a first-order language consist of:

1. *Logical symbols* (\Rightarrow , \top , \wedge , \neg , $(,)$)
2. *Signature*, $\Sigma = (\Sigma^S, \Sigma^F)$, where:
 - Σ^S is a set of *sorts*: e.g., `Real`, `Int`, `Set`
 - Σ^F is a set of *function symbols*: e.g., $=$, $+$, $+_{[2]}$, $<$, \emptyset

Note: We consider symbols as *atomic* (not divisible further)

Symbols

Review: what does the **syntax** of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different *first-order languages*

The *symbols* of a first-order language consist of:

1. *Logical symbols* (\Rightarrow , \top , \wedge , \neg , $(,)$)
2. *Signature*, $\Sigma = (\Sigma^S, \Sigma^F)$, where:
 - Σ^S is a set of *sorts*: e.g., `Real`, `Int`, `Set`
 - Σ^F is a set of *function symbols*: e.g., $=$, $+$, $+_{[2]}$, $<$, \emptyset

Note: We consider symbols as *atomic* (not divisible further)

Symbols

Review: what does the **syntax** of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different *first-order languages*

The *symbols* of a first-order language consist of:

1. *Logical symbols* (\Rightarrow , \top , \wedge , \neg , $(,)$)
2. *Signature*, $\Sigma = (\Sigma^S, \Sigma^F)$, where:
 - Σ^S is a set of *sorts*: e.g., Real , Int , Set
 - Σ^F is a set of *function symbols*: e.g., $=$, $+$, $+_{\mathbb{R}}$, $<$, \emptyset

Note: We consider symbols as *atomic* (not divisible further)

Symbols

Review: what does the **syntax** of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different *first-order languages*

The *symbols* of a first-order language consist of:

1. *Logical symbols* ($\Rightarrow, \top, \wedge, \neg, (,)$)
2. *Signature*, $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$, where:
 - Σ^S is a set of *sorts*: e.g., **Real**, **Int**, **Set**
 - Σ^F is a set of *function symbols*: e.g., $=, +, +_{[2]}, <, \emptyset$

Note: We consider symbols as *atomic* (not divisible further)

Symbols

Review: what does the **syntax** of a logic consist of?

Symbols + rules for combining them

First-order logic is an umbrella term for different *first-order languages*

The *symbols* of a first-order language consist of:

1. *Logical symbols* ($\Rightarrow, \top, \wedge, \neg, (,)$)
2. *Signature*, $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$, where:
 - Σ^S is a set of *sorts*: e.g., **Real**, **Int**, **Set**
 - Σ^F is a set of *function symbols*: e.g., $=, +, +_{[2]}, <, \emptyset$

Note: We consider symbols as *atomic* (not divisible further)

Signature

The syntax of a first-order language is defined w.r.t. a *signature*, $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$, where:

- Σ^S is a set of *sorts*: e.g., `Real`, `Int`, `Set`,
- Σ^F is a set of *function symbols*: e.g., $=$, $+$, $+[2]$, $<$, \emptyset

We associate each *function symbol* $f \in \Sigma^F$ with:

- an *arity* n : a natural number denoting the number of arguments f takes
- a *rank* a $(n+1)$ -tuple of sorts: $\text{rank}(f) = \langle \sigma_1, \dots, \sigma_n, \sigma_{n+1} \rangle$

Signature

The syntax of a first-order language is defined w.r.t. a *signature*, $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$, where:

- Σ^S is a set of *sorts*: e.g., `Real`, `Int`, `Set`,
- Σ^F is a set of *function symbols*: e.g., `=`, `+`, `+[2]`, `<`, `()`

We associate each *function symbol* $f \in \Sigma^F$ with:

- an *arity* n : a natural number denoting the number of arguments f takes
- a *rank*: a $(n+1)$ -tuple of sorts: $\text{rank}(f) = (\sigma_1, \dots, \sigma_n, \sigma_{n+1})$

Signature

The syntax of a first-order language is defined w.r.t. a *signature*, $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$, where:

- Σ^S is a set of *sorts*: e.g., `Real`, `Int`, `Set`,
- Σ^F is a set of *function symbols*: e.g., `=`, `+`, `+[2]`, `<`, `()`

We associate each *function symbol* $f \in \Sigma^F$ with:

- an *arity* n : a natural number denoting the number of arguments f takes
- a *rank* a $(n + 1)$ -tuple of sorts: $\text{rank}(f) = \langle \sigma_1, \dots, \sigma_n, \sigma_{n+1} \rangle$

Signature

The syntax of a first-order language is defined w.r.t. a *signature*, $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$, where:

- Σ^S is a set of *sorts*: e.g., `Real`, `Int`, `Set`,
- Σ^F is a set of *function symbols*: e.g., `=`, `+`, `+[2]`, `<`, `Ø`

We associate each *function symbol* $f \in \Sigma^F$ with:

- an *arity* n : a natural number denoting the number of arguments f takes
- a *rank* a $(n + 1)$ -tuple of sorts: $\text{rank}(f) = \langle \sigma_1, \dots, \sigma_n, \sigma_{n+1} \rangle$

Intuitively, f denotes a function that takes n values of respective sort $\sigma_1, \dots, \sigma_n$ as input and returns an output of sort σ_{n+1}

Signature

The syntax of a first-order language is defined w.r.t. a *signature*, $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$, where:

- Σ^S is a set of *sorts*: e.g., `Real`, `Int`, `Set`,
- Σ^F is a set of *function symbols*: e.g., `=`, `+`, `+[2]`, `<`, `()`

We associate each *function symbol* $f \in \Sigma^F$ with:

- an *arity* n : a natural number denoting the number of arguments f takes
- a *rank* a $(n + 1)$ -tuple of sorts: $\text{rank}(f) = \langle \sigma_1, \dots, \sigma_n, \sigma_{n+1} \rangle$

Intuitively, f denotes a function that takes n values of respective sort $\sigma_1, \dots, \sigma_n$ as input and returns an output of sort σ_{n+1}

$\sigma_1, \dots, \sigma_n$ are the *input sorts* of f and σ_{n+1} is the *output sort*

Signature

The syntax of a first-order language is defined w.r.t. a *signature*, $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$, where:

- Σ^S is a set of *sorts*: e.g., `Real`, `Int`, `Set`,
- Σ^F is a set of *function symbols*: e.g., `=`, `+`, `+[2]`, `<`, `()`

We associate each *function symbol* $f \in \Sigma^F$ with:

- an *arity* n : a natural number denoting the number of arguments f takes
- a *rank* a $(n + 1)$ -tuple of sorts: $\text{rank}(f) = \langle \sigma_1, \dots, \sigma_n, \sigma_{n+1} \rangle$

Intuitively, f denotes a function that takes n values of respective sort $\sigma_1, \dots, \sigma_n$ as input and returns an output of sort σ_{n+1}

We call function symbols a of arity 0 *constants* and say they have sort σ when $\text{rank}(a) = \langle \sigma \rangle$

Signature

The syntax of a first-order language is defined w.r.t. a *signature*, $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$, where:

- Σ^S is a set of *sorts*: e.g., `Real`, `Int`, `Set`,
- Σ^F is a set of *function symbols*: e.g., `=`, `+`, `+[2]`, `<`, `()`

We associate each *function symbol* $f \in \Sigma^F$ with:

- an *arity* n : a natural number denoting the number of arguments f takes
- a *rank* a $(n + 1)$ -tuple of sorts: $\text{rank}(f) = \langle \sigma_1, \dots, \sigma_n, \sigma_{n+1} \rangle$

We also assume an infinite set of *variable (symbols)* x, y, \dots

Signature

The syntax of a first-order language is defined w.r.t. a *signature*, $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$, where:

- Σ^S is a set of *sorts*: e.g., `Real`, `Int`, `Set`,
- Σ^F is a set of *function symbols*: e.g., `=`, `+`, `+[2]`, `<`, `()`

We associate each *function symbol* $f \in \Sigma^F$ with:

- an *arity* n : a natural number denoting the number of arguments f takes
- a *rank* a $(n + 1)$ -tuple of sorts: $\text{rank}(f) = \langle \sigma_1, \dots, \sigma_n, \sigma_{n+1} \rangle$

Example: In the first-order language of number theory

- Σ^S contains a sort `Nat` and Σ^F contains a function symbols `0`, `1`, `+`
- `0` and `1` have arity `0` and $\text{rank}(0) = \text{rank}(1) = \langle \text{Nat} \rangle$
- `+` has arity `2` and $\text{rank}(+) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$

Signature

We assume for every signature Σ that

- Σ^S includes a distinguished sort **Bool**
- Σ^F contains distinguished constants \top and \perp with $\text{sort}(\perp) = \text{sort}(\top) = \text{Bool}$, and distinguished functions symbols \doteq_σ with $\text{rank}(\doteq_\sigma) = \langle \sigma, \sigma, \text{Bool} \rangle$ for all $\sigma \in \Sigma^S$

There are two special kinds of function symbols:

Constant symbols: function symbols of 0 arity (e.g., \perp , \top , π , John, 0)

Predicate symbols: function symbols of return sort Bool (e.g., \doteq_σ , \prec)

Signature

We assume for every signature Σ that

- Σ^S includes a **distinguished sort** Bool
- Σ^F contains **distinguished constants** \top and \perp with $\text{sort}(\perp) = \text{sort}(\top) = \text{Bool}$, and distinguished functions symbols \doteq_σ with $\text{rank}(\doteq_\sigma) = \langle \sigma, \sigma, \text{Bool} \rangle$ for all $\sigma \in \Sigma^S$

There are two **special** kinds of **function symbols**:

Constant symbols: function symbols of 0 arity (e.g., \perp , \top , π , John , $\mathbb{0}$)

Predicate symbols: function symbols of return sort Bool (e.g., \doteq_σ , \prec)

Signature

We assume for every signature Σ that

- Σ^S includes a **distinguished sort** Bool
- Σ^F contains **distinguished constants** \top and \perp with $\text{sort}(\perp) = \text{sort}(\top) = \text{Bool}$, and distinguished functions symbols \doteq_σ with $\text{rank}(\doteq_\sigma) = \langle \sigma, \sigma, \text{Bool} \rangle$ for all $\sigma \in \Sigma^S$

There are two **special** kinds of **function symbols**:

Constant symbols: function symbols of 0 arity (e.g., \perp , \top , π , John , 0)

Predicate symbols: function symbols of return sort Bool (e.g., \doteq , \prec)

Signature

We assume for every signature Σ that

- Σ^S includes a **distinguished sort** Bool
- Σ^F contains **distinguished constants** \top and \perp with $\text{sort}(\perp) = \text{sort}(\top) = \text{Bool}$, and distinguished functions symbols \doteq_σ with $\text{rank}(\doteq_\sigma) = \langle \sigma, \sigma, \text{Bool} \rangle$ for all $\sigma \in \Sigma^S$

There are two **special** kinds of **function symbols**:

Constant symbols: function symbols of 0 arity (e.g., \perp , \top , π , John , 0)

Predicate symbols: function symbols of return sort Bool (e.g., \doteq_σ , $<$)

First-Order Languages: Examples

Recall that a first-order language is defined wrt a signature $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$

Elementary Number Theory

- $\Sigma^S : \{ \text{Nat}, \text{Bool} \}$
- $\Sigma^F : \{ <, 0, S, +, \times, \dot{\div}_{\text{Nat}} \} \cup \{ \top, \perp, \dot{\div}_{\text{Bool}} \}$

where:

- $\text{rank}(<) = \langle \text{Nat}, \text{Nat}, \text{Bool} \rangle$
- $\text{rank}(0) = \langle \text{Nat} \rangle$
- $\text{rank}(S) = \langle \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(+) = \text{rank}(\times) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$

First-Order Languages: Examples

Set Theory

- $\Sigma^S : \{ \text{Set}, \text{Bool} \}$
- $\Sigma^F : \{ \in, \emptyset, \cup, \cap, \dot{=}_{\text{Set}} \} \cup \{ \top, \perp, \dot{=}_{\text{Bool}} \}$

where:

- $\text{rank}(\emptyset) = \langle \text{Set} \rangle$
- $\text{rank}(\cup) = \text{rank}(\cap) = \langle \text{Set}, \text{Set}, \text{Set} \rangle$
- $\text{rank}(\in) = \langle \text{Set}, \text{Set}, \text{Bool} \rangle$

First-Order Languages: Examples

Propositional logic formulas

- $\Sigma^S : \{ \text{Bool} \}$
- $\Sigma^F : \{ \neg, \wedge, \vee, \dots, p_1, p_2, \dots \} \cup \{ \top, \perp, \dot{=}_{\text{Bool}} \}$

where:

- $\text{rank}(p_i) = \langle \text{Bool} \rangle$
- $\text{rank}(\neg) = \langle \text{Bool}, \text{Bool} \rangle$
- $\text{rank}(\wedge) = \text{rank}(\vee) = \langle \text{Bool}, \text{Bool}, \text{Bool} \rangle$

Expressions

Recall that an **expression** is any finite sequence of symbols

Example

- $\forall x_1. ((< 0 x_1) \Rightarrow (\neg \forall x_2. (< x_1 x_2)))$
- $x_1 < \forall x_2))$
- $x_1 < x_2 \Rightarrow \forall x: \text{Nat}. x > 0$

Most expressions are **not well-formed**

Expressions of interest in FOL are *terms* and *well-formed formulas (wffs)*

Expressions

Recall that an **expression** is any finite sequence of symbols

Example

- $\forall x_1. ((< 0 x_1) \Rightarrow (\neg \forall x_2. (< x_1 x_2)))$
- $x_1 < \forall x_2))$
- $x_1 < x_2 \Rightarrow \forall x: \text{Nat}. x > 0$

Most expressions are **not well-formed**

Expressions of interest in FOL are *terms* and *well-formed formulas (wffs)*

Terms

Expressions built up from **function symbols**, **variables**, and **parentheses** $(,)$

Formally, let \mathcal{B} be the set of all variables and all constant symbols in some signature Σ

For each function symbol $f \in \Sigma^F$ of arity $n > 0$, we define a *term-building operation* T_f :

$$T_f(e_1, \dots, e_n) := (f e_1 \dots e_n)$$

Terms are expressions that are generated from \mathcal{B} by $\mathcal{T} = \{T_f \mid f \in \Sigma^F\}$

Examples of terms in the language of number theory:

✓ $(+ x_2 (5 0))$

✗ $(S (S (S (S 0))))$

✗ $(S (0 0))$

✗ $(x_2 + 0)$

✗ $(S 0 0)$

✓ $(S (< 0 0))$

✓ $(+ x_2 1)$

✓ $(S 1)$

✓ $(= 0 1)$

Terms

Expressions built up from **function symbols**, **variables**, and **parentheses** ((),)

Formally, let \mathcal{B} be the set of all variables and all constant symbols in some signature Σ

For each function symbol $f \in \Sigma^*$ of arity $n > 0$, we define a term-building operation T_f :

$$T_f(e_1, \dots, e_n) := (f e_1 \dots e_n)$$

Terms are expressions that are generated from \mathcal{B} by $\mathcal{T} = \{T_f \mid f \in \Sigma^*\}$

Examples of terms in the language of number theory:

✓ (+ x₂ (5 0))

✓ (S (S (S (S (S 0)))))

✗ (S (0 0))

✗ (x₂ + 0)

✗ (S 0 0)

✓ (S (< 0 0))

✓ (+ x₂ 1)

✓ (S 1)

✗ (= 0 1)

Terms

Expressions built up from **function** symbols, **variables**, and **parentheses** (,)

Formally, let \mathcal{B} be the set of all variables and all constant symbols in some signature Σ

For each function symbol $f \in \Sigma^F$ of arity $n > 0$, we define a *term-building operation* \mathcal{T}_f :

$$\mathcal{T}_f(\varepsilon_1, \dots, \varepsilon_n) := (f \ \varepsilon_1 \ \dots \ \varepsilon_n)$$

Terms are expressions that are generated from \mathcal{B} by $\mathcal{T} = \{ \mathcal{T}_f \mid f \in \Sigma^F \}$

Examples of terms in the language of number theory:

