

CS:4980 Topics in Computer Science II
Introduction to Automated Reasoning

DPLL and CDCL

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa, **Emina Torlak** at the University of Washington, and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

Plan

- DPLL
 - Abstract DPLL
- CDCL (DP Chapter 2)
 - Abstract CDCL
 - Implication graphs

The Original DPLL Procedure

Modern SAT solvers are based on an extension of the **DPLL procedure**

DPLL tries to build incrementally a satisfying assignment M for a clause set Δ

M is grown by

- deducing the truth value of a literal from M and Δ , or
- guessing a truth value

If a wrong guess for a literal leads to an inconsistency,
the procedure backtracks and tries the opposite value

The Original DPLL Procedure

Modern SAT solvers are based on an extension of the **DPLL procedure**

DPLL tries to **build** incrementally a satisfying assignment M for a clause set Δ

M is grown by

- deducing the truth value of a literal from M and Δ , or
- guessing a truth value

If a wrong guess for a literal leads to an inconsistency,
the procedure **backtracks** and tries the opposite value

The Original DPLL Procedure

Modern SAT solvers are based on an extension of the **DPLL procedure**

DPLL tries to **build** incrementally a satisfying assignment M for a clause set Δ

M is grown by

- **deducing** the truth value of a literal from M and Δ , or
- **guessing** a truth value

If a wrong guess for a literal leads to an inconsistency,
the procedure **backtracks** and tries the opposite value

The Original DPLL Procedure

Modern SAT solvers are based on an extension of the **DPLL procedure**

DPLL tries to **build** incrementally a satisfying assignment M for a clause set Δ

M is grown by

- **deducing** the truth value of a literal from M and Δ , or
- **guessing** a truth value

If a wrong guess for a literal leads to an inconsistency,
the procedure **backtracks** and tries the opposite value

DPLL as a Proof System

To facilitate a deeper look at DPLL, we present it as a proof system: *Abstract DPLL*

The proof system is a re-elaboration of those in [1,2]

[1] Nieuwenhuis et al, “Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).”, Journal of the ACM, 53(6).

[2] Krstić and Goel, “Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL.”, FroCos 2007.

Abstract DPLL: A Proof System for DPLL

States:

UNSAT

$\langle M, \Delta \rangle$

where

- M is a *sequence of literals* and *decision points* •
denoting a **partial variable assignment**
- Δ is a *set of clauses* denoting a CNF formula

Abstract DPLL: A Proof System for DPLL

States:

UNSAT

$\langle M, \Delta \rangle$

where

- M is a *sequence of literals* and *decision points* •
denoting a **partial variable assignment**
- Δ is a *set of clauses* denoting a CNF formula

Note: When convenient, we treat M as a set

Provided M contains no complementary literals it determines the assignment

$$v_M(p) = \begin{cases} \text{true} & \text{if } p \in M \\ \text{false} & \text{if } \bar{p} \in M \\ \text{undef} & \text{otherwise} \end{cases}$$

Abstract DPLL: A Proof System for DPLL

States:

UNSAT

$\langle M, \Delta \rangle$

where

- M is a *sequence of literals* and *decision points* •
denoting a **partial variable assignment**
- Δ is a *set of clauses* denoting a CNF formula

Notation: If $M = M_0 \bullet M_1 \bullet \dots \bullet M_n$ where each M_i contains no decision points

- M_i is *decision level i* of M
- $M^{[i]}$ denotes the subsequence $M_0 \bullet \dots \bullet M_i$, from decision level 0 to decision level i

Abstract DPLL: A Proof System for DPLL

States:

UNSAT

$\langle M, \Delta \rangle$

Initial state:

- $\langle \epsilon, \Delta_0 \rangle$, where ϵ is the empty assignment and Δ_0 is to be checked for satisfiability

Abstract DPLL: A Proof System for DPLL

States:

UNSAT

$\langle M, \Delta \rangle$

Initial state:

- $\langle \epsilon, \Delta_0 \rangle$, where ϵ is the empty assignment and Δ_0 is to be checked for satisfiability

Expected final states:

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

Some clause terminology

Notation \bar{l} denotes the *complement* of l , that is, $\neg l$ if l is a variable, and p if l is $\neg p$

Given a *partial assignment*: $v := \{ p_1 \mapsto \text{true}, p_2 \mapsto \text{false}, p_4 \mapsto \text{true} \}$

- clause $\{p_1, p_3, \bar{p}_4\}$ is *satisfied* by v
- clause $\{\bar{p}_1, p_2\}$ is *conflicting* with v
- clause $\{\bar{p}_1, p_3, \bar{p}_4\}$ is *unit* in v
- clause $\{\bar{p}_1, p_3, p_5\}$ is *unresolved* by v
- variable p_1 is *assigned* in v
- variable p_3 is *unassigned* in v

Abstract DPLL proof rules: extending the assignment

$$\text{PROPAGATE} \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

Deduce the value of unassigned literal in unit clauses

$$\text{PURE} \frac{l \text{ literal of } \Delta \quad \bar{l} \text{ not literal of } \Delta \quad l, \bar{l} \notin M}{M := M \setminus l}$$

Make a pure literal true

Abstract DPLL proof rules: extending the assignment

$$\text{PROPAGATE} \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

Deduce the value of unassigned literal in unit clauses

The clause $\{l_1, \dots, l_n, l\}$ is the *antecedent clause* of l , denoted by $\text{Antecedent}(l)$

$$\text{PURE} \frac{\begin{array}{c} l \text{ literal of } \Delta \\ \neg l \text{ not literal of } \Delta \\ l, \bar{l} \notin M \end{array}}{M := M \setminus l}$$

Make a pure literal true

Abstract DPLL proof rules: extending the assignment

$$\text{PROPAGATE} \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

Deduce the value of unassigned literal in unit clauses

$$\text{PURE} \frac{l \text{ literal of } \Delta \quad \bar{l} \text{ not literal of } \Delta \quad l, \bar{l} \notin M}{M := M \setminus l}$$

Make a **pure literal** true

Abstract DPLL proof rules: extending the assignment

$$\text{DECIDE} \frac{l \in \text{Lits}(\Delta) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

Guess a truth value for an unassigned literal

Notation: $\text{Lits}(\Delta) := \{l \mid l \text{ literal of } \Delta\} \cup \{\bar{l} \mid l \text{ literal of } \Delta\}$

l is a *decision literal* of the new M

Abstract DPLL proof rules: extending the assignment

$$\text{DECIDE} \frac{l \in \text{Lits}(\Delta) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

Guess a truth value for an **unassigned** literal

Notation: $\text{Lits}(\Delta) := \{l \mid l \text{ literal of } \Delta\} \cup \{\bar{l} \mid l \text{ literal of } \Delta\}$

l is a **decision literal** of the new M

Abstract DPLL proof rules: repairing the assignment

$$\text{BACKTRACK} \frac{\{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad M = M_1 \bullet l M_2 \quad l \notin M_2}{M := M_1 \bar{l}}$$

There is a **conflicting clause** and a decision point to backtrack to
Backtrack over last decision point and add **complement** of decision literal

Abstract DPLL proof rules: repairing the assignment

$$\text{BACKTRACK} \frac{\{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad M = M_1 \bullet l M_2 \quad \bullet \notin M_2}{M := M_1 \bar{l}}$$

There is a **conflicting clause** and a decision point to backtrack to
Backtrack over last decision point and add **complement** of decision literal

Note: Premise $\bullet \notin N$ enforces **chronological** backtracking

Abstract DPLL proof rules: repairing the assignment

$$\text{BACKTRACK} \frac{\{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad M = M_1 \bullet l M_2 \quad \bullet \notin M_2}{M := M_1 \bar{l}}$$

There is a **conflicting clause** and a decision point to backtrack to
Backtrack over last decision point and add **complement** of decision literal

$$\text{FAIL} \frac{\{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad \bullet \notin M}{\text{UNSAT}}$$

There is a **conflicting clause** and no decision points to backtrack to
Conclude that clause set is unsatisfiable

Abstract DPLL proof rules

PROPAGATE	$\frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \cup \{l\}}$	
PURE	$\frac{l \text{ literal of } \Delta \quad \bar{l} \text{ not literal of } \Delta \quad l, \bar{l} \notin M}{M := M \setminus \{l\}}$	
BACKTRACK	$\frac{\{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad M = M_1 \bullet M_2}{M := M_1 \setminus \{\bar{l}\}}$	
		DECIDE $\frac{l \in \text{Lits}(\Delta) \quad l, \bar{l} \notin M}{M := M \bullet l}$
		FAIL $\frac{\{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad \bullet \notin M}{\text{UNSAT}}$

