CS:4980 Topics in Computer Science |l
Introduction to Automated Reasoning

DPLL and CDCL

Cesare Tinelli

Spring 2024
L

ThE ﬂﬂ

UINIVERSITY
OF lowa

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of lowa, Emina
Torlak at the University of Washington, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu
at Stanford University. Adapted by permission.

1/33

Plan

e DPLL
® Abstract DPLL

® CDCL (DP Chapter 2)
® Abstract CDCL

® Implication graphs

2/33

The Original DPLL Procedure

Modern SAT solvers are based on an extension of the DPLL procedure

3/33

The Original DPLL Procedure

Modern SAT solvers are based on an extension of the DPLL procedure

DPLL tries to build incrementally a satisfying assignment // for a clause set

3/33

The Original DPLL Procedure

Modern SAT solvers are based on an extension of the DPLL procedure
DPLL tries to build incrementally a satisfying assignment // for a clause set

is grown by

® deducing the truth value of a literal from /7 and /\, or

® guessing a truth value

3/33

The Original DPLL Procedure

Modern SAT solvers are based on an extension of the DPLL procedure
DPLL tries to build incrementally a satisfying assignment // for a clause set

is grown by

® deducing the truth value of a literal from /7 and /\, or

® guessing a truth value

If a wrong guess for a literal leads to an inconsistency,
the procedure backtracks and tries the opposite value

3/33

DPLL as a Proof System

To facilitate a deeper look at DPLL, we present it as a proof system:

The proof system is a re-elaboration of those in [1,2]

[1] Nieuwenhuis et al, “Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).”, Journal of the ACM, 53(6).

[2] Krsti¢ and Goel, “Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL.”, FroCos 2007.

4/33

Abstract DPLL: A Proof System for DPLL
States:

where

® [Visa and
denoting a partial variable assignment

e Nisa denoting a CNF formula

5/33

Abstract DPLL: A Proof System for DPLL

States:

where

® [Visa and
denoting a partial variable assignment

e Nisa denoting a CNF formula
Note: When convenient, we treat // as a set

Provided / contains no complementary literals it determines the assignment

5/33

Abstract DPLL: A Proof System for DPLL

States:

where

® [Visa and
denoting a partial variable assignment

e Nisa denoting a CNF formula
Notation: If where each //; contains no decision points
® V;is of

° denotes the subsequence , from decision level 0 to decision level

5/33

Abstract DPLL: A Proof System for DPLL

States:

Initial state:

. , Where ¢ is the empty assignment and /\, is to be checked for satisfiability

5/33

Abstract DPLL: A Proof System for DPLL

States:

Initial state:

. , Where ¢ is the empty assignment and /\, is to be checked for satisfiability

Expected final states:
. if /\¢ is unsatisfiable

o otherwise, where A\, is equisatisfiable with /A, and satisfied by

5/33

Some clause terminology

[Notation / denotes the of [, thatis, —/if [is a variable, and pif [is
Given a partial assignment:

® clause is by

® clause is with

® clause is in

e clause is by

® variable p; is in

® variable p; is in

6/33

Abstract DPLL proof rules: extending the assignment

PROPAGATE

Deduce the value of unassigned literal in unit clauses

7/33

Abstract DPLL proof rules: extending the assignment

PROPAGATE

Deduce the value of unassigned literal in unit clauses

The clause is the of /, denoted by l

7/33

Abstract DPLL proof rules: extending the assignment

PROPAGATE

Deduce the value of unassigned literal in unit clauses

PURE

Make a pure literal true

7/33

Abstract DPLL proof rules: extending the assignment

DECIDE

Guess a truth value for an unassigned literal

Notation:

8/33

Abstract DPLL proof rules: extending the assignment

DECIDE

Guess a truth value for an unassigned literal

Notation:

isa of the new

8/33

Abstract DPLL proof rules: repairing the assignment

BACKTRACK

There is a conflicting clause and a decision point to backtrack to
Backtrack over last decision point and add complement of decision literal

9/33

Abstract DPLL proof rules: repairing the assignment

BACKTRACK

There is a conflicting clause and a decision point to backtrack to
Backtrack over last decision point and add complement of decision literal

Note: Premise enforces chronological backtracking

9/33

Abstract DPLL proof rules: repairing the assignment

BACKTRACK

There is a conflicting clause and a decision point to backtrack to
Backtrack over last decision point and add complement of decision literal

FAIL

There is a conflicting clause and no decision points to backtrack to
Conclude that clause set is unsatisfiable

9/33

Abstract DPLL proof rules

PROPAGATE

DECIDE

PURE
FAIL

BACKTRACK

This proof system captures the main steps of the DPLL procedure

10/33

Abstract DPLL proof rules

PROPAGATE
DECIDE

PURE

FaIL

BACKTRACK

This proof system captures the main steps of the DPLL procedure

Note: There are no rules to update 2\, the set of clauses
Such rules are present in CDCL, as we will see

10/33

DPLL derivation example

Note: we abbreviate p, as

(1,25, {1.2}, (2.3}, (3.2, {1, 4)

