CS:4980 Topics in Computer Science |l
Introduction to Automated Reasoning

Decision Procedures for Satisfiability
in Propositional Logic

Cesare Tinelli

Spring 2024 .

ThE f]]_ﬂ

UNIVERSITY
OF lowa

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of lowa, and by
Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

1/23

Decision procedures for propositional logic

From now on, instead of wffs, we consider only their clausal form (clause sets)

2/23

Decision procedures for propositional logic

Observe:

® Each clause can be itself regarded as a set, of literals:

2/23

Decision procedures for propositional logic

Observe:

® Each clause can be itself regarded as a set, of literals:

® Aset of clauses is satisfiable iff there is an interpretation of its variables that satisfies at
least one literal in each clause

2/23

Decision procedures for propositional logic

Observe:

® Each clause can be itself regarded as a set, of literals:

® Aset of clauses is satisfiable iff there is an interpretation of its variables that satisfies at
least one literal in each clause

Example:

® The clause set can be represented as

. is a satisfying assignment for

2/23

Decision procedures for propositional logic

Observe:

® Each clause can be itself regarded as a set, of literals:

® Aset of clauses is satisfiable iff there is an interpretation of its variables that satisfies at
least one literal in each clause

Observe:

® The empty clause set is trivially satisfiable (no constraints to satisfy)

2/23

Decision procedures for propositional logic

Observe:

® Each clause can be itself regarded as a set, of literals:

® Aset of clauses is satisfiable iff there is an interpretation of its variables that satisfies at
least one literal in each clause

Observe:

® The empty clause set is trivially satisfiable (no constraints to satisfy)

® The empty clause is trivially unsatisfiable (no options to choose)

2/23

SAT Solver Overview: features

Automated reasoners for the satisfiability problem in PL are called

3/23

SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working with clause sets:

3/23

SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working with clause sets:

1. Backtracking search solvers
® Traversing and backtracking on a binary tree

® Sound, complete and terminating

3/23

SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working with clause sets:

1. Backtracking search solvers
® Traversing and backtracking on a binary tree
® Sound, complete and terminating
2. Stochastic search solvers
® Solver guesses a full assignment
¢ |fthe set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
® Sound but neither complete nor terminating

® Nevertheless, quite effective in certain applications

3/23

SAT Solver Overview: features

There are two main categories of modern SAT solvers, both working with clause sets:

1. Backtracking search solvers

® Traversing and backtracking on a binary tree

o Sound—comnlato and torminating

2. Stochasti We focus on backtracking solvers in this course

® Solver guesses a full assignment
¢ |fthe set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
® Sound but neither complete nor terminating

® Nevertheless, quite effective in certain applications

3/23

SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

4/23

SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

® Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or
even millions of variables in a reasonable amount of time

4/23

SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?

® Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or
even millions of variables in a reasonable amount of time

® There are also instances of problems two orders of magnitude smaller that the same tools
cannot solve

4/23

SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?
® Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or
even millions of variables in a reasonable amount of time

® There are also instances of problems two orders of magnitude smaller that the same tools
cannot solve

® |n general, it is very hard to predict which instance is going to be hard to solve, without
actually attempting to solve it

4/23

SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in practice?
® Modern SAT solvers can solve many real-life CNF formulas with hundreds of thousands or
even millions of variables in a reasonable amount of time

® There are also instances of problems two orders of magnitude smaller that the same tools
cannot solve

® |n general, it is very hard to predict which instance is going to be hard to solve, without
actually attempting to solve it

SAT portfolio solvers: use machine-learning techniques to extract features of CNF formulas in
order to select the most suitable SAT solver for the job

4/23

SAT Solver Overview: performance

SAT Competition Winners on the SC2020 Benchmark Suite

T T T T
250
—o— kissal-202
—e&— maple-lc -cb-dl-v3-2019
—a— maple-lem-c 2018
200 —e— maple-lem-dist-2017
ool
@ —o— lingel
B —a— abedsat-2015
1000.000 < :
2 150
T g
g
0,000 === - mmmm oo smoooocoooooooooooooo = 100
o}
n
B / —o—satelite-gti-2005
£ | | —e—zchafi-2004
100 o emeanan 50 —e— limmat-2002
B0 === = s o e
0 I I
0 1,000 2,000 3,000 4,000 5,000
1960 1970 1980 1990 2000 2010
Year CPU time data produced by Armin Biere and Marijn Heule