✓ $(+x_2(50))$

✗ $(x_2 + 0)$

✓ $(+x_2 1)$

✓ $(S(S(S(S0))))$

✗ $(S00)$

✓ $(S1)$

✗ $(S(00))$

✓ $(S(<00))$

✓ $(=01)$

Terms

Expressions built up from **function** symbols, **variables**, and **parentheses** $(,)$

Formally, let \mathcal{B} be the set of all variables and all constant symbols in some signature Σ

For each function symbol $f \in \Sigma^F$ of arity $n > 0$, we define a *term-building operation* \mathcal{T}_f :

$$\mathcal{T}_f(\varepsilon_1, \dots, \varepsilon_n) := (f \ \varepsilon_1 \ \dots \ \varepsilon_n)$$

Terms are expressions that are **generated** from \mathcal{B} by $\mathcal{T} = \{ \mathcal{T}_f \mid f \in \Sigma^F \}$

Examples of terms in the language of number theory:

✓ $(+ x_2 (5 0))$

✗ $(x_2 + 0)$

✓ $(+ x_2 1)$

✓ $(S (S (S (S 0)))))$

✗ $(S 0 0)$

✓ $(S 1)$

✗ $(S (0 0))$

✓ $(S (< 0 0))$

✓ $(= 0 1)$

Terms

Expressions built up from **function** symbols, **variables**, and **parentheses** $(,)$

Formally, let \mathcal{B} be the set of all variables and all constant symbols in some signature Σ

For each function symbol $f \in \Sigma^F$ of arity $n > 0$, we define a *term-building operation* \mathcal{T}_f :

$$\mathcal{T}_f(\varepsilon_1, \dots, \varepsilon_n) := (f \ \varepsilon_1 \ \dots \ \varepsilon_n)$$

Terms are expressions that are **generated** from \mathcal{B} by $\mathcal{T} = \{ \mathcal{T}_f \mid f \in \Sigma^F \}$

Examples of terms in the language of number theory:

✓ $(+ x_2 (S 0))$

✓ $(S (S (S (S 0)))))$

✗ $(S (0 0))$

✗ $(x_2 + 0)$

✗ $(S 0 0)$

✓ $(S (< 0 0))$

✓ $(+ x_2 \perp)$

✓ $(S \perp)$

✓ $(\doteq 0 \perp)$

Well-sorted terms

Not all well-formed terms are meaningful

We consider only terms that are *well-sorted* wrt a given signature Σ

Well-sortedness

We formulate the notion of *well-sortedness* wrt Σ with a *sort system*, a proof system over sequents of the form $\Gamma \vdash t : \sigma$

Well-sortedness

We formulate the notion of *well-sortedness* wrt Σ with a *sort system*, a proof system over sequents of the form $\Gamma \vdash t : \sigma$

where

- $\Gamma = x_1 : \sigma_1, \dots, x_n : \sigma_n$ is *sort context*, a set of sorted variables
- t is a well-formed term
- σ is a sort of Σ

Well-sortedness

We formulate the notion of *well-sortedness* wrt Σ with a *sort system*, a proof system over sequents of the form $\Gamma \vdash t : \sigma$

$$\mathbf{VAR} \quad \frac{x : \sigma \in \Gamma}{\Gamma \vdash x : \sigma}$$

$$\mathbf{CONST} \quad \frac{c \in \Sigma^F \quad \text{rank}(c) = \langle \sigma \rangle}{\Gamma \vdash c : \sigma}$$

$$\mathbf{FUN} \quad \frac{f \in \Sigma^F \quad \text{rank}(f) = \langle \sigma_1, \dots, \sigma_n, \sigma \rangle \quad \Gamma \vdash t_1 : \sigma_1 \quad \dots \quad \Gamma \vdash t_n : \sigma_n}{\Gamma \vdash (f \ t_1 \ \dots \ t_n) : \sigma}$$

A term t is *well-sorted* wrt Σ and *has sort* σ in a sort context Γ
if $\Gamma \vdash t : \sigma$ is derivable in the sort system above

Well-sortedness

We formulate the notion of *well-sortedness* wrt Σ with a *sort system*, a proof system over sequents of the form $\Gamma \vdash t : \sigma$

$$\mathbf{VAR} \quad \frac{x : \sigma \in \Gamma}{\Gamma \vdash x : \sigma}$$

$$\mathbf{CONST} \quad \frac{c \in \Sigma^F \quad \text{rank}(c) = \langle \sigma \rangle}{\Gamma \vdash c : \sigma}$$

$$\mathbf{FUN} \quad \frac{f \in \Sigma^F \quad \text{rank}(f) = \langle \sigma_1, \dots, \sigma_n, \sigma \rangle \quad \Gamma \vdash t_1 : \sigma_1 \quad \dots \quad \Gamma \vdash t_n : \sigma_n}{\Gamma \vdash (f \ t_1 \ \dots \ t_n) : \sigma}$$

A term t is *well-sorted* wrt Σ and *has sort* σ in a sort context Γ

if $\Gamma \vdash t : \sigma$ is derivable in the sort system above

We call t a Σ -term

Well-sortedness

We formulate the notion of *well-sortedness* wrt Σ with a *sort system*, a proof system over sequents of the form $\Gamma \vdash t : \sigma$

$$\mathbf{VAR} \quad \frac{x : \sigma \in \Gamma}{\Gamma \vdash x : \sigma}$$

$$\mathbf{CONST} \quad \frac{c \in \Sigma^F \quad \text{rank}(c) = \langle \sigma \rangle}{\Gamma \vdash c : \sigma}$$

$$\mathbf{FUN} \quad \frac{f \in \Sigma^F \quad \text{rank}(f) = \langle \sigma_1, \dots, \sigma_n, \sigma \rangle \quad \Gamma \vdash t_1 : \sigma_1 \quad \dots \quad \Gamma \vdash t_n : \sigma_n}{\Gamma \vdash (f \ t_1 \ \dots \ t_n) : \sigma}$$

A term t is *well-sorted* wrt Σ and *has sort* σ in a sort context Γ

if $\Gamma \vdash t : \sigma$ is derivable in the sort system above

We call t a Σ -term

Note: Every well-sorted term is also well-formed

Well-sorted terms example: Elementary number theory

Let $\Sigma^S = \{ \text{Nat} \} (\cup \{ \text{Bool} \})$ and $\Sigma^F = \{ 0, S, +, \times, <, \dot{\div}_{\text{Nat}} \} (\cup \{ \top, \perp, \dot{\div}_{\text{Bool}} \})$

- $\text{rank}(0) = \langle \text{Nat} \rangle$
- $\text{rank}(S) = \langle \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(+) = \text{rank}(\times) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(<) = \text{rank}(\dot{\div}_{\text{Nat}}) = \langle \text{Nat}, \text{Nat}, \text{Bool} \rangle$

Are these well-formed terms also well-sorted in context $\Gamma = \{ x_1 : \text{Bool}, x_2 : \text{Nat}, x_3 : \text{Nat} \}$?

1. $(+ 0 x_2)$ ✓
2. $(+ (+ 0 x_1) x_2)$ ✗
3. $(S (+ 0 x_5))$ ✓
4. $(< (S x_3) (+ (S 0) x_1))$ ✓
5. $(\dot{\div}_{\text{Nat}} (S x_3) (+ (S 0) x_1))$ ✓

Well-sorted terms example: Elementary number theory

Let $\Sigma^S = \{ \text{Nat} \} (\cup \{ \text{Bool} \})$ and $\Sigma^F = \{ 0, S, +, \times, <, \dot{\div}_{\text{Nat}} \} (\cup \{ \top, \perp, \dot{\div}_{\text{Bool}} \})$

- $\text{rank}(0) = \langle \text{Nat} \rangle$
- $\text{rank}(S) = \langle \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(+) = \text{rank}(\times) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(<) = \text{rank}(\dot{\div}_{\text{Nat}}) = \langle \text{Nat}, \text{Nat}, \text{Bool} \rangle$

Are these well-formed terms also well-sorted in context $\Gamma = \{ x_1 : \text{Bool}, x_2 : \text{Nat}, x_3 : \text{Nat} \}$?

1. $(+ 0 x_2)$ ✓
2. $(< (S 0) x_3) x_2$ ✗
3. $(S (+ 0 x_5))$ ✓
4. $(< (S x_3) (+ (S 0) x_1))$ ✗
5. $(\dot{\div}_{\text{Nat}} (S x_3) (+ (S 0) x_1))$ ✓

Well-sorted terms example: Elementary number theory

Let $\Sigma^S = \{ \text{Nat} \} (\cup \{ \text{Bool} \})$ and $\Sigma^F = \{ 0, S, +, \times, <, \dot{\div}_{\text{Nat}} \} (\cup \{ \top, \perp, \dot{\div}_{\text{Bool}} \})$

- $\text{rank}(0) = \langle \text{Nat} \rangle$
- $\text{rank}(S) = \langle \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(+) = \text{rank}(\times) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(<) = \text{rank}(\dot{\div}_{\text{Nat}}) = \langle \text{Nat}, \text{Nat}, \text{Bool} \rangle$

Are these well-formed terms also well-sorted in context $\Gamma = \{ x_1 : \text{Bool}, x_2 : \text{Nat}, x_3 : \text{Nat} \}$?

1. $(+ 0 x_2)$ ✓
2. $(< (S 0) x_3) x_2$ ✗
3. $(S (+ 0 x_5))$ ✓
4. $(< (S x_3) (+ (S 0) x_1))$ ✗
5. $(\dot{\div}_{\text{Nat}} (S x_3) (+ (S 0) x_1))$ ✓

Well-sorted terms example: Elementary number theory

Let $\Sigma^S = \{ \text{Nat} \} (\cup \{ \text{Bool} \})$ and $\Sigma^F = \{ 0, S, +, \times, <, \dot{\equiv}_{\text{Nat}} \} (\cup \{ \top, \perp, \dot{\equiv}_{\text{Bool}} \})$

- $\text{rank}(0) = \langle \text{Nat} \rangle$
- $\text{rank}(S) = \langle \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(+) = \text{rank}(\times) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(<) = \text{rank}(\dot{\equiv}_{\text{Nat}}) = \langle \text{Nat}, \text{Nat}, \text{Bool} \rangle$

Are these well-formed terms also well-sorted in context $\Gamma = \{ x_1 : \text{Bool}, x_2 : \text{Nat}, x_3 : \text{Nat} \}$?

1. $(+ 0 x_2)$ ✓
2. $(+ (+ 0 x_1) x_2)$ ✗
3. $(S (+ 0 x_1))$ ✗
4. $(< (S x_1) (+ (S 0) x_1))$ ✓
5. $(\dot{\equiv}_{\text{Nat}} (S x_1) (+ (S 0) x_1))$ ✓

Well-sorted terms example: Elementary number theory

Let $\Sigma^S = \{ \text{Nat} \} (\cup \{ \text{Bool} \})$ and $\Sigma^F = \{ 0, S, +, \times, <, \dot{\equiv}_{\text{Nat}} \} (\cup \{ \top, \perp, \dot{\equiv}_{\text{Bool}} \})$

- $\text{rank}(0) = \langle \text{Nat} \rangle$
- $\text{rank}(S) = \langle \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(+) = \text{rank}(\times) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(<) = \text{rank}(\dot{\equiv}_{\text{Nat}}) = \langle \text{Nat}, \text{Nat}, \text{Bool} \rangle$

Are these well-formed terms also well-sorted in context $\Gamma = \{ x_1 : \text{Bool}, x_2 : \text{Nat}, x_3 : \text{Nat} \}$?

1. $(+ 0 x_2)$ ✓
2. $(+ (+ 0 x_1) x_2)$ ✗
3. $(S (+ 0 x_1))$ ✓
4. $(< (S x_1) (+ (S 0) x_1))$ ✓
5. $(\dot{\equiv}_{\text{Nat}} (S x_1) (+ (S 0) x_1))$ ✓

Well-sorted terms example: Elementary number theory

Let $\Sigma^S = \{ \text{Nat} \} (\cup \{ \text{Bool} \})$ and $\Sigma^F = \{ 0, S, +, \times, <, \dot{\equiv}_{\text{Nat}} \} (\cup \{ \top, \perp, \dot{\equiv}_{\text{Bool}} \})$

- $\text{rank}(0) = \langle \text{Nat} \rangle$
- $\text{rank}(S) = \langle \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(+) = \text{rank}(\times) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(<) = \text{rank}(\dot{\equiv}_{\text{Nat}}) = \langle \text{Nat}, \text{Nat}, \text{Bool} \rangle$

Are these well-formed terms also well-sorted in context $\Gamma = \{ x_1 : \text{Bool}, x_2 : \text{Nat}, x_3 : \text{Nat} \}$?

1. $(+ 0 x_2)$ ✓
2. $(+ (+ 0 x_1) x_2)$ ✗
3. $(S (+ 0 x_5))$ ✗
4. $(< (S x_3) (+ (S 0) x_1))$ ✓
5. $(\dot{\equiv}_{\text{Nat}} (S x_3) (+ (S 0) x_1))$ ✓

Well-sorted terms example: Elementary number theory

Let $\Sigma^S = \{ \text{Nat} \} (\cup \{ \text{Bool} \})$ and $\Sigma^F = \{ 0, S, +, \times, <, \dot{\equiv}_{\text{Nat}} \} (\cup \{ \top, \perp, \dot{\equiv}_{\text{Bool}} \})$

- $\text{rank}(0) = \langle \text{Nat} \rangle$
- $\text{rank}(S) = \langle \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(+) = \text{rank}(\times) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(<) = \text{rank}(\dot{\equiv}_{\text{Nat}}) = \langle \text{Nat}, \text{Nat}, \text{Bool} \rangle$

Are these well-formed terms also well-sorted in context $\Gamma = \{ x_1 : \text{Bool}, x_2 : \text{Nat}, x_3 : \text{Nat} \}$?

1. $(+ 0 x_2)$ ✓
2. $(+ (+ 0 x_1) x_2)$ ✗
3. $(S (+ 0 x_5))$ ✓
4. $(< (S x_3) (+ (S 0) x_1))$ ✓
5. $(\dot{\equiv}_{\text{Nat}} (S x_3) (+ (S 0) x_1))$ ✓

Well-sorted terms example: Elementary number theory

Let $\Sigma^S = \{ \text{Nat} \} (\cup \{ \text{Bool} \})$ and $\Sigma^F = \{ 0, S, +, \times, <, \dot{\equiv}_{\text{Nat}} \} (\cup \{ \top, \perp, \dot{\equiv}_{\text{Bool}} \})$

- $\text{rank}(0) = \langle \text{Nat} \rangle$
- $\text{rank}(S) = \langle \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(+) = \text{rank}(\times) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(<) = \text{rank}(\dot{\equiv}_{\text{Nat}}) = \langle \text{Nat}, \text{Nat}, \text{Bool} \rangle$

Are these well-formed terms also well-sorted in context $\Gamma = \{ x_1 : \text{Bool}, x_2 : \text{Nat}, x_3 : \text{Nat} \}$?

1. $(+ 0 x_2)$ ✓
2. $(+ (+ 0 x_1) x_2)$ ✗
3. $(S (+ 0 x_5))$ ✓
4. $(< (S x_3) (+ (S 0) x_1))$ ✓
5. $(\dot{\equiv}_{\text{Nat}} (S x_5) (+ (S 0) x_1))$ ✓

Well-sorted terms example: Elementary number theory

Let $\Sigma^S = \{ \text{Nat} \} (\cup \{ \text{Bool} \})$ and $\Sigma^F = \{ 0, S, +, \times, <, \dot{=}_{\text{Nat}} \} (\cup \{ \top, \perp, \dot{=}_{\text{Bool}} \})$

- $\text{rank}(0) = \langle \text{Nat} \rangle$
- $\text{rank}(S) = \langle \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(+) = \text{rank}(\times) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(<) = \text{rank}(\dot{=}_{\text{Nat}}) = \langle \text{Nat}, \text{Nat}, \text{Bool} \rangle$

Are these well-formed terms also well-sorted in context $\Gamma = \{ x_1 : \text{Bool}, x_2 : \text{Nat}, x_3 : \text{Nat} \}$?