PROPAGATE

DECIDE

PURE
FAIL

BACKTRACK

11/33

DPLL derivation example

Note: we abbreviate p, as

{l,i},{1,5}7{2.3},{§,2},{1,4}
{1,2},{1,2},{2,3}, {3, 2},

PROPAGATE
DECIDE

PURE
FAIL

BACKTRACK

11/33

DPLL derivation example

Ao = {{1.2},{1,2}.{2,3}.{3.2}.{1.4} } Note: we abbreviate p, as

M A Justification
{1,2},{1,2},{2,3},{3,2},{1,4}
4 {1,2},{1,2},{2,3},{3,2},{1,4} byPure
401 {1,2},{1,2},{2,3},{3,2},{1.4} byDEciDpE
b {ly,..., I, [} € A Ly, Ih €M LIgM .
ROPAGATE - Lits e
M o— M{ DECIDE [€ Lits(A) LigM
_ - M:=Me/
[literal of A [not literal of A LIgM
PUre YR {l,..., h}eA Lyenns lheM e Z M
. FaiL UNSAT
li,..., h} €A li,..., lh €M M=M; elM, o Z M
BACKTRACK
M= Myl

11/33

DPLL derivation example

N = {{1,2}.{1.2}.{2,3}.{3.2},{1.4} } Note: we abbreviate p,, as n

M A Justification

{1,2},{1,2},{2,3},{3,2},{1,4}
{1,2},{1,2},{2,3},{3,2},{ 1,4} byPure
401 {1,2},{1,2},{2,3},{3,2},{1.4} byDEciDpE
4012 {1,2},{1,2},{2,3},{3,2},{1,4} by PROPAGATE
b {ly,..., I, [} €A Ly, Ih €M LigM .
ROPAGATE its Z
M= DECIDE € Lies(A) Ligw
_ M:=Me/
[literal of A [not literal of A LI¢gM
PURE YR {h,.o, I} €A I, ..., lhem e g M
FaiL UNSAT
ly, ..., h} €A by, ..., h EM M= M, elM, e & M
BACKTRACK
M= Myl

11/33

DPLL derivation exa

mple

N = {{1,2}.{1.2}.{2,3}.{3.2},{1.4} } Note: we abbreviate p,, as n

M A Justification
{1,2},{1,2},{2,3},{3,2},{1,4}
4 {1,2},{1,2},{2,3}, {3 2},{1,4} by PURE
401 {1,2},{1,2},{2,3},{3,2},{1.4} byDEciDpE
4012 {1,2},{1,2},{2,3},{3,2},{1,4} by PROPAGATE
40123 {12},{1,2}{23}{32}{14} by PROPAGATE
b {ly,..., I, [} €A liy....lh €M LigM .
ROPAGATE its)
M o— M{ DECIDE [€ Lits(A) LilgM
~ ~ M:=Mel
[literal of A [not literal of A LI¢gM
PURE M= M {l,..., h}eA [lheM e M
. FaiL UNSAT
li,..., h} €A l,..., lh €M M=M; elM, o Z M
BACKTRACK
M= M |

11/33

DPLL derivation example

N = {{1,2}.{1.2}.{2,3}.{3.2},{1.4} } Note: we abbreviate p,, as n

M A Justification
{1,2},{1,2},{2,3},{3,2},{1,4}
4 {1,2},{1,2},{2,3},{3,2},{1.4} byPure
401 {1,2},{1,2},{2,3},{3,2},{1.4} byDEciDpE
412 {1,2},{1,2},{2,3},{3,2},{1,4} byPROPAGATE
4123 {1,2 },{Ii}{23}{32}{14} by PROPAGATE
41 {1,2},{1,2},{2,3},{3,2},{1,4} byBACKTRACK
b {ly,..., I, [} €A liy....lh €M LiIgM .
ROPAGATE its
M o— M{ DECIDE [€ Lits(A) LigM
~ ~ M:=Mel
[literal of A [not literal of A LI¢gM
PURE M= M {l,..., h}eA [lheM e Z M
. FaiL UNSAT
h,..., h}en ..., IheMm M =M oM, . ¢ M
BACKTRACK
M= My

11/33

DPLL derivation example

N = {{1,2}.{1.2}.{2,3}.{3.2},{1.4} } Note: we abbreviate p,, as n

M A Justification
{1,2},{1,2},{2,3},{3,2},{1,4}
4 {1,2},{1,2},{2,3},{3,2},{1.4} byPure
401 {1,2},{1,2},{2,3},{3,2},{1.4} byDEciDpE
4012 {1,2},{1,2},{2,3},{3,2},{1,4} by PROPAGATE
40123 {1,5},{1?}{23}{32}{14} by PROPAGATE
41 {1,2},{1,2},{2,3},{3,2},{1,4} byBACKTRACK
412 {1,2},{1,2},{2,3},{3,2},{1,4} by PROPAGATE
o {l,..., I, [} € A L,...,Ih €M Lig¢gM .
ROPAGATE its _
M o— M{ DECIDE [€ Lits(A) LigM
- _ M:=Mel
[literal of A [not literal of A LI¢gM
PURE YR ... hten Iy lhem oM
. FaiL UNSAT
Iy.. ., L} eA Iy .., lheM M= M elM o ¢ M,
BACKTRACK
M= M, [

11/33

DPLL derivation example

N = {{1,2}.{1.2}.{2,3}.{3.2},{1.4} } Note: we abbreviate p,, as n

M A Justification
(1.2}, (1.2}, 2.3}, (3.2}, {14}
4 {1,2},{1,2},{2,3},{3,2},{1,4} byPure
401 {1,2},{1,2},{2,3},{3,2},{1.4} byDEciDpE
4012 {1,2},{1,2},{2,3},{3,2},{1,4} by PROPAGATE
40123 {1,5}, i}{23}{32}{14} by PROPAGATE

