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Consider formalizing and reasoning about these sentences in propositional logic
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Every natural number is greater than 0
lis anatural number not equal to 0

What facts can we logically deduce?
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Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0
lis anatural number not equal to 0

What facts can we logically deduce? Only:
Propositional logic is often too coarse to express information

about individual objects and formalize correct deductions about them

We cannot deduce that 1 is greater than 0 from the two sentences above
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Motivation

Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0
lis anatural number not equal to 0

What facts can we logically deduce? Only:

First-order Logic (FOL) allows us to (dis)prove the validity of sentences like the above or
deduce their consequences (e.g., that 1 is greater than 0)

In this case, we need a first-order language for number theory
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Motivation

“Every positive integer number different from 1 is smaller than its square”

Intuitively, a first-order language has the following features:

® Asublanguage to denote individual things (numbers, people, colors, ...)

A sublanguage to express properties of individuals and relations among them

A sublanguage to denote groups of individuals with common features and ascribe them to specific
individuals

® Away to quantify statements about individuals
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English

FOL language

generic number

the number

the square of

“x is positive”

« ”

is different from
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“every integer number”

3/35



Motivation

“Every positive integer number different from 1 is smaller than its square”

English

FOL language

generic number

the number

the square of

“x is positive”

« ”

is different from

«

is smaller than its square”

“every integer number”

Sentence above in FOL:

3/35



Motivation

“Every positive integer number different from 1 is smaller than its square”

English

FOL language

generic number

the number

the square of

“x is positive”

« ”

is different from

«

is smaller than its square”

“every integer number”

Sentence above in FOL:

The formula is true in the intended interpretation
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Outline

e Syntax (ML 7.1-2)
® Semantics (ML 7.3)

ML presents a one-sorted first-order logic
We will use a many-sorted first-order logic

This makes it convenient to present Satisfiability Modulo Theories later
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Outline

e Syntax (ML 7.1-2)
® Semantics (ML 7.3)

ML presents a one-sorted first-order logic
We will use a many-sorted first-order logic

This makes it convenient to present Satisfiability Modulo Theories later

Note:
Many-sorted FOL is not more expressive than one-sorted FOL:
It is possible to faithfully encode the former in the latter

However, using different sorts makes it more convenient to rule out non-sensical expressions
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2. , , Where:
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] is a set of reg.,—,+, »
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Symbols

Review: what does the syntax of a logic consist of?

Symbols + rules for combining them

[ First-order logic is an umbrella term for different

The symbols of a first-order language consist of:

1. ( )

2. , , Where:
. is a set of re.g.,

] is a set of reg.,—,+, »

Note: We consider symbols as (not divisible further)
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° is a set of re.g., ,
] is a set of reg., =, +, , <,
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Signature

The syntax of a first-order language is defined w.r.t. a , , where:

] is a set of re.g., ,

] is a set of reg.,—, -+, y <,
We associate each with:

® an : a natural number denoting the number of arguments 7 takes

® 2 a -tuple of sorts:
Intuitively, f denotes a function that takes 1 values of respective sort as input and returns an
output of sort

are the of f and is the
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Signature

The syntax of a first-order language is defined w.r.t. a , , where:
° is a set of re.g., ,
] is a set of reg.,—, -+, y <,
We associate each with:
® an : a natural number denoting the number of arguments 7 takes
® 2 a -tuple of sorts:
Intuitively, f denotes a function that takes 1 values of respective sort as input and returns an
output of sort

We call function symbols ¢ of arity and say they have sort o when
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Signature

The syntax of a first-order language is defined w.r.t. a , , where:
° is a set of re.g., ,
] is a set of reg., =, +, , <,
We associate each with:
® an : a natural number denoting the number of arguments 7 takes
® 2 a -tuple of sorts:

We also assume an infinite set of
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Signature

The syntax of a first-order language is defined w.r.t. a , , where:
° is a set of re.g., ,
] is a set of reg., =, +, , <,
We associate each with:
® an : a natural number denoting the number of arguments 7 takes
® 2 a -tuple of sorts:

Example: In the first-order language of number theory
. contains a sort and > contains a function symbols 0, 1,
® 0and 1 have arity 0 and
® - hasarity 2 and
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Signature

We assume for every signature > that

. includes a distinguished sort

. contains distinguished constants T and | with ,and
distinguished functions symbols =, with forall
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Signature

We assume for every signature > that

. includes a distinguished sort
. contains distinguished constants T and | with ,and
distinguished functions symbols =, with forall

There are two special kinds of function symbols:

: function symbols of 0 arity (e.g., |, T, 7, ,0)

: function symbols of return sort (e.g., =, <)
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First-Order Languages: Examples

Recall that a first-order language is defined wrt a signature

Elementary Number Theory
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First-Order Languages: Examples

Set Theory
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First-Order Languages: Examples

Propositional logic formulas

10/35



Expressions

Recall that an expression is any finite sequence of symbols

s A

Example
[
[

[ ]
. J

Most expressions are not well-formed
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Expressions

Recall that an expression is any finite sequence of symbols

s A

Example
[
[

[ ]
. J

Most expressions are not well-formed

Expressions of interest in FOL are and
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Terms