This proof system captures the main steps of the DPLL procedure

Note: There are no rules to update Δ , the set of clauses

Such rules are present in CDCL, as we will see

Abstract DPLL proof rules

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \cup \{l\}$	
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \cup \{l\}$	
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet M_2$	$\bullet \notin M_2$	$M := M_1 \bar{l}$

This proof system captures the main steps of the DPLL procedure

Note: There are no rules to update Δ , the set of clauses

Such rules are present in CDCL, as we will see

DPLL derivation example

$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, 2\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet 1$	$\{1, 2\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\bar{1}, 4\}$	by DECIDE
$4 \bullet \bar{1} 2$	$\{1, 2\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\bar{1}, 4\}$	by PROPAGATE
$4 \bullet 1 \bar{2} 3$	$\{1, 2\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\bar{1}, 4\}$	by PROPAGATE
$\bar{4}$	$\{1, 2\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\bar{1}, 4\}$	by BACKTRACK
$4 \bar{1} 2$	$\{1, 2\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\bar{1}, 4\}$	by PROPAGATE
$4 \bar{1} 2 3$	$\{1, 2\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\bar{1}, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$	DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$	FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$\bullet \notin M$
							UNSAT	
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet l M_2$	$\bullet \notin M_2$				
				$M := M_1 \setminus l$				

DPLL derivation example

$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \cdot 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \cdot 12$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \cdot 123$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$\bar{4}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
$4 \cdot 12$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \cdot 123$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet M_2$	$\bullet \notin M_2$
DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$	
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$\bullet \notin M$	UNSAT

DPLL derivation example

$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet 1$	$\{\bar{1}, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet 12$	$\{\bar{1}, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet 123$	$\{1, 2\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$\bar{4}$	$\{1, 2\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
$4 \bar{1}2$	$\{1, 2\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bar{1}23$	$\{1, 2\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet M_2$	$\bullet \notin M_2$
DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$		$M := M \bullet l$
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$		UNSAT

DPLL derivation example

$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\mathbf{1, 4}\}$	by PURE
$4 \bullet 1$	$\{\mathbf{1, \bar{2}}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet 1 \bar{2}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\mathbf{1, 4}\}$	by PROPAGATE
$4 \bullet 1 \bar{2} 3$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bar{1}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\mathbf{1, 4}\}$	by BACKTRACK
$4 \bar{1} 2$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bar{1} 2 3$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	
		$M := M \cup l$		
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	
		$M := M \cup \bar{l}$		
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet l M_2$	$\bullet \notin M_2$
		$M := M_1 \bar{l}$		
DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$		
		$M := M \bullet l$		
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$		$\bullet \notin M$
			UNSAT	

DPLL derivation example

$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet 1 \bar{2}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet 1 \bar{2} 3$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$	DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$	FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$\bullet \notin M$
							UNSAT	
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet l M_2$	$\bullet \notin M_2$				

DPLL derivation example

$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet 1 \bar{2}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet 1 \bar{2} 3$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bar{1}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
$4 \bar{1} 3$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bar{1} 2 3$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	
		$M := M \cup l$		
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	
		$M := M \cup \bar{l}$		
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet l M_2$	$\bullet \notin M_2$
		$M := M_1 \bar{l}$		
DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$		
		$M := M \bullet l$		
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$		$\bullet \notin M$
			UNSAT	

DPLL derivation example

$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\mathbf{1}, 4\}$	by PURE
$4 \bullet 1$	$\{\mathbf{1}, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet 1 \bar{2}$	$\{\mathbf{1}, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\mathbf{1}, 4\}$	by PROPAGATE
$4 \bullet 1 \bar{2} 3$	$\{\mathbf{1}, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\mathbf{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bar{1}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
$4 \bar{1} \bar{2}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bar{1} \bar{2} 3$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet l M_2$	$\bullet \notin M_2$
DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$	
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$\bullet \notin M$	UNSAT

DPLL derivation example

$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet 1 \bar{2}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet 1 \bar{2} 3$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bar{1}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
$4 \bar{1} \bar{2}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bar{1} \bar{2} 3$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$	DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$	FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$\bullet \notin M$
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet l M_2$	$\bullet \notin M_2$				UNSAT

DPLL derivation example

$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$ Note: we abbreviate p_n as n

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\mathbf{1}, 4\}$	by PURE
$4 \bullet 1$	$\{\mathbf{1}, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet 1 \bar{2}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\mathbf{1}, 4\}$	by PROPAGATE
$4 \bullet 1 \bar{2} 3$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\mathbf{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bar{1}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
$4 \bar{1} \bar{2}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\mathbf{1}, 4\}$	by PROPAGATE
$4 \bar{1} \bar{2} 3$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet l M_2$	$\bullet \notin M_2$
DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$	
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$\bullet \notin M$	UNSAT

The DPLL proof system

$$\text{PROPAGATE} \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\text{PURE} \frac{l \text{ literal of } \Delta \quad \bar{l} \text{ not literal of } \Delta \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\text{DECIDE} \frac{l \text{ or } \bar{l} \text{ occurs in } \Delta \quad l, \bar{l} \notin M}{M := M \bullet l}$$

$$\text{BACKTRACK} \frac{\{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad M = M_1 \bullet l M_2 \quad \bullet \notin M_2}{M := M_1 \setminus l}$$

$$\text{FAIL} \frac{\{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad \bullet \notin M}{\text{UNSAT}}$$

DPLL derivation exercise

$$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$$

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet \bar{3}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet \bar{3} 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{3}\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet M_2$	$\bullet \notin M_2$

DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$\bullet \notin M$

DPLL derivation exercise

$$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$$

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet \bar{3}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet \bar{3} 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{3}\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet M_2$	$\bullet \notin M_2$

DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$\bullet \notin M$

DPLL derivation exercise

$$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$$

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet \bar{3}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet \bar{3} 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{3}\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet M_2$	$\bullet \notin M_2$

DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$\bullet \notin M$

DPLL derivation exercise

$$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$$

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{\bar{1}, 4\}$	by PURE
$4 \bullet \bar{3}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet \bar{3} 2$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet M_2$	$\bullet \notin M_2$
				DECIDE $\frac{l \in \text{Lits}(\Delta) \quad l, \bar{l} \notin M}{M := M \bullet l}$
				FAIL $\frac{\{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad \bullet \notin M}{\text{UNSAT}}$

DPLL derivation exercise

$$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$$

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet \bar{3}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet \bar{3} 2$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
43	$\{1, 2\}, \{1, \bar{2}\}, \{\bar{1}, 2\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
432	$\{1, 2\}, \{1, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
4321	$\{1, 2\}, \{1, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet l M_2$	$\bullet \notin M_2$
DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$	$\bullet \notin M$
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$		UNSAT

DPLL derivation exercise

$$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$$

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet \bar{3}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet \bar{3} 2$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
4 3	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
4 3 2	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
4 3 2 1	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$	
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$	
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet M_2$	$\bullet \notin M_2$	
					DECIDE $\frac{l \in \text{Lits}(\Delta) \quad l, \bar{l} \notin M}{M := M \bullet l}$
					FAIL $\frac{\{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad \bullet \notin M}{\text{UNSAT}}$

DPLL derivation exercise

$$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$$

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet \bar{3}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet \bar{3} 2$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
4 3	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
4 3 2	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
4 3 2 1	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$		
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$		
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet M_2$	$\bullet \notin M_2$		

DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$\bullet \notin M$

UNSAT

DPLL derivation exercise

$$\Delta_0 := \{ \{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\} \}$$

M	Δ	Justification
	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	
4	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PURE
$4 \bullet \bar{3}$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by DECIDE
$4 \bullet \bar{3} 2$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
$4 \bullet \bar{3} 2 1$	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
4 3	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by BACKTRACK
4 3 2	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
4 3 2 1	$\{1, \bar{2}\}, \{\bar{1}, \bar{2}\}, \{2, 3\}, \{\bar{3}, 2\}, \{1, 4\}$	by PROPAGATE
	UNSAT	by FAIL