,2}4,{2,3},{3,2},{1,4} byBACKTRACK
,2}1,{2,3},{3,2},{1,4} by PROPAGATE
4123 {12}{12}{23} {3,2},{1,4} byPROPAGATE

{l, ..., I, [} € A L,...,Ih €M LigM
PROPAGATE | € Lits(A) LIgM
M:=M{ DECIDE (
_ - M:=Me/
p [literal of A [not literal of A LlgmMm
URE — {hyo.o, I} €A Iyens lhem o M
M= FAIL - .
UNSAT
{li,...,lh} €A I,..., Ih €M M= M elM, o ¢ M
BACKTRACK
M= Myl

11/33

DPLL derivation example

N = {{1,2}.{1.2}.{2,3}.{3.2},{1.4} } Note: we abbreviate p,, as n

M A Justification
(1.2}, (1.2}, 2.3}, (3.2}, {14}
4 {1,2},{1,2},{2,3},{3,2},{1,4} byPure
401 {1,2},{1,2},{2,3},{3,2},{1.4} byDEciDpE
4012 {1,2},{1,2},{2,3},{3,2},{1,4} by PROPAGATE
40123 {1,5}, i}{23}{32}{14} by PROPAGATE

2 14,{2,3},{3,2},{1,4}
.2 1,{2,3},{3,2},{1.4}

by BACKTRACK
by PROPAGATE

BACKTRACK

4123 {12}{12}{23} {3,2},{1,4} byPROPAGATE
UNSAT by FAIL
b ..., I, [} €A ly,....ln €M LigM)
ROPAGATE | € Lits(A N M
M= M/ DECIDE ir=(4) ¢
~ - M:=Mel
p [literal of A [not literal of A LlgmMm B .
URE — .o, I} e ..., hem ¢M
M:=MI[FAlL {h n} 1 n o ¢
UNSAT
I, .., lh} €A Iy oons hem M= M elM, o ¢ M,

11/33

The DPLL proof system

PROPAGATE

PURE

DECIDE

BACKTRACK

FAIL

12/33

DPLL derivation exercise

{1,2},{1,2},{2,3},{3,2},{1,4}
{1,2},{1,2},{2,3},{3,2},
{1,2},{1,2},{2,3}, :

PROPAGATE

DECIDE

PURE

FaIL

BACKTRACK

13/33

DPLL derivation exercise

{1,2},{1,2},{2,3},{3,2},{1,4}
{1,2},{1,2},{2,3},{3,2},
{1,2},{1,2},{2,3}, :

PROPAGATE

DECIDE

PURE

FaIL

BACKTRACK

13/33

DPLL derivation exercise

{1,2},{1,2},{2,3},{3,2},{1,4}
{1,2},{1,2},{2,3},{3,2},
{1,2},{1,2},{2,3}, :

PROPAGATE

DECIDE

PURE

FaIL

BACKTRACK

13/33

DPLL derivation exercise
Do = {{1,2},{1,2},{2,3},{3,2},{1,4} }

M A Justification
(1.2}, {1,2},{2.3}, (3.2}, {1,4)

4 {1,2},{L,2},{2,3},{3,2}, (1.4} byPure

3 {1,2},{1,2},{2,3},{3,2},{1,4} byDECIDE

2 {1,2},{1,2},{2,3},{3,2},{1,4} by PROPAGATE

40
403

{,..., Ih, [} € A Iyo.n, Ih €M LTgM .
PROPAGATE VY | € Lits(A) LlgM
DECIDE
- _ M:=Mel
[literal of A Inot literal of A LigM
PURE M=l - {l,. .., h}eA Iy, lhem o M
UNSAT
..., h}ean Iy.on, hem M= M elM o ¢ My
BACKTRACK
M= M; |

13/33

DPLL derivation exercise
Do = {{1,2},{1,2},{2,3},{3,2},{1,4} }

M

A

Justification

{1,2},{1,2},{2,3},{3,2},{1,4}
4 {1,2},{1,2},{2,3},{3,2},{ 1.4} by PURE
403 {1,2}, {Ii} {2,3},{3,2},{1,4} byDEcIDE
4032 {1,2}, {If}{23}{3 2},{1,4} by PROPAGATE
4321 {1,2},{1,2},{2,3},{3,2},{1,4} byPROPAGATE
, Iy ..., I, [} €A lyonns lh €M LIgM .
ROPAGATE € Lits ¢
Y becine I € Lits(A) LlgM
_ - M:=Mel
[literal of A Inot literal of A LigM B
PURE =M ML{h”.M} A Uﬁ;”mem ¢
Iy, Ih} €A Iyoons lhem M =M oM, o ¢ M
BACKTRACK
M= M [

13/33

DPLL derivation exercise
Do = {{1,2},{1,2},{2,3},{3,2},{1,4} }

M A Justification
{12}, {12}, 12,3}, (3.2}, {14}
4 LI L2} 2,30 (3,2} [14) byPuRe
403 {1,2}, {Ii} {2,3},{3,2},{1,4} byDEcIDE
432 {1,2},{1,2},{2,3},{3,2},{1,4} by PROPAGATE
4321 {1,2},{1,2},{2,3},{3,2},{1,4} byPROPAGATE
43 {1,2},{1,2},{2,3} {§ 2},{1,4} by BACKTRACK
” Iy ..., I, [} €A lyons lh €M LIgM .
ROPAGATE € Lits ¢
=M becio [€ Lits(A) LigmM
~ _ M:=Mel
[literal of A Inot literal of A LigM B
PURE =M - {l,...,byeA U/NlSAT heM ¢
..., h}eA Ty ens hem M= M elM o M
BACKTRACK
M= M; |