Left: Size of industrial clause sets (y-axis) regularly solved by solvers in a few hours each year (x-axis).
Instances come from realistic problems like planning or hardware verification

Right: Top contenders in SAT solver competitions from 2002 to 2020; each point shows number of solved
instances (y-axis) per unit of time (x-axis). Note that no. of instances solved within 20 minutes
more than doubled in less than a decade
5/23

SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

® [earn from failed assignments

6/23

SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

® [earn from failed assignments

® Prune large parts of the search spaces quickly

6/23

SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

® [earn from failed assignments
® Prune large parts of the search spaces quickly

® Focus first on important variables

6/23

The DIMACS format

A standard format for clause sets accepted by most modern SAT solvers

7/23

The DIMACS format

e Comment lines: Start with a lower-case letter
® Problem line:

® Clause lines:
® Eachvariable is assigned a unique index / greater than
® Apositive literal is represented by an index
® Anegative literal is represented by the negation of its complement’s index
® Aclauseis represented as a list of literals separated by white space
® Value 0is used to mark the end of a clause

7/23

The DIMACS format

e Comment lines: Start with a lower-case letter
® Problem line:

® Clause lines:
® Eachvariable is assigned a unique index / greater than
® Apositive literal is represented by an index
® Anegative literal is represented by the negation of its complement’s index
® Aclauseis represented as a list of literals separated by white space
® Value 0is used to mark the end of a clause

Example:

c example.cnf

- pcnf32

1-30
23-10

7/23

Basic SAT solvers

® 1960: Davis-Putnam (DP) algorithm

® 1961: Davis-Putnam-Logemann-Loveland (DPLL) algorithm

8/23

Basic SAT solvers

® 1960: algorithm
e 1961: algorithm

® 1996: Modern SAT solver based on
derived from DP and DPLL

8/23

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets
that consists of just one proof rule!

9/23

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets
that consists of just one proof rule!

RESOLVE

9/23

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets
that consists of just one proof rule!

RESOLVE

ClauseCisa of C; and (5, and p is the

9/23

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets
that consists of just one proof rule!

RESOLVE

ClauseCisa of C; and (5, and p is the

[Example: has a p;-resolvent:

9/23

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets
that consists of just one proof rule!

RESOLVE
ClauseCisa of C; and (5, and p is the
[Example: has a p3-resolvent:

[Note: if C is a resolvent of then

9/23

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets
that consists of just one proof rule!

RESOLVE
ClauseCisa of C; and (5, and p is the
[Example: has a p3-resolvent:

[Note: if C is a resolvent of then and so

9/23

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1,

—p3}}

{{p1.p2}. {p1.

ﬁpZ}a {“plﬁp:’:}a {“plﬂ

—p3}, {p1}}

{{p1.p2}. {p1.

P2}, {—p1,p3}, {—p1,

—p3}, {p1}, {ps} }

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1.

—ps}, {p1}, {p3} {=ps} }

{{p1,p2},{p1,

—p2}, {—p1,p3}, {—P1.

—p3}, {p1}; {ps}, {—p3}, {} }

10/23

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{{p1,p2},{p1,

—p2}, {—=p1,p3}, {—p1,

—p3}}

{{p1.p2}. {p1.

ﬁpZ}a {ﬁplsp?:}-, {“plﬂ

—p3}, {p1}}

{{p1.p2}. {p1.

P2}, {—p1,p3}, {—p1,

—p3}, {p1}, {ps} }

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1.

—ps}, {p1}, {p3} {=ps} }

{{p1,p2},{p1,

—p2}, {—p1,p3}, {—P1.

—p3}, {p1}; {ps}, {—p3}, {} }

10/23

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{{p1,p2},{p1,

—p2}, {—=p1,p3}, {—p1,

—p3}}

{{p1.p2}. {p1.

ﬁpZ}a {ﬁplsp?:}-, {“plﬂ

—p3f APt}

{{p1.p2}. {p1.

P2}, {—p1,p3}, {—p1,

—p3}, {p1}, {ps} }

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1.

—ps}, {p1}, {p3} {=ps} }

{{p1,p2},{p1,

—p2}, {—p1,p3}, {—P1.

—p3}, {p1}; {ps}, {—p3}, {} }

10/23

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1,

—p3}}

{{p1.p2}. {p1.

