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Plan

• DPLL
• Abstract DPLL

• CDCL (DP Chapter 2)
• Abstract CDCL
• Implication graphs
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The Original DPLL Procedure

Modern SAT solvers are based on an extension of the DPLL procedure

DPLL tries to build incrementally a satisfying assignment M for a clause set ∆

M is grown by

• deducing the truth value of a literal from M and ∆, or

• guessing a truth value

If a wrong guess for a literal leads to an inconsistency,
the procedure backtracks and tries the opposite value
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DPLL as a Proof System

To facilitate a deeper look at DPLL, we present it as a proof system: Abstract DPLL

The proof system is a re-elaboration of those in [1,2]

[1] Nieuwenhuis et al, “Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).”, Journal of the ACM, 53(6).

[2] Krstić and Goel, “Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL.”, FroCos 2007.
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Abstract DPLL: A Proof System for DPLL

States: UNSAT ⟨M,∆⟩

where

• M is a sequence of literals and decision points •
denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula
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Abstract DPLL: A Proof System for DPLL

States: UNSAT ⟨M,∆⟩

where

• M is a sequence of literals and decision points •
denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula

Note: When convenient, we treat M as a set

Provided M contains no complementary literals it determines the assignment

vM(p) =


true if p ∈ M
false if p ∈ M
undef otherwise
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Abstract DPLL: A Proof System for DPLL

States: UNSAT ⟨M,∆⟩

where

• M is a sequence of literals and decision points •
denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula

Notation: If M = M0 • M1 • · · · • Mn where each Mi contains no decision points

• Mi is decision level i of M

• M[i] denotes the subsequence M0 • · · · • Mi, from decision level 0 to decision level i
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Abstract DPLL: A Proof System for DPLL

States: UNSAT ⟨M,∆⟩

Initial state:

• ⟨ϵ,∆0⟩, where ϵ is the empty assignment and ∆0 is to be checked for satisfiability
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Abstract DPLL: A Proof System for DPLL

States: UNSAT ⟨M,∆⟩

Initial state:

• ⟨ϵ,∆0⟩, where ϵ is the empty assignment and ∆0 is to be checked for satisfiability

Expected final states:

• UNSAT if ∆0 is unsatisfiable

• ⟨M,∆n⟩ otherwise, where ∆n is equisatisfiable with ∆0 and satisfied by M
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Some clause terminology

Notation l denotes the complement of l, that is, ¬l if l is a variable, and p if l is ¬p

Given a partial assignment: v := { p1 7→ true, p2 7→ false, p4 7→ true }

• clause {p1, p3, p4} is satisfied by v

• clause {p1, p2} is conflicting with v

• clause {p1, p3, p4} is unit in v

• clause {p1, p3, p5} is unresolved by v

• variable p1 is assigned in v

• variable p3 is unassigned in v
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Abstract DPLL proof rules: extending the assignment

{l1, . . . , ln, l} ∈ ∆ l1, . . . , ln ∈ M l, l /∈ M
PROPAGATE M := M l

Deduce the value of unassigned literal in unit clauses

l literal of ∆ l not literal of ∆ l, l /∈ M
PURE M := M l

Make a pure literal true
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Abstract DPLL proof rules: extending the assignment

l ∈ Lits(∆) l, l /∈ M
DECIDE M := M • l

Guess a truth value for an unassigned literal

Notation: Lits(∆) := {l | l literal of ∆} ∪ {l | l literal of ∆}

l is a decision literal of the new M
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Abstract DPLL proof rules: repairing the assignment

{l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M M = M1 • l M2 • /∈ M2BACKTRACK
M := M1 l

There is a conflicting clause and a decision point to backtrack to
Backtrack over last decision point and add complement of decision literal
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{l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M M = M1 • l M2 • /∈ M2BACKTRACK
M := M1 l

There is a conflicting clause and a decision point to backtrack to
Backtrack over last decision point and add complement of decision literal

Note: Premise • /∈ N enforces chronological backtracking
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Abstract DPLL proof rules: repairing the assignment