1. $(+ 0 x_2)$ ✓
2. $(+ (+ 0 x_1) x_2)$ ✗
3. $(S (+ 0 x_5))$ ✓
4. $(< (S x_3) (+ (S 0) x_1))$ ✓
5. $(\dot{=}_{\text{Nat}} (S x_3) (+ (S 0) x_1))$ ✗

Well-sorted terms example: Elementary number theory

Let $\Sigma^S = \{ \text{Nat} \} (\cup \{ \text{Bool} \})$ and $\Sigma^F = \{ 0, S, +, \times, <, \dot{=}_{\text{Nat}} \} (\cup \{ \top, \perp, \dot{=}_{\text{Bool}} \})$

- $\text{rank}(0) = \langle \text{Nat} \rangle$
- $\text{rank}(S) = \langle \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(+) = \text{rank}(\times) = \langle \text{Nat}, \text{Nat}, \text{Nat} \rangle$
- $\text{rank}(<) = \text{rank}(\dot{=}_{\text{Nat}}) = \langle \text{Nat}, \text{Nat}, \text{Bool} \rangle$

Are these well-formed terms also well-sorted?

1. $(+ 0 x_2)$ ✓
2. $(+ (+ 0 x_1) x_2)$ ✗
3. $(S (+ 0 x_5))$ ✓
4. $(< (S x_3) (+ (S 0) x_1))$ ✓
5. $(\dot{=}_{\text{Nat}} (S x_3) (+ (S 0) x_1))$ ✓

Note: As a notational convention, we will use an **infix** notation for parentheses and common operators like $\dot{=}$, $<$, $+$ and so on

So we will often write $S(x_3) \dot{=}_{\text{Nat}} S(0) + x_1$
instead of $(\dot{=}_{\text{Nat}} (S x_3) (+ (S 0) x_1))$

Σ -Formulas

Given a signature Σ , an *atomic Σ -formula* is any term that is a Σ -term t of sort `Bool` under some sort context Γ

Σ -Formulas

Given a signature Σ , an *atomic Σ -formula* is any term that is a Σ -term t of sort `Bool` under some sort context Γ

Examples: $(\dot{=}_{\text{Nat}} 0 (S 0))$, $(< (S x_3) (+ (S 0) x_1))$

Σ -Formulas

Given a signature Σ , an *atomic Σ -formula* is any term that is a Σ -term t of sort `Bool` under some sort context Γ

We define the following **formula-building operations**, denoted \mathcal{F} :

$$\begin{array}{lll} \mathcal{F}_\vee(\alpha, \beta) := (\alpha \vee \beta) & \mathcal{F}_\wedge(\alpha, \beta) := (\alpha \wedge \beta) & \mathcal{F}_\neg(\alpha) := (\neg \alpha) \\ \mathcal{F}_\Rightarrow(\alpha, \beta) := (\alpha \Rightarrow \beta) & \mathcal{F}_\Leftrightarrow(\alpha, \beta) := (\alpha \Leftrightarrow \beta) & \end{array}$$

$$\mathcal{E}_{x,\sigma}(\alpha) := (\exists x : \sigma. \alpha) \text{ for each var } x \text{ and sort } \sigma \in \Sigma^S$$

$$\mathcal{A}_{x,\sigma}(\alpha) := (\forall x : \sigma. \alpha) \text{ for each var } x \text{ and sort } \sigma \in \Sigma^S$$

Σ -Formulas

Given a signature Σ , an *atomic Σ -formula* is any term that is a Σ -term t of sort `Bool` under some sort context Γ

We define the following **formula-building operations**, denoted \mathcal{F} :

$$\begin{array}{lll} \mathcal{F}_\vee(\alpha, \beta) := (\alpha \vee \beta) & \mathcal{F}_\wedge(\alpha, \beta) := (\alpha \wedge \beta) & \mathcal{F}_\neg(\alpha) := (\neg \alpha) \\ \mathcal{F}_\Rightarrow(\alpha, \beta) := (\alpha \Rightarrow \beta) & \mathcal{F}_\Leftrightarrow(\alpha, \beta) := (\alpha \Leftrightarrow \beta) & \end{array}$$

$$\mathcal{E}_{x,\sigma}(\alpha) := (\exists x : \sigma. \alpha) \text{ for each var } x \text{ and sort } \sigma \in \Sigma^S$$

$$\mathcal{A}_{x,\sigma}(\alpha) := (\forall x : \sigma. \alpha) \text{ for each var } x \text{ and sort } \sigma \in \Sigma^S$$

The set of *well-formed formulas* is the set of expressions **generated** from the **atomic Σ -formulas** by \mathcal{F}

Σ -Formulas

Given a signature Σ , an *atomic Σ -formula* is any term that is a Σ -term t of sort `Bool` under some sort context Γ

We define the following **formula-building operations**, denoted \mathcal{F} :

$$\mathcal{F}_\vee(\alpha, \beta) := (\alpha \vee \beta) \quad \mathcal{F}_\wedge(\alpha, \beta) := (\alpha \wedge \beta) \quad \mathcal{F}_\neg(\alpha) := (\neg \alpha)$$

$$\mathcal{F}_\Rightarrow(\alpha, \beta) := (\alpha \Rightarrow \beta) \quad \mathcal{F}_\Leftrightarrow(\alpha, \beta) := (\alpha \Leftrightarrow \beta)$$

$$\mathcal{E}_{x,\sigma}(\alpha) := (\exists x : \sigma. \alpha) \text{ for each var } x \text{ and sort } \sigma \in \Sigma^S$$

$$\mathcal{A}_{x,\sigma}(\alpha) := (\forall x : \sigma. \alpha) \text{ for each var } x \text{ and sort } \sigma \in \Sigma^S$$

Each $\exists x : \sigma$ is an *existential quantifier*

Each $\forall x : \sigma$ is a *universal quantifier*

Σ -Formulas

Given a signature Σ , an *atomic Σ -formula* is any term that is a Σ -term t of sort `Bool` under some sort context Γ

We define the following **formula-building operations**, denoted \mathcal{F} :

$$\mathcal{F}_\vee(\alpha, \beta) := (\alpha \vee \beta) \quad \mathcal{F}_\wedge(\alpha, \beta) := (\alpha \wedge \beta) \quad \mathcal{F}_\neg(\alpha) := (\neg \alpha)$$

$$\mathcal{F}_\Rightarrow(\alpha, \beta) := (\alpha \Rightarrow \beta) \quad \mathcal{F}_\Leftrightarrow(\alpha, \beta) := (\alpha \Leftrightarrow \beta)$$

$$\mathcal{E}_{x,\sigma}(\alpha) := (\exists x : \sigma. \alpha) \text{ for each var } x \text{ and sort } \sigma \in \Sigma^S$$

$$\mathcal{A}_{x,\sigma}(\alpha) := (\forall x : \sigma. \alpha) \text{ for each var } x \text{ and sort } \sigma \in \Sigma^S$$

We simplify the notation as in PL by

- forgoing parentheses around top-level formulas — e.g., $(x \doteq y) \vee ((y \doteq z) \vee (x \doteq z))$
- forgoing parentheses around atomic formulas in infix form — e.g., $x \doteq y \vee (y \doteq z \vee x \doteq z)$
- treating the binary connectives as n -ary and right associative — e.g., $x \doteq y \vee y \doteq z \vee x \doteq z$

Σ -Formulas: Examples

Let $\Sigma = \langle \Sigma^S := \{\text{Nat}\}, \Sigma^F := \{ 0, S, +, \times, <, \dot{=}_{\text{Nat}} \} \rangle$ a x_i be variables for all i

Σ -Formulas: Examples

Let $\Sigma = \langle \Sigma^S := \{\text{Nat}\}, \Sigma^F := \{ 0, S, +, \times, <, \dot{=}_{\text{Nat}} \} \rangle$ a x_i be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2)$ ✓
2. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2) \Rightarrow \perp$ ✓
3. $(+ 0 x_3) \wedge (< 0 (S 0))$ ✗
4. $\forall x_3 : \text{Nat}. (+ (+ 0 x_3) x_2)$ ✗
5. $\forall x_3 : \text{Bool}. (\dot{=}_{\text{Nat}} (+ 0 x_3) x_2)$ ✓
6. $\neg \exists x_0 : \text{Nat}. (< 0 x_0 (S 0))$ ✗

Σ -Formulas: Examples

Let $\Sigma = \langle \Sigma^S := \{\text{Nat}\}, \Sigma^F := \{ 0, S, +, \times, <, \dot{=}_{\text{Nat}} \} \rangle$ a x_i be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2)$ ✓
2. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2) \Rightarrow \perp$ ✗
3. $(+ 0 x_3) \wedge (< 0 (S 0))$ ✗
4. $\forall x_3 : \text{Nat}. (+ (+ 0 x_3) x_2)$ ✗
5. $\forall x_3 : \text{Bool}. (\dot{=}_{\text{Nat}} (+ 0 x_3) x_2)$ ✓
6. $\neg \exists x_0 : \text{Nat}. (< 0 x_0 (S 0))$ ✗

Σ -Formulas: Examples

Let $\Sigma = \langle \Sigma^S := \{\text{Nat}\}, \Sigma^F := \{ 0, S, +, \times, <, \dot{=}_{\text{Nat}} \} \rangle$ a x_i be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2)$ ✓
2. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2) \Rightarrow \perp$ ✓
3. $(+ 0 x_3) \wedge (< 0 (S 0))$ ✗
4. $\forall x_3 : \text{Nat}. (+ (+ 0 x_3) x_2)$ ✗
5. $\forall x_3 : \text{Bool}. (\dot{=}_{\text{Nat}} (+ 0 x_3) x_2)$ ✓
6. $\neg \exists x_0 : \text{Nat}. (< 0 x_0 (S 0))$ ✗

Σ -Formulas: Examples

Let $\Sigma = \langle \Sigma^S := \{\text{Nat}\}, \Sigma^F := \{ 0, S, +, \times, <, \dot{=}_{\text{Nat}} \} \rangle$ a x_i be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2)$ ✓
2. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2) \Rightarrow \perp$ ✓
3. $(+ 0 x_3) \wedge (< 0 (S 0))$ ✗
4. $\forall x_3 : \text{Nat}. (+ (+ 0 x_3) x_2)$ ✗
5. $\forall x_3 : \text{Bool}. (\dot{=}_{\text{Nat}} (+ 0 x_3) x_2)$ ✓
6. $\neg \exists x_0 : \text{Nat}. (< 0 x_0 (S 0))$ ✗

Σ -Formulas: Examples

Let $\Sigma = \langle \Sigma^S := \{\text{Nat}\}, \Sigma^F := \{ 0, S, +, \times, <, \dot{=}_{\text{Nat}} \} \rangle$ a x_i be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2)$ ✓
2. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2) \Rightarrow \perp$ ✓
3. $(+ 0 x_3) \wedge (< 0 (S 0))$ ✗
4. $\forall x_3 : \text{Nat}. (+ (+ 0 x_3) x_2)$ ✗
5. $\forall x_3 : \text{Bool}. (\dot{=}_{\text{Nat}} (+ 0 x_3) x_2)$ ✓
6. $\neg \exists x_0 : \text{Nat}. (< 0 x_0 (S 0))$ ✗

Σ -Formulas: Examples

Let $\Sigma = \langle \Sigma^S := \{\text{Nat}\}, \Sigma^F := \{ 0, S, +, \times, <, \dot{=}_{\text{Nat}} \} \rangle$ a x_i be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2)$ ✓
2. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2) \Rightarrow \perp$ ✓
3. $(+ 0 x_3) \wedge (< 0 (S 0))$ ✗
4. $\forall x_3 : \text{Nat}. (+ (+ 0 x_3) x_2)$ ✗
5. $\forall x_3 : \text{Bool}. (\dot{=}_{\text{Nat}} (+ 0 x_3) x_2)$ ✓
6. $\neg \exists x_0 : \text{Nat}. (< 0 x_0 (S 0))$ ✗

Σ -Formulas: Examples

Let $\Sigma = \langle \Sigma^S := \{\text{Nat}\}, \Sigma^F := \{ 0, S, +, \times, <, \dot{=}_{\text{Nat}} \} \rangle$ a x_i be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2)$ ✓
2. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2) \Rightarrow \perp$ ✓
3. $(+ 0 x_3) \wedge (< 0 (S 0))$ ✗
4. $\forall x_3 : \text{Nat}. (+ (+ 0 x_3) x_2)$ ✗
5. $\forall x_3 : \text{Bool}. (\dot{=}_{\text{Nat}} (+ 0 x_3) x_2)$ ✓
6. $\neg \exists x_0 : \text{Nat}. (< 0 x_0 (S 0))$ ✗

Σ -Formulas: Examples

Let $\Sigma = \langle \Sigma^S := \{\text{Nat}\}, \Sigma^F := \{ 0, S, +, \times, <, \dot{=}_{\text{Nat}} \} \rangle$ a x_i be variables for all i

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2)$ ✓
2. $(\dot{=}_{\text{Nat}} (+ x_1 0) x_2) \Rightarrow \perp$ ✓
3. $(+ 0 x_3) \wedge (< 0 (S 0))$ ✗
4. $\forall x_3 : \text{Nat}. (+ (+ 0 x_3) x_2)$ ✗
5. $\forall x_3 : \text{Bool}. (\dot{=}_{\text{Nat}} (+ 0 x_3) x_2)$ ✓
6. $\neg \exists x_0 : \text{Nat}. (< 0 x_0 (S 0))$ ✗

Note: Formula (5) is well-formed but not well-sorted

To know which formulas are well-sorted we need to extend our sort system to the logical operators

Well-sorted formulas

We **extend** the sort system for terms with rules for the **logical connectives** and **quantifiers**

Well-sorted formulas

We **extend** the sort system for terms with rules for the **logical connectives** and **quantifiers**

$$\mathbf{BCONST} \quad \frac{c \in \{\top, \perp\}}{\Gamma \vdash c : \text{Bool}}$$

$$\mathbf{NOT} \quad \frac{\Gamma \vdash \alpha : \text{Bool}}{\Gamma \vdash (\neg \alpha) : \text{Bool}}$$

$$\mathbf{CONN} \quad \frac{\Gamma \vdash \alpha : \text{Bool} \quad \Gamma \vdash \beta : \text{Bool} \quad \bowtie \in \{\wedge, \vee, \Rightarrow, \Leftrightarrow\}}{\Gamma \vdash (\alpha \bowtie \beta) : \text{Bool}}$$

$$\mathbf{QUANT} \quad \frac{\Gamma[x : \sigma] \vdash \alpha : \text{Bool} \quad \sigma \in \Sigma^s \quad Q \in \{\forall, \exists\}}{\Gamma \vdash (Qx : \sigma. \alpha) : \text{Bool}}$$

$\Gamma[x : \sigma]$ is a context that assigns sort σ to x and is otherwise identical to Γ

Well-sorted formulas

We **extend** the sort system for terms with rules for the **logical connectives** and **quantifiers**

$$\mathbf{BCONST} \quad \frac{c \in \{\top, \perp\}}{\Gamma \vdash c : \text{Bool}}$$

$$\mathbf{NOT} \quad \frac{\Gamma \vdash \alpha : \text{Bool}}{\Gamma \vdash (\neg \alpha) : \text{Bool}}$$

$$\mathbf{CONN} \quad \frac{\Gamma \vdash \alpha : \text{Bool} \quad \Gamma \vdash \beta : \text{Bool} \quad \bowtie \in \{\wedge, \vee, \Rightarrow, \Leftrightarrow\}}{\Gamma \vdash (\alpha \bowtie \beta) : \text{Bool}}$$

$$\mathbf{QUANT} \quad \frac{\Gamma[x : \sigma] \vdash \alpha : \text{Bool} \quad \sigma \in \Sigma^s \quad Q \in \{\forall, \exists\}}{\Gamma \vdash (Qx : \sigma. \alpha) : \text{Bool}}$$

A formula α is **well-sorted** wrt Σ in a sort context Γ
if $\Gamma \vdash \alpha : \text{Bool}$ is derivable in the sort system above

Well-sorted formulas

We **extend** the sort system for terms with rules for the **logical connectives** and **quantifiers**

$$\mathbf{BCONST} \quad \frac{c \in \{\top, \perp\}}{\Gamma \vdash c : \text{Bool}}$$

$$\mathbf{NOT} \quad \frac{\Gamma \vdash \alpha : \text{Bool}}{\Gamma \vdash (\neg \alpha) : \text{Bool}}$$

$$\mathbf{CONN} \quad \frac{\Gamma \vdash \alpha : \text{Bool} \quad \Gamma \vdash \beta : \text{Bool} \quad \bowtie \in \{\wedge, \vee, \Rightarrow, \Leftrightarrow\}}{\Gamma \vdash (\alpha \bowtie \beta) : \text{Bool}}$$

$$\mathbf{QUANT} \quad \frac{\Gamma[x : \sigma] \vdash \alpha : \text{Bool} \quad \sigma \in \Sigma^s \quad Q \in \{\forall, \exists\}}{\Gamma \vdash (Qx : \sigma. \alpha) : \text{Bool}}$$

A formula α is **well-sorted** wrt Σ in a sort context Γ
if $\Gamma \vdash \alpha : \text{Bool}$ is derivable in the sort system above

We call α a **Σ -formula**

Exercise

Draw two Venn Diagram that illustrate the relations between

A: terms

B: well-formed terms

C: well-sorted terms

D: well-sorted atomic formulas

and between

D: well-sorted atomic formulas

E: well-formed formulas

F: well-sorted formulas

Notational conventions for formulas

From now on, to **improve readability**:

- We will use the **infix notation** for logical operators and function symbols typically written in that notation ($\dot{=}_\sigma$, $<$, $+$, ...)
- Finally, we will omit the sort symbol in equalities and quantifiers when it is clear from the context or not important:

Example: $\forall x_1. \forall y_1. x_1 \dot{=} y_1$ instead of $\forall x_1: \sigma_1. \forall y_1: \sigma_2. x_1 \dot{=} y_1$

- We may also omit parentheses by defining *precedence*:
 - Same precedence for propositional connectives as in propositional logic
 - Quantifiers have the highest precedence after \negExample: $\neg \forall x. (p x) \wedge (q x)$ abbreviates $(\neg (\forall x. (p x))) \wedge (q x)$
- Finally, we will allow the use of parentheses following function symbols.