ﬁpZ}a {“plﬂp:’:}# {ﬁplﬂ

—p3f. {pat}

{{p1.p2}. {p1.

P2}, {—p1,p3}, {—p1,

—p3}, {p1}, {ps} }

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1.

—ps}, {p1}, {p3} {=ps} }

{{p1,p2},{p1,

—p2}, {—p1,p3}, {—P1.

—p3}, {p1}; {ps}, {—p3}, {} }

10/23

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1,

—p3}}

{{p1.p2}. {p1.

ﬁpZ}a {“plﬂp:’:}# {ﬁplﬂ

—p3f. {pat}

{{p1.p2}. {p1.

P2}, {—p1,p3}, {—p1,

Pz} APt {ps}}

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1.

—ps}, {p1}, {p3} {=ps} }

{{p1,p2},{p1,

—p2}, {—p1,p3}, {—P1.

—p3}, {p1}; {ps}, {—p3}, {} }

10/23

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1,

—p3}}

{{p1.p2}. {p1.

ﬁpZ}a {ﬁplsp?:}-, {“plﬂ

~P3}, {p1} }

{{p1.p2}. {p1.

ﬁpz}‘ {ﬁplsp:’)}w {_'pls

~ps}, {p1}, {p3} }

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1.

—ps}, {p1}, {p3} {=ps} }

{{p1,p2},{p1,

—p2}, {—p1,p3}, {—P1.

—p3}, {p1}; {ps}, {—p3}, {} }

10/23

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1,

—p3}}

{{p1.p2}. {p1.

ﬁpZ}a {ﬁplsp?:}-, {“plﬂ

~P3}, {p1} }

{{p1.p2}. {p1.

ﬁpz}‘ {ﬁplsp:’)}w {_'pls

~ps}, {p1}, {p3} }

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1.

—ps}, {p1}, {p3}, {=ps} }

{{p1,p2},{p1,

—p2}, {—p1,p3}, {—P1.

—p3}, {p1}; {ps}, {—p3}, {} }

10/23

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1,

—p3}}

{{p1.p2}. {p1.

ﬁpZ}a {ﬁplsp?:}-, {“plﬂ

—p3}, {p1}}

{{p1.p2}. {p1.

P2}, {—p1,p3}, {—p1,

—p3}, {p1}, {ps} }

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1.

“pstAp1tiAps) (=Pt |

{{p1,p2},{p1,

—p2}, {—p1,p3}, {—P1.

—p3}, {p1}; {ps}, {—p3}, {} }

10/23

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1,

—p3}}

{{p1.p2}. {p1.

ﬁpZ}a {ﬁplsp?:}-, {“plﬂ

—p3}, {p1}}

{{p1.p2}. {p1.

P2}, {—p1,p3}, {—p1,

—p3}, {p1}, {ps} }

{{p1.p2}. {p1.

—p2}, {—=p1,p3}, {—p1.

“pstAp1tiAps) (=Pt |

{{p1,p2},{p1,

—p2}, {—p1,p3}, {—P1.

—-p3}, {p1}, {ps}, {-p3s}, {} }

10/23

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{}

® The last clause set is unsatisfiable since it contains the empty clause

10/23

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{}

® The last clause set is unsatisfiable since it contains the empty clause

® Since every clause set entails the next, it must be that the first one is unsatisfiable

10/23

A resolution-based satisfiability proof system

® |n addition to the and states, we consider states of the form

with A and © clause sets

® |nitial states have the form

where /\; is the clause set to be checked for satisfiability

11/23

A resolution-based satisfiability proof system

We modify the resolution rule RESOLVE as highlighted below and add three more rules

ueo
RESOLVE

CLASH

UNSAT SAT

12/23

A resolution-based satisfiability proof system

We modify the resolution rule RESOLVE as highlighted below and add three more rules

ueo
RESOLVE

CLASH

UNSAT SAT

[This proof systemis sound, complete and terminating]

12/23

A resolution-based decision procedure

Given a clause set /A, apply CLASH or RESOLVE until either

1. an empty clause is derived (return)

2. neither applies (return saT)

13/23

A resolution-based decision procedure

Given a clause set /A, apply CLASH or RESOLVE until either

1. an empty clause is derived (return)

2. neither applies (return saT)

This procedure is terminating and decides the SAT problem

13/23

Unit resolution

Notation

If /is a literal and p is its variable,

14/23

Unit resolution

Notation

If /is a literal and p is its variable,

The is a special case of resolution where one of the resolving clauses is a
,1.€., a clause with only one literal