{l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M M = M1 • l M2 • /∈ M2BACKTRACK
M := M1 l

There is a conflicting clause and a decision point to backtrack to
Backtrack over last decision point and add complement of decision literal

{l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M • /∈ M
FAIL UNSAT

There is a conflicting clause and no decision points to backtrack to
Conclude that clause set is unsatisfiable

9 / 33



Abstract DPLL proof rules

{l1, . . . , ln, l} ∈ ∆ l1, . . . , ln ∈ M l, l /∈ M
PROPAGATE

M := M l

l literal of ∆ l not literal of ∆ l, l /∈ M
PURE

M := M l

{l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M M = M1 • l M2 • /∈ M2
BACKTRACK

M := M1 l

l ∈ Lits(∆) l, l /∈ M
DECIDE

M := M • l

{l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M • /∈ M
FAIL UNSAT

This proof system captures the main steps of the DPLL procedure

Note: There are no rules to update ∆, the set of clauses
Such rules are present in CDCL, as we will see
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DPLL derivation example

∆0 := { {1, 2}, {1, 2}, {2, 3}, {3, 2}, {1, 4} } Note: we abbreviate pn as n

M ∆ Justification
{1, 2}, {1, 2}, {2, 3}, {3, 2}, {1, 4}

4 {1, 2}, {1, 2}, {2, 3}, {3, 2}, { 1, 4 } by PURE
4 • 1 { 1, 2 }, {1, 2}, {2, 3}, {3, 2}, { 1, 4 } by DECIDE

4 • 1 2 { 1, 2 }, { 1, 2 }, {2, 3}, {3, 2}, { 1, 4 } by PROPAGATE
4 • 1 2 3 { 1, 2 }, { 1, 2 }, { 2, 3 }, { 3, 2 }, { 1, 4 } by PROPAGATE

4 1 {1, 2}, { 1, 2 }, {2, 3}, {3, 2}, { 1, 4 } by BACKTRACK
4 1 2 { 1, 2 }, { 1, 2 }, {2, 3}, {3, 2}, { 1, 4 } by PROPAGATE

4 1 2 3 { 1, 2 }, { 1, 2 }, { 2, 3 }, { 3, 2 }, { 1, 4 } by PROPAGATE
UNSAT by FAIL

{l1, . . . , ln, l} ∈ ∆ l1, . . . , ln ∈ M l, l /∈ M
PROPAGATE

M := M l

l literal of ∆ l not literal of ∆ l, l /∈ M
PURE

M := M l

{l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M M = M1 • l M2 • /∈ M2
BACKTRACK

M := M1 l

l ∈ Lits(∆) l, l /∈ M
DECIDE

M := M • l

{l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M • /∈ M
FAIL UNSAT
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The DPLL proof system

{l1, . . . , ln, l} ∈ ∆ l1, . . . , ln ∈ M l, l /∈ M
PROPAGATE M := M l

l literal of ∆ l not literal of ∆ l, l /∈ M
PURE M := M l

l or l occurs in ∆ l, l /∈ M
DECIDE M := M • l

{l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M M = M1 • l M2 • /∈ M2BACKTRACK
M := M1 l

{l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M • /∈ M
FAIL UNSAT
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DPLL derivation exercise
∆0 := { {1, 2}, {1, 2}, {2, 3}, {3, 2}, {1, 4} }

M ∆ Justification
{1, 2}, {1, 2}, {2, 3}, {3, 2}, {1, 4}

4 {1, 2}, {1, 2}, {2, 3}, {3, 2}, { 1, 4 } by PURE
4 • 3 {1, 2}, {1, 2}, {2, 3}, { 3, 2 }, { 1, 4 } by DECIDE

4 • 3 2 {1, 2}, {1, 2}, { 2, 3 }, { 3, 2 }, { 1, 4 } by PROPAGATE
4 • 3 2 1 { 1, 2 }, { 1, 2 }, { 2, 3 }, { 3, 2 }, { 1, 4 } by PROPAGATE