Expressions built up from function symbols, variables, and parentheses ((, ))
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Terms

Expressions built up from function symbols, variables, and parentheses ((, ))

Formally, let /5 be the set of all variables and all constant symbols in some signature

For each function symbol of arity , we define a

are expressions that are generated from /5 by

Examples of terms in the language of number theory:

X
X
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Well-sorted terms

[ Not all well-formed terms are meaningful ]

We consider only terms that are well-sorted wrt a given signature
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Well-sortedness

We formulate the notion of wrt > with a , a proof system over
sequents of the form
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Well-sortedness

We formulate the notion of
sequents of the form

where
° is
e fisawell-formed term

® 7 isasortof

wrt >~ with a

, a set of sorted variables

, a proof system over
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Well-sortedness

We formulate the notion of wrt > with a , a proof system over
sequents of the form

VAR CoONST
Fun
Atermtis wrt >~ and in a sort context
if is derivable in the sort system above Wecallta

[ Note: Every well-sorted term is also well-formed }
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Well-sorted terms example: Elementary number theory

Let and
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Well-sorted terms example: Elementary number theory

Let and
[ )
[ )
[ )
[ )
Are these well-formed terms also well-sorted in context ?
1.
2. X
3.

>
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Well-sorted terms example: Elementary number theory

Let and

Are these well-formed terms also well-sorted in context ?

X

o bk wd e
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Well-sorted terms example: Elementary number theory

Are these well-formed terms also well-sort

o bk wd e

X

b

ook 2

Note: As a notational convention, we will use an
infix notation for parentheses and common op-
erators like —, <, -+ and so on

So we will often write
instead of

N\
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-Formulas

Given a signature >, an is any term thatis a > -term ¢ of sort
under some sort context
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for each var x and sort

The set of is the set of expressions generated
from the atomic > -formulas by
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We define the following formula-building operations, denoted

for each var x and sort
for each var x and sort

Each isan
Each isa

-term ¢ of sort

16/35



-Formulas

Given a signature >, an isany term thatis a > -term
under some sort context

We define the following formula-building operations, denoted

for each var x and sort
for each var x and sort

We simplify the notation as in PL by
e forgoing parentheses around top-level formulas — e.g.,
e forgoing parenths around atomic formulas in infix form — e.g.,
® treating the binary connectives as n-ary and right associative — e.g.,

of sort
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-Formulas: Examples

Let a x; be variables for all

Which of the following formulas (with atomic subformulas in infix form) are well-formed?

1.

2.

3. X

4. X ( . - )
Note: Formula (5) is well-formed but not

5. well-sorted

6. X To know which formulas are well-sorted

we need to extend our sort system to the
logical operators
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Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and quantifiers
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Well-sorted formulas
We extend the sort system for terms with rules for the logical connectives and quantifiers

BCONST Not

CONN

QUANT

Aformula o is wrt 2- in a sort context
if is derivable in the sort system above Wecall o a

18/35



Exercise

Draw two Venn Diagram that illustrate the relations between

:terms
: well-formed terms
: well-sorted terms

: well-sorted atomic formulas
and between
: well-sorted atomic formulas

: well-formed formulas

: well-sorted formulas
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Notational conventions for formulas

From now on, to improve readability:

® We will use the infix notation for logical operators and function symbols typically written in that
notation (—,, <, +,...)
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Notational conventions for formulas

From now on, to improve readability:

® We will use the infix notation for logical operators and function symbols typically written in that
notation (—,, <, +,...)

® Finally, we will omit the sort symbol in equalities and quantifiers when it is clear from the context
or not important:

Example: instead of

® We may also omit parentheses by defining

® Same precedence for propositional connectives as in propositional logic
® Quantifiers have the highest precedence after
Example: —Vx. (p x) abbreviates (—(Vx. (p x)))

® Finally, we will allow the use of parentheses following function symbols.
Example: instead of
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Free and Bound Variables

Avariable x may occur free in a > -formula o or not

We formalize that by defining inductively the of
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Free and Bound Variables

Avariable x may occur free in a > -formula o or not

We formalize that by defining inductively the

of

-
Examples: Let be variables

[ (provided x has sort )
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Free and Bound Variables

Avariable x may occur free in a > -formula o or not

We formalize that by defining inductively the

Avariable in a > -formula o if

For , we say that v is in

The of x in v is the subformula

of
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A -formula o is ,orisa(>-) ,if
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Free and Bound Variables

Avariable x may occur free in a > -formula o or not

We formalize that by defining inductively the of

Can avariable both occur free and be bound in ? Yes! (e.g., )

This can be confusing, so we typically rename the bound variables of a formula so that they are
distinct from its free variables (e.g., )
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FOL Semantics

Recall: The syntax of a first-order language is defined wrt a where:

° is a set of

o is a set of
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FOL Semantics

Recall: The syntax of a first-order language is defined wrt a where:

° is a set of

o is a set of

In propositional logic, the truth of a formula depends on the meaning of its variables

In first-order logic, the truth of a > -formula depends on:

1. the meaning of each sort symbol
2. the meaning of each function symbol
3. the meaning of each free variable

in the formula
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Semantics

Let &« be a > -formula and let I' be a sorting context that includes s free variables

The truth of « is determined by of > and I consisting of:
1. aninterpretation o of each as a nonempty set, the of
2. aninterpretation 7~ of each of rank as a total n-ary function from
to

3. aninterpretation x” of each as an element of
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Semantics

Let &« be a > -formula and let I' be a sorting context that includes s free variables

The truth of « is determined by of > and I consisting of:
1. aninterpretation o of each as a nonempty set, the of
2. aninterpretation 7~ of each of rank as a total n-ary function from
to
3. aninterpretation x” of each as an element of

Note: We consider only interpretations 7 such that

°
) )

e forall , maps its two arguments to iff they are identical
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Semantics: Example

Consider a signature for a fragment of set theory with non-set elements:

) ) )
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Semantics: Example

Consider a signature for a fragment of set theory with non-set elements:

) ) )

A possible interpretation 7 of

1. , the natural numbers

2. , all sets of natural numbers

3.

4, forall and , iff

5. for , and
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Semantics: Example

Consider a signature for a fragment of set theory with non-set elements:

) ) )

Another interpretation 7 of

1. , the natural numbers
2.
3. forall , iff m is divisible by

4. for , and
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Semantics: Example

Consider a signature for a fragment of set theory with non-set elements:

) ) )

[ There is an infinity of interpretations of ! J
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Term Semantics
Interpretations are analogous to a variable assignments in propositional logic

We define how to determine the truth value of a > -formula in an interpretation 7 in FOL in analogy to
how to determine the truth value of a formula under a variable assignment v in PL
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Term Semantics

The first step is to extend 7 by structural induction to an interpretation 7 for well-sorted terms

FL(E, . tD) ift=(ft, --- t,)

7 {tI if tis a constant of X or a variable

Example:

S ={Pers}, ¥ = { pa,ma,mar}, [ = {x:Pers, y:Pers, ...},
rank(pa) = rank(ma) = (Pers, Pers), rank(mar) = (Pers, Pers, Bool)

Consider 7 such that

mal = {Jim ~ Jill, Joe + Jen, ...}, pal = {Jim ~ Joe, Jill — Jay, ...},
mar? = { (Jill, Joe) + true, (Joe, Jill) — true, (Jill, Jill) + false, ...}, x* = Jim, yZ = Joe
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Term Semantics

The first step is to extend 7 by structural induction to an interpretation 7 for well-sorted terms

7_ )t if tis a constant of X or a variable
O\, ) ift=(ft e )

Example:

S ={Pers}, ¥ = { pa,ma,mar}, [ = {x:Pers, y:Pers, ...},
rank(pa) = rank(ma) = (Pers, Pers), rank(mar) = (Pers, Pers, Bool)

Consider 7 such that
maZ = { Jim > Jill, Joe — Jen, ...}, pa’ = { Jim > Joe, Jill — Jay, ...},
mar? = { (Jill, Joe) ~ true, (Joe, Jill) + true, (Jill, Jill) + false, ...}, xT = Jim, yZ = Joe

(pa (max))Z = paZ((max)T) = pa” (ma” (xT)) = pa’(maZ(x7))

= pa(maZ(Jim)) = pal(Jill) = Jay
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Term Semantics

The first step is to extend 7 by structural induction to an interpretation 7 for well-sorted terms

T _ t* if t is a constant of ¥ or a variable
O\, ) ift=(ft e )

Example:

S ={Pers}, ¥ = { pa,ma,mar}, [ = {x:Pers, y:Pers, ...},
rank(pa) = rank(ma) = (Pers, Pers), rank(mar) = (Pers, Pers, Bool)

Consider 7 such that
maZ = { Jim > Jill, Joe — Jen, ...}, pa’ = { Jim > Joe, Jill — Jay, ...},
mar? = { (Jill, Joe) ~ true, (Joe, Jill) + true, (Jill, Jill) + false, ...}, xT = Jim, yZ = Joe

(mar (max) y)Z = marZ((max)Z, yT) = marf(maZ(x%), yT) = mar(maZ(x%), Joe)
= marf(mal(Jim), Joe) = marZ(Jill, Joe) = true
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Formula Semantics

We further extend 7 to well-sorted non-atomic formulas by structural induction as follows:
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Formula Semantics

We further extend

where

iff
iff
iff or
iff or
iff
iff for some
iff forall

denotes the interpretation that maps x to

to well-sorted non-atomic formulas by structural induction as follows:

and is otherwise identical to
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We write ,and say that , to mean that
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Exercise

Let & be a > -formula and let " be a sorting context that includes «’s free variables

The truth of v is determined by of > and I consisting of:
1. aninterpretation o“ of each as a nonempty set, the of
2. aninterpretation /* of each of rank as a total n-ary function from
3. aninterpretation x” of each as an element of

Consider the signature where

For each of the following > -formulas, describe an interpretation that satisfies it
1.
2.
3.

to
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Note: The theorem implies that the interpretation of formula « is independent from the values
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Corollary 3
The truth value of sentences is independent from how variables are interpreted.
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