PROPAGATE	$\{l_1, \dots, l_n, l\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$l, \bar{l} \notin M$	$M := M \setminus l$
PURE	l literal of Δ	\bar{l} not literal of Δ	$l, \bar{l} \notin M$	$M := M \setminus l$
BACKTRACK	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$M = M_1 \bullet M_2$	$\bullet \notin M_2$

DECIDE	$l \in \text{Lits}(\Delta)$	$l, \bar{l} \notin M$	$M := M \bullet l$
FAIL	$\{l_1, \dots, l_n\} \in \Delta$	$\bar{l}_1, \dots, \bar{l}_n \in M$	$\bullet \notin M$

Transforming DPLL to Resolution

The search procedure of DPLL can be reduced a posteriori to a resolution proof
(a sequence of applications of resolution rules)

DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

- **No learning:** throws away all work performed to conclude that current assignment is bad
Revisits bad partial assignments leading to conflicts due to the same root cause
- **Chronological backtracking:** backtracks only one level, even if it can be concluded that the current partial assignment became doomed at a lower level
- **Naïve decisions:** picks an arbitrary variable to branch on
Fails to consider the state of the search to make heuristically better decisions

DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

- **No learning:** throws away all work performed to conclude that current assignment is bad
Revisits bad partial assignments leading to conflicts due to the same root cause
- **Chronological backtracking:** backtracks only one level, even if it can be concluded that the current partial assignment became doomed at a lower level
- **Naïve decisions:** picks an arbitrary variable to branch on
Fails to consider the state of the search to make heuristically better decisions

DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

- **No learning:** throws away all work performed to conclude that current assignment is bad
Revisits bad partial assignments leading to conflicts due to the same root cause
- **Chronological backtracking:** backtracks only one level, even if it can be concluded that the current partial assignment became doomed at a lower level
- **Naive decisions:** picks an arbitrary variable to branch on
Fails to consider the state of the search to make heuristically better decisions

DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

- **No learning:** throws away all work performed to conclude that current assignment is bad
Revisits bad partial assignments leading to conflicts due to the same root cause
- **Chronological backtracking:** backtracks only one level, even if it can be concluded that the current partial assignment became doomed at a lower level
- **Naïve decisions:** picks an arbitrary variable to branch on
Fails to consider the state of the search to make heuristically better decisions

DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

- **No learning**: throws away all work performed to conclude that current assignment is bad
Revisits bad partial assignments leading to conflicts due to the same root cause
- **Chronological** backtracking: backtracks only one level, even if it can be concluded that the current partial assignment became doomed at a lower level
- **Naïve decisions**: picks an arbitrary variable to branch on
Fails to consider the state of the search to make heuristically better decisions

Conflict-Driven Clause Learning (CDCL)

Learning: Δ is augmented with a **conflict clause** that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack several levels, based on the cause of the conflict (*conflict-driven backjumping*)

Decision heuristics: chooses the next literal to add to the current assignment based on the current state of the search

Conflict-Driven Clause Learning (CDCL)

Learning: Δ is augmented with a **conflict clause** that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack **several levels**, based on the cause of the conflict (*conflict-driven backjumping*)

Decision heuristics: chooses the next literal to add to the current assignment based on the current state of the search

Conflict-Driven Clause Learning (CDCL)

Learning: Δ is augmented with a **conflict clause** that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack **several levels**, based on the cause of the conflict (*conflict-driven backjumping*)

Decision heuristics: chooses the next literal to add to the current assignment based on the current state of the search

Conflict-Driven Clause Learning (CDCL)

Learning: Δ is augmented with a **conflict clause** that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack **several levels**, based on the cause of the conflict (*conflict-driven backjumping*)

Decision heuristics: chooses the next literal to add to the current assignment based on the current state of the search

From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, we add a third component C to states whose value is either `no` or a **clause** C , the *conflict clause*

States:

UNSAT (M, Δ, C)

Initial state:

- $(\epsilon, \Delta_0, \text{no})$, where Δ_0 is to be checked for satisfiability

Expected final states:

- UNSAT if Δ_0 is unsatisfiable
- (M, Δ_n, no) otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, we add a third component C to states whose value is either `no` or a **clause** C , the *conflict clause*

States:

`UNSAT` $\langle M, \Delta, C \rangle$

Initial state:

- $\langle \epsilon, \Delta_0, \text{no} \rangle$, where Δ_0 is to be checked for satisfiability

Expected final states:

- `UNSAT` if Δ_0 is unsatisfiable
- $\langle M, \Delta_n, \text{no} \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, we add a third component C to states whose value is either `no` or a **clause** C , the *conflict clause*

States:

`UNSAT` $\langle M, \Delta, C \rangle$

Initial state:

- $\langle \epsilon, \Delta_0, \text{no} \rangle$, where Δ_0 is to be checked for satisfiability

Expected final states:

- `UNSAT` if Δ_0 is unsatisfiable
- $\langle M, \Delta_n, \text{no} \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, we add a third component C to states whose value is either `no` or a **clause** C , the *conflict clause*

States:

`UNSAT` $\langle M, \Delta, C \rangle$

Initial state:

- $\langle \epsilon, \Delta_0, \text{no} \rangle$, where Δ_0 is to be checked for satisfiability

Expected final states:

- `UNSAT` if Δ_0 is **unsatisfiable**
- $\langle M, \Delta_n, \text{no} \rangle$ otherwise, where Δ_n is **equisatisfiable** with Δ_0 and **satisfied** by M

From DPLL to CDCL Solvers

Replace **BACKTRACK** with three rules:

From DPLL to CDCL Solvers

Replace **BACKTRACK** with three rules:

$$\text{Conflict} \frac{\text{C} = \text{no} \quad \{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M}{C := \{l_1, \dots, l_n\}}$$

There is no conflict clause but a clause of Δ is falsified by M

So we set C to be that clause

From DPLL to CDCL Solvers

Replace **BACKTRACK** with three rules:

$$\text{EXPLAIN } \frac{C = \{l\} \cup C' \quad \{l_1, \dots, l_n, \bar{l}\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n, \bar{l} \in M \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup C'}$$

$l \prec_M l'$ iff l occurs before l' in M

From DPLL to CDCL Solvers

Replace **BACKTRACK** with three rules:

$$\text{EXPLAIN } \frac{C = \{l\} \cup C' \quad \{l_1, \dots, l_n, \bar{l}\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n, \bar{l} \in M \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup C'}$$

Δ contains a clause $D = \{l_1, \dots, l_n, \bar{l}\}$ such that

1. l is in the conflict clause and is falsified by M
2. l_1, \dots, l_n are all falsified by M before l

We derive a new conflict clause by **resolution** of C and D

From DPLL to CDCL Solvers

Replace **BACKTRACK** with three rules:

$$\text{BACKJUMP} \quad \frac{C = D \quad D = \{l_1, \dots, l_n, \bar{l}\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]} l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

From DPLL to CDCL Solvers

Replace **BACKTRACK** with three rules:

$$\text{BACKJUMP} \quad \frac{C = D \quad D = \{l_1, \dots, l_n, \bar{l}\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]} l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

To compute the level to backjump to:

1. find the literal $\bar{l} \in D$ that was assigned last
2. choose a level i smaller than $\text{lev}(\bar{l})$ but not smaller than the levels of the other literals in D

Then learn conflict clause D , reset C , backtrack to level i and add l to it

From DPLL to CDCL Solvers

Replace **BACKTRACK** with three rules:

$$\text{BACKJUMP} \quad \frac{C = D \quad D = \{l_1, \dots, l_n, \bar{l}\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]}l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

To compute the level to backjump to:

1. find the literal $\bar{l} \in D$ that was assigned last
2. choose a level i smaller than $\text{lev}(\bar{l})$ but not smaller than the levels of the other literals in D

Then learn conflict clause D , reset C , backtrack to level i and add l to it

Note: $\text{lev}(l) = n$ iff l occurs in decision level n of M

From DPLL to CDCL Solvers

Replace **BACKTRACK** with three rules:

$$\text{BACKJUMP} \quad \frac{C = D \quad D = \{l_1, \dots, l_n, \bar{l}\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]} l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

Note: The rules maintain the **invariant**: $\Delta \models C$ and $M \models \neg C$ when $C \neq \text{no}$

From DPLL to CDCL Solvers

Modify **FAIL** to

$$\text{FAIL} \xrightarrow{C \neq \text{no} \quad \alpha \notin M} \text{UNSAT}$$

C contains a **conflict clause** but there are no decision points to backjump over