UNIT RESOLVE

14/23

Unit resolution

Notation

If /is a literal and p is its variable,

The is a special case of resolution where one of the resolving clauses is a
,1.€., a clause with only one literal

UNIT RESOLVE

A proof system with unit resolution alone is not refutation-complete
(consider an unsat /A with no unit clauses)

14/23

Unit resolution

Notation

If /is a literal and p is its variable,

The is a special case of resolution where one of the resolving clauses is a
,1.€., a clause with only one literal

UNIT RESOLVE

Modern SAT solvers use unit resolution plus backtracking search for deciding SAT

14/23

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

15/23

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

First procedure to implement something more sophisticated than truth tables

15/23

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

DP leverages 4 satisfiability-preserving transformations:

15/23

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

DP leverages 4 satisfiability-preserving transformations:

® Unit propagation

15/23

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

DP leverages 4 satisfiability-preserving transformations:

® Unit propagation

® Pure literal elimination

15/23

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

DP leverages 4 satisfiability-preserving transformations:

® Unit propagation
® Pure literal elimination

® Tautology elimination

15/23

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

DP leverages 4 satisfiability-preserving transformations:

® Unit propagation
® Pure literal elimination
® Tautology elimination

® Exhaustive resolution

15/23

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

DP leverages 4 satisfiability-preserving transformations:
® Unit propagation
® Pure literal elimination
® Tautology elimination

® Exhaustive resolution

The first two transformations reduce the total number of literals in the clause set

15/23

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

DP leverages 4 satisfiability-preserving transformations:
® Unit propagation
® Pure literal elimination
® Tautology elimination

® Exhaustive resolution

The first two transformations reduce the total number of literals in the clause set

The third transformation reduces the number of clauses

15/23

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

DP leverages 4 satisfiability-preserving transformations:
® Unit propagation
® Pure literal elimination
® Tautology elimination
® Exhaustive resolution
Repeatedly applying these tranformations, eventually leads to

an empty clause (indicating unsatisfiability) or
an (indicating)

15/23

DP procedure: unit propagation

Also called the

16/23

DP procedure: unit propagation

Also called the

Premise: The clause set /\ contains a unit clause

16/23

DP procedure: unit propagation
Also called the

Premise: The clause set /\ contains a unit clause

Conclusion:
® Remove all occurrences of [from clauses in

® Remove all clauses containing / (including C)

16/23

DP procedure: unit propagation

Also called the

Premise: The clause set /\ contains a unit clause
Conclusion:
® Remove all occurrences of / from clauses in

® Remove all clauses containing / (including C)

Justification: The only way to satisfy C is to make / true; thus, (i) / cannot be used to satisfy any
clause, and (ij) any clause containing / is satisfied and can be ignored

16/23

DP procedure: unit propagation

Also called the

Premise: The clause set

Conclusion:

® Remove all occurrences of [from clauses in

® Remove all clauses containing / (including C)

contains a unit clause

-

Example:

{p1}

16/23

DP procedure: unit propagation

Also called the

Premise: The clause set /\ contains a unit clause
Conclusion:

® Remove all occurrences of [from clauses in

® Remove all clauses containing / (including C)

-

Example:

{p1}

{ps} (unit propagation on p1)

16/23

DP procedure: unit propagation

Also called the

Premise: The clause set /\ contains a unit clause
Conclusion:

® Remove all occurrences of [from clauses in

® Remove all clauses containing / (including C)

-

Example:

{p1}

{ps} (unit propagation on p1)

(unit propagation on p,)

J

16/23

DP procedure: pure literal elimination

Also called the

17/23

DP procedure: pure literal elimination

Also called the

Premise: A literal / occurs in /\ but / does not

17/23

DP procedure: pure literal elimination

Also called the

Premise: A literal / occurs in /\ but / does not

Conclusion: Delete all clauses containing

17/23

DP procedure: pure literal elimination

Also called the

Premise: A literal / occurs in /A but / does not
Conclusion: Delete all clauses containing

Justification: For every assignment that satisfies /A there is one that satisfies both /A and /;
thus, all clauses containing [can be deleted since they can always be satisfied

17/23

DP procedure: pure literal elimination

Also called the

Premise: A literal / occurs in /\ but / does not

Conclusion: Delete all clauses containing

Example:

17/23

DP procedure: pure literal elimination

Also called the

Premise: A literal / occurs in /\ but / does not

Conclusion: Delete all clauses containing

Example:

17/23

DP procedure: tautology elimination

Also called the

18/23

DP procedure: tautology elimination

Also called the

Premise: a clause contains both p and

18/23

DP procedure: tautology elimination

Also called the

Premise: a clause contains both p and

Conclusion: remove C from

18/23

DP procedure: tautology elimination

Also called the

Premise: a clause contains both p and

Conclusion: remove C from

Justification: C is satisfied by every variable assignment

18/23

DP procedure: resolution

Also called the

19/23

DP procedure: resolution

Also called the

Premise: A variable p occursin a clause of /A and occurs in another clause

19/23

DP procedure: resolution
Also called the

Premise: A variable p occursin a clause of /A and occurs in another clause

Conclusion:

® |et P be the set of clauses in /A where p occurs positively and
let V be the set of clauses in /A where p occurs negatively

19/23

DP procedure: resolution

Also called the

Premise: A variable p occursin a clause of /A and occurs in another clause

Conclusion:

® |et P be the set of clauses in /A where p occurs positively and
let V be the set of clauses in /A where p occurs negatively

® Replace the clausesin P and V with those obtained by resolution on
using all pairs of clauses from

19/23

DP procedure: resolution

Also called the

Premise: A variable p occursin a clause of /A and occurs in another clause
Conclusion:

® |et P be the set of clauses in /A where p occurs positively and
let V be the set of clauses in /A where p occurs negatively

® Replace the clausesin P and V with those obtained by resolution on
using all pairs of clauses from

Example:

p1 —P1 “P1

19/23

DP procedure: resolution

Also called the

Premise: A variable p occursin a clause of /A and occurs in another clause
Conclusion:

® |et P be the set of clauses in /A where p occurs positively and
let V be the set of clauses in /A where p occurs negatively

® Replace the clausesin P and V with those obtained by resolution on
using all pairs of clauses from

Example:

p1 —P1 “P1
(resolution on p1)

19/23

DP Example 1

20/23

DP Example 1

20/23

DP Example 1

20/23

DP Example 1

\ L

20/23

DP Example 1

Res

\ L

Res

20/23

DP Example 1

A = {{p1,p2,P3}. {P2. —P3, 7 Pe}, {—P2,p5} }

{p1,P2,p3} {P2,7P3,—Ps} {—P2,Ps}

—

{p1,p3,ps } {=P3,—Ps, Ps }

/

{p1,ps5,pe }

20/23

DP Example 1

A = {{p1,p2,P3}. {P2. —P3, 7 Pe}, {—P2,p5} }

{p1,P2,p3} {P2,7P3,—Ps} {—P2,Ps}

—

{p1,p3,ps } {=P3,—Ps, Ps }

/

{p1,ps5,pe }

20/23

DP Example 1

\ L
N

I

es

L

I

SAT

20/23

DP Example 2

21/23

DP Example 2

21/23

DP Example 2

21/23

DP Example 2

\ /Y

21/23

DP Example 2

Res

\ /Y

21/23

DP Example 2

Res

21/23

DP Example 2

IRV

Res

21/23

DP Example 2

Res

c
]

Res

UNSAT

21/23

From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

22/23

From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution?

22/23

From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution?

22/23

From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution?

In the worst case, the resolution transformation can cause a quadratic expansion
each timeitis applied

22/23

From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution?

In the worst case, the resolution transformation can cause a quadratic expansion
each timeitis applied

For large enough formulas, this can quickly exhaust the available memory

22/23

From DP to DPLL

The DPLL procedure improves on DP by replacing resolution with

23/23

From DP to DPLL

The DPLL procedure improves on DP by replacing resolution with

e |et A betheinputclause set

® Arbitrarily choose a literal / occurring in

® Recursively check the satisfiability of {l}
® [fresultis saT, return
® Otherwise, recursively check the satisfiability of {=l}

and return that result

23/23

From DP to DPLL

The DPLL procedure improves on DP by replacing resolution with

e |et A betheinputclause set

® Arbitrarily choose a literal / occurring in

® Recursively check the satisfiability of {l}
® [fresultis saT, return
® Otherwise, recursively check the satisfiability of {=l}

and return that result

[We will discuss DPLL in more detail later]

23/23