Example: $\forall x. p(r(x)) \wedge q(x)$ instead of $\forall x. (p(r(x)) \wedge q(x))$

Notational conventions for formulas

From now on, to **improve readability**:

- We will use the **infix notation** for logical operators and function symbols typically written in that notation ($\dot{=}_\sigma$, $<$, $+$, ...)
- Finally, we will omit the sort symbol in equalities and quantifiers when it is clear from the context or not important:

Example: $\forall x_1. \forall y_1. x_1 \dot{=} y_1$ instead of $\forall x_1: \sigma_1. \forall y_1: \sigma_2. x_1 \dot{=} y_1$

- We may also omit parentheses by defining **precedence**:
 - Same precedence for propositional connectives as in propositional logic
 - **Quantifiers have the highest precedence after \neg**
- **Example:** $\neg \forall x. (p x) \wedge (q x)$ abbreviates $(\neg(\forall x. (p x))) \wedge (q x)$
- Finally, we will allow the use of parentheses following function symbols.

Example: $\forall x. p(r(x)) \wedge q(x)$ instead of $\forall x. (p(r(x)) \wedge q(x))$

Notational conventions for formulas

From now on, to **improve readability**:

- We will use the **infix notation** for logical operators and function symbols typically written in that notation (\doteq_σ , $<$, $+$, ...)
- Finally, we will omit the sort symbol in equalities and quantifiers when it is clear from the context or not important:

Example: $\forall x_1. \forall y_1. x_1 \doteq x_2$ instead of $\forall x:\sigma_1. \forall x_2:\sigma_2. x_1 \doteq x_2$

- We may also omit parentheses by defining **precedence**:
 - Same precedence for propositional connectives as in propositional logic
 - **Quantifiers have the highest precedence after \neg**
- Finally, we will allow the use of parentheses following function symbols.

Example: $\forall x. p(r(x)) \wedge q(x)$ instead of $\forall x. (p(r(x)) \wedge q(x))$

Free and Bound Variables

A variable x may occur **free** in a Σ -formula α or not

We formalize that by defining inductively the **set \mathcal{FV} of free variables** of α

$$\mathcal{FV}(\alpha) = \begin{cases} \{x \mid x \text{ is a var in } \alpha\} & \text{if } \alpha \text{ is atomic} \\ \mathcal{FV}(\beta) & \text{if } \alpha = \neg \beta \\ \mathcal{FV}(\beta) \cup \mathcal{FV}(\gamma) & \text{if } \alpha = \beta \bowtie \gamma \text{ with } \bowtie \in \{\wedge, \vee, \rightarrow, \leftrightarrow\} \\ \mathcal{FV}(\beta) \setminus \{v\} & \text{if } \alpha = Qv : \sigma, \beta \text{ with } Q \in \{\forall, \exists\} \end{cases}$$

Free and Bound Variables

A variable x may occur **free** in a Σ -formula α or not

We formalize that by defining inductively the **set \mathcal{FV} of free variables** of α

$$\mathcal{FV}(\alpha) := \begin{cases} \{x \mid x \text{ is a var in } \alpha\} & \text{if } \alpha \text{ is atomic} \\ \mathcal{FV}(\beta) & \text{if } \alpha = \neg\beta \\ \mathcal{FV}(\beta) \cup \mathcal{FV}(\gamma) & \text{if } \alpha = \beta \bowtie \gamma \text{ with } \bowtie \in \{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{FV}(\beta) \setminus \{v\} & \text{if } \alpha = Q v : \sigma. \beta \text{ with } Q \in \{\forall, \exists\} \end{cases}$$

Free and Bound Variables

A variable x may occur **free** in a Σ -formula α or not

We formalize that by defining inductively the **set \mathcal{FV} of free variables** of α

$$\mathcal{FV}(\alpha) := \begin{cases} \{x \mid x \text{ is a var in } \alpha\} & \text{if } \alpha \text{ is atomic} \\ \mathcal{FV}(\beta) & \text{if } \alpha = \neg\beta \\ \mathcal{FV}(\beta) \cup \mathcal{FV}(\gamma) & \text{if } \alpha = \beta \bowtie \gamma \text{ with } \bowtie \in \{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{FV}(\beta) \setminus \{v\} & \text{if } \alpha = Qv : \sigma. \beta \text{ with } Q \in \{\forall, \exists\} \end{cases}$$

Examples: Let x, y, z be variables

- $\mathcal{FV}(x) = \{x\}$ (provided x has sort Bool)
- $\mathcal{FV}(x < S(0) + y) = \{x, y\}$
- $\mathcal{FV}(x < S(0) + y \wedge x \doteq z) = \mathcal{FV}(x < S(0) + y) \cup \mathcal{FV}(x \doteq z) = \{x, y\} \cup \{x, z\} = \{x, y, z\}$
- $\mathcal{FV}(\forall x : \text{Nat}. x < S(0) + y) = \mathcal{FV}(x < S(0) + y) \setminus \{x\} = \{x, y\} \setminus \{x\} = \{y\}$

Free and Bound Variables

A variable x may occur **free** in a Σ -formula α or not

We formalize that by defining inductively the **set \mathcal{FV} of free variables** of α

$$\mathcal{FV}(\alpha) := \begin{cases} \{x \mid x \text{ is a var in } \alpha\} & \text{if } \alpha \text{ is atomic} \\ \mathcal{FV}(\beta) & \text{if } \alpha = \neg\beta \\ \mathcal{FV}(\beta) \cup \mathcal{FV}(\gamma) & \text{if } \alpha = \beta \bowtie \gamma \text{ with } \bowtie \in \{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{FV}(\beta) \setminus \{v\} & \text{if } \alpha = Qv : \sigma. \beta \text{ with } Q \in \{\forall, \exists\} \end{cases}$$

A variable x **occurs free** in a Σ -formula α if $x \in \mathcal{FV}(\alpha)$

For $\alpha = Qv : \sigma. \beta$, we say that v is **bound** in α

The **scope** of x in α is the subformula β

Free and Bound Variables

A variable x may occur **free** in a Σ -formula α or not

We formalize that by defining inductively the **set \mathcal{FV} of free variables** of α

$$\mathcal{FV}(\alpha) := \begin{cases} \{x \mid x \text{ is a var in } \alpha\} & \text{if } \alpha \text{ is atomic} \\ \mathcal{FV}(\beta) & \text{if } \alpha = \neg\beta \\ \mathcal{FV}(\beta) \cup \mathcal{FV}(\gamma) & \text{if } \alpha = \beta \bowtie \gamma \text{ with } \bowtie \in \{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{FV}(\beta) \setminus \{v\} & \text{if } \alpha = Q v : \sigma. \beta \text{ with } Q \in \{\forall, \exists\} \end{cases}$$

A Σ -formula α is **closed**, or is a **(Σ -)sentence**, if $\mathcal{FV}(\alpha) = \emptyset$

Free and Bound Variables

A variable x may occur **free** in a Σ -formula α or not

We formalize that by defining inductively the **set \mathcal{FV} of free variables** of α

$$\mathcal{FV}(\alpha) := \begin{cases} \{x \mid x \text{ is a var in } \alpha\} & \text{if } \alpha \text{ is atomic} \\ \mathcal{FV}(\beta) & \text{if } \alpha = \neg\beta \\ \mathcal{FV}(\beta) \cup \mathcal{FV}(\gamma) & \text{if } \alpha = \beta \bowtie \gamma \text{ with } \bowtie \in \{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{FV}(\beta) \setminus \{v\} & \text{if } \alpha = Q v : \sigma. \beta \text{ with } Q \in \{\forall, \exists\} \end{cases}$$

Can a variable both **occur free** and **be bound** in α ?

Free and Bound Variables

A variable x may occur **free** in a Σ -formula α or not

We formalize that by defining inductively the **set \mathcal{FV} of free variables** of α

$$\mathcal{FV}(\alpha) := \begin{cases} \{x \mid x \text{ is a var in } \alpha\} & \text{if } \alpha \text{ is atomic} \\ \mathcal{FV}(\beta) & \text{if } \alpha = \neg\beta \\ \mathcal{FV}(\beta) \cup \mathcal{FV}(\gamma) & \text{if } \alpha = \beta \bowtie \gamma \text{ with } \bowtie \in \{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{FV}(\beta) \setminus \{v\} & \text{if } \alpha = Qv : \sigma. \beta \text{ with } Q \in \{\forall, \exists\} \end{cases}$$

Can a variable both **occur free** and **be bound** in α ? **Yes!** (e.g., $x < x \Rightarrow \forall x : \text{Nat}. 0 < x$)

Free and Bound Variables

A variable x may occur **free** in a Σ -formula α or not

We formalize that by defining inductively the **set \mathcal{FV} of free variables** of α

$$\mathcal{FV}(\alpha) := \begin{cases} \{x \mid x \text{ is a var in } \alpha\} & \text{if } \alpha \text{ is atomic} \\ \mathcal{FV}(\beta) & \text{if } \alpha = \neg\beta \\ \mathcal{FV}(\beta) \cup \mathcal{FV}(\gamma) & \text{if } \alpha = \beta \bowtie \gamma \text{ with } \bowtie \in \{\wedge, \vee, \Rightarrow, \Leftrightarrow\} \\ \mathcal{FV}(\beta) \setminus \{v\} & \text{if } \alpha = Qv : \sigma. \beta \text{ with } Q \in \{\forall, \exists\} \end{cases}$$

Can a variable both **occur free** and **be bound** in α ? **Yes!** (e.g., $x < x \Rightarrow \forall x : \text{Nat}. 0 < x$)

This can be confusing, so we typically rename the bound variables of a formula so that they are distinct from its free variables (e.g., $x < x \Rightarrow \forall y : \text{Nat}. 0 < y$)

FOL Semantics

Recall: The **syntax** of a first-order language is defined wrt a **signature** $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$ where:

- Σ^S is a set of **sorts**
- Σ^F is a set of **function symbols**

In propositional logic, the truth of a formula depends on the meaning of its variables

In first-order logic, the truth of a Σ -formula depends on:

1. the meaning of each sort symbol α
2. the meaning of each function symbol f
3. the meaning of each free variable x

in the formula

FOL Semantics

Recall: The **syntax** of a first-order language is defined wrt a **signature** $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$ where:

- Σ^S is a set of **sorts**
- Σ^F is a set of **function symbols**

In **propositional logic**, the truth of a formula depends on the meaning of its variables

In **first-order logic**, the truth of a Σ -formula depends on:

1. the meaning of each sort symbol α
2. the meaning of each function symbol f
3. the meaning of each free variable x

in the formula

FOL Semantics

Recall: The **syntax** of a first-order language is defined wrt a **signature** $\Sigma := \langle \Sigma^S, \Sigma^F \rangle$ where:

- Σ^S is a set of *sorts*
- Σ^F is a set of *function symbols*

In **propositional logic**, the truth of a formula depends on the meaning of its variables

In **first-order logic**, the truth of a Σ -formula depends on:

1. the meaning of each sort symbol σ
2. the meaning of each function symbol f
3. the meaning of each free variable x

in the formula

Semantics

Let α be a Σ -formula and let Γ be a sorting context that includes α 's free variables

The truth of α is determined by *interpretations* \mathcal{I} of Σ and Γ consisting of:

1. an interpretation $\sigma^{\mathcal{I}}$ of each $\sigma \in \Sigma^S$ as a **nonempty set**, the *domain* of σ
2. an interpretation $f^{\mathcal{I}}$ of each $f \in \Sigma^F$ of rank $\langle \sigma_1, \dots, \sigma_n, \sigma_{n+1} \rangle$ as a **total** n -ary function from $\sigma_1^{\mathcal{I}} \times \dots \times \sigma_n^{\mathcal{I}}$ to $\sigma_{n+1}^{\mathcal{I}}$
3. an interpretation $x^{\mathcal{I}}$ of each $x : \sigma \in \Gamma$ as an element of $\sigma^{\mathcal{I}}$

Note: We consider only interpretations \mathcal{I} such that

- $\text{Bool}^{\mathcal{I}} = \{ \text{true}, \text{false} \}$, $\perp^{\mathcal{I}} = \text{false}$, $\top^{\mathcal{I}} = \text{true}$
- for all $\sigma \in \Sigma^S$, $=_{\sigma}^{\mathcal{I}}$ maps its two arguments to true iff they are identical

Semantics

Let α be a Σ -formula and let Γ be a sorting context that includes α 's free variables

The truth of α is determined by *interpretations* \mathcal{I} of Σ and Γ consisting of:

1. an interpretation $\sigma^{\mathcal{I}}$ of each $\sigma \in \Sigma^S$ as a **nonempty set**, the *domain* of σ
2. an interpretation $f^{\mathcal{I}}$ of each $f \in \Sigma^F$ of rank $\langle \sigma_1, \dots, \sigma_n, \sigma_{n+1} \rangle$ as a **total** n -ary function from $\sigma_1^{\mathcal{I}} \times \dots \times \sigma_n^{\mathcal{I}}$ to $\sigma_{n+1}^{\mathcal{I}}$
3. an interpretation $x^{\mathcal{I}}$ of each $x : \sigma \in \Gamma$ as an element of $\sigma^{\mathcal{I}}$

Note: We consider only interpretations \mathcal{I} such that

- $\text{Bool}^{\mathcal{I}} = \{\text{true}, \text{false}\}$, $\perp^{\mathcal{I}} = \text{false}$, $\top^{\mathcal{I}} = \text{true}$
- for all $\sigma \in \Sigma^S$, $=_{\sigma}^{\mathcal{I}}$ maps its two arguments to **true** iff they are identical

Semantics: Example

Consider a signature $\Sigma = \langle \Sigma^S, \Sigma^F \rangle$ for a fragment of set theory with non-set elements:

$\Sigma^S = \{\text{Elem}, \text{Set}\}$, $\Sigma^F = \{\emptyset, \in\}$, $\text{rank}(\emptyset) = \langle \text{Set} \rangle$, $\text{rank}(\in) = \langle \text{Elem}, \text{Set}, \text{Bool} \rangle$

$\Gamma = \{ e_i : \text{Elem} \mid i \geq 0 \} \cup \{ s_i : \text{Set} \mid i \geq 0 \}$

Semantics: Example

Consider a signature $\Sigma = \langle \Sigma^S, \Sigma^F \rangle$ for a fragment of set theory with non-set elements:

