
CS:4980 Topics in Computer Science II

Introduction to Automated Reasoning

Abstract Proof Systems

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of Iowa, and by
Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

1 / 32

Agenda

• Abstract Proof Systems

• Satisfiability Proof Systems

• Soundness, Completeness, Termination, and Progressiveness

• A Decision Procedure for Propositional Logic

• Strategies

2 / 32

Proofs for Automated Reasoning

In AR, representing algorithms as proof systems has several advantages

• They are modularity and composable

• It is easier to prove things about the algorithms

• Can choose which implementation aspects to highlight and which to leave out

3 / 32

Abstract Proof Systems

An abstract proof system is a tuple P = ⟨S,R⟩
where S is a set of proof states and R is a set of proof rules

Proof state: Data structure representing what is known at each stage of the proof

Example: a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state S ⊇ {α, α ⇒ β } to the state set { S ∪ {β } }

4 / 32

Abstract Proof Systems

An abstract proof system is a tuple P = ⟨S,R⟩
where S is a set of proof states and R is a set of proof rules

Proof state: Data structure representing what is known at each stage of the proof

Example: a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state S ⊇ {α, α ⇒ β } to the state set { S ∪ {β } }

4 / 32

Abstract Proof Systems

An abstract proof system is a tuple P = ⟨S,R⟩
where S is a set of proof states and R is a set of proof rules

Proof state: Data structure representing what is known at each stage of the proof

Example: a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state S ⊇ {α, α ⇒ β } to the state set { S ∪ {β } }

4 / 32

Proof Rules

• Take an input proof state S
• Are only applicable if S satisfies some premises

• Return one or more derived proof states, the conclusions

Notation:

R
P1