4 3 {1, 2}, {1, 2}, { 2, 3 }, {3, 2}, { 1, 4 } by BACKTRACK
4 3 2 {1, 2}, {1, 2}, { 2, 3 }, { 3, 2 }, { 1, 4 } by PROPAGATE

4 3 2 1 { 1, 2 }, { 1, 2 }, { 2, 3 }, { 3, 2 }, { 1, 4 } by PROPAGATE
UNSAT by FAIL

{l1, . . . , ln, l} ∈ ∆ l1, . . . , ln ∈ M l, l /∈ M
PROPAGATE

M := M l
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Transforming DPLL to Resolution

The search procedure of DPLL can be reduced a posteriori to a resolution proof

(a sequence of applications of resolution rules)

14 / 33



DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

• No learning: throws away all work performed to conclude that current assignment is bad
Revisits bad partial assignments leading to conflicts due to the same root cause

• Chronological backtracking: backtracks only one level, even if it can be concluded that
the current partial assignment became doomed at a lower level

• Naïve decisions: picks an arbitrary variable to branch on
Fails to consider the state of the search to make heuristically better decisions
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Conflict-Driven Clause Learning (CDCL)

Learning: ∆ is augmented with a conflict clause that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack several levels, based on the cause of the
conflict (conflict-driven backjumping)

Decision heuristics: chooses the next literal to add to the current assignment based on the
current state of the search
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From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, we add a third component C to states
whose value is either no or a clause C, the conflict clause

States:

UNSAT ⟨M,∆,C⟩

Initial state:

• ⟨ϵ,∆0, no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• UNSAT if ∆0 is unsatisfiable

• ⟨M,∆n, no⟩ otherwise, where ∆n is equisatisfiable with ∆0 and satisfied by M
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From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:
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From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

C = no {l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M
CONflICT C := {l1, . . . , ln}

There is no conflict clause but a clause of ∆ is falsified by M

So we set C to be that clause
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From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

C = {l} ∪ C′ {l1, . . . , ln, l} ∈ ∆ l1, . . . , ln, l ∈ M l1, . . . , ln ≺M l
EXPLAIN C := {l1, . . . , ln} ∪ C′

l ≺M l′ iff l occurs before l′ in M
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C = {l} ∪ C′ {l1, . . . , ln, l} ∈ ∆ l1, . . . , ln, l ∈ M l1, . . . , ln ≺M l
EXPLAIN C := {l1, . . . , ln} ∪ C′

∆ contains a clause D = {l1, . . . , ln, l} such that

1. l is in the conflict clause and is falsified by M

2. l1, · · · , ln are all falsified by M before l

We derive a new conflict clause by resolution of C and D
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From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

C = D D = {l1, . . . , ln, l} lev(l1), . . . , lev(ln) ≤ i < lev(l)
BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}
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M := M[i]l C := no ∆ := ∆ ∪ {D}

To compute the level to backjump to:

1. find the literal l ∈ D that was assigned last

2. choose a level i smaller than lev(l) but not smaller than the levels of the other literals in D

Then learn conflict clause D, reset C, backtrack to level i and add l to it
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From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

C = D D = {l1, . . . , ln, l} lev(l1), . . . , lev(ln) ≤ i < lev(l)
BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}

Note: The rules maintain the invariant: ∆ |= C and M |= ¬C when C ̸= no
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From DPLL to CDCL Solvers

Modify FAIL to

C ̸= no • /∈ M
FAIL UNSAT

C contains a conflict clause but there are no decision points to backjump over

Conclude that ∆ is unsatisfiable

19 / 33



From DPLL to CDCL Solvers

Modify FAIL to

C ̸= no • /∈ M
FAIL UNSAT

C contains a conflict clause but there are no decision points to backjump over

Conclude that ∆ is unsatisfiable

19 / 33



Derivation Example

∆ := { C1 : {1}, C2 : {1, 2}, C3 : {3, 4}, C4 : {5, 6}, C5 : {1, 5, 7}, C6 : {2, 5, 6, 7} }

M ∆ C rule
∆ no

1 ∆ no PROPAGATE
1 2 ∆ no PROPAGATE

1 2 • 3 ∆ no DECIDE
1 2 • 3 4 ∆ no PROPAGATE

1 2 • 3 4 • 5 ∆ no DECIDE
1 2 • 3 4 • 5 6 ∆ no PROPAGATE

1 2 • 3 4 • 5 6 7 ∆ no PROPAGATE
1 2 • 3 4 • 5 6 7 ∆ {2, 5, 6, 7} CONflICT
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5, 6} EXPLAIN with C5
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5} EXPLAIN with C4