$\Sigma^S = \{\text{Elem}, \text{Set}\}$, $\Sigma^F = \{\emptyset, \in\}$, $\text{rank}(\emptyset) = \langle \text{Set} \rangle$, $\text{rank}(\in) = \langle \text{Elem}, \text{Set}, \text{Bool} \rangle$

$\Gamma = \{e_i : \text{Elem} \mid i \geq 0\} \cup \{s_i : \text{Set} \mid i \geq 0\}$

A possible interpretation \mathcal{I} of Σ, Γ :

1. $\text{Elem}^{\mathcal{I}} = \mathbb{N}$, the natural numbers
2. $\text{Set}^{\mathcal{I}} = 2^{\mathbb{N}}$, all sets of natural numbers
3. $\emptyset^{\mathcal{I}} = \{\}$
4. for all $n \in \mathbb{N}$ and $s \subseteq \mathbb{N}$, $\in^{\mathcal{I}}(n, s) = \text{true}$ iff $n \in s$
5. for $i = 0, 1, \dots$, $e_i^{\mathcal{I}} = i$ and $s_i^{\mathcal{I}} = [0, i] = \{0, 1, \dots, i\}$

Semantics: Example

Consider a signature $\Sigma = \langle \Sigma^S, \Sigma^F \rangle$ for a fragment of set theory with non-set elements:

$\Sigma^S = \{\text{Elem}, \text{Set}\}$, $\Sigma^F = \{\emptyset, \in\}$, $\text{rank}(\emptyset) = \langle \text{Set} \rangle$, $\text{rank}(\in) = \langle \text{Elem}, \text{Set}, \text{Bool} \rangle$

$\Gamma = \{e_i : \text{Elem} \mid i \geq 0\} \cup \{s_i : \text{Set} \mid i \geq 0\}$

Another interpretation \mathcal{I} of Σ, Γ :

1. $\text{Elem}^{\mathcal{I}} = \text{Set}^{\mathcal{I}} = \mathbb{N}$, the natural numbers
2. $\emptyset^{\mathcal{I}} = 0$
3. for all $m, n \in \mathbb{N}$, $\in^{\mathcal{I}}(m, n) = \text{true}$ iff m is divisible by n
4. for $i = 0, 1, \dots$, $e_i^{\mathcal{I}} = i$ and $s_i^{\mathcal{I}} = 2$

Semantics: Example

Consider a signature $\Sigma = \langle \Sigma^S, \Sigma^F \rangle$ for a fragment of set theory with non-set elements:

$\Sigma^S = \{\text{Elem}, \text{Set}\}$, $\Sigma^F = \{\emptyset, \in\}$, $\text{rank}(\emptyset) = \langle \text{Set} \rangle$, $\text{rank}(\in) = \langle \text{Elem}, \text{Set}, \text{Bool} \rangle$

$\Gamma = \{ e_i : \text{Elem} \mid i \geq 0 \} \cup \{ s_i : \text{Set} \mid i \geq 0 \}$

There is an **infinity** of interpretations of Σ, Γ !

Term Semantics

Interpretations are analogous to a variable assignments in propositional logic

We define how to determine the truth value of a Σ -formula in an interpretation \mathcal{I} in FOL in analogy to how to determine the truth value of a formula under a variable assignment v in PL

Term Semantics

Interpretations are analogous to a **variable assignments** in propositional logic

We define **how to determine** the truth value of a Σ -formula in an **interpretation** \mathcal{I} in FOL in analogy to **how to determine** the truth value of a formula under a **variable assignment** ν in PL

The first step is to extend \mathcal{I} by structural induction to an interpretation $\bar{\mathcal{I}}$ for **well-sorted terms**

$$t^{\bar{\mathcal{I}}} = \begin{cases} t^{\mathcal{I}} & \text{if } t \text{ is a constant of } \Sigma \text{ or a variable} \\ f^{\mathcal{I}}(t_1^{\bar{\mathcal{I}}}, \dots, t_n^{\bar{\mathcal{I}}}) & \text{if } t = (f t_1 \dots t_n) \end{cases}$$

Term Semantics

The first step is to extend \mathcal{I} by structural induction to an interpretation $\bar{\mathcal{I}}$ for well-sorted terms

$$t^{\bar{\mathcal{I}}} = \begin{cases} t^{\mathcal{I}} & \text{if } t \text{ is a constant of } \Sigma \text{ or a variable} \\ f^{\mathcal{I}}(t_1^{\bar{\mathcal{I}}}, \dots, t_n^{\bar{\mathcal{I}}}) & \text{if } t = (f t_1 \dots t_n) \end{cases}$$

Example:

$\Sigma^s = \{ \text{Pers} \}$, $\Sigma^f = \{ \text{pa, ma, mar} \}$, $\Gamma = \{ x:\text{Pers}, y:\text{Pers}, \dots \}$,
 $\text{rank(pa)} = \text{rank(ma)} = \langle \text{Pers}, \text{Pers} \rangle$, $\text{rank}(\text{mar}) = \langle \text{Pers}, \text{Pers}, \text{Bool} \rangle$

Term Semantics

The first step is to extend \mathcal{I} by structural induction to an interpretation $\bar{\mathcal{I}}$ for well-sorted terms

$$t^{\bar{\mathcal{I}}} = \begin{cases} t^{\mathcal{I}} & \text{if } t \text{ is a constant of } \Sigma \text{ or a variable} \\ f^{\mathcal{I}}(t_1^{\bar{\mathcal{I}}}, \dots, t_n^{\bar{\mathcal{I}}}) & \text{if } t = (f t_1 \dots t_n) \end{cases}$$

Example:

$\Sigma^S = \{ \text{Pers} \}$, $\Sigma^F = \{ \text{pa, ma, mar} \}$, $\Gamma = \{ x:\text{Pers}, y:\text{Pers}, \dots \}$,
 $\text{rank(pa)} = \text{rank(ma)} = \langle \text{Pers}, \text{Pers} \rangle$, $\text{rank}(\text{mar}) = \langle \text{Pers}, \text{Pers}, \text{Bool} \rangle$

Consider \mathcal{I} such that

$\text{ma}^{\mathcal{I}} = \{ \text{Jim} \mapsto \text{Jill}, \text{Joe} \mapsto \text{Jen}, \dots \}$, $\text{pa}^{\mathcal{I}} = \{ \text{Jim} \mapsto \text{Joe}, \text{Jill} \mapsto \text{Jay}, \dots \}$,
 $\text{mar}^{\mathcal{I}} = \{ (\text{Jill}, \text{Joe}) \mapsto \text{true}, (\text{Joe}, \text{Jill}) \mapsto \text{true}, (\text{Jill}, \text{Jill}) \mapsto \text{false}, \dots \}$, $x^{\mathcal{I}} = \text{Jim}$, $y^{\mathcal{I}} = \text{Joe}$

Term Semantics

The first step is to extend \mathcal{I} by structural induction to an interpretation $\bar{\mathcal{I}}$ for well-sorted terms

$$t^{\bar{\mathcal{I}}} = \begin{cases} t^{\mathcal{I}} & \text{if } t \text{ is a constant of } \Sigma \text{ or a variable} \\ f^{\mathcal{I}}(t_1^{\bar{\mathcal{I}}}, \dots, t_n^{\bar{\mathcal{I}}}) & \text{if } t = (f t_1 \dots t_n) \end{cases}$$

Example:

$\Sigma^S = \{ \text{Pers} \}$, $\Sigma^F = \{ \text{pa, ma, mar} \}$, $\Gamma = \{ x:\text{Pers}, y:\text{Pers}, \dots \}$,
 $\text{rank(pa)} = \text{rank(ma)} = \langle \text{Pers}, \text{Pers} \rangle$, $\text{rank(mar)} = \langle \text{Pers}, \text{Pers}, \text{Bool} \rangle$

Consider \mathcal{I} such that

$\text{ma}^{\mathcal{I}} = \{ \text{Jim} \mapsto \text{Jill}, \text{Joe} \mapsto \text{Jen}, \dots \}$, $\text{pa}^{\mathcal{I}} = \{ \text{Jim} \mapsto \text{Joe}, \text{Jill} \mapsto \text{Jay}, \dots \}$,
 $\text{mar}^{\mathcal{I}} = \{ (\text{Jill}, \text{Joe}) \mapsto \text{true}, (\text{Joe}, \text{Jill}) \mapsto \text{true}, (\text{Jill}, \text{Jill}) \mapsto \text{false}, \dots \}$, $x^{\mathcal{I}} = \text{Jim}$, $y^{\mathcal{I}} = \text{Joe}$

$$\begin{aligned} (\text{pa}(\text{ma } x))^{\bar{\mathcal{I}}} &= \text{pa}^{\mathcal{I}}((\text{ma } x)^{\bar{\mathcal{I}}}) = \text{pa}^{\mathcal{I}}(\text{ma}^{\mathcal{I}}(x^{\bar{\mathcal{I}}})) = \text{pa}^{\mathcal{I}}(\text{ma}^{\mathcal{I}}(x^{\mathcal{I}})) \\ &= \text{pa}^{\mathcal{I}}(\text{ma}^{\mathcal{I}}(\text{Jim})) = \text{pa}^{\mathcal{I}}(\text{Jill}) = \text{Jay} \end{aligned}$$

Term Semantics

The first step is to extend \mathcal{I} by structural induction to an interpretation $\bar{\mathcal{I}}$ for well-sorted terms

$$t^{\bar{\mathcal{I}}} = \begin{cases} t^{\mathcal{I}} & \text{if } t \text{ is a constant of } \Sigma \text{ or a variable} \\ f^{\mathcal{I}}(t_1^{\bar{\mathcal{I}}}, \dots, t_n^{\bar{\mathcal{I}}}) & \text{if } t = (f t_1 \dots t_n) \end{cases}$$

Example:

$\Sigma^S = \{ \text{Pers} \}$, $\Sigma^F = \{ \text{pa, ma, mar} \}$, $\Gamma = \{ x:\text{Pers}, y:\text{Pers}, \dots \}$,
 $\text{rank(pa)} = \text{rank(ma)} = \langle \text{Pers}, \text{Pers} \rangle$, $\text{rank(mar)} = \langle \text{Pers}, \text{Pers}, \text{Bool} \rangle$

Consider \mathcal{I} such that

$\text{ma}^{\mathcal{I}} = \{ \text{Jim} \mapsto \text{Jill}, \text{Joe} \mapsto \text{Jen}, \dots \}$, $\text{pa}^{\mathcal{I}} = \{ \text{Jim} \mapsto \text{Joe}, \text{Jill} \mapsto \text{Jay}, \dots \}$,
 $\text{mar}^{\mathcal{I}} = \{ (\text{Jill}, \text{Joe}) \mapsto \text{true}, (\text{Joe}, \text{Jill}) \mapsto \text{true}, (\text{Jill}, \text{Jill}) \mapsto \text{false}, \dots \}$, $x^{\mathcal{I}} = \text{Jim}$, $y^{\mathcal{I}} = \text{Joe}$

$$\begin{aligned} (\text{mar}(\text{ma} x) y)^{\bar{\mathcal{I}}} &= \text{mar}^{\mathcal{I}}((\text{ma} x)^{\bar{\mathcal{I}}}, y^{\bar{\mathcal{I}}}) = \text{mar}^{\mathcal{I}}(\text{ma}^{\mathcal{I}}(x^{\bar{\mathcal{I}}}), y^{\bar{\mathcal{I}}}) = \text{mar}^{\mathcal{I}}(\text{ma}^{\mathcal{I}}(x^{\bar{\mathcal{I}}}), \text{Joe}) \\ &= \text{mar}^{\mathcal{I}}(\text{ma}^{\mathcal{I}}(\text{Jim}), \text{Joe}) = \text{mar}^{\mathcal{I}}(\text{Jill}, \text{Joe}) = \text{true} \end{aligned}$$

Formula Semantics

We further extend \mathcal{I} to **well-sorted non-atomic formulas** by structural induction as follows:

- $(\neg\alpha)^T = \text{true}$ iff $\alpha^T = \text{false}$
- $(\alpha \wedge \beta)^T = \text{true}$ iff $\alpha^T = \beta^T = \text{true}$
- $(\alpha \vee \beta)^T = \text{true}$ iff $\alpha^T = \text{true}$ or $\beta^T = \text{true}$
- $(\alpha \rightarrow \beta)^T = \text{true}$ iff $\alpha^T = \text{false}$ or $\beta^T = \text{true}$
- $(\alpha \Leftrightarrow \beta)^T = \text{true}$ iff $\alpha^T = \beta^T$
- $(\exists x : a, \alpha)^T = \text{true}$ iff $\alpha^{T[x \rightarrow a]} = \text{true}$ for some $a \in \sigma^T$
- $(\forall x : a, \alpha)^T = \text{true}$ iff $\alpha^{T[x \rightarrow a]} = \text{true}$ for all $a \in \sigma^T$

Formula Semantics

We further extend $\bar{\mathcal{I}}$ to **well-sorted non-atomic formulas** by structural induction as follows:

- $(\neg\alpha)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \text{false}$
- $(\alpha \wedge \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \beta^{\bar{\mathcal{I}}} = \text{true}$
- $(\alpha \vee \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \text{true}$ or $\beta^{\bar{\mathcal{I}}} = \text{true}$
- $(\alpha \Rightarrow \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \text{false}$ or $\beta^{\bar{\mathcal{I}}} = \text{true}$
- $(\alpha \Leftrightarrow \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \beta^{\bar{\mathcal{I}}}$
- $(\exists x : \sigma. \alpha)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}[x \mapsto a]} = \text{true}$ for some $a \in \sigma^{\bar{\mathcal{I}}}$
- $(\forall x : \sigma. \alpha)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}[x \mapsto a]} = \text{true}$ for all $a \in \sigma^{\bar{\mathcal{I}}}$

where $\bar{\mathcal{I}}[x \mapsto a]$ denotes the interpretation that maps x to a and is otherwise identical to $\bar{\mathcal{I}}$

Formula Semantics

We further extend $\bar{\mathcal{I}}$ to **well-sorted non-atomic formulas** by structural induction as follows:

- $(\neg\alpha)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \text{false}$
- $(\alpha \wedge \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \beta^{\bar{\mathcal{I}}} = \text{true}$
- $(\alpha \vee \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \text{true}$ or $\beta^{\bar{\mathcal{I}}} = \text{true}$
- $(\alpha \Rightarrow \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \text{false}$ or $\beta^{\bar{\mathcal{I}}} = \text{true}$
- $(\alpha \Leftrightarrow \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \beta^{\bar{\mathcal{I}}}$
- $(\exists x : \sigma. \alpha)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}[x \mapsto a]} = \text{true}$ for some $a \in \sigma^{\bar{\mathcal{I}}}$
- $(\forall x : \sigma. \alpha)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}[x \mapsto a]} = \text{true}$ for all $a \in \sigma^{\bar{\mathcal{I}}}$

We write $\mathcal{I} \models \alpha$, and say that \mathcal{I} **satisfies** α , to mean that $\alpha^{\bar{\mathcal{I}}} = \text{true}$

Formula Semantics

We further extend $\bar{\mathcal{I}}$ to **well-sorted non-atomic formulas** by structural induction as follows:

- $(\neg\alpha)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \text{false}$
- $(\alpha \wedge \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \beta^{\bar{\mathcal{I}}} = \text{true}$
- $(\alpha \vee \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \text{true}$ or $\beta^{\bar{\mathcal{I}}} = \text{true}$
- $(\alpha \Rightarrow \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \text{false}$ or $\beta^{\bar{\mathcal{I}}} = \text{true}$
- $(\alpha \Leftrightarrow \beta)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}} = \beta^{\bar{\mathcal{I}}}$
- $(\exists x : \sigma. \alpha)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}[x \mapsto a]} = \text{true}$ for some $a \in \sigma^{\bar{\mathcal{I}}}$
- $(\forall x : \sigma. \alpha)^{\bar{\mathcal{I}}} = \text{true}$ iff $\alpha^{\bar{\mathcal{I}}[x \mapsto a]} = \text{true}$ for all $a \in \sigma^{\bar{\mathcal{I}}}$