13/33

DPLL derivation exercise
IAVEES { {li} {15} {2,3}-, {§ 2}' {1'4} }

M A Justification
(1.21(L2), (2.3}, (3.21. (1.4}
4 {1,2},{1,2},{2,3},{3,2},{ 1.4} byPure
403 {1,2},{1,2},{2,3},{3.2},{1.4} byDEcipE
4032 {1,2},{1,2},1 23}{3 2},{1,4} by PROPAGATE
4321 {1,2},{1,2},{2,3},{3,2},{1,4} byPROPAGATE
43 {1,2},{1,2},{2,3} {§ 2},{1,4} by BACKTRACK
432 {1,2},{1,2},{ 2, 3},{§ },{1,4} by PROPAGATE
4321 {1,2},{1,2},{2,3},{3,2},{1,4} byPROPAGATE
—— o, .., [} €A [heM LTgm .
M:=M! DECIDE S
- _ M:=Mel
PURE [literal of A Inot literal of A LigM)
Mo— M/ FarL {ly,..., A UI;S‘A.T..‘ 72
..... h}eA li,...,lh eM M= M; elM, o ¢ M

BACKTRACK

13/33

DPLL derivation exercise
IAVEES { {li} {15} {2,3}-, {§ 2}' {1'4} }

M A Justification
(1,2}, (1,21, 12,3}, 3.2}, (1,4}
4L 2,3 B2 4] by Puse
403 {1,2},{1,2},{2,3},{3.2},{1.4} byDEcipE
432 {1,2},{1,2},{2,3},{3,2},{1,4} by PROPAGATE
4321 {1,2},{1,2},{2,3},{3,2},{1,4} byPROPAGATE
43 {1,2},{1,2},{2,3},{3,2},{ 1.4} byBACKTRACK
432 {1,2},{1,2},{2,3},{3,2},{1,4} by PROPAGATE
4321 {1,2},{1,2},{2,3},{3,2},{1,4} byPROPAGATE
UNSAT by FAIL
” Iy ..., I, [} €A lyonns lh €M LIgM .
ROPAGATE € Lits 3
=M becine [€ Lits(A) LigmM
_ _ M:=Mel
[literal of A Inot literal of A LigM
PURE =M {l,...,[byeA Iy, Ih €M ¢
FaiL UNSAT
..., h}eA Ty IheMm M =M olM o ¢ M
BACKTRACK
M= Myl

13/33

Transforming DPLL to Resolution

The search procedure of DPLL can be reduced a posteriori to a resolution proof

(a sequence of applications of resolution rules)

14/33

DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

15/33

DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

® No learning: throws away all work performed to conclude that current assignment is bad
Revisits bad partial assignments leading to conflicts due to the same root cause

15/33

DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

® Chronological backtracking: backtracks only one level, even if it can be concluded that
the current partial assignment became doomed at a lower level

15/33

DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

® Naive decisions: picks an arbitrary variable to branch on
Fails to consider the state of the search to make heuristically better decisions

15/33

DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

® No learning: throws away all work performed to conclude that current assignment is bad
Revisits bad partial assignments leading to conflicts due to the same root cause

® Chronological backtracking: backtracks only one level, even if it can be concluded that
the current partial assignment became doomed at a lower level

® Naive decisions: picks an arbitrary variable to branch on
Fails to consider the state of the search to make heuristically better decisions

15/33

Conflict-Driven Clause Learning (CDCL)

Learning: /\ is augmented with a conflict clause that summarizes the root cause of the conflict

16/33

Conflict-Driven Clause Learning (CDCL)

Learning: /\ is augmented with a conflict clause that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack several levels, based on the cause of the
conflict ()

16/33

Conflict-Driven Clause Learning (CDCL)

Learning: /\ is augmented with a conflict clause that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack several levels, based on the cause of the
conflict ()

Decision heuristics: chooses the next literal to add to the current assignment based on the
current state of the search

16/33

Conflict-Driven Clause Learning (CDCL)

Learning: /\ is augmented with a conflict clause that summarizes the root cause of the conflict

Non-chronological backtracking: can backtrack several levels, based on the cause of the
conflict ()

16/33

From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, we add a third component C to states
whose value is either no or a clause C, the

17/33

From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, we add a third component C to states
whose value is either no or a clause C, the

States:

17/33

From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, we add a third component C to states
whose value is either no or a clause C, the

States:

Initial state:

° , Where 2\ is to be checked for satisfiability

17/33

From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, we add a third component C to states
whose value is either no or a clause C, the

States:

Initial state:

° , Where 2\ is to be checked for satisfiability

Expected final states:

o if /\y is unsatisfiable

] otherwise, where 2\ is equisatisfiable with 2\, and satisfied by

17/33

From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

18/33

From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

Conflict

There is no conflict clause but a clause of A is falsified by

So we set C to be that clause

18/33

From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

EXPLAIN

iff l occurs before /' in

18/33

From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

EXPLAIN

contains a clause such that

1. /isinthe conflict clause and is falsified by

2. are all falsified by M before

We derive a new conflict clause by resolution of

and

18/33

From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

BACKJUMP

18/33

From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

BACKJUMP

To compute the level to backjump to:

1. find the literal that was assigned last

2. choose a level i smaller than but not smaller than the levels of the other literals in

Then learn conflict clause D, reset C, backtrack to level / and add / to it

18/33

From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

BACKJUMP

To compute the level to backjump to:

1. find the literal that was assigned last

2. choose a level i smaller than but not smaller than the levels of the other literals in

Then learn conflict clause D, reset C, backtrack to level / and add / to it

E Note: iff [occurs in decision level n of J

18/33

From DPLL to CDCL Solvers

Replace BACKTRACK with three rules:

BACKJUMP

[Note: The rules maintain the invariant: and when }

18/33

From DPLL to CDCL Solvers

Modify FAIL to

19/33

From DPLL to CDCL Solvers

Modify FAIL to

FAIL

contains a conflict clause but there are no decision points to backjump over

Conclude that A\ is unsatisfiable

19/33

Derivation Example

{1} {1,2} {3,4} {5,6} {1,5,7} {2,5,6,7}

20/33

Derivation Example

PROPAGATE

{1,2} {3,4} {5,6} {1,5,7} {2,5,6,7}

20/33

Derivation Example

PROPAGATE

{3,4} {5,6} {1,5,7} {2,5,6,7}

20/33

Derivation Example

DECIDE

20/33

Derivation Example

PROPAGATE

20/33

Derivation Example

A= {Cy: {1}, C;:{1,2}, C3:{3,4}, Cs: {5,6}, Cs

DECIDE

[€ Lits(A)

M:=Mel

{1,5,7}. C; - {2,5,6,7}}

M A C rule
A no
1 A no PROPAGATE
12 A no PROPAGATE
12e¢3 A no DECIDE
12e¢34 A no PROPAGATE
12e34e5 A no DECIDE

20/33

Derivation Example

A= {Cy {1}, G {1,2}, C53:{3,4}, Cy: {56}, C5:{1,5,7}, Cs:{2,5,6,7}}

M A C rule
A no

1 A no PROPAGATE
12 A no PROPAGATE

12e¢3 A no DECIDE
12e¢34 A no PROPAGATE

12e34e5 A no DECIDE
123456 A no PROPAGATE

20/33

Derivation Example

A:={C: {1}, C;:{1,2}, C3:{3,4}, C;:{5,6}, Cs:{1,5,7}, Cs:{2,5,6,7} }

M A C rule
A no

1 A no PROPAGATE
12 A no PROPAGATE

12e¢3 A no DECIDE
12e¢34 A no PROPAGATE

12e34e5 A no DECIDE
123456 A no PROPAGATE
1234567 A no PROPAGATE

20/33

Derivation Example

A:={C: {1}, C;:{1,2}, C3:{3,4}, C;:{5,6}, Cs:{1,5,7}, Cs:{2,5,6,7} }

M A C rule
A no
1 A no PROPAGATE
12 A no PROPAGATE
12e¢3 A no DECIDE
12e¢34 A no PROPAGATE
12e34e5 A no DECIDE
123456 A no PROPAGATE
12034567 A no PROPAGATE
12034567 A {2,5,6,7} Conflict

20/33

Derivation Example

c={juc

{l,....lp,} €A

EXPLAIN

A:={C {1}, C;: {1,2}, C3:{3,4}, C4: {5,6}, C5:{1,5,7}, Cs:{2,5,6,7} }

M A C rule
A no
1 A no PROPAGATE
12 A no PROPAGATE
12e¢3 A no DECIDE
12e¢34 A no PROPAGATE
12e34e5 A no DECIDE
12e34e56 A no PROPAGATE
12034567 A no PROPAGATE
12e34e567 A {2,5,6,7} Conflict
1234567 A {1,2,5,6} EXPLAIN with Cs
c={7}uU{2,5,6} {1,5,7} €A 1,5<y7 =— C={1,5}U{2,5,6}=

20/33

Derivation Example Co (U (b oD €A T dodeM ho o <u

EXPLAIN

A:={C {1}, C;: {1,2}, C3:{3,4}, C4: {5,6}, C5:{1,5,7}, Cs:{2,5,6,7} }

M A C rule
A no
1 A no PROPAGATE
12 A no PROPAGATE
12e¢3 A no DECIDE
12e¢34 A no PROPAGATE
12e34e5 A no DECIDE
12e34e56 A no PROPAGATE
1234567 A no PROPAGATE
12e34e567 A {2,5,6,7} Conflict
1234567 A {1,2,5,6} EXPLAIN with Cs
1234567 A {1,2,5} EXPLAIN with C4

C={6)U{L,25} {56)cA 5<u6 — C={I,2,5)U{5}={L25)

20/33

Derivation Example

A:={C {1}, C;:{1,2}, C3:{3,4}, Cs: {5,6}, C5:

BACKJUMP

C=>D

D={l,....ln,l} 1ev(h),..., lev(ly) < i< lev(l)

M = My C:=no A:=AU{D}

(1,5,7), Co: {2,5,6,7})

M A C rule
A no
1 A no PROPAGATE
12 A no PROPAGATE
12e¢3 A no DECIDE
12e¢34 A no PROPAGATE
12e34e5 A no DECIDE
12e34e56 A no PROPAGATE
12034567 A no PROPAGATE
12e34e567 A {2,5,6,7} Conflict
1234567 A {1,2,5,6} EXPLAIN with Cs
1234567 A {1,2,5} EXPLAIN with C4
125 A, {1,2,5 no BACKJUMP
lev(l) = lev(2) =0 lev(5) =2 —— backtrackto /"