Conclude that Δ is unsatisfiable

From DPLL to CDCL Solvers

Modify **FAIL** to

$$\text{FAIL} \xrightarrow{C \neq \text{no} \quad \bullet \notin M} \text{UNSAT}$$

C contains a **conflict clause** but there are no decision points to backjump over

Conclude that Δ is **unsatisfiable**

Derivation Example

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 * 3	Δ	no	Decide
1 2 * 3 4	Δ	no	PROPAGATE
1 2 * 3 4 * 5	Δ	no	DECIDE
1 2 * 3 4 * 5 6	Δ	no	PROPAGATE
1 2 * 3 4 * 5 6 7	Δ	no	PROPAGATE
1 2 * 3 4 * 5 6 7	Δ	$\boxed{2, 5, 6, 7}$	Conflict
1 2 * 3 4 * 5 6 7	Δ	$\boxed{1, 2, 5, 6}$	Explain with C_5
1 2 * 3 4 * 5 6 7	Δ	$\{1, 2, 5\}$	Explain with C_5
1 2 5	$\Delta, \boxed{1, 2, 5}$	no	BACKJUMP
1 2 5 * 3	$\Delta, \boxed{1, 2, 5}$	no	Decide
1 2 5 * 3 4	$\Delta, \{1, 2, 5\}$	no	PROPAGATE - SAT!

Derivation Example

$$\text{PROPAGATE} \quad \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	Propagate
12*3	Δ	no	Decide
12*34	Δ	no	Propagate
12*34*5	Δ	no	Decide
12*34*56	Δ	no	Propagate
12*34*567	Δ	no	Propagate
12*34*567	Δ	$\boxed{2, 5, 6, 7}$	Conflict
12*34*567	Δ	$\boxed{1, 2, 5, 6}$	Explain with C_5
12*34*567	Δ	$\{1, 2, 5\}$	Explain with C_5
125	$\Delta, \boxed{1, 2, 5}$	no	Backjump
125*3	$\Delta, \boxed{1, 2, 5}$	no	Decide
125*34	$\Delta, \{1, 2, 5\}$	no	Propagate - SAT!

Derivation Example

$$\text{PROPAGATE} \quad \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 3	Δ	no	DECIDE
1 2 3 4	Δ	no	PROPAGATE
1 2 3 4 5	Δ	no	DECIDE
1 2 3 4 5 6	Δ	no	PROPAGATE
1 2 3 4 5 6 7	Δ	no	PROPAGATE
1 2 3 4 5 6 7	Δ	$\boxed{2, 5, 6, 7}$	Conflict
1 2 3 4 5 6 7	Δ	$\boxed{1, 2, 5, 6}$	Explain with C_5
1 2 3 4 5 6 7	Δ	$\{1, 2, 5\}$	Explain with C_5
1 2 5	$\Delta, \boxed{1, 2, 5}$	no	BACKJUMP
1 2 5 * 3	$\Delta, \boxed{1, 2, 5}$	no	Decide
1 2 5 * 3 4	$\Delta, \{1, 2, 5\}$	no	PROPAGATE - SAT!

Derivation Example

$$\text{DECIDE} \frac{l \in \text{Lits}(\Delta) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 \bullet 3	Δ	no	DECIDE
1 2 3	Δ	no	PROPAGATE
1 2 \bullet 3 4 \bullet 5	Δ	no	DECIDE
1 2 \bullet 3 4 \bullet 5 6	Δ	no	PROPAGATE
1 2 \bullet 3 4 \bullet 5 6 7	Δ	no	PROPAGATE
1 2 \bullet 3 4 \bullet 5 6 7	Δ	$\boxed{2, 5, 6, 7}$	Conflict
1 2 \bullet 3 4 \bullet 5 6 7	Δ	$\boxed{1, 2, 5, 6}$	Explain with C_5
1 2 \bullet 3 4 \bullet 5 6 7	Δ	$\{1, 2, 5\}$	Explain with C_5
1 2 5	$\Delta, \boxed{1, 2, 5}$	no	BACKJUMP
1 2 5 \bullet 3	$\Delta, \boxed{1, 2, 5}$	no	Decide
1 2 5 \bullet 3 4	$\Delta, \{1, 2, 5\}$	no	PROPAGATE - SAT!

Derivation Example

$$\text{PROPAGATE} \quad \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\boxed{2, 5, 6, 7}$	Conflict
1 2 • 3 4 • 5 6 7	Δ	$\boxed{1, 2, 5, 6}$	Explain with C_5
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5\}$	Explain with C_5
1 2 5	$\Delta, \boxed{1, 2, 5}$	no	BACKJUMP
1 2 5 • 3	$\Delta, \boxed{1, 2, 5}$	no	Decide
1 2 5 • 3 4	$\Delta, \{1, 2, 5\}$	no	PROPAGATE - SAT!

Derivation Example

$$\text{DECIDE} \frac{l \in \text{Lits}(\Delta) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{2, 5, 6, 7\}$	Conflict
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5, 6\}$	Explain with C_5
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5\}$	Explain with C_5
1 2 5	$\Delta, \{1, 2, 5\}$	no	Backjump
1 2 5 • 3	$\Delta, \{1, 2, 5\}$	no	Decide
1 2 5 • 3 4	$\Delta, \{1, 2, 5\}$	no	PROPAGATE - SAT!

Derivation Example

$$\text{PROPAGATE} \quad \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{2, 5, 6, 7\}$	Conflict
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5, 6\}$	Explain with C_5
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5\}$	Explain with C_4
1 2 5	$\Delta, \{1, 2, 5\}$	no	Backjump
1 2 5 • 3	$\Delta, \{1, 2, 5\}$	no	Decide
1 2 5 • 3 4	$\Delta, \{1, 2, 5\}$	no	PROPAGATE - SAT!

Derivation Example

$$\text{PROPAGATE} \quad \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 3 4 5 6 7	Δ	Conflict	
1 2 3 4 • 5 6 7	Δ	1 2 5 6	Explain with C_3
1 2 • 3 4 • 5 6 7	Δ	{1, 2, 5}	Explain with C_3
1 2 5	$\Delta, \{1, 2, 5\}$	no	Backjump
1 2 5 • 3	$\Delta, \{1, 2, 5\}$	no	Decide
1 2 5 • 3 4	$\Delta, \{1, 2, 5\}$	no	PROPAGATE - SAT!

Derivation Example

$$\text{Conflict} \quad \frac{C = \text{no} \quad \{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M}{C := \{l_1, \dots, l_n\}}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	Conflict
1 2 5	Δ	$\{\bar{1}, \bar{2}, \bar{5}\}$	Backjump with C
1 2 5 • 3	Δ	$\{\bar{1}, \bar{2}, \bar{5}\}$	Backjump with C
1 2 5 • 3 4	Δ	$\{\bar{1}, \bar{2}, \bar{5}\}$	Backjump with C
1 2 5 • 3 4	Δ	no	DECIDE
1 2 5 • 3 4	Δ	no	PROPAGATE - SAT!

Derivation Example

$$\text{EXPLAIN } \frac{C = \{l\} \cup C' \quad \{l_1, \dots, l_n, \bar{l}\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n, \bar{l} \in M \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup C'}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	CONFFLICT
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5, 6\}$	EXPLAIN with C_5
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5\}$	EXPLAIN with C_2
1 2 5	Δ	no	BACKJUMP
1 2 5 • 3	Δ	no	DECIDE
1 2 5 • 3	Δ	no	BACKJUMP

$$C = \{\bar{7}\} \cup \{\bar{2}, \bar{5}, 6\} \quad \{\bar{1}, \bar{5}, 7\} \in \Delta \quad 1, 5 \prec_M 7 \quad \Rightarrow \quad C = \{\bar{1}, \bar{5}\} \cup \{\bar{2}, \bar{5}, 6\} = \{\bar{1}, \bar{2}, \bar{5}, 6\}$$

Derivation Example

$$\text{EXPLAIN } \frac{C = \{l\} \cup C' \quad \{l_1, \dots, l_n, \bar{l}\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n, \bar{l} \in M \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup C'}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	CONFFLICT
1 2 • 3 4 • 5 6 7	Δ	$\{1, \bar{2}, \bar{5}, 6\}$	EXPLAIN with C_5
1 2 • 3 4 • 5 6 7	Δ	$\{1, \bar{2}, \bar{5}\}$	EXPLAIN with C_4

$$C = \{6\} \cup \{\bar{1}, \bar{2}, \bar{5}\} \quad \{\bar{5}, \bar{6}\} \in \Delta \quad 5 \prec_M \bar{6} \quad \Rightarrow \quad C = \{\bar{1}, \bar{2}, \bar{5}\} \cup \{\bar{5}\} = \{\bar{1}, \bar{2}, \bar{5}\}$$