We write $\mathcal{I} \models \alpha$, and say that \mathcal{I} *satisfies* α , to mean that $\alpha^{\bar{\mathcal{I}}} = \text{true}$

We write $\mathcal{I} \not\models \alpha$, and say that \mathcal{I} *falsifies* α , to mean that $\alpha^{\bar{\mathcal{I}}} = \text{false}$

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \vdash \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \vdash \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \vdash \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^A = \{A\}$, $\Sigma^B = \{p, q\}$, $\text{rank}(p) = (A, \text{Bool})$, $\text{rank}(q) = (A, A, \text{Bool})$, and all variables v_i have sort A . Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \vdash p(v_2)$	✓	2. $p(v_1) \vdash \forall v_1. p(v_1)$	✗
3. $\forall v_1. p(v_1) \vdash \exists v_2. p(v_2)$	✓	4. $\exists v_2. \forall v_1. q(v_1, v_2) \vdash \forall v_1. \exists v_2. q(v_1, v_2)$	✓
5. $\forall v_1. \exists v_2. q(v_1, v_2) \vdash \exists v_2. \forall v_1. q(v_1, v_2)$	✗	6. $\models \exists v_2. (p(v_2) \Rightarrow \forall v_2. p(v_2))$	✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \vdash \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \vdash \beta$ and $\beta \vdash \alpha$

A Σ -formula α is valid, written $\vdash \alpha$ if $\{\}$ $\vdash \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^A = \{A\}$, $\Sigma^B = \{p, q\}$, $\text{rank}(p) = (A, \text{Bool})$, $\text{rank}(q) = (A, A, \text{Bool})$, and all variables v_i have sort A . Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \vdash p(v_2)$	✓	2. $p(v_1) \vdash \forall v_1. p(v_1)$	✗
3. $\forall v_1. p(v_1) \vdash \exists v_2. p(v_2)$	✓	4. $\exists v_2. \forall v_1. q(v_1, v_2) \vdash \forall v_1. \exists v_2. q(v_1, v_2)$	✓
5. $\forall v_1. \exists v_2. q(v_1, v_2) \vdash \exists v_2. \forall v_1. q(v_1, v_2)$	✗	6. $\vdash \exists v_2. (p(v_2) \Rightarrow \forall v_2. p(v_2))$	✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\vdash \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^0 = \{A\}$, $\Sigma^1 = \{p, q\}$, $\text{rank}(p) = (A, \text{Bool})$, $\text{rank}(q) = (A, A, \text{Bool})$, and all variables v_i have sort A . Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$	✓	2. $p(v_1) \models \forall v_1. p(v_1)$	✗
3. $\forall v_1. p(v_1) \vdash \exists v_2. p(v_2)$	✓	4. $\exists v_2. \forall v_1. q(v_1, v_2) \vdash \forall v_1. \exists v_2. q(v_1, v_2)$	✓
5. $\forall v_1. \exists v_2. q(v_1, v_2) \vdash \exists v_2. \forall v_1. q(v_1, v_2)$	✗	6. $\vdash \exists v_2. (p(v_2) \Rightarrow \forall v_2. p(v_2))$	✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^0 = \{A\}$, $\Sigma^1 = \{p, q\}$, $\text{rank}(p) = (A, \text{Bool})$, $\text{rank}(q) = (A, A, \text{Bool})$, and all variables v_i have sort A . Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$	✓	2. $p(v_1) \models \forall v_1. p(v_1)$	✗
3. $\forall v_1. p(v_1) \vdash \exists v_2. p(v_2)$	✓	4. $\exists v_2. \forall v_1. q(v_1, v_2) \vdash \forall v_1. \exists v_2. q(v_1, v_2)$	✓
5. $\forall v_1. \exists v_2. q(v_1, v_2) \vdash \exists v_2. \forall v_1. q(v_1, v_2)$	✗	6. $\models \exists v_2. (p(v_2) \Rightarrow \forall v_2. p(v_2))$	✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A. Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$

✓

2. $p(v) \vdash \forall v. p(v)$

✗

3. $\forall v_1. p(v_1) \vdash \exists v_2. p(v_2)$

✓

4. $\exists v_2. \forall v_1. q(v_1, v_2) \vdash \forall v_1. \exists v_2. q(v_1, v_2)$

✓

5. $\forall v_1. \exists v_2. q(v_1, v_2) \vdash \exists v_2. \forall v_1. q(v_1, v_2)$

✗

6. $\vdash \exists v_2. (p(v_2) \Rightarrow \forall v_2. p(v_2))$

✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A. Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$

✓

2. $p(v_1) \vdash \forall v_1. p(v_1)$

✗

3. $\forall v_1. p(v_1) \vdash \exists v_2. p(v_2)$

✓

4. $\exists v_2. \forall v_1. q(v_1, v_2) \vdash \forall v_1. \exists v_2. q(v_1, v_2)$

✓

5. $\forall v_1. \exists v_2. q(v_1, v_2) \vdash \exists v_2. \forall v_1. q(v_1, v_2)$

✗

6. $\models \exists v_2. (p(v_2) \rightarrow \forall v_2. p(v_2))$

✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A. Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$

✓

2. $p(v_1) \models \forall v_1. p(v_1)$

✗

3. $\forall v_1. p(v_1) \vdash \exists v_2. p(v_2)$

✓

4. $\exists v_2. \forall v_1. q(v_1, v_2) \vdash \forall v_1. \exists v_2. q(v_1, v_2)$

✓

5. $\forall v_1. \exists v_2. q(v_1, v_2) \vdash \exists v_2. \forall v_1. q(v_1, v_2)$

✗

6. $\vdash \exists v_2. (p(v_2) \rightarrow \forall v_2. p(v_2))$

✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A. Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$

✓

2. $p(v_1) \models \forall v_1. p(v_1)$

✗

3. $\forall v_1. p(v_1) \vdash \exists v_2. p(v_2)$

✓

4. $\exists v_2. \forall v_1. q(v_1, v_2) \vdash \forall v_1. \exists v_2. q(v_1, v_2)$

✓

5. $\forall v_1. \exists v_2. q(v_1, v_2) \vdash \exists v_2. \forall v_1. q(v_1, v_2)$

✗

6. $\vdash \exists v_2. (p(v_2) \rightarrow \forall v_2. p(v_2))$

✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A. Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$

✓

2. $p(v_1) \models \forall v_1. p(v_1)$

✗

3. $\forall v_1. p(v_1) \models \exists v_2. p(v_2)$

✓

4. $\exists v_2. \forall v_1. q(v_1, v_2) \vdash \forall v_1. \exists v_2. q(v_1, v_2)$

✓

5. $\forall v_1 \exists v_2. q(v_1, v_2) \vdash \exists v_2. \forall v_1. q(v_1, v_2)$

✗

6. $\vdash \exists v_2. (p(v_2) \Rightarrow \forall v_2. p(v_2))$

✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A. Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$	✓	2. $p(v_1) \models \forall v_1. p(v_1)$	✗
3. $\forall v_1. p(v_1) \models \exists v_2. p(v_2)$	✓	4. $\exists v_2. \forall v_1. q(v_1, v_2) \vdash \forall v_1. \exists v_2. q(v_1, v_2)$	✓
5. $\forall v_1 \exists v_2. q(v_1, v_2) \vdash \exists v_2. \forall v_1. q(v_1, v_2)$	✗	6. $\vdash \exists v_2. (p(v_2) \rightarrow \forall v_2. p(v_2))$	✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ *entails* or *logically implies* α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are *logically equivalent*, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is *valid*, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A . Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$	✓	2. $p(v_1) \models \forall v_1. p(v_1)$	✗
3. $\forall v_1. p(v_1) \models \exists v_2. p(v_2)$	✓	4. $\exists v_2. \forall v_1. q(v_1, v_2) \models \forall v_1. \exists v_2. q(v_1, v_2)$	✓
5. $\forall v_1 \exists v_2. q(v_1, v_2) \models \exists v_2. \forall v_1. q(v_1, v_2)$	✗	6. $\models \exists v_1 (p(v_1) \rightarrow \forall v_2. p(v_2))$	✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A . Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$	✓	2. $p(v_1) \models \forall v_1. p(v_1)$	✗
3. $\forall v_1. p(v_1) \models \exists v_2. p(v_2)$	✓	4. $\exists v_2. \forall v_1. q(v_1, v_2) \models \forall v_1. \exists v_2. q(v_1, v_2)$	✓
5. $\forall v_1 \exists v_2. q(v_1, v_2) \vdash \exists v_2. \forall v_1. q(v_1, v_2)$	✗	6. $\vdash \exists v_1 (p(v_1) \rightarrow \forall v_2. p(v_2))$	✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A . Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$	✓	2. $p(v_1) \models \forall v_1. p(v_1)$	✗
3. $\forall v_1. p(v_1) \models \exists v_2. p(v_2)$	✓	4. $\exists v_2. \forall v_1. q(v_1, v_2) \models \forall v_1. \exists v_2. q(v_1, v_2)$	✓
5. $\forall v_1. \exists v_2. q(v_1, v_2) \models \exists v_2. \forall v_1. q(v_1, v_2)$	✗	6. $\models \exists v_1. (p(v_1) \rightarrow \forall v_2. p(v_2))$	✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A . Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$	✓	2. $p(v_1) \models \forall v_1. p(v_1)$	✗
3. $\forall v_1. p(v_1) \models \exists v_2. p(v_2)$	✓	4. $\exists v_2. \forall v_1. q(v_1, v_2) \models \forall v_1. \exists v_2. q(v_1, v_2)$	✓
5. $\forall v_1. \exists v_2. q(v_1, v_2) \models \exists v_2. \forall v_1. q(v_1, v_2)$	✗	6. $\models \exists v_1. (p(v_1) \rightarrow \forall v_2. p(v_2))$	✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A. Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$	✓	2. $p(v_1) \models \forall v_1. p(v_1)$	✗
3. $\forall v_1. p(v_1) \models \exists v_2. p(v_2)$	✓	4. $\exists v_2. \forall v_1. q(v_1, v_2) \models \forall v_1. \exists v_2. q(v_1, v_2)$	✓
5. $\forall v_1. \exists v_2. q(v_1, v_2) \models \exists v_2. \forall v_1. q(v_1, v_2)$	✗	6. $\models \exists v_1. (p(v_1) \Rightarrow \forall v_2. p(v_2))$	✓

Entailment, validity

Let Φ be a set of Σ -formulas. We write $\mathcal{I} \models \Phi$ to mean that $\mathcal{I} \models \alpha$ for every $\alpha \in \Phi$

If Φ is a set of Σ -formulas and α is a Σ -formula, then Φ entails or logically implies α , written $\Phi \models \alpha$, if $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I} of Σ such that $\mathcal{I} \models \Phi$

We write $\alpha \models \beta$ as an abbreviation for $\{\alpha\} \models \beta$

α and β are logically equivalent, written $\alpha \equiv \beta$, iff $\alpha \models \beta$ and $\beta \models \alpha$

A Σ -formula α is valid, written $\models \alpha$ if $\{\} \models \alpha$ iff $\mathcal{I} \models \alpha$ for every interpretation \mathcal{I}

Exercise Suppose that $\Sigma^S = \{A\}$, $\Sigma^F = \{p, q\}$, $\text{rank}(p) = \langle A, \text{Bool} \rangle$, $\text{rank}(q) = \langle A, A, \text{Bool} \rangle$, and all variables v_i have sort A. Do the following entailment actually hold?

1. $\forall v_1. p(v_1) \models p(v_2)$	✓	2. $p(v_1) \models \forall v_1. p(v_1)$	✗
3. $\forall v_1. p(v_1) \models \exists v_2. p(v_2)$	✓	4. $\exists v_2. \forall v_1. q(v_1, v_2) \models \forall v_1. \exists v_2. q(v_1, v_2)$	✓
5. $\forall v_1. \exists v_2. q(v_1, v_2) \models \exists v_2. \forall v_1. q(v_1, v_2)$	✗	6. $\models \exists v_1. (p(v_1) \Rightarrow \forall v_2. p(v_2))$	✓

Exercise

Let α be a Σ -formula and let Γ be a sorting context that includes α 's free variables

The truth of α is determined by *interpretations* \mathcal{I} of Σ and Γ consisting of:

1. an interpretation $\sigma^{\mathcal{I}}$ of each $\sigma \in \Sigma^S$ as a **nonempty set**, the **domain** of σ
2. an interpretation $f^{\mathcal{I}}$ of each $f \in \Sigma^F$ of rank $\langle \sigma_1, \dots, \sigma_n, \sigma_{n+1} \rangle$ as a **total** n -ary function from $\sigma_1^{\mathcal{I}} \times \dots \times \sigma_n^{\mathcal{I}}$ to $\sigma_{n+1}^{\mathcal{I}}$
3. an interpretation $x^{\mathcal{I}}$ of each $x : \sigma \in \Gamma$ as an element of $\sigma^{\mathcal{I}}$

Consider the signature where

$$\Sigma^S = \{ \sigma \}, \Sigma^F = \{ Q, \dot{=}_{\sigma} \}, \Gamma = \{ x : \sigma, y : \sigma \}, \text{rank}(Q) = \langle \sigma, \sigma, \text{Bool} \rangle$$

For each of the following Σ -formulas, describe an interpretation that satisfies it

1. $\forall x : \sigma. \forall y : \sigma. x \dot{=} y$
2. $\forall x : \sigma. \forall y : \sigma. Q(x, y)$
3. $\forall x : \sigma. \exists y : \sigma. Q(x, y)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number

$$\exists x: \text{Nat. } \forall y: \text{Nat. } (x \neq y \rightarrow x < y)$$

2. For every natural number there is a greater one $\forall x: \text{Nat. } \exists y: \text{Nat. } x < y$

3. Two natural numbers are equal only if their respective successors are equal

$$\forall x: \text{Nat. } \forall y: \text{Nat. } (x = y \rightarrow S(x) = S(y))$$

4. Two natural numbers are equal if their respective successors are equal

$$\forall x: \text{Nat. } \forall y: \text{Nat. } (S(x) = S(y) \Rightarrow x = y)$$

5. No two distinct natural numbers have the same successor

$$\forall x: \text{Nat. } \forall y: \text{Nat. } (\neg(x \neq y) \rightarrow \neg(S(x) = S(y)))$$

6. There are at least two natural numbers smaller than 3

$$\exists x: \text{Nat. } \exists y: \text{Nat. } (\neg(x \neq y) \wedge (x < S(S(S(0)))) \wedge (y < S(S(S(0)))))$$

7. There is no largest natural number $\neg \exists x: \text{Nat. } \forall y: \text{Nat. } (y \neq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number

$$\exists x:\text{Nat. } \forall y:\text{Nat. } (x \neq y \vee x < y)$$

2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$

3. Two natural numbers are equal only if their respective successors are equal

$$\forall x:\text{Nat. } \forall y:\text{Nat. } (x = y \Rightarrow S(x) = S(y))$$

4. Two natural numbers are equal if their respective successors are equal

$$\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) = S(y) \Rightarrow x = y)$$

5. No two distinct natural numbers have the same successor

$$\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \neq y) \Rightarrow \neg(S(x) = S(y)))$$

6. There are at least two natural numbers smaller than 3

$$\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \neq y) \wedge (x < S(S(S(0)))) \wedge (y < S(S(S(0)))))$$

7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \neq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number

$\exists x:\text{Nat. } \forall y:\text{Nat. } (x \neq y \vee x < y)$

2. For every natural number there is a greater one

3. Two natural numbers are equal only if their respective successors are equal

$\forall x:\text{Nat. } \forall y:\text{Nat. } (x = y \rightarrow S(x) = S(y))$

4. Two natural numbers are equal if their respective successors are equal

$\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) = S(y) \Rightarrow x = y)$

5. No two distinct natural numbers have the same successor

$\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \neq y) \rightarrow \neg(S(x) = S(y)))$

6. There are at least two natural numbers smaller than 3

$\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \neq y) \wedge (x < S(S(S(0)))) \wedge (y < S(S(S(0)))))$

7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \neq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number

$\exists x:\text{Nat. } \forall y:\text{Nat. } (x \neq y \vee x < y)$

2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$

3. Two natural numbers are equal only if their respective successors are equal

$\forall x:\text{Nat. } \forall y:\text{Nat. } (x = y \rightarrow S(x) = S(y))$

4. Two natural numbers are equal if their respective successors are equal

$\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) = S(y) \rightarrow x = y)$

