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Decision procedures for propositional logic

From now on, instead of wffs, we consider only their clausal form (clause sets)
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Observe:

® Each clause can be itself regarded as a set, of literals:

® Aset of clauses is satisfiable iff there is an interpretation of its variables that satisfies at
least one literal in each clause

Example:

® The clause set can be represented as

. is a satisfying assignment for
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Decision procedures for propositional logic

Observe:

® Each clause can be itself regarded as a set, of literals:

® Aset of clauses is satisfiable iff there is an interpretation of its variables that satisfies at
least one literal in each clause

Observe:

® The empty clause set is trivially satisfiable  (no constraints to satisfy)

® The empty clause is trivially unsatisfiable  (no options to choose)
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SAT Solver Overview: features

Automated reasoners for the satisfiability problem in PL are called
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SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working with clause sets:

1. Backtracking search solvers

® Traversing and backtracking on a binary tree

o Sound—comnlato and torminating

2. Stochasti We focus on backtracking solvers in this course

® Solver guesses a full assignment
¢ |fthe set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
® Sound but neither complete nor terminating

® Nevertheless, quite effective in certain applications
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SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?
® Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or
even millions of variables in a reasonable amount of time

® There are also instances of problems two orders of magnitude smaller that the same tools
cannot solve

® |n general, it is very hard to predict which instance is going to be hard to solve, without
actually attempting to solve it

SAT portfolio solvers: use machine-learning techniques to extract features of CNF formulas in
order to select the most suitable SAT solver for the job
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SAT Solver Overview: performance

SAT Competition Winners on the SC2020 Benchmark Suite
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Left: Size of industrial clause sets (y-axis) regularly solved by solvers in a few hours each year (x-axis).
Instances come from realistic problems like planning or hardware verification

Right: Top contenders in SAT solver competitions from 2002 to 2020; each point shows number of solved
instances (y-axis) per unit of time (x-axis). Note that no. of instances solved within 20 minutes
more than doubled in less than a decade
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SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

® [earn from failed assignments
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SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

® [earn from failed assignments
® Prune large parts of the search spaces quickly

® Focus first on important variables
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The DIMACS format

A standard format for clause sets accepted by most modern SAT solvers
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The DIMACS format

e Comment lines: Start with a lower-case letter
® Problem line:

® Clause lines:
® Eachvariable is assigned a unique index / greater than
® Apositive literal is represented by an index
® Anegative literal is represented by the negation of its complement’s index
® Aclauseis represented as a list of literals separated by white space
® Value 0is used to mark the end of a clause
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The DIMACS format

e Comment lines: Start with a lower-case letter
® Problem line:

® Clause lines:
® Eachvariable is assigned a unique index / greater than
® Apositive literal is represented by an index
® Anegative literal is represented by the negation of its complement’s index
® Aclauseis represented as a list of literals separated by white space
® Value 0is used to mark the end of a clause

Example:

c example.cnf

- pcnf32

1-30
23-10
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Basic SAT solvers

® 1960: Davis-Putnam (DP) algorithm

® 1961: Davis-Putnam-Logemann-Loveland (DPLL) algorithm
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Basic SAT solvers

® 1960: algorithm
e 1961: algorithm

® 1996: Modern SAT solver based on
derived from DP and DPLL
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A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets
that consists of just one proof rule!
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Proofs by resolution example

Prove that the following clause set is unsatisfiable

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1,

—p3}}

{{p1.p2}. {p1.

ﬁpZ}a {“plﬁp:’:}a {“plﬂ

—p3}, {p1}}

{{p1.p2}. {p1.

P2}, {—p1,p3}, {—p1,

—p3}, {p1}, {ps} }

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1.

—ps}, {p1}, {p3} {=ps} }

{{p1,p2},{p1,

—p2}, {—p1,p3}, {—P1.

—p3}, {p1}; {ps}, {—p3}, {} }
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Proofs by resolution example

Prove that the following clause set is unsatisfiable

{}

® The last clause set is unsatisfiable since it contains the empty clause
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Proofs by resolution example

Prove that the following clause set is unsatisfiable

{}

® The last clause set is unsatisfiable since it contains the empty clause

® Since every clause set entails the next, it must be that the first one is unsatisfiable
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A resolution-based satisfiability proof system

® |n addition to the and states, we consider states of the form

with A and © clause sets

® |nitial states have the form

where /\; is the clause set to be checked for satisfiability
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A resolution-based satisfiability proof system

