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Decision procedures for propositional logic

From now on, instead of wffs, we consider only their clausal form (clause sets)
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Decision procedures for propositional logic

Observe:

• Each clause l1 ∨ · · · ∨ ln can be itself regarded as a set, of literals: { l1, . . . , ln }
• A set of clauses is satisfiable iff there is an interpretation of its variables that satisfies at

least one literal in each clause
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• Each clause l1 ∨ · · · ∨ ln can be itself regarded as a set, of literals: { l1, . . . , ln }
• A set of clauses is satisfiable iff there is an interpretation of its variables that satisfies at

least one literal in each clause

Example:

• The clause set ∆ := { p1 ∨ p3, ¬p1 ∨ p2 ∨ ¬p3 } can be represented as
{ { p1, p3 }, {¬p1, p2,¬p3 } }

• v := { p1 7→ true, p2 7→ true, p3 7→ false } is a satisfying assignment for ∆
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SAT Solver Overview: features

Automated reasoners for the satisfiability problem in PL are called SAT solvers

1. Backtracking search solvers
• Traversing and backtracking on a binary tree
• Sound, complete and terminating

2. Stochastic search solvers
• Solver guesses a full assignment v
• If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
• Sound but neither complete nor terminating
• Nevertheless, quite effective in certain applications

3 / 23



SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working with clause sets:

1. Backtracking search solvers
• Traversing and backtracking on a binary tree
• Sound, complete and terminating

2. Stochastic search solvers
• Solver guesses a full assignment v
• If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
• Sound but neither complete nor terminating
• Nevertheless, quite effective in certain applications

3 / 23



SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working with clause sets:

1. Backtracking search solvers
• Traversing and backtracking on a binary tree
• Sound, complete and terminating

2. Stochastic search solvers
• Solver guesses a full assignment v
• If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
• Sound but neither complete nor terminating
• Nevertheless, quite effective in certain applications

3 / 23



SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working with clause sets:

1. Backtracking search solvers
• Traversing and backtracking on a binary tree
• Sound, complete and terminating

2. Stochastic search solvers
• Solver guesses a full assignment v
• If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
• Sound but neither complete nor terminating
• Nevertheless, quite effective in certain applications

3 / 23



SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working with clause sets:

1. Backtracking search solvers
• Traversing and backtracking on a binary tree
• Sound, complete and terminating

2. Stochastic search solvers
• Solver guesses a full assignment v
• If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
• Sound but neither complete nor terminating
• Nevertheless, quite effective in certain applications

3 / 23

We focus on backtracking solvers in this course



SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

• Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or
even millions of variables in a reasonable amount of time

• There are also instances of problems two orders of magnitude smaller that the same tools
cannot solve

• In general, it is very hard to predict which instance is going to be hard to solve, without
actually attempting to solve it

SAT portfolio solvers: use machine-learning techniques to extract features of CNF formulas in
order to select the most suitable SAT solver for the job
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SAT Solver Overview: performance
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data produced by Armin Biere and Marijn Heule

Left: Size of industrial clause sets (y-axis) regularly solved by solvers in a few hours each year (x-axis).
Instances come from realistic problems like planning or hardware verification

Right: Top contenders in SAT solver competitions from 2002 to 2020; each point shows number of solved
instances (y-axis) per unit of time (x-axis). Note that no. of instances solved within 20 minutes
more than doubled in less than a decade
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SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

• Learn from failed assignments

• Prune large parts of the search spaces quickly

• Focus first on important variables
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The DIMACS format

A standard format for clause sets accepted by most modern SAT solvers
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The DIMACS format

• Comment lines: Start with a lower-case letter c

• Problem line: p cnf <#variables ><#clauses >

• Clause lines:
• Each variable is assigned a unique index i greater than 0
• A positive literal is represented by an index
• A negative literal is represented by the negation of its complement’s index
• A clause is represented as a list of literals separated by white space
• Value 0 is used to mark the end of a clause
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The DIMACS format

• Comment lines: Start with a lower-case letter c

• Problem line: p cnf <#variables ><#clauses >

• Clause lines:
• Each variable is assigned a unique index i greater than 0
• A positive literal is represented by an index
• A negative literal is represented by the negation of its complement’s index
• A clause is represented as a list of literals separated by white space
• Value 0 is used to mark the end of a clause

Example:

{ p1 ∨ ¬p3, p2 ∨ p3 ∨ ¬p1 }
c example.cnf
p cnf 3 2
1 -3 0
2 3 -1 0
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Basic SAT solvers

• 1960: Davis-Putnam (DP) algorithm

• 1961: Davis-Putnam-Logemann-Loveland (DPLL) algorithm

• 1996: Modern SAT solver based on Conflict-Driven Clause Learning (CDCL)
derived from DP and DPLL
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A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets ∆
that consists of just one proof rule!

RESOLVE
C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆

∆ ∪ {C}

Clause C is a (p-)resolvent of C1 and C2, and p is the pivot

Example: ∆ := { {p1, p3}, {p2,¬p3} } has a p3-resolvent: {p1, p2}
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Example: ∆ := { {p1, p3}, {p2,¬p3} } has a p3-resolvent: {p1, p2}

Note: if C is a resolvent of C1, C2 ∈ ∆ then {C1, C2} |= C and so ∆ |= ∆ ∪ {C}
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Proofs by resolution example

Prove that the following clause set is unsatisfiable

{ {p1, p2}, {p1,¬p2}, {¬p1, p3}, {¬p1,¬p3} }
{ {p1, p2}, {p1,¬p2}, {¬p1, p3}, {¬p1,¬p3}, {p1} }
{ {p1, p2}, {p1,¬p2}, {¬p1, p3}, {¬p1,¬p3}, {p1}, {p3} }
{ {p1, p2}, {p1,¬p2}, {¬p1, p3}, {¬p1,¬p3}, {p1}, {p3}, {¬p3} }
{ {p1, p2}, {p1,¬p2}, {¬p1, p3}, {¬p1,¬p3}, {p1}, {p3}, {¬p3}, {} }