1 2 5 ∆, {1, 2, 5} no BACKJUMP
1 2 5 • 3 ∆, {1, 2, 5} no DECIDE

1 2 5 • 3 4 ∆, {1, 2, 5} no PROPAGATE SAT!
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{l1, . . . , ln, l} ∈ ∆ l1, . . . , ln ∈ M l, l /∈ M
PROPAGATE

M := M l
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l ∈ Lits(∆) l, l /∈ M
DECIDE

M := M • l
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1 2 • 3 4 • 5 6 ∆ no PROPAGATE

1 2 • 3 4 • 5 6 7 ∆ no PROPAGATE
1 2 • 3 4 • 5 6 7 ∆ {2, 5, 6, 7} CONflICT
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5, 6} EXPLAIN with C5
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5} EXPLAIN with C4

1 2 5 ∆, {1, 2, 5} no BACKJUMP
1 2 5 • 3 ∆, {1, 2, 5} no DECIDE

1 2 5 • 3 4 ∆, {1, 2, 5} no PROPAGATE SAT!
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Derivation Example
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1 2 5 • 3 ∆, {1, 2, 5} no DECIDE

1 2 5 • 3 4 ∆, {1, 2, 5} no PROPAGATE SAT!
C = {7} ∪ {2, 5, 6} {1, 5, 7} ∈ ∆ 1, 5 ≺M 7 =⇒ C = {1, 5} ∪ {2, 5, 6} = {1, 2, 5, 6}

20 / 33

C = {l} ∪ C′ {l1, . . . , ln, l} ∈ ∆ l1, . . . , ln, l ∈ M l1, . . . , ln ≺M l
EXPLAIN

C := {l1, . . . , ln} ∪ C′



Derivation Example

∆ := { C1 : {1}, C2 : {1, 2}, C3 : {3, 4}, C4 : {5, 6}, C5 : {1, 5, 7}, C6 : {2, 5, 6, 7} }

M ∆ C rule
∆ no

1 ∆ no PROPAGATE
1 2 ∆ no PROPAGATE

1 2 • 3 ∆ no DECIDE
1 2 • 3 4 ∆ no PROPAGATE

1 2 • 3 4 • 5 ∆ no DECIDE
1 2 • 3 4 • 5 6 ∆ no PROPAGATE

1 2 • 3 4 • 5 6 7 ∆ no PROPAGATE
1 2 • 3 4 • 5 6 7 ∆ {2, 5, 6, 7} CONflICT
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5, 6} EXPLAIN with C5
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5} EXPLAIN with C4

1 2 5 ∆, {1, 2, 5} no BACKJUMP
1 2 5 • 3 ∆, {1, 2, 5} no DECIDE

1 2 5 • 3 4 ∆, {1, 2, 5} no PROPAGATE SAT!
C = {6} ∪ {1, 2, 5} {5, 6} ∈ ∆ 5 ≺M 6 =⇒ C = {1, 2, 5} ∪ {5} = {1, 2, 5}

20 / 33

C = {l} ∪ C′ {l1, . . . , ln, l} ∈ ∆ l1, . . . , ln, l ∈ M l1, . . . , ln ≺M l
EXPLAIN