20/33

Derivation Example lcLits(d) LIgM

DECIDE

M:=Mel

A:={C {1}, C;:{1,2}, C3:{3,4}, C4: {5,6}, C5:{1,5,7}, Cs:{2,5,6,7} }

M A C rule
A no
1 A no PROPAGATE
12 A no PROPAGATE
12e¢3 A no DECIDE
12e¢34 A no PROPAGATE
12e34e5 A no DECIDE
12e34e56 A no PROPAGATE
1234567 A no PROPAGATE
12e34e567 A {2,5,6,7} Conflict
1234567 A {1,2,5,6} EXPLAIN with Cs
1234567 A {1,2,5} EXPLAIN with C4
125 A, {1,2,5} no BACKJUMP
1253 A, {1,2,5} no DECIDE

20/33

Derivation Example

PROPAGATE

A:={C:{1}, C;:{1,2}, C3:{3,4}, C;:{5,6}, Cs:{1,5,7}, Cs:{2,5,6,7} }

M A C rule
A no
1 A no PROPAGATE
12 A no PROPAGATE
12e¢3 A no DECIDE
12e¢34 A no PROPAGATE
12e34e5 A no DECIDE
12e34e56 A no PROPAGATE
1234567 A no PROPAGATE
12e34e567 A {2,5,6,7} Conflict
1234567 A {1,2,5,6} EXPLAIN with Cs
1234567 A {1,2,5} EXPLAIN with C4
125 A, {1,2,5} no BACKJUMP
1253 A, {1,2,5} no DECIDE
12534 A, {1,2,5} no PROPAGATE SAT!

20/33

Conflict Analysis

CDCL systems learn new clause during search with the goal of

blocking partial assignments leading to the current conflict

21/33

Conflict Analysis

CDCL systems learn new clause during search with the goal of

blocking partial assignments leading to the current conflict

A common strategy is to learn an , a conflict clause that will become unit after
backtracking

21/33

Conflict Analysis

CDCL systems learn new clause during search with the goal of

blocking partial assignments leading to the current conflict

A common strategy is to learn an , a conflict clause that will become unit after
backtracking

One way to illustrate different conflict analysis strategies is through implication graphs

21/33

Conflict Analysis: Implication Graph

An is a labeled directed acyclic graph , Where:

22/33

Conflict Analysis: Implication Graph

An is a labeled directed acyclic graph , Where:

collects the literals in the current partial assignment
® each is labeled with its decision level in

22/33

Conflict Analysis: Implication Graph

An is a labeled directed acyclic graph , Where:

collects the literals in the current partial assignment
® each is labeled with its decision level in

® cach edge is labeled with

22/33

Conflict Analysis: Implication Graph

An is a labeled directed acyclic graph , Where:
collects the literals in the current partial assignment
® each is labeled with its decision level in
® cach edge is labeled with
isa if it also contains

® asingle conflict node

® |’sincomingedges are

for some falsified clause
® those edges are labeled with

22/33

Revisiting CDCL example with an implication graph

{1} {1,2} {3,4} {5,6} {1,5,7} {2,5,6,7}

23/33

Revisiting CDCL example with an implication graph

{1,2} {3,4} {5,6} {1,5,7} {2,5,6,7}

23/33

Revisiting CDCL example with an implication graph

{3,4} {5,6} {1,5,7} {2,5,6,7}

23/33

Revisiting CDCL example with an implication graph

{3,4} {5,6} {1,5,7} {2,5,6,7}

23/33

Revisiting CDCL example with an implication graph

23/33

Revisiting CDCL example with an implication graph

23/33

Revisiting CDCL example with an implication graph

{17 g? 7} {i’ g? 67 7}

[200}— c2 >{200]
Bo1}— ¢ —~{401]

23/33

Revisiting CDCL example with an implication graph

A= { C]_ . {l}CZ . {I,Z}Cg . {§4}C4 : {gg}C5 . {1,57}C6 . {§,§,6,7}}

M A C rule
A no

1 A no PROPAGATE
12 A no PROPAGATE

123 A no DECIDE
1234 A no PROPAGATE

12e34e5 A no DECIDE
12034056 A no PROPAGATE
12e34e567 A no PROPAGATE

CZ
Ry

Cs

Cs

C =] -602] [702]

23/33

Revisiting CDCL example with an implication graph

A= { C]_ . {l}CZ . {I,Z}Cg . {§4}C4 : {56}65 . {1,57}C6 . {5,5,6,7}}

100}— G —{2@0]

M A C rule
A no 301 G 401 .
1 A no PROPAGATE °
12 A no PROPAGATE Cs
12e3 A no DECIDE
1234 A no PROPAGATE
502 C -602 702
12e34e5 A no DECIDE 4_)|ZI
12034056 A no PROPAGATE o
12634567 A _ no _ PROPAGATE
12034567 A {2,5,6,7} Conflict Co Ce Ce

102

23/33

Revisiting CDCL example with an implication graph

A:={C :{1},C: {1,2},C5:{3,4},Cs: {5,6},Cs: {1,5,7},C6 : {2,5,6,7} }

M A C rule
A no 301 Cs 401
1 A no PROPAGATE Cs
12 A no PROPAGATE
123 A no DECIDE
1234 A no PROPAGATE
12e34e5 A no DECIDE
1203456 A no PROPAGATE
12634567 A _ no _ PROPAGATE
1234567 A {2,5,6,7} Conflict