Derivation Example

$$\text{BACKJUMP} \frac{C = D \quad D = \{l_1, \dots, l_n, l\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[\bar{l}]} l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	CONFLICT
1 2 • 3 4 • 5 6 7	Δ	$\{1, \bar{2}, \bar{5}, 6\}$	EXPLAIN with C_5
1 2 • 3 4 • 5 6 7	Δ	$\{1, \bar{2}, \bar{5}\}$	EXPLAIN with C_4
1 2 5	$\Delta, \{\bar{1}, \bar{2}, \bar{5}\}$	no	BACKJUMP
1 2 5	Δ	no	DECIDE

$$\text{lev}(1) = \text{lev}(2) = 0 \quad \text{lev}(5) = 2 \implies \text{backtrack to } M^{[0]}$$

Derivation Example

$$\text{DECIDE} \frac{l \in \text{Lits}(\Delta) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	CONFLICT
1 2 • 3 4 • 5 6 7	Δ	$\{1, \bar{2}, \bar{5}, 6\}$	EXPLAIN with C_5
1 2 • 3 4 • 5 6 7	Δ	$\{1, \bar{2}, \bar{5}\}$	EXPLAIN with C_4
1 2 5	$\Delta, \{\bar{1}, \bar{2}, \bar{5}\}$	no	BACKJUMP
1 2 5 • 3	$\Delta, \{\bar{1}, \bar{2}, \bar{5}\}$	no	DECIDE
1 2 5 • 3 4	$\Delta, \{1, \bar{2}, \bar{5}\}$	no	PROPAGATE - SAT!

Derivation Example

$$\text{PROPAGATE} \quad \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	CONFLICT
1 2 • 3 4 • 5 6 7	Δ	$\{1, \bar{2}, \bar{5}, 6\}$	EXPLAIN with C_5
1 2 • 3 4 • 5 6 7	Δ	$\{1, \bar{2}, \bar{5}\}$	EXPLAIN with C_4
1 2 5	$\Delta, \{\bar{1}, \bar{2}, \bar{5}\}$	no	BACKJUMP
1 2 5 • 3	$\Delta, \{\bar{1}, \bar{2}, \bar{5}\}$	no	DECIDE
1 2 5 • 3 4	$\Delta, \{1, \bar{2}, \bar{5}\}$	no	PROPAGATE SAT!

Conflict Analysis

CDCL systems **learn** new clause during search with the goal of

blocking partial assignments leading to the current conflict

A common strategy is to learn an *asserting clause*, a conflict clause that will become unit after backtracking

One way to illustrate different conflict analysis strategies is through *implication graphs*

Conflict Analysis

CDCL systems **learn** new clause during search with the goal of

blocking partial assignments leading to the current conflict

A common strategy is to learn an **asserting clause**, a conflict clause that will become **unit** after backtracking

One way to illustrate different conflict analysis strategies is through **implication graphs**

Conflict Analysis

CDCL systems **learn** new clause during search with the goal of

blocking partial assignments leading to the current conflict

A common strategy is to learn an **asserting clause**, a conflict clause that will become **unit** after backtracking

One way to illustrate different conflict analysis strategies is through **implication graphs**

Conflict Analysis: Implication Graph

An *implication graph* is a **labeled directed acyclic** graph $G(V, E)$, where:

V collects the literals in the current partial assignment M

- each $l \in V$ is labeled with its decision level in M

$E = \{(l, l') \mid l, l' \in V, l \in \text{Antecedent}(l')\}$

- each edge (l, l') is labeled with $C = \text{Antecedent}(l')$

Conflict Analysis: Implication Graph

An *implication graph* is a **labeled directed acyclic** graph $G(V, E)$, where:

- V collects the literals in the current partial assignment M
 - each $l \in V$ is labeled with its decision level in M

$E = \{(l, l') \mid l, l' \in V, l \in \text{Antecedent}(l')\}$

- each edge (l, l') is labeled with $C = \text{Antecedent}(l')$

Conflict Analysis: Implication Graph

An *implication graph* is a **labeled directed acyclic** graph $G(V, E)$, where:

V collects the literals in the current partial assignment M

- each $l \in V$ is labeled with its decision level in M

$E = \{(l, l') \mid l, l' \in V, \bar{l} \in \text{Antecedent}(l')\}$

- each edge (l, l') is labeled with $C = \text{Antecedent}(l')$

Conflict Analysis: Implication Graph

An *implication graph* is a **labeled directed acyclic** graph $G(V, E)$, where:

V collects the literals in the current partial assignment M

- each $l \in V$ is labeled with its decision level in M

$E = \{(l, l') \mid l, l' \in V, \bar{l} \in \text{Antecedent}(l')\}$

- each edge (l, l') is labeled with $C = \text{Antecedent}(l')$

G is a *conflict graph* if it also contains

- a single conflict node \perp
- \perp 's incoming edges are $\{(l, \perp) \mid \bar{l} \in C\}$ for some falsified clause C
- those edges are labeled with C

Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12*3	Δ	no	Decide
12*34	Δ	no	PROPAGATE
12*34*5	Δ	no	Decide
12*34*56	Δ	no	PROPAGATE
12*34*567	Δ	no	PROPAGATE
12*34*567	Δ	[2, 5, 6, 7]	Conflict
12*34*567	Δ	[1, 2, 5, 6]	Explain w. C_5
12*34*567	Δ	[1, 2, 5]	Explain w. C_6
125	$\Delta, \{1, 2, 5\}$	no	BACKJUMP

Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
12	Δ	no	PROPAGATE
12*3	Δ	no	DECIDE
12*34	Δ	no	PROPAGATE
12*34*5	Δ	no	Decide
12*34*56	Δ	no	PROPAGATE
12*34*567	Δ	no	Propagate
12*34*567	Δ	[2, 5, 6, 7]	Conflict
12*34*567	Δ	[1, 2, 5, 6]	Explain w. C_5
12*34*567	Δ	[1, 2, 5]	Explain w. C_6
125	$\Delta, \{1, 2, 5\}$	no	BACKJUMP

1@0

Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 * 3	Δ	no	DECIDE
1 2 * 3 4	Δ	no	PROPAGATE
1 2 * 3 4 * 5	Δ	no	Decide
1 2 * 3 4 * 5 6	Δ	no	PROPAGATE
1 2 * 3 4 * 5 6 7	Δ	no	PROPAGATE
1 2 * 3 4 * 5 6 7	Δ	[2, 5, 6, 7]	Conflict
1 2 * 3 4 * 5 6 7	Δ	[1, 2, 5, 6]	Explain w. C_2
1 2 * 3 4 * 5 6 7	Δ	[1, 2, 5]	Explain w. C_2
1 2 5	$\Delta, \{1, 2, 5\}$	no	BACKJUMP

Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule	
	Δ	no		
1	Δ	no	PROPAGATE	
1 2	Δ	no	PROPAGATE	
1 2 • 3	Δ	no	DECIDE	
1 2 • 3 4	Δ	no	PROPAGATE	<div style="display: flex; align-items: center; gap: 10px;"><div style="border: 1px solid black; padding: 2px; border-radius: 5px; text-align: center;">1@0</div> C_2 <div style="border: 1px solid black; padding: 2px; border-radius: 5px; text-align: center;">2@0</div></div>
1 2 • 3 4 • 5	Δ	no	Decide	
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE	<div style="border: 1px solid black; padding: 2px; border-radius: 5px; text-align: center; background-color: #ADD8E6;">3@1</div>
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE	
1 2 • 3 4 • 5 6 7	Δ	$\{2, 5, 6, 7\}$	Conflict	
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5, 6\}$	Explain w. C_5	
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5\}$	Explain w. C_5	
1 2 5	$\Delta, \{1, 2, 5\}$	no	BACKJUMP	

Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule	
	Δ	no		
1	Δ	no	PROPAGATE	
1 2	Δ	no	PROPAGATE	
1 2 • 3	Δ	no	DECIDE	
1 2 • 3 4	Δ	no	PROPAGATE	<div style="display: flex; align-items: center; gap: 10px;"> 1@0 C_2 2@0 </div>
1 2 • 3 4 5	Δ	no	DECIDE	
1 2 • 3 4 5 6	Δ	no	PROPAGATE	<div style="display: flex; align-items: center; gap: 10px;"> 3@1 C_3 4@1 </div>
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE	
1 2 • 3 4 • 5 6 7	Δ	$\{2, 5, 6, 7\}$	Conflict	
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5, 6\}$	Explain w. C_3	
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5\}$	Explain w. C_3	
1 2 5	$\Delta, \{1, 2, 5\}$	no	BACKJUMP	

Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule	
	Δ	no		
1	Δ	no	PROPAGATE	$1@0 \rightarrow C_2 \rightarrow 2@0$
1 2	Δ	no	PROPAGATE	
1 2 • 3	Δ	no	DECIDE	
1 2 • 3 4	Δ	no	PROPAGATE	$3@1 \rightarrow C_3 \rightarrow 4@1$
1 2 • 3 4 • 5	Δ	no	DECIDE	
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE	
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE	
1 2 • 3 4 • 5 6 7	Δ	$\{2, 5, 6, 7\}$	Conflict	
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5, 6\}$	Explain w. C_5	$5@2$
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5\}$	Explain w. C_5	
1 2 5	$\Delta, \{1, 2, 5\}$	no	BACKJUMP	

Revisiting CDCL example with an implication graph

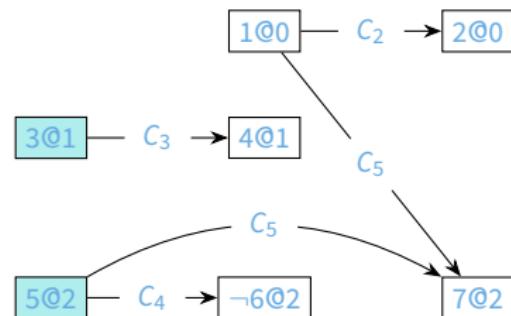
$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule	
	Δ	no		
1	Δ	no	PROPAGATE	$1@0 \rightarrow C_2 \rightarrow 2@0$
1 2	Δ	no	PROPAGATE	
1 2 • 3	Δ	no	DECIDE	
1 2 • 3 4	Δ	no	PROPAGATE	$3@1 \rightarrow C_3 \rightarrow 4@1$
1 2 • 3 4 • 5	Δ	no	DECIDE	
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE	
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE	
1 2 • 3 4 • 5 6 7	Δ	{2, 5, 6, 7}	Conflict	
1 2 • 3 4 • 5 6 7	Δ	{1, 2, 5, 6}	Explain w. C_4	$5@2 \rightarrow C_4 \rightarrow \neg 6@2$
1 2 • 3 4 • 5 6 7	Δ	{1, 2, 5}	Explain w. C_4	
1 2 5	$\Delta, \{1, 2, 5\}$	no	BACKJUMP	

Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

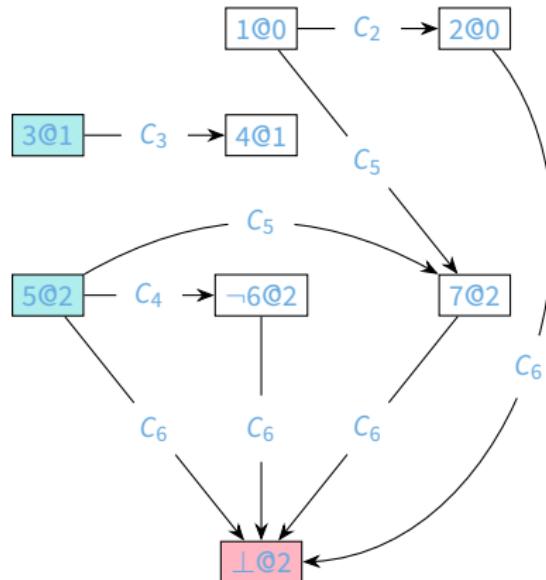
M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	COMMIT
1 2 • 3 4 • 5 6 7	Δ	no	EXPLORE w/ C
1 2 • 3 4 • 5 6 7	Δ	no	EXPAND w/ C
1 2 5	$\Delta, \{1, 2, 5\}$	no	BACKJUMP



Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

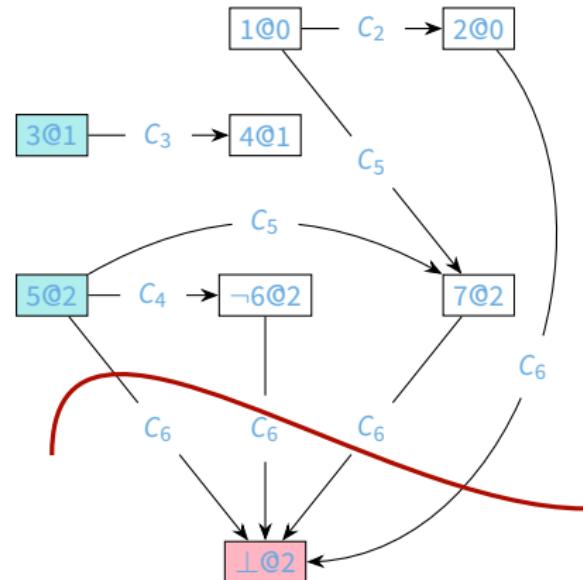
M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	CONFLICT
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	EXPLAIN w. C ₆
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	EXPLAIN w. C ₆
1 2 5	$\Delta, \{\bar{1}, 2, 5\}$	no	BACKJUMP



Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	CONFLICT



Any *separating cut* that breaks all paths from root nodes to the conflict node, with roots on the *reasons side* and conflict node on the *conflict side*, determines a conflict clause

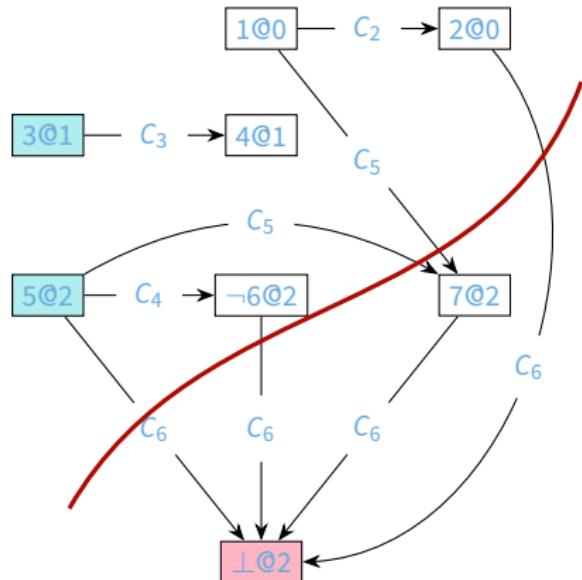
Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	CONFLICT
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, \bar{5}, 6\}$	EXPLAIN w. C_5

EXPLAIN can be viewed as picking a literal l in the conflict clause C , and replacing C with the l -resolvent of C and $\text{Antecedent}(\bar{l})$

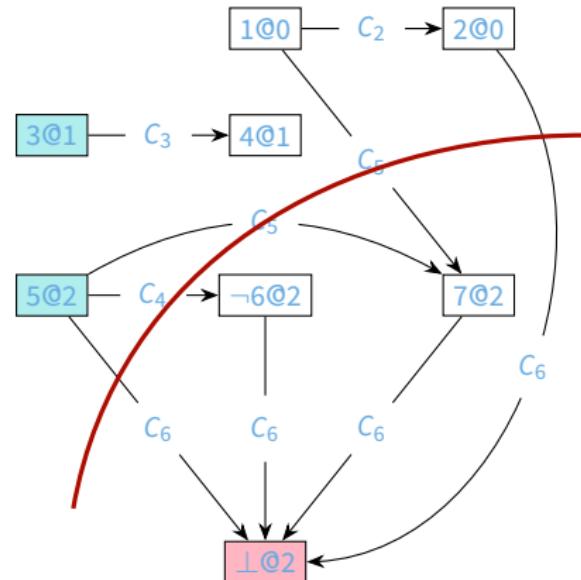
In this case, $l = \bar{7}$ and $\text{Antecedent}(\bar{l}) = C_5$



Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	CONFFLICT
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{1}, \bar{2}, \bar{5}, 6\}$	EXPLAIN w. C_5
1 2 • 3 4 • 5 6 7	Δ	$\{1, 2, 5\}$	EXPLAIN w. C_4