C := {l1, . . . , ln} ∪ C′



Derivation Example

∆ := { C1 : {1}, C2 : {1, 2}, C3 : {3, 4}, C4 : {5, 6}, C5 : {1, 5, 7}, C6 : {2, 5, 6, 7} }

M ∆ C rule
∆ no

1 ∆ no PROPAGATE
1 2 ∆ no PROPAGATE

1 2 • 3 ∆ no DECIDE
1 2 • 3 4 ∆ no PROPAGATE

1 2 • 3 4 • 5 ∆ no DECIDE
1 2 • 3 4 • 5 6 ∆ no PROPAGATE

1 2 • 3 4 • 5 6 7 ∆ no PROPAGATE
1 2 • 3 4 • 5 6 7 ∆ {2, 5, 6, 7} CONflICT
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5, 6} EXPLAIN with C5
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5} EXPLAIN with C4

1 2 5 ∆, {1, 2, 5} no BACKJUMP
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1 2 5 • 3 4 ∆, {1, 2, 5} no PROPAGATE SAT!
lev(1) = lev(2) = 0 lev(5) = 2 =⇒ backtrack to M[0]
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C = D D = {l1, . . . , ln, l} lev(l1), . . . , lev(ln) ≤ i < lev(l)
BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}
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Derivation Example

∆ := { C1 : {1}, C2 : {1, 2}, C3 : {3, 4}, C4 : {5, 6}, C5 : {1, 5, 7}, C6 : {2, 5, 6, 7} }

M ∆ C rule
∆ no
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1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5} EXPLAIN with C4

1 2 5 ∆, {1, 2, 5} no BACKJUMP
1 2 5 • 3 ∆, {1, 2, 5} no DECIDE

1 2 5 • 3 4 ∆, {1, 2, 5} no PROPAGATE SAT!
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{l1, . . . , ln, l} ∈ ∆ l1, . . . , ln ∈ M l, l /∈ M
PROPAGATE
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Conflict Analysis

CDCL systems learn new clause during search with the goal of

blocking partial assignments leading to the current conflict

A common strategy is to learn an asserting clause, a conflict clause that will become unit after
backtracking

One way to illustrate different conflict analysis strategies is through implication graphs
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Conflict Analysis: Implication Graph

An implication graph is a labeled directed acyclic graph G(V, E), where:

V collects the literals in the current partial assignment M
• each l ∈ V is labeled with its decision level in M

E = {(l, l′) | l, l′ ∈ V, l ∈ Antecedent(l′)}
• each edge (l, l′) is labeled with C = Antecedent(l′)
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Conflict Analysis: Implication Graph

An implication graph is a labeled directed acyclic graph G(V, E), where:

V collects the literals in the current partial assignment M
• each l ∈ V is labeled with its decision level in M

E = {(l, l′) | l, l′ ∈ V, l ∈ Antecedent(l′)}
• each edge (l, l′) is labeled with C = Antecedent(l′)

G is a conflict graph if it also contains

• a single conflict node ⊥
• ⊥’s incoming edges are { (l,⊥) | l ∈ C } for some falsified clause C
• those edges are labeled with C
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Revisiting CDCL example with an implication graph
∆ := { C1 : {1}, C2 : {1, 2}, C3 : {3, 4}, C4 : {5, 6}, C5 : {1, 5, 7}, C6 : {2, 5, 6, 7} }

M ∆ C rule
∆ no

1 ∆ no PROPAGATE
1 2 ∆ no PROPAGATE

1 2 • 3 ∆ no DECIDE
1 2 • 3 4 ∆ no PROPAGATE

1 2 • 3 4 • 5 ∆ no DECIDE
1 2 • 3 4 • 5 6 ∆ no PROPAGATE

1 2 • 3 4 • 5 6 7 ∆ no PROPAGATE
1 2 • 3 4 • 5 6 7 ∆ {2, 5, 6, 7} CONflICT
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5, 6} EXPLAIN w. C5
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5} EXPLAIN w. C4

1 2 5 ∆, {1, 2, 5} no BACKJUMP
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1 2 5 ∆, {1, 2, 5} no BACKJUMP
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C6 C6 C6