Any separating cut that breaks all paths from root nodes to the conflict node,
with roots on the reasons side and conflict node on the conflict side,
determines a conflict clause

23/33

Revisiting CDCL example with an implication graph

A= { C]_ . {l}CZ . {1,2}C3 . {§4}C4 : {gg}C5 . {1,57}C6 . {2,5,6,7}}

M A C rule
A no
1 A no PROPAGATE
12 A no PROPAGATE
123 A no DECIDE
1234 A no PROPAGATE
12e34e5 A no DECIDE
12034056 A no PROPAGATE
12634567 A _ no _ PROPAGATE
12034567 A {2,5,6,7} Conflict
1234567 A {1,2,5,6} EXPLAINw.Cs
EXPLAIN can be viewed as picking a literal / in the conflict clause C, 102

and replacing C with the /-resolvent of C and Antecedent (/)

In this case, | — 7 and Antecedent (H=0¢Cs

23/33

Revisiting CDCL example with an implication graph

A:={C :{1},C: {1,2},C5: {3,4},Cs: {5,6},Cs: {1,5,7},C6 : {2,5,6,7} }

M A C rule
A no
1 A no PROPAGATE
12 A no PROPAGATE
12e3 A no DECIDE
1234 A no PROPAGATE
12e34e5 A no DECIDE
12034056 A no PROPAGATE
12634567 A _ no _ PROPAGATE
12034567 A {2,5,6,7} Conflict
12034567 A {1,2,5,6} EXPLAIN w. Cs
1234567 A {1,2,5} EXPLAIN w. C4

EXPLAIN can be viewed as picking a literal / in the conflict clause C,
and replacing C with the /-resolvent of C and Antecedent(/)

In this case, | = 6 and Antecedent(l) = Cy

23/33

Revisiting CDCL example with an implication graph

A:={C :{1},C: {1,2},C5: {3,4},Cs: {5,6},Cs: {1,5,7},C6 : {2,5,6,7} }

M A C rule
A no
1 A no PROPAGATE
12 A no PROPAGATE
12e3 A no DECIDE
1234 A no PROPAGATE
12e34e5 A no DECIDE
12034056 A no PROPAGATE
12634567 A _ no _ PROPAGATE
12034567 A {2,5,6,7} Conflict
12034567 A {1,2,5,6} EXPLAIN w. Cs
12634567 A {1,2,5} EXPLAIN w. C4
125 A,{1,2,5} no BACKJUMP
C=D D={l,..., I} 1ev(lr),..., lev(ln) < i < 1ev(])
BAckJumP -
M = Ml C:=no A:=AU{D}

23/33

Revisiting CDCL example with an implication graph

3,4}

A

is any node other than

that is on all paths from the current decision node to

A is a UIP that is closest to the conflict node

In this case,

is the only UIP and thus also the first UIP

-

N

—

N

/

/D

23/33

From DPLL to full CDCL Solvers

Also add

24/33

From DPLL to full CDCL Solvers

Also add

is a clause

LEARN

Can be applied to any clause entailed by

In particular, to any conflict clause (because then)

24/33

From DPLL to full CDCL Solvers

Also add

is a clause

LEARN

Can be applied to any clause entailed by

In particular, to any conflict clause (because then

The learned clause D is called a

24/33

From DPLL to full CDCL Solvers

Also add

FORGET

Learning can quickly add millions of clauses to

So it is useful to be able to delete redundant clauses that might not be useful anymore

24/33

From DPLL to full CDCL Solvers

Also add

RESTART

If we are stuck in a hopeless area of the search space it may be better to just restart

24/33

From DPLL to full CDCL Solvers

Also add

RESTART

If we are stuck in a hopeless area of the search space it may be better to just restart

Note: Restartis not from scratch since propagations at level 0 are maintained, together with
all the learned lemmas not eliminated by FORGET

24/33

Learning the First UIP

Empirical studies show it is a good strategy to

e compute a conflict clause D that contains a first UIP for the current decision level

25/33

Learning the First UIP

Empirical studies show it is a good strategy to

e compute a conflict clause D that contains a first UIP for the current decision level

® backjump to the second lowest decision level among D’s literals

BACKJUMP

25/33

Learning the First UIP

Empirical studies show it is a good strategy to

e compute a conflict clause D that contains a first UIP for the current decision level

® backjump to the second lowest decision level among D’s literals

BACKJUMP

To compute such D,

keep applying EXPLAIN to the most recently assigned literalin C,
until there is only one literal that is assigned at the current decision level

25/33

Learning the First UIP

Empirical studies show it is a good strategy to

e compute a conflict clause D that contains a first UIP for the current decision level

® backjump to the second lowest decision level among D’s literals

BACKJUMP

To compute such D,

keep applying EXPLAIN to the most recently assigned literalin C,
until there is only one literal that is assigned at the current decision level

{ That /is a first UIP and the resulting C is an]

25/33

Learning the First UIP

Empirical studies show it is a good strategy to

e compute a conflict clause D that contains a first UIP for the current decision level

® backjump to the second lowest decision level among D’s literals

BACKJUMP

25/33

Learning the First UIP

Empirical studies show it is a good strategy to

e compute a conflict clause D that contains a first UIP for the current decision level

® backjump to the second lowest decision level among D’s literals

BACKJUMP

[Note: In this case, we do not actually need to append / to as PROPAGATE will be able to do that }

25/33

Learning the First UIP

Empirical studies show it is a good strategy to
e compute a conflict clause D that contains a first UIP for the current decision level

® backjump to the second lowest decision level among D’s literals

BACKJUMP

[Note: In this case, we do not actually need to append / to as PROPAGATE will be able to do that }

Note: The first UIP for a decision level is not necessarily the decision literal ¢ for that level.
However, applying BACKJUMP guarantees in this case that

25/33

Learning the First UIP

Empirical studies show it is a good strategy to

e compute a conflict clause D that contains a first UIP for the current decision level

® backjump to the second lowest decision level among D’s literals

Possible explanations for the empirical results:

® The strategy has a low computational cost, compared with strategies
that choose UIPs further away from the conflict

o |t still backtracks to the lowest decision level possible

25/33

Non-chronological vs. chronological backtracking

-

Note: Backjumping is not always better than chronological backtracking

See,e.g.,
® “Chronological Backtracking” by Nadel and Ryvchin, SAT 2018.

® “Lazy Reimplication in Chronological Backtracking” by Coutelier et al., SAT 2024.

26/33

Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the proof system
with rules

PROPAGATE, PURE, DECIDE,
CoNnflicT, EXPLAIN, BACKJUMP, FAIL

LEARN, FORGET, RESTART

27/33

Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the proof system
with rules

PROPAGATE, PURE, DECIDE,
CoNnflicT, EXPLAIN, BACKJUMP, FAIL

LEARN, FORGET, RESTART

PROPAGATE, PURE, DECIDE, CONflicT, EXPLAIN, BACKJUMP, FAIL

27/33

Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the proof system
with rules

PROPAGATE, PURE, DECIDE,
CoNnflicT, EXPLAIN, BACKJUMP, FAIL

LEARN, FORGET, RESTART

PROPAGATE, PURE, DECIDE, CONflicT, EXPLAIN, BACKJUMP, FAIL

Basic CDCL + | LEARN, FORGET, RESTART

27/33

The Basic CDCL System - Correctness

: state for which no Basic CDCL rules apply
: a (single-branch) derivation tree starting with and

: execution ending in an irreducible state

28/33

The Basic CDCL System - Correctness

: state for which no Basic CDCL rules apply
: a (single-branch) derivation tree starting with and

: execution ending in an irreducible state

Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite

[Note: This is not so immediate, because of EXPLAIN and BACKJUMP

28/33

The Basic CDCL System - Correctness

: state for which no Basic CDCL rules apply
: a (single-branch) derivation tree starting with and

: execution ending in an irreducible state

Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite

Lemma 2
Every exhausted execution ends with either or

28/33

The Basic CDCL System - Correctness

: state for which no Basic CDCL rules apply
: a (single-branch) derivation tree starting with and

: execution ending in an irreducible state

e N
Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite

e N
Lemma 2
Every exhausted execution ends with either or
Lemma 3
All clause sets along an execution are equivalent (i.e., satisfied by the same interpretations)

28/33

The Basic CDCL System - Correctness

: state for which no Basic CDCL rules apply
: a (single-branch) derivation tree starting with and

: execution ending in an irreducible state

Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite

Theorem 2 (Refutation Soundness)

For every exhausted execution starting with and ending with
is unsatisfiable

, the clause set

28/33

The Basic CDCL System - Correctness

: state for which no Basic CDCL rules apply
: a (single-branch) derivation tree starting with and

: execution ending in an irreducible state

Theorem 1 (Strong Termination)
Every execution in Basic CDCL is finite

Theorem 2 (Refutation Soundness)

For every exhausted execution starting with and ending with
is unsatisfiable

, the clause set

Theorem 3 (Solution Soundness)

For every exhausted execution starting with and ending with
is satisfied by

, the clause set

28/33

The CDCL System - Strategies

To ensure termination for the full system,

1. apply at least one Basic CDCL rule between each two LEARN applications

2. apply RESTART less and less often

29/33

The CDCL System - Strategies

A common basic strategy applies the rules with the following priorities,
using a bound n initially set to 0, until an irreducible state is reached:
1. If conflicts have been found so far, increase 7 and apply RESTART
2. If M falsifies a clause and has no decision points, apply FAIL and stop

3. If M falsifies a clause, apply ConflicT

3.1 Apply EXPLAIN repeatedly
3.2 Apply BAckJuMP (which includes learning of current conflict clause)

4. Apply PROPAGATE to completion
5. Apply DECIDE

30/33

The CDCL System - Strategies

A common basic strategy applies the rules with the following priorities,
using a bound n initially set to 0, until an irreducible state is reached:

1. If conflicts have been found so far, increase 7 and apply RESTART
2. If M falsifies a clause and has no decision points, apply FAIL and stop

3. If M falsifies a clause, apply ConflicT
3.1 Apply EXPLAIN repeatedly
3.2 Apply BAckJuMP (which includes learning of current conflict clause)

4. Apply PROPAGATE to completion
5. Apply DECIDE

Steps 3.1-3.2 achieve a form of and involve some heuristic choices:

1. When to stop applying EXPLAIN to a conflict?
2. Which level to BACKJUMP t0?

30/33

The CDCL proof system

PROPAGATE

PURE

DECIDE

31/33

The CDCL proof system (continued)

Conflict

EXPLAIN

BACKJUMP

FAIL

32/33

The CDCL proof system (continued)

is a clause

LEARN

FORGET

RESTART

33/33