5. No two distinct natural numbers have the same successor

$\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \neq y) \rightarrow \neg(S(x) = S(y)))$

6. There are at least two natural numbers smaller than 3

$\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \neq y) \wedge (x < S(S(S(0)))) \wedge (y < S(S(S(0)))))$

7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \neq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
 $\exists x:\text{Nat. } \forall y:\text{Nat. } (x \neq y \vee x < y)$
2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$
3. Two natural numbers are equal only if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (x = y \rightarrow S(x) = S(y))$
4. Two natural numbers are equal if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) = S(y) \rightarrow x = y)$
5. No two distinct natural numbers have the same successor
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \neq y) \rightarrow \neg(S(x) = S(y)))$
6. There are at least two natural numbers smaller than 3
 $\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \neq y) \wedge (x < S(S(0))) \wedge (y < S(S(0))))$
7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \neq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
 $\exists x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \vee x < y)$
2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$
3. Two natural numbers are equal only if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) = S(y) \Rightarrow x = y)$
5. No two distinct natural numbers have the same successor
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3
 $\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \doteq y) \wedge (x < S(S(0))) \wedge (y < S(S(0))))$
7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \doteq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
 $\exists x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \vee x < y)$
2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$
3. Two natural numbers are equal only if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) = S(y) \Rightarrow x = y)$
5. No two distinct natural numbers have the same successor
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3
 $\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \doteq y) \wedge (x < S(S(0))) \wedge (y < S(S(S(0)))))$
7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \doteq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
 $\exists x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \vee x < y)$
2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$
3. Two natural numbers are equal only if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3
 $\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \doteq y) \wedge (x < S(S(S(0)))) \wedge (y < S(S(S(0)))))$
7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \doteq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
 $\exists x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \vee x < y)$
2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$
3. Two natural numbers are equal only if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \rightarrow S(x) \doteq S(y))$
6. There are at least two natural numbers smaller than 3
 $\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \doteq y) \wedge (x < S(S(0))) \wedge (y < S(S(0))))$
7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \doteq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
 $\exists x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \vee x < y)$
2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$
3. Two natural numbers are equal only if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3
 $\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \doteq y) \wedge (x < S(S(0))) \wedge (y < S(S(S(0)))))$
7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \doteq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
 $\exists x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \vee x < y)$
2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$
3. Two natural numbers are equal only if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3
 $\exists x:\text{Nat. } \exists y:\text{Nat. } (x \neq y \wedge x < 3 \wedge y < 3)$
7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \doteq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
 $\exists x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \vee x < y)$
2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$
3. Two natural numbers are equal only if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3
 $\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \doteq y) \wedge (x < S(S(S(0)))) \wedge (y < S(S(S(0)))))$
7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \doteq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
 $\exists x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \vee x < y)$
2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$
3. Two natural numbers are equal only if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3
 $\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \doteq y) \wedge (x < S(S(S(0)))) \wedge (y < S(S(S(0)))))$
7. There is no largest natural number
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (y \doteq x \vee y < x)$

From English to FOL: Examples 1

1. There is a natural number that is smaller than any other natural number
 $\exists x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \vee x < y)$
2. For every natural number there is a greater one $\forall x:\text{Nat. } \exists y:\text{Nat. } x < y$
3. Two natural numbers are equal only if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (x \doteq y \Rightarrow S(x) \doteq S(y))$
4. Two natural numbers are equal if their respective successors are equal
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (S(x) \doteq S(y) \Rightarrow x \doteq y)$
5. No two distinct natural numbers have the same successor
 $\forall x:\text{Nat. } \forall y:\text{Nat. } (\neg(x \doteq y) \Rightarrow \neg(S(x) \doteq S(y)))$
6. There are at least two natural numbers smaller than 3
 $\exists x:\text{Nat. } \exists y:\text{Nat. } (\neg(x \doteq y) \wedge (x < S(S(S(0)))) \wedge (y < S(S(S(0)))))$
7. There is no largest natural number $\neg \exists x:\text{Nat. } \forall y:\text{Nat. } (y \doteq x \vee y < x)$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y = \text{pa}(x) \wedge z = \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y = z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg (x = \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x = \text{pa}(y) \wedge z = \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg (x = \text{pa}(x) \vee x = \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg (x = \text{pa}(y)) \wedge \neg (x = \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg(x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg(x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg(x \doteq \text{pa}(y)) \wedge \wedge(x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg(x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg(x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg(x \doteq \text{pa}(y)) \wedge \neg(x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg(x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg(x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg(x \doteq \text{pa}(y)) \wedge \neg(x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg(x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg(x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg(x \doteq \text{pa}(y)) \wedge \neg(x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg (x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg (x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg (x \doteq \text{pa}(y)) \wedge \neg (x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \forall y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg(x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg(x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg(x \doteq \text{pa}(y)) \wedge \neg(x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg (x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg (x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg (x \doteq \text{pa}(y)) \wedge \neg (x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg (x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg (x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg (x \doteq \text{pa}(y)) \wedge \neg (x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg (x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg (x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg (x \doteq \text{pa}(y)) \wedge \neg (x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg (x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg (x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg (x \doteq \text{pa}(y)) \wedge \neg (x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg (x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg (x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg (x \doteq \text{pa}(y)) \wedge \neg (x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers
 $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg (x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother
 $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father
 $\forall x:\text{Pers. } \neg (x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless
 $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg (x \doteq \text{pa}(y)) \wedge \neg (x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg(x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg(x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg(x \doteq \text{pa}(y)) \wedge \neg(x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg(x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg(x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg(x \doteq \text{pa}(y)) \wedge \neg \exists z:\text{Pers. } (z \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg(x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg(x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg(x \doteq \text{pa}(y)) \wedge \neg(x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg (x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father
 $\forall x:\text{Pers. } \neg (x \doteq \text{pa}(x) \vee x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg (x \doteq \text{pa}(y)) \wedge \neg (x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg(x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg(x \doteq \text{pa}(x)) \vee \neg(x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg(x \doteq \text{pa}(y)) \wedge \neg(x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg(x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg(x \doteq \text{pa}(x)) \vee \neg(x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg(x \doteq \text{pa}(y)) \wedge \neg(x \doteq \text{ma}(y)))$

From English to FOL: Examples 2

1. Everyone has a father and a mother $\forall x:\text{Pers. } \exists y:\text{Pers. } \exists z:\text{Pers. } (y \doteq \text{pa}(x) \wedge z \doteq \text{ma}(x))$
2. The married relation is symmetric $\forall x:\text{Pers. } \forall y:\text{Pers. } (\text{mar}(x, y) \Rightarrow \text{mar}(y, x))$
3. No one can be married to themselves $\forall x:\text{Pers. } \neg \text{mar}(x, x)$
4. Not all people are married $\neg \forall x:\text{Pers. } \exists y:\text{Pers. } \text{mar}(x, y)$
5. Some people have a father and a mother who are not married to each other
 $\exists x:\text{Pers. } \neg \text{mar}(\text{ma}(x), \text{pa}(x))$
6. You cannot marry more than one person
 $\forall x:\text{Pers. } \forall y:\text{Pers. } \forall z:\text{Pers. } (\text{mar}(x, y) \wedge \text{mar}(x, z) \Rightarrow y \doteq z)$
7. Some people are not mothers $\exists x:\text{Pers. } \forall y:\text{Pers. } \neg(x \doteq \text{ma}(y))$
8. Nobody can be both a father and a mother $\forall x:\text{Pers. } \neg \exists y:\text{Pers. } \neg \exists z:\text{Pers. } (x \doteq \text{pa}(y) \wedge z \doteq \text{ma}(z))$
9. You can't be your own father or father's father $\forall x:\text{Pers. } \neg(x \doteq \text{pa}(x)) \vee \neg(x \doteq \text{pa}(\text{pa}(x)))$
10. Some people are childless $\exists x:\text{Pers. } \forall y:\text{Pers. } (\neg(x \doteq \text{pa}(y)) \wedge \neg(x \doteq \text{ma}(y)))$

Invariance of term values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Lemma 1

If \mathcal{I} and \mathcal{J} also agree on the variables of a Σ -term t with variables in Γ , then $\bar{t}^{\mathcal{I}} = \bar{t}^{\mathcal{J}}$.

Proof.

By structural induction on t .

- If t is a variable or a constant, then $\bar{t}^{\mathcal{I}} = \bar{t}^{\mathcal{J}}, t^{\mathcal{I}} = t^{\mathcal{J}}$.
Since $t^{\mathcal{I}} = t^{\mathcal{J}}$ by assumption, we have that $\bar{t}^{\mathcal{I}} = \bar{t}^{\mathcal{J}} = t^{\mathcal{I}} = \bar{t}^{\mathcal{J}}$.
- If $t = (f t_1 \dots t_n)$ with $n > 1$, then $f^{\mathcal{I}} = f^{\mathcal{J}}$ by assumption and $t_i^{\mathcal{I}} = t_i^{\mathcal{J}}$ for $i = 1, \dots, n$ by induction hypothesis.

It follows that $\bar{t}^{\mathcal{I}} = f^{\mathcal{I}}(\bar{t}_1^{\mathcal{I}}, \dots, \bar{t}_n^{\mathcal{I}}) = f^{\mathcal{J}}(\bar{t}_1^{\mathcal{J}}, \dots, \bar{t}_n^{\mathcal{J}}) = \bar{t}^{\mathcal{J}}$

□

Invariance of term values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Lemma 1

If \mathcal{I} and \mathcal{J} also agree on the variables of a Σ -term t with variables in Γ , then $t^{\bar{\mathcal{I}}} = t^{\bar{\mathcal{J}}}$.

Proof.

By structural induction on t .

- If t is a variable or a constant, then $t^{\bar{\mathcal{I}}} = t^{\mathcal{I}}$, $t^{\bar{\mathcal{J}}} = t^{\mathcal{J}}$.
Since $t^{\mathcal{I}} = t^{\mathcal{J}}$ by assumption, we have that $t^{\bar{\mathcal{I}}} = t^{\mathcal{I}} = t^{\mathcal{J}} = t^{\bar{\mathcal{J}}}$.
- If $t = (f t_1 \dots t_n)$ with $n > 1$, then $f^{\mathcal{I}} = f^{\mathcal{J}}$ by assumption and $t_i^{\mathcal{I}} = t_i^{\mathcal{J}}$ for $i = 1, \dots, n$ by induction hypothesis.

It follows that $t^{\bar{\mathcal{I}}} = f^{\mathcal{I}}(\bar{t}_1, \dots, \bar{t}_n) = f^{\mathcal{J}}(\bar{t}_1, \dots, \bar{t}_n) = t^{\bar{\mathcal{J}}}$

□

Invariance of term values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Lemma 1

If \mathcal{I} and \mathcal{J} also agree on the variables of a Σ -term t with variables in Γ , then $t^{\bar{\mathcal{I}}} = t^{\bar{\mathcal{J}}}$.

Proof.

By structural induction on t .

- If t is a variable or a constant, then $t^{\bar{\mathcal{I}}} = t^{\mathcal{I}}$, $t^{\bar{\mathcal{J}}} = t^{\mathcal{J}}$.
Since $t^{\bar{\mathcal{I}}} = t^{\mathcal{I}}$ by assumption, we have that $t^{\bar{\mathcal{I}}} = t^{\mathcal{I}} = t^{\mathcal{J}} = t^{\bar{\mathcal{J}}}$.
- If $t = (f t_1 \dots t_n)$ with $n > 1$, then $f^{\bar{\mathcal{I}}} = f^{\mathcal{I}}$ by assumption and $t_i^{\bar{\mathcal{I}}} = t_i^{\mathcal{I}}$ for $i = 1, \dots, n$ by induction hypothesis.

It follows that $t^{\bar{\mathcal{I}}} = f^{\bar{\mathcal{I}}}(\bar{t}_1, \dots, \bar{t}_n) = f^{\mathcal{I}}(\bar{t}_1, \dots, \bar{t}_n) = t^{\bar{\mathcal{J}}}$

Invariance of term values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Lemma 1

If \mathcal{I} and \mathcal{J} also agree on the variables of a Σ -term t with variables in Γ , then $t^{\bar{\mathcal{I}}} = t^{\bar{\mathcal{J}}}$.

Proof.

By structural induction on t .

- If t is a variable or a constant, then $t^{\bar{\mathcal{I}}} = t^{\mathcal{I}}$, $t^{\bar{\mathcal{J}}} = t^{\mathcal{J}}$.

Since $t^{\mathcal{I}} = t^{\mathcal{J}}$ by assumption, we have that $t^{\bar{\mathcal{I}}} = t^{\mathcal{I}} = t^{\mathcal{J}} = t^{\bar{\mathcal{J}}}$.

- If $t = (f, t_1, \dots, t_n)$ with $n > 1$, then $t^{\bar{\mathcal{I}}} = t^{\mathcal{I}}$ by assumption and $t_i^{\bar{\mathcal{I}}} = t_i^{\mathcal{I}}$ for $i = 1, \dots, n$ by induction hypothesis.

It follows that $t^{\bar{\mathcal{I}}} = f^{\mathcal{I}}(\bar{t}_1, \dots, \bar{t}_n) = f^{\mathcal{I}}(\bar{t}_1, \dots, t_n^{\mathcal{I}}) = t^{\bar{\mathcal{I}}}$

□

Invariance of term values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Lemma 1

If \mathcal{I} and \mathcal{J} also agree on the variables of a Σ -term t with variables in Γ , then $t^{\bar{\mathcal{I}}} = t^{\bar{\mathcal{J}}}$.

Proof.

By structural induction on t .

- If t is a variable or a constant, then $t^{\bar{\mathcal{I}}} = t^{\mathcal{I}}$, $t^{\bar{\mathcal{J}}} = t^{\mathcal{J}}$.
Since $t^{\mathcal{I}} = t^{\mathcal{J}}$ by assumption, we have that $t^{\bar{\mathcal{I}}} = t^{\mathcal{I}} = t^{\mathcal{J}} = t^{\bar{\mathcal{J}}}$.
- If $t = (f t_1 \dots t_n)$ with $n > 1$, then $f^{\mathcal{I}} = f^{\mathcal{J}}$ by assumption and $t_i^{\bar{\mathcal{I}}} = t_i^{\mathcal{J}}$ for $i = 1, \dots, n$ by induction hypothesis.
It follows that $t^{\bar{\mathcal{I}}} = f^{\mathcal{I}}(t_1^{\bar{\mathcal{I}}}, \dots, t_n^{\bar{\mathcal{I}}}) = f^{\mathcal{J}}(t_1^{\bar{\mathcal{J}}}, \dots, t_n^{\bar{\mathcal{J}}}) = t^{\bar{\mathcal{J}}}$

□

Invariance of truth values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Theorem 2

If \mathcal{I} and \mathcal{J} also agree on the free variables of a Σ -formula α with free variables in Γ , then $\alpha^{\mathcal{I}} = \alpha^{\mathcal{J}}$.

Invariance of truth values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Theorem 2

If \mathcal{I} and \mathcal{J} also agree on the free variables of a Σ -formula α with free variables in Γ , then $\alpha^{\mathcal{I}} = \alpha^{\mathcal{J}}$.

Proof.

By induction on α .

Invariance of truth values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Theorem 2

If \mathcal{I} and \mathcal{J} also agree on the free variables of a Σ -formula α with free variables in Γ , then $\alpha^{\mathcal{I}} = \alpha^{\mathcal{J}}$.

Proof.

By induction on α .

- If α is an atomic formula, the result holds by the previous lemma since α is then a term, and all of its variables occur free in it.

Invariance of truth values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Theorem 2

If \mathcal{I} and \mathcal{J} also agree on the free variables of a Σ -formula α with free variables in Γ , then $\alpha^{\mathcal{I}} = \alpha^{\mathcal{J}}$.

Proof.

By induction on α .

- If α is an atomic formula, the result holds by the previous lemma since α is then a term, and all of its variables occur free in it.
- If α is $\neg\beta$ or $\alpha_1 \bowtie \alpha_2$ with $\bowtie \in \{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$, the result follows from the inductive hypothesis.