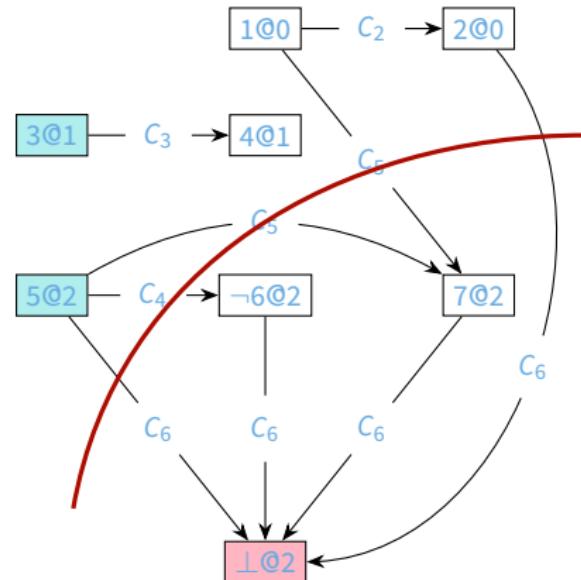
EXPLAIN can be viewed as picking a literal l in the conflict clause C , and replacing C with the l -resolvent of C and $\text{Antecedent}(\bar{l})$

In this case, $l = 6$ and $\text{Antecedent}(\bar{l}) = C_4$

Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE
1 2 • 3 4 • 5	Δ	no	DECIDE
1 2 • 3 4 • 5 6	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	no	PROPAGATE
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{2}, \bar{5}, 6, \bar{7}\}$	CONFLICT
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{1}, \bar{2}, \bar{5}, 6\}$	EXPLAIN w. C_5
1 2 • 3 4 • 5 6 7	Δ	$\{\bar{1}, 2, \bar{5}\}$	EXPLAIN w. C_4
1 2 5	$\Delta, \{\bar{1}, \bar{2}, \bar{5}\}$	no	BACKJUMP



BACKJUMP $C = D \quad D = \{l_1, \dots, l_n, l\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})$

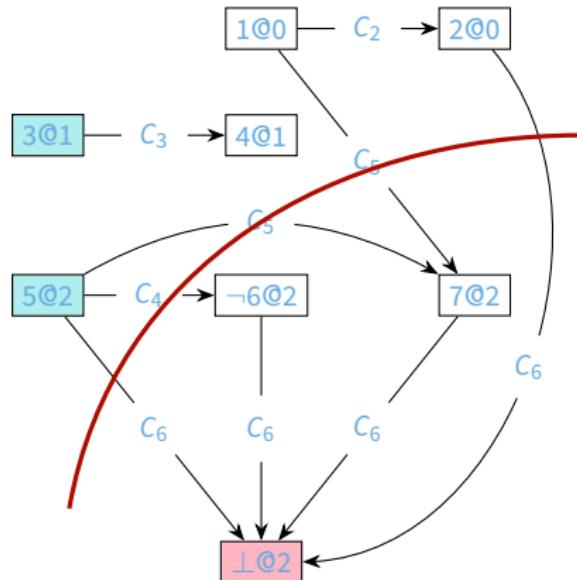
$$M := M^{[i]} / l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}$$

Revisiting CDCL example with an implication graph

$$\Delta := \{ C_1 : \{1\}, C_2 : \{\bar{1}, 2\}, C_3 : \{\bar{3}, 4\}, C_4 : \{\bar{5}, \bar{6}\}, C_5 : \{\bar{1}, \bar{5}, 7\}, C_6 : \{\bar{2}, \bar{5}, 6, \bar{7}\} \}$$

M	Δ	C	rule
	Δ	no	
1	Δ	no	PROPAGATE
1 2	Δ	no	PROPAGATE
1 2 • 3	Δ	no	DECIDE
1 2 • 3 4	Δ	no	PROPAGATE

1 A *Unique Implication Point (UIP)* is any node other than \perp that is on all paths from the current decision node to \perp
 12 A *first UIP* is a UIP that is closest to the conflict node
 12 In this case, $5@2$ is the **only** UIP and thus also the first UIP



From DPLL to full CDCL Solvers

Also add

From DPLL to full CDCL Solvers

Also add

$$\text{LEARN} \quad \frac{D \text{ is a clause} \quad \Delta \models D \quad D \notin \Delta}{\Delta := \Delta \cup \{D\}}$$

Can be applied to any clause entailed by Δ

In particular, to any conflict clause $C \neq \text{no}$ (because then $\Delta \models C$)

From DPLL to full CDCL Solvers

Also add

$$\text{LEARN} \frac{D \text{ is a clause} \quad \Delta \models D \quad D \notin \Delta}{\Delta := \Delta \cup \{D\}}$$

Can be applied to any clause entailed by Δ

In particular, to any conflict clause $C \neq \text{no}$ (because then $\Delta \models C$)

The learned clause D is called a *lemma*

From DPLL to full CDCL Solvers

Also add

$$\text{FORGET} \frac{C = \text{no} \quad \Delta = \Delta' \cup \{C\} \quad \Delta' \models C}{\Delta := \Delta'}$$

Learning can quickly add millions of clauses to Δ

So it is useful to be able to delete **redundant** clauses that might not be useful anymore

From DPLL to full CDCL Solvers

Also add

RESTART —————
M := M^[0] C := no

If we are stuck in a hopeless area of the search space it may be better to just restart

From DPLL to full CDCL Solvers

Also add

RESTART —————
M := M^[0] C := no

If we are stuck in a hopeless area of the search space it may be better to just restart

Note: Restart is not from scratch since propagations at level 0 are maintained, together with all the learned lemmas not eliminated by **FORGET**

Learning the First UIP

Empirical studies show it is a good strategy to

- **compute** a conflict clause D that contains a **first UIP for the current decision level**
- **backjump** to the second lowest decision level among D 's literals

Learning the First UIP

Empirical studies show it is a good strategy to

- compute a conflict clause D that contains a first UIP for the current decision level
- backjump to the second lowest decision level among D 's literals

$$\text{BACKJUMP} \frac{C = D \quad D = \{l_1, \dots, l_n, \bar{l}\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]}l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

Learning the First UIP

Empirical studies show it is a good strategy to

- compute a conflict clause D that contains a first UIP for the current decision level
- backjump to the second lowest decision level among D 's literals

$$\text{BACKJUMP} \quad \frac{C = D \quad D = \{l_1, \dots, l_n, \bar{l}\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]}l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

To compute such D ,

keep applying EXPLAIN to the most recently assigned literal in C ,
until there is only one literal $l \in C$ that is assigned at the current decision level

Learning the First UIP

Empirical studies show it is a good strategy to

- compute a conflict clause D that contains a first UIP for the current decision level
- backjump to the second lowest decision level among D 's literals

$$\text{BACKJUMP} \quad \frac{C = D \quad D = \{l_1, \dots, l_n, l\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]} l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

To compute such D ,

keep applying EXPLAIN to the most recently assigned literal in C ,
until there is only one literal $l \in C$ that is assigned at the current decision level

That l is a first UIP and the resulting C is an asserting clause

Learning the First UIP

Empirical studies show it is a good strategy to

- compute a conflict clause D that contains a first UIP for the current decision level
- backjump to the second lowest decision level among D 's literals

$$\text{BACKJUMP} \frac{C = D \quad D = \{l_1, \dots, l_n, \bar{l}\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]}l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

Learning the First UIP

Empirical studies show it is a good strategy to

- compute a conflict clause D that contains a first UIP for the current decision level
- backjump to the second lowest decision level among D 's literals

$$\text{BACKJUMP} \quad \frac{C = D \quad D = \{l_1, \dots, l_n, l\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]}l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

Note: In this case, we do not actually need to append l to $M^{[i]}$ as **PROPAGATE** will be able to do that

Learning the First UIP

Empirical studies show it is a good strategy to

- compute a conflict clause D that contains a first UIP for the current decision level
- backjump to the second lowest decision level among D 's literals

$$\text{BACKJUMP} \quad \frac{C = D \quad D = \{l_1, \dots, l_n, l\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]}l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

Note: In this case, we do not actually need to append l to $M^{[i]}$ as **PROPAGATE** will be able to do that

Note: The first UIP for a decision level is not necessarily the decision literal d for that level. However, applying **BACKJUMP** guarantees in this case that $\Delta \cup M \models \bar{d}$

Learning the First UIP

Empirical studies show it is a good strategy to

- compute a conflict clause D that contains a first UIP for the current decision level
- backjump to the second lowest decision level among D 's literals

Possible explanations for the empirical results:

- The strategy has a low computational cost, compared with strategies that choose UIPs further away from the conflict
- It still backtracks to the lowest decision level possible

Non-chronological vs. chronological backtracking

Note: Backjumping is **not always better** than chronological backtracking

See, e.g.,

- “Chronological Backtracking” by Nadel and Ryvchin, SAT 2018.
- “Lazy Reimplication in Chronological Backtracking” by Coutelier et al., SAT 2024.

Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the proof system with rules

PROPAGATE, PURE, DECIDE,

CONFLICT, EXPLAIN, BACKJUMP, FAIL

LEARN, FORGET, RESTART

Basic CDCL := { PROPAGATE, PURE, DECIDE, CONFLICT, EXPLAIN, BACKJUMP, FAIL }

CDCL := Basic CDCL + { LEARN, FORGET, RESTART }

Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the proof system with rules

PROPAGATE, PURE, DECIDE,

CONFLICT, EXPLAIN, BACKJUMP, FAIL

LEARN, FORGET, RESTART

Basic CDCL := { **PROPAGATE, PURE, DECIDE, CONFLICT, EXPLAIN, BACKJUMP, FAIL** }

CDCL := *Basic CDCL* + { **LEARN, FORGET, RESTART** }

Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the proof system with rules

PROPAGATE, PURE, DECIDE,

CONFLICT, EXPLAIN, BACKJUMP, FAIL

LEARN, FORGET, RESTART

Basic CDCL := { **PROPAGATE, PURE, DECIDE, CONFLICT, EXPLAIN, BACKJUMP, FAIL** }

CDCL := Basic CDCL + { **LEARN, FORGET, RESTART** }

The Basic CDCL System – Correctness

Irreducible state: state for which no **Basic CDCL** rules apply

Execution: a (single-branch) derivation tree starting with $M = \emptyset$ and $C = \text{no}$

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Refutation Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with unsat , the clause set Δ_0 is unsatisfiable

Theorem 2 (Solution Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with $C = \text{no}$, the clause set Δ_0 is satisfied by M

The Basic CDCL System – Correctness

Irreducible state: state for which no **Basic CDCL** rules apply

Execution: a (single-branch) derivation tree starting with $M = \emptyset$ and $C = \text{no}$

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)

Every execution in Basic CDCL is finite

Note: This is not so immediate, because of **EXPLAIN** and **BACKJUMP**

Theorem 2 (Refutation Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with unsat , the clause set Δ_0 is unsatisfiable

Theorem 3 (Solution Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with $C = \text{no}$, the clause set Δ_0 is satisfiable

The Basic CDCL System – Correctness

Irreducible state: state for which no **Basic CDCL** rules apply

Execution: a (single-branch) derivation tree starting with $M = \emptyset$ and $C = \text{no}$

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)

Every execution in Basic CDCL is finite

Lemma 2

Every exhausted execution ends with either $C = \text{no}$ or UNSAT

Theorem 3 (Refutation Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with UNSAT , the clause set Δ_0 is unsatisfiable

Theorem 4 (Solution Soundness)

The Basic CDCL System – Correctness

Irreducible state: state for which no **Basic CDCL** rules apply

Execution: a (single-branch) derivation tree starting with $M = \emptyset$ and $C = \text{no}$

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)

Every execution in Basic CDCL is finite

Lemma 2

Every exhausted execution ends with either $C = \text{no}$ or UNSAT

Lemma 3

All clause sets along an execution are equivalent (i.e., satisfied by the same interpretations)

Theorem 4 (Refutation Soundness)

For every exhausted execution starting with $M = \Delta$ and ending with $C = \text{no}$, the clause set

The Basic CDCL System – Correctness

Irreducible state: state for which no **Basic CDCL** rules apply

Execution: a (single-branch) derivation tree starting with $M = \emptyset$ and $C = \text{no}$

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)

Every execution in Basic CDCL is finite

Theorem 2 (Refutation Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with UNSAT , the clause set Δ_0 is unsatisfiable

Theorem 3 (Solution Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with $C = \text{no}$, the clause set Δ_0 is satisfied by M

The Basic CDCL System – Correctness

Irreducible state: state for which no **Basic CDCL** rules apply

Execution: a (single-branch) derivation tree starting with $M = \emptyset$ and $C = \text{no}$

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)

Every execution in Basic CDCL is finite

Theorem 2 (Refutation Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with UNSAT , the clause set Δ_0 is unsatisfiable

Theorem 3 (Solution Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with $C = \text{no}$, the clause set Δ_0 is satisfied by M

The CDCL System – Strategies

To **ensure termination** for the full system,

1. apply at least one Basic CDCL rule between each two **LEARN** applications
2. apply **RESTART** less and less often

The CDCL System – Strategies

A **common basic strategy** applies the rules with the following priorities, using a bound n initially set to 0, until an irreducible state is reached:

1. If $n > 0$ conflicts have been found so far, increase n and apply **RESTART**
2. If M falsifies a clause and has no decision points, apply **FAIL** and stop
3. If M falsifies a clause, apply **CONFFLICT**
 - 3.1 Apply **EXPLAIN** repeatedly
 - 3.2 Apply **BACKJUMP** (which includes learning of current conflict clause)
4. Apply **PROPAGATE** to completion
5. Apply **DECIDE**

Steps 3.1–3.2 achieve a form of *conflict analysis* and involve some heuristic choices:

1. When to stop applying **EXPLAIN** to a conflict?
2. Which level to **BACKJUMP** to?

The CDCL System – Strategies

A **common basic strategy** applies the rules with the following priorities, using a bound n initially set to 0, until an irreducible state is reached:

1. If $n > 0$ conflicts have been found so far, increase n and apply **RESTART**
2. If M falsifies a clause and has no decision points, apply **FAIL** and stop
3. If M falsifies a clause, apply **CONFFLICT**
 - 3.1 Apply **EXPLAIN** repeatedly
 - 3.2 Apply **BACKJUMP** (which includes learning of current conflict clause)
4. Apply **PROPAGATE** to completion
5. Apply **DECIDE**

Steps 3.1–3.2 achieve a form of *conflict analysis* and involve some **heuristic choices**:

1. When to stop applying **EXPLAIN** to a conflict?
2. Which level to **BACKJUMP** to?

The CDCL proof system

$$\text{PROPAGATE} \frac{\{l_1, \dots, l_n, l\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\text{PURE} \frac{l \text{ literal of } \Delta \quad \bar{l} \text{ not literal of } \Delta \quad l, \bar{l} \notin M}{M := M \setminus l}$$

$$\text{DECIDE} \frac{l \text{ or } \bar{l} \text{ occurs in } \Delta \quad l, \bar{l} \notin M}{M := M \bullet l}$$

The CDCL proof system (continued)

$$\text{Conflict} \frac{C = \text{no} \quad \{l_1, \dots, l_n\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n \in M}{C := \{l_1, \dots, l_n\}}$$

$$\text{EXPLAIN} \frac{C = \{l\} \cup C' \quad \{l_1, \dots, l_n, \bar{l}\} \in \Delta \quad \bar{l}_1, \dots, \bar{l}_n, \bar{l} \in M \quad \bar{l}_1, \dots, \bar{l}_n \prec_M \bar{l}}{C := \{l_1, \dots, l_n\} \cup C'}$$

$$\text{BACKJUMP} \frac{C = D \quad D = \{l_1, \dots, l_n, l\} \quad \text{lev}(\bar{l}_1), \dots, \text{lev}(\bar{l}_n) \leq i < \text{lev}(\bar{l})}{M := M^{[i]} l \quad C := \text{no} \quad \Delta := \Delta \cup \{D\}}$$

$$\text{FAIL} \frac{C \neq \text{no} \quad \bullet \notin M}{\text{UNSAT}}$$

The CDCL proof system (continued)

$$\text{LEARN} \frac{D \text{ is a clause} \quad \Delta \models D \quad D \notin \Delta}{\Delta := \Delta \cup \{D\}}$$

$$\text{FORGET} \frac{C = \text{no} \quad \Delta = \Delta' \cup \{C\} \quad \Delta' \models C}{\Delta := \Delta'}$$

$$\text{RESTART} \frac{}{M := M^{[0]} \quad C := \text{no}}$$