• The last clause set is unsatisfiable since it contains the empty clause {}
• Since every clause set entails the next, it must be that the first one is unsatisfiable
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A resolution-based satisfiability proof system

• In addition to the SAT and UNSAT states, we consider states of the form

⟨∆,Φ⟩

with ∆ and Φ clause sets

• Initial states have the form
⟨∆0, {}⟩

where ∆0 is the clause set to be checked for satisfiability
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A resolution-based satisfiability proof system

We modify the resolution rule RESOLVE as highlighted below and add three more rules

RESOLVE
C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ

∆ := ∆ ∪ {C}

CLASH
C ∈ ∆ p,¬p ∈ C

∆ := ∆ \ { C } Φ := Φ ∪ { C }

UNSAT
{} ∈ ∆

UNSAT SAT
No other rules apply

SAT

This proof system is sound, complete and terminating
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A resolution-based decision procedure

Given a clause set ∆, apply CLASH or RESOLVE until either

1. an empty clause is derived (return UNSAT)

2. neither applies (return SAT)

This procedure is terminating and decides the SAT problem
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Unit resolution

Notation

If l is a literal and p is its variable, l̄ =

{
¬p if l = p
p if l = ¬p

The unit resolution rule is a special case of resolution where one of the resolving clauses is a
unit clause, i.e., a clause with only one literal

UNIT RESOLVE C1, C2 ∈ ∆ C1 = {l} C2 = { l̄ } ∪ D
∆ ∪ {D }
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If l is a literal and p is its variable, l̄ =

{
¬p if l = p
p if l = ¬p
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∆ ∪ {D }

A proof system with unit resolution alone is not refutation-complete
(consider an unsat ∆ with no unit clauses)
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UNIT RESOLVE C1, C2 ∈ ∆ C1 = {l} C2 = { l̄ } ∪ D
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Modern SAT solvers use unit resolution plus backtracking search for deciding SAT
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Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

• Unit propagation

• Pure literal elimination

• Tautology elimination

• Exhaustive resolution
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Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

DP leverages 4 satisfiability-preserving transformations:

• Unit propagation

• Pure literal elimination

• Tautology elimination

• Exhaustive resolution

Repeatedly applying these tranformations, eventually leads to
an empty clause (indicating unsatisfiability) or
an empty clause set (indicating satisfiability)
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DP procedure: unit propagation

Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

• Remove all occurrences of l̄ from clauses in ∆

• Remove all clauses containing l (including C)
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Also called the 1-literal rule

Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

• Remove all occurrences of l̄ from clauses in ∆

• Remove all clauses containing l (including C)

Justification: The only way to satisfy C is to make l true; thus, (i) l̄ cannot be used to satisfy any
clause, and (ii) any clause containing l is satisfied and can be ignored
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Premise: The clause set ∆ contains a unit clause C = { l }

Conclusion:

• Remove all occurrences of l̄ from clauses in ∆

• Remove all clauses containing l (including C)

Example:

∆0 := { { p1 }, { p1, p4 }, { p2, p3,¬p1 } }

∆1 := { { p4 }, { p2, p3 } } (unit propagation on p1)

∆2 := { { p2, p3 } } (unit propagation on p4)
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DP procedure: pure literal elimination

Also called the affirmation-negation rule

Premise: A literal l occurs in ∆ but l̄ does not

Conclusion: Delete all clauses containing l
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Premise: A literal l occurs in ∆ but l̄ does not

Conclusion: Delete all clauses containing l

Justification: For every assignment that satisfies ∆ there is one that satisfies both ∆ and l;
thus, all clauses containing l can be deleted since they can always be satisfied
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DP procedure: tautology elimination

Also called the clashing clause rule

Premise: a clause C ∈ ∆ contains both p and ¬p

Conclusion: remove C from ∆

Justification: C is satisfied by every variable assignment
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DP procedure: resolution

Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of ∆ and ¬p occurs in another clause

Conclusion:

• Let P be the set of clauses in ∆ where p occurs positively and
let N be the set of clauses in ∆ where p occurs negatively

• Replace the clauses in P and N with those obtained by resolution on p
using all pairs of clauses from P × N
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DP Example 1

∆ := { {p1, p2, p3}, {p2,¬p3,¬p6}, {¬p2, p5} }

{p1, p2, p3} {p2,¬p3,¬p6} {¬p2, p5}Res p2

{¬p3,¬p6, p5 }{ p1, p3, p5 }Res p3

{ p1, p5,¬p6 }PL p1

∅SAT
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DP Example 2

∆ := { {p1, p2}, {p1,¬p2}, {¬p1, p3}, {¬p1,¬p3} }

{p1, p2} {p1,¬p2} {¬p1, p3} {¬p1,¬p3}Res p2

{p1} {¬p1, p3}{¬p1,¬p3}UP p1

{p3} {¬p3}Res p3

{}UNSAT
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From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion
each time it is applied

For large enough formulas, this can quickly exhaust the available memory
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From DP to DPLL

The DPLL procedure improves on DP by replacing resolution with splitting:

• Let ∆ be the input clause set

• Arbitrarily choose a literal l occurring in ∆

• Recursively check the satisfiability of ∆ ∪ { {l} }
• If result is SAT, return SAT
• Otherwise, recursively check the satisfiability of ∆ ∪ { {¬l} }

and return that result

We will discuss DPLL in more detail later
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