Invariance of truth values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Theorem 2

If \mathcal{I} and \mathcal{J} also agree on the free variables of a Σ -formula α with free variables in Γ , then $\alpha^{\mathcal{I}} = \alpha^{\mathcal{J}}$.

Proof.

By induction on α .

- If $\alpha = Q s:\sigma. \beta$ with $Q \in \{\forall, \exists\}$. Then $\mathcal{FV}(\beta) = \mathcal{FV}(\alpha) \cup \{x\}$.

For any d in $\sigma^{\mathcal{I}}$, $\mathcal{I}[x \mapsto d]$ and $\mathcal{J}[x \mapsto d]$ agree on x by construction and on $\mathcal{FV}(\alpha)$ by assumption. The result follows from the inductive hypothesis and the semantics of \forall and \exists .

Invariance of truth values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Theorem 2

If \mathcal{I} and \mathcal{J} also agree on the free variables of a Σ -formula α with free variables in Γ , then $\alpha^{\mathcal{I}} = \alpha^{\mathcal{J}}$.

Note: The theorem implies that the interpretation of formula α is independent from the values assigned to variables that do not occur free in α .

Invariance of truth values

Consider a signature Σ , a Σ -context Γ , and two Σ -interpretations \mathcal{I} and \mathcal{J} that agree on the sorts and symbols of Σ .

Theorem 2

If \mathcal{I} and \mathcal{J} also agree on the free variables of a Σ -formula α with free variables in Γ , then $\alpha^{\mathcal{I}} = \alpha^{\mathcal{J}}$.

Note: The theorem implies that the interpretation of formula α is independent from the values assigned to variables that do not occur free in α .

Corollary 3

The truth value of sentences is independent from how variables are interpreted.

The Deduction Theorem of FOL

Consider a signature Σ

Theorem 4

For all Σ -formulas α and β , we have that $\alpha \models \beta$ iff $\models \alpha \Rightarrow \beta$

Proof.

\Rightarrow) We argue that every Σ interpretation \mathcal{I} satisfies $\gamma := \alpha \Rightarrow \beta$. If \mathcal{I} falsifies α , then it trivially satisfies γ . If, instead, \mathcal{I} satisfies α , then, since $\alpha \models \beta$, it must satisfy β as well. Hence, it satisfies γ .

\Leftarrow) We argue that every Σ -interpretation \mathcal{I} that satisfies α satisfies β as well. Any such interpretation must indeed satisfy β ; otherwise, it would falsify $\alpha \Rightarrow \beta$, against the assumption that $\models \alpha \Rightarrow \beta$. \square

Corollary 5

For all Σ -formulas α and β , we have that $\alpha \equiv \beta$ iff $\models \alpha \Leftrightarrow \beta$

The Deduction Theorem of FOL

Consider a signature Σ

Theorem 4

For all Σ -formulas α and β , we have that $\alpha \models \beta$ iff $\models \alpha \Rightarrow \beta$

Proof.

\Rightarrow) We argue that every Σ interpretation \mathcal{I} satisfies $\gamma := \alpha \Rightarrow \beta$. If \mathcal{I} falsifies α , then it trivially satisfies γ . If, instead, \mathcal{I} satisfies α , then, since $\alpha \models \beta$, it must satisfy β as well. Hence, it satisfies γ .

\Leftarrow) We argue that every Σ -interpretation \mathcal{I} that satisfies α satisfies β as well. Any such interpretation must indeed satisfy β ; otherwise, it would falsify $\alpha \Rightarrow \beta$, against the assumption that $\models \alpha \Rightarrow \beta$. \square

Corollary 5

For all Σ -formulas α and β , we have that $\alpha \equiv \beta$ iff $\models \alpha \Leftrightarrow \beta$

The Deduction Theorem of FOL

Consider a signature Σ

Theorem 4

For all Σ -formulas α and β , we have that $\alpha \models \beta$ iff $\models \alpha \Rightarrow \beta$

Proof.

\Rightarrow) We argue that every Σ interpretation \mathcal{I} satisfies $\gamma := \alpha \Rightarrow \beta$. If \mathcal{I} falsifies α , then it trivially satisfies γ . If, instead, \mathcal{I} satisfies α , then, since $\alpha \models \beta$, it must satisfy β as well. Hence, it satisfies γ .

\Leftarrow) We argue that every Σ -interpretation \mathcal{I} that satisfies α satisfies β as well. Any such interpretation must indeed satisfy β ; otherwise, it would falsify $\alpha \Rightarrow \beta$, against the assumption that $\models \alpha \Rightarrow \beta$. □

Corollary 5

For all Σ -formulas α and β , we have that $\alpha \equiv \beta$ iff $\models \alpha \Leftrightarrow \beta$

The Deduction Theorem of FOL

Consider a signature Σ

Theorem 4

For all Σ -formulas α and β , we have that $\alpha \models \beta$ iff $\models \alpha \Rightarrow \beta$

Proof.

\Rightarrow) We argue that every Σ interpretation \mathcal{I} satisfies $\gamma := \alpha \Rightarrow \beta$. If \mathcal{I} falsifies α , then it trivially satisfies γ . If, instead, \mathcal{I} satisfies α , then, since $\alpha \models \beta$, it must satisfy β as well. Hence, it satisfies γ .

\Leftarrow) We argue that every Σ -interpretation \mathcal{I} that satisfies α satisfies β as well. Any such interpretation must indeed satisfy β ; otherwise, it would falsify $\alpha \Rightarrow \beta$, against the assumption that $\models \alpha \Rightarrow \beta$. □

Corollary 5

For all Σ -formulas α and β , we have that $\alpha \equiv \beta$ iff $\models \alpha \Leftrightarrow \beta$

The Free Variables Theorem 1

Consider a signature Σ and a Σ -context Γ

Let Φ be a set of Σ -formulas, let α be Σ -formula with free variables from Γ , and let $x \in \mathcal{FV}(\alpha)$ where $x : \sigma \in \Gamma$.

Theorem 6

Suppose x occurs free in no formulas of Φ . Then, $\Phi \models \alpha$ iff $\Phi \models \forall x : \sigma. \alpha$.

Proof.

\Rightarrow) Let \mathcal{I} be any interpretation that satisfies Φ . Since x does not occur free in any formula of Φ we can conclude that $\mathcal{I}[x \mapsto a] \models \Phi$ for all $a \in \sigma^{\mathcal{I}}$. Since $\Phi \models \alpha$, we have that $\mathcal{I}[x \mapsto a] \models \alpha$ for all $a \in \sigma^{\mathcal{I}}$. But then $\mathcal{I} \models \forall x : \sigma. \alpha$ by definition of \forall . Hence, every interpretation that satisfies Φ also satisfies $\forall x : \sigma. \alpha$, that is, $\Phi \models \forall x : \sigma. \alpha$.

\Leftarrow) Let \mathcal{I} be any interpretation that satisfies Φ . By assumption $\mathcal{I} \models \forall x : \sigma. \alpha$. This implies that $\mathcal{I} \models \alpha$ regardless of what $x^{\mathcal{I}}$ is. Hence $\Phi \models \alpha$. □

The Free Variables Theorem 1

Consider a signature Σ and a Σ -context Γ

Let Φ be a set of Σ -formulas, let α be Σ -formula with free variables from Γ , and let $x \in \mathcal{FV}(\alpha)$ where $x : \sigma \in \Gamma$.

Theorem 6

Suppose x occurs free in no formulas of Φ . Then, $\Phi \models \alpha$ iff $\Phi \models \forall x:\sigma. \alpha$

Proof.

\Rightarrow) Let \mathcal{I} be any interpretation that satisfies Φ . Since x does not occur free in any formula of Φ we can conclude that $\mathcal{I}[x \mapsto a] \models \Phi$ for all $a \in \sigma^{\mathcal{I}}$. Since $\Phi \models \alpha$, we have that $\mathcal{I}[x \mapsto a] \models \alpha$ for all $a \in \sigma^{\mathcal{I}}$. But then $\mathcal{I} \models \forall x:\sigma. \alpha$ by definition of \forall . Hence, every interpretation that satisfies Φ also satisfies $\forall x:\sigma. \alpha$, that is, $\Phi \models \forall x:\sigma. \alpha$.

\Leftarrow) Let \mathcal{I} be any interpretation that satisfies Φ . By assumption $\mathcal{I} \models \forall x:\sigma. \alpha$. This implies that $\mathcal{I} \models \alpha$ regardless of what $x^{\mathcal{I}}$ is. Hence $\Phi \models \alpha$. □

The Free Variables Theorem 1

Consider a signature Σ and a Σ -context Γ

Let Φ be a set of Σ -formulas, let α be Σ -formula with free variables from Γ , and let $x \in \mathcal{FV}(\alpha)$ where $x : \sigma \in \Gamma$.

Theorem 6

Suppose x occurs free in no formulas of Φ . Then, $\Phi \models \alpha$ iff $\Phi \models \forall x : \sigma. \alpha$

Proof.

\Rightarrow) Let \mathcal{I} be any interpretation that satisfies Φ . Since x does not occur free in any formula of Φ we can conclude that $\mathcal{I}[x \mapsto a] \models \Phi$ for all $a \in \sigma^{\mathcal{I}}$. Since $\Phi \models \alpha$, we have that $\mathcal{I}[x \mapsto a] \models \alpha$ for all $a \in \sigma^{\mathcal{I}}$. But then $\mathcal{I} \models \forall x : \sigma. \alpha$ by definition of \forall . Hence, every interpretation that satisfies Φ also satisfies $\forall x : \sigma. \alpha$, that is, $\Phi \models \forall x : \sigma. \alpha$.

\Leftarrow) Let \mathcal{I} be any interpretation that satisfies Φ . By assumption $\mathcal{I} \models \forall x : \sigma. \alpha$. This implies that $\mathcal{I} \models \alpha$ regardless of what $x^{\mathcal{I}}$ is. Hence $\Phi \models \alpha$. □

The Free Variables Theorem 1

Consider a signature Σ and a Σ -context Γ

Let Φ be a set of Σ -formulas, let α be Σ -formula with free variables from Γ , and let $x \in \mathcal{FV}(\alpha)$ where $x : \sigma \in \Gamma$.

Theorem 6

Suppose x occurs free in no formulas of Φ . Then, $\Phi \models \alpha$ iff $\Phi \models \forall x : \sigma. \alpha$

Proof.

\Rightarrow) Let \mathcal{I} be any interpretation that satisfies Φ . Since x does not occur free in any formula of Φ we can conclude that $\mathcal{I}[x \mapsto a] \models \Phi$ for all $a \in \sigma^{\mathcal{I}}$. Since $\Phi \models \alpha$, we have that $\mathcal{I}[x \mapsto a] \models \alpha$ for all $a \in \sigma^{\mathcal{I}}$. But then $\mathcal{I} \models \forall x : \sigma. \alpha$ by definition of \forall . Hence, every interpretation that satisfies Φ also satisfies $\forall x : \sigma. \alpha$, that is, $\Phi \models \forall x : \sigma. \alpha$.

\Leftarrow) Let \mathcal{I} be any interpretation that satisfies Φ . By assumption $\mathcal{I} \models \forall x : \sigma. \alpha$. This implies that $\mathcal{I} \models \alpha$ regardless of what $x^{\mathcal{I}}$ is. Hence $\Phi \models \alpha$. □

The Free Variables Theorem 2

Consider a signature Σ and a Σ -context Γ

Let β be Σ -formula, let α be a Σ -formula with free variables from Γ , and let $x \in \mathcal{FV}(\alpha)$ where $x : \sigma \in \Gamma$.

Theorem 7

Suppose x does not occur free in β . Then, $\alpha \vdash \beta$ iff $\exists x : \sigma. \alpha \vdash \beta$

Proof.

\Rightarrow) Let \mathcal{I} be any interpretation that satisfies $\exists x : \sigma. \alpha$. This means that $\mathcal{I}[x \mapsto a] \models \alpha$ for some $a \in \sigma^2$. By assumption, $\mathcal{I}[x \mapsto a]$ satisfies β as well. Since x does not occur free in β , changing the value assigned to x does not matter. It follows that $\mathcal{I} \models \beta$. Since \mathcal{I} was arbitrary, this shows that $\exists x : \sigma. \alpha \vdash \beta$.

\Leftarrow) Let \mathcal{I} be any interpretation that satisfies α . Then, trivially, $\mathcal{I} \models \exists x : \sigma. \alpha$. By assumption, $\mathcal{I} \models \beta$. Since \mathcal{I} was arbitrary, we can conclude that $\alpha \vdash \beta$. \square

The Free Variables Theorem 2

Consider a signature Σ and a Σ -context Γ

Let β be Σ -formula, let α be a Σ -formula with free variables from Γ , and let $x \in \mathcal{FV}(\alpha)$ where $x : \sigma \in \Gamma$.

Theorem 7

Suppose x does not occur free in β . Then, $\alpha \models \beta$ iff $\exists x : \sigma. \alpha \models \beta$

Proof.

\Rightarrow) Let \mathcal{I} be any interpretation that satisfies $\exists x : \sigma. \alpha$. This means that $\mathcal{I}[x \mapsto a] \models \alpha$ for some $a \in \sigma^2$. By assumption, $\mathcal{I}[x \mapsto a]$ satisfies β as well. Since x does not occur free in β , changing the value assigned to x does not matter. It follows that $\mathcal{I} \models \beta$. Since \mathcal{I} was arbitrary, this shows that $\exists x : \sigma. \alpha \models \beta$.

\Leftarrow) Let \mathcal{I} be any interpretation that satisfies α . Then, trivially, $\mathcal{I} \models \exists x : \sigma. \alpha$. By assumption, $\mathcal{I} \models \beta$. Since \mathcal{I} was arbitrary, we can conclude that $\alpha \models \beta$. \square

The Free Variables Theorem 2

Consider a signature Σ and a Σ -context Γ

Let β be Σ -formula, let α be a Σ -formula with free variables from Γ , and let $x \in \mathcal{FV}(\alpha)$ where $x : \sigma \in \Gamma$.

Theorem 7

Suppose x does not occur free in β . Then, $\alpha \models \beta$ iff $\exists x : \sigma. \alpha \models \beta$

Proof.

\Rightarrow) Let \mathcal{I} be any interpretation that satisfies $\exists x : \sigma. \alpha$. This means that $\mathcal{I}[x \mapsto a] \models \alpha$ for some $a \in \sigma^{\mathcal{I}}$. By assumption, $\mathcal{I}[x \mapsto a]$ satisfies β as well. Since x does not occur free in β , changing the value assigned to x does not matter. It follows that $\mathcal{I} \models \beta$. Since \mathcal{I} was arbitrary, this shows that $\exists x : \sigma. \alpha \models \beta$.

\Leftarrow) Let \mathcal{I} be any interpretation that satisfies α . Then, trivially, $\mathcal{I} \models \exists x : \sigma. \alpha$. By assumption, $\mathcal{I} \models \beta$. Since \mathcal{I} was arbitrary, we can conclude that $\alpha \models \beta$. \square

The Free Variables Theorem 2

Consider a signature Σ and a Σ -context Γ

Let β be Σ -formula, let α be a Σ -formula with free variables from Γ , and let $x \in \mathcal{FV}(\alpha)$ where $x : \sigma \in \Gamma$.

Theorem 7

Suppose x does not occur free in β . Then, $\alpha \models \beta$ iff $\exists x : \sigma. \alpha \models \beta$

Proof.

\Rightarrow) Let \mathcal{I} be any interpretation that satisfies $\exists x : \sigma. \alpha$. This means that $\mathcal{I}[x \mapsto a] \models \alpha$ for some $a \in \sigma^{\mathcal{I}}$. By assumption, $\mathcal{I}[x \mapsto a]$ satisfies β as well. Since x does not occur free in β , changing the value assigned to x does not matter. It follows that $\mathcal{I} \models \beta$. Since \mathcal{I} was arbitrary, this shows that $\exists x : \sigma. \alpha \models \beta$.

\Leftarrow) Let \mathcal{I} be any interpretation that satisfies α . Then, trivially, $\mathcal{I} \models \exists x : \sigma. \alpha$. By assumption, $\mathcal{I} \models \beta$. Since \mathcal{I} was arbitrary, we can conclude that $\alpha \models \beta$. □