Any separating cut that breaks all paths from root nodes to the conflict node,
with roots on the reasons side and conflict node on the conflict side,
determines a conflict clause
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Revisiting CDCL example with an implication graph
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EXPLAIN can be viewed as picking a literal l in the conflict clause C,
and replacing C with the l-resolvent of C and Antecedent(l)

In this case, l = 7 and Antecedent(l) = C5
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1 2 • 3 4 • 5 6 7 ∆ {2, 5, 6, 7} CONflICT
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5, 6} EXPLAIN w. C5
1 2 • 3 4 • 5 6 7 ∆ {1, 2, 5} EXPLAIN w. C4

1 2 5 ∆, {1, 2, 5} no BACKJUMP

1@0 2@0

3@1 4@1

5@2 ¬6@2 7@2

⊥@2

C2

C3

C4

C5

C5

C6

C6 C6 C6

EXPLAIN can be viewed as picking a literal l in the conflict clause C,
and replacing C with the l-resolvent of C and Antecedent(l)

In this case, l = 6 and Antecedent(l) = C4
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C = D D = {l1, . . . , ln, l} lev(l1), . . . , lev(ln) ≤ i < lev(l)
BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}
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A Unique Implication Point (UIP) is any node other than ⊥
that is on all paths from the current decision node to ⊥

A first UIP is a UIP that is closest to the conflict node

In this case, 5@2 is the only UIP and thus also the first UIP



From DPLL to full CDCL Solvers

Also add
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From DPLL to full CDCL Solvers

Also add

D is a clause ∆ |= D D /∈ ∆
LEARN

∆ := ∆ ∪ {D}

Can be applied to any clause entailed by ∆

In particular, to any conflict clause C ̸= no (because then ∆ |= C)

24 / 33



From DPLL to full CDCL Solvers

Also add

D is a clause ∆ |= D D /∈ ∆
LEARN

∆ := ∆ ∪ {D}

Can be applied to any clause entailed by ∆

In particular, to any conflict clause C ̸= no (because then ∆ |= C)

The learned clause D is called a lemma
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From DPLL to full CDCL Solvers

Also add

C = no ∆ = ∆′ ∪ {C} ∆′ |= C
FORGET

∆ := ∆′

Learning can quickly add millions of clauses to ∆

So it is useful to be able to delete redundant clauses that might not be useful anymore
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From DPLL to full CDCL Solvers

Also add

RESTART
M := M[0] C := no

If we are stuck in a hopeless area of the search space it may be better to just restart
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From DPLL to full CDCL Solvers

Also add

RESTART
M := M[0] C := no

If we are stuck in a hopeless area of the search space it may be better to just restart

Note: Restart is not from scratch since propagations at level 0 are maintained, together with
all the learned lemmas not eliminated by FORGET
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Learning the First UIP

Empirical studies show it is a good strategy to

• compute a conflict clause D that contains a first UIP for the current decision level

• backjump to the second lowest decision level among D’s literals
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To compute such D,

keep applying EXPLAIN to the most recently assigned literal in C,
until there is only one literal l ∈ C that is assigned at the current decision level
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BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}

To compute such D,

keep applying EXPLAIN to the most recently assigned literal in C,
until there is only one literal l ∈ C that is assigned at the current decision level

That l is a first UIP and the resulting C is an asserting clause
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Note: In this case, we do not actually need to append l to M[i] as PROPAGATE will be able to do that
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• backjump to the second lowest decision level among D’s literals

C = D D = {l1, . . . , ln, l} lev(l1), . . . , lev(ln) ≤ i < lev(l)
BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}

Note: In this case, we do not actually need to append l to M[i] as PROPAGATE will be able to do that

Note: The first UIP for a decision level is not necessarily the decision literal d for that level.
However, applying BACKJUMP guarantees in this case that ∆ ∪ M |= d
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Learning the First UIP

Empirical studies show it is a good strategy to

• compute a conflict clause D that contains a first UIP for the current decision level

• backjump to the second lowest decision level among D’s literals

Possible explanations for the empirical results:

• The strategy has a low computational cost, compared with strategies
that choose UIPs further away from the conflict

• It still backtracks to the lowest decision level possible
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Non-chronological vs. chronological backtracking

Note: Backjumping is not always better than chronological backtracking

See, e.g.,

• “Chronological Backtracking” by Nadel and Ryvchin, SAT 2018.