We modify the resolution rule RESOLVE as highlighted below and add three more rules

ueo
RESOLVE

CLASH

UNSAT SAT
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A resolution-based satisfiability proof system

We modify the resolution rule RESOLVE as highlighted below and add three more rules

ueo
RESOLVE

CLASH

UNSAT SAT

[ This proof systemis sound, complete and terminating ]
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A resolution-based decision procedure

Given a clause set /A, apply CLASH or RESOLVE until either

1. an empty clause is derived (return )

2. neither applies (return saT)

13/23



A resolution-based decision procedure

Given a clause set /A, apply CLASH or RESOLVE until either

1. an empty clause is derived (return )

2. neither applies (return saT)

This procedure is terminating and decides the SAT problem
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Unit resolution

Notation

If /is a literal and p is its variable,
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Unit resolution

Notation

If /is a literal and p is its variable,

The is a special case of resolution where one of the resolving clauses is a
,1.€., a clause with only one literal

UNIT RESOLVE

A proof system with unit resolution alone is not refutation-complete
(consider an unsat /A with no unit clauses)
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Unit resolution

Notation

If /is a literal and p is its variable,

The is a special case of resolution where one of the resolving clauses is a
,1.€., a clause with only one literal

UNIT RESOLVE

Modern SAT solvers use unit resolution plus backtracking search for deciding SAT
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Davis-Putnam (DP) procedure

A decision procedure for the SAT problem
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Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables
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A decision procedure for the SAT problem

DP leverages 4 satisfiability-preserving transformations:
® Unit propagation
® Pure literal elimination
® Tautology elimination

® Exhaustive resolution

The first two transformations reduce the total number of literals in the clause set

The third transformation reduces the number of clauses
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Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

DP leverages 4 satisfiability-preserving transformations:
® Unit propagation
® Pure literal elimination
® Tautology elimination
® Exhaustive resolution
Repeatedly applying these tranformations, eventually leads to

an empty clause (indicating unsatisfiability) or
an (indicating )
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DP procedure: unit propagation

Also called the
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DP procedure: unit propagation

Also called the

Premise: The clause set /\ contains a unit clause
Conclusion:
® Remove all occurrences of / from clauses in

® Remove all clauses containing / (including C)

Justification: The only way to satisfy C is to make / true; thus, (i) / cannot be used to satisfy any
clause, and (ij) any clause containing / is satisfied and can be ignored
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Also called the

Premise: The clause set /\ contains a unit clause
Conclusion:

® Remove all occurrences of [ from clauses in

® Remove all clauses containing / (including C)

-

Example:

{p1}

{ps} (unit propagation on p1)

(unit propagation on p,)

J
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DP procedure: pure literal elimination

Also called the
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DP procedure: pure literal elimination

Also called the

Premise: A literal / occurs in /A but / does not
Conclusion: Delete all clauses containing

Justification: For every assignment that satisfies /A there is one that satisfies both /A and /;
thus, all clauses containing [ can be deleted since they can always be satisfied
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DP procedure: tautology elimination

Also called the

Premise: a clause contains both p and

Conclusion: remove C from

Justification: C is satisfied by every variable assignment
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DP procedure: resolution

Also called the
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DP procedure: resolution

Also called the

Premise: A variable p occursin a clause of /A and occurs in another clause
Conclusion:

® |et P be the set of clauses in /A where p occurs positively and
let V be the set of clauses in /A where p occurs negatively

® Replace the clausesin P and V with those obtained by resolution on
using all pairs of clauses from

Example:

p1 —P1 “P1
(resolution on p1)
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DP Example 1

A = {{p1,p2,P3}. {P2. —P3, 7 Pe}, {—P2,p5} }

{p1,P2,p3} {P2,7P3,—Ps} {—P2,Ps}

—

{p1,p3,ps } {=P3,—Ps, Ps }

/

{p1,ps5,pe }
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DP Example 1

\ L
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DP Example 2
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DP Example 2
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DP Example 2
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DP Example 2

IRV
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DP Example 2

Res

c
]

Res

UNSAT
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From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set
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The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution?

In the worst case, the resolution transformation can cause a quadratic expansion
each timeitis applied

For large enough formulas, this can quickly exhaust the available memory
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From DP to DPLL

The DPLL procedure improves on DP by replacing resolution with

e |et A betheinputclause set

® Arbitrarily choose a literal / occurring in

® Recursively check the satisfiability of {l}
® [fresultis saT, return
® Otherwise, recursively check the satisfiability of {=l}

and return that result

[ We will discuss DPLL in more detail later ]
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