• “Lazy Reimplication in Chronological Backtracking” by Coutelier et al., SAT 2024.
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Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the proof system
with rules

PROPAGATE, PURE, DECIDE,

CONflICT, EXPLAIN, BACKJUMP, FAIL

LEARN, FORGET, RESTART

Basic CDCL := { PROPAGATE, PURE, DECIDE, CONflICT, EXPLAIN, BACKJUMP, FAIL }

CDCL := Basic CDCL + { LEARN, FORGET, RESTART }
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The Basic CDCL System – Correctness

Irreducible state: state for which no Basic CDCL rules apply

Execution: a (single-branch) derivation tree starting with M = ∅ and C = no

Exhausted execution: execution ending in an irreducible state

Theorem 1 (Refutation Soundness)
For every exhausted execution starting with ∆ = ∆0 and ending with UNSAT, the clause set
∆0 is unsatisfiable

Theorem 2 (Solution Soundness)
For every exhausted execution starting with ∆ = ∆0 and ending with C = no, the clause set
∆0 is satisfied by M
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Note: This is not so immediate, because of EXPLAIN and BACKJUMP
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Exhausted execution: execution ending in an irreducible state

Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite
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Every exhausted execution ends with either C = no or UNSAT

Lemma 3
All clause sets along an execution are equivalent (i.e., satisfied by the same interpretations)

Theorem 4 (Refutation Soundness)
For every exhausted execution starting with ∆ = ∆0 and ending with UNSAT, the clause set
∆0 is unsatisfiable

Theorem 5 (Solution Soundness)
For every exhausted execution starting with ∆ = ∆0 and ending with C = no, the clause set
∆0 is satisfied by M
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The CDCL System – Strategies

To ensure termination for the full system,

1. apply at least one Basic CDCL rule between each two LEARN applications

2. apply RESTART less and less often
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The CDCL System – Strategies

A common basic strategy applies the rules with the following priorities,
using a bound n initially set to 0, until an irreducible state is reached:

1. If n > 0 conflicts have been found so far, increase n and apply RESTART
2. If M falsifies a clause and has no decision points, apply FAIL and stop
3. If M falsifies a clause, apply CONflICT

3.1 Apply EXPLAIN repeatedly
3.2 Apply BACKJUMP (which includes learning of current conflict clause)

4. Apply PROPAGATE to completion
5. Apply DECIDE

Steps 3.1–3.2 achieve a form of conflict analysis and involve some heuristic choices:

1. When to stop applying EXPLAIN to a conflict?
2. Which level to BACKJUMP to?
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The CDCL proof system

{l1, . . . , ln, l} ∈ ∆ l1, . . . , ln ∈ M l, l /∈ M
PROPAGATE M := M l

l literal of ∆ l not literal of ∆ l, l /∈ M
PURE M := M l

l or l occurs in ∆ l, l /∈ M
DECIDE M := M • l
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The CDCL proof system (continued)

C = no {l1, . . . , ln} ∈ ∆ l1, . . . , ln ∈ M
CONflICT C := {l1, . . . , ln}

C = {l} ∪ C′ {l1, . . . , ln, l} ∈ ∆ l1, . . . , ln, l ∈ M l1, . . . , ln ≺M l
EXPLAIN C := {l1, . . . , ln} ∪ C′

C = D D = {l1, . . . , ln, l} lev(l1), . . . , lev(ln) ≤ i < lev(l)
BACKJUMP

M := M[i]l C := no ∆ := ∆ ∪ {D}

C ̸= no • /∈ M
FAIL UNSAT
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The CDCL proof system (continued)

D is a clause ∆ |= D D /∈ ∆
LEARN

∆ := ∆ ∪ {D}

C = no ∆ = ∆′ ∪ {C} ∆′ |= C
FORGET

∆ := ∆′

RESTART
M := M[0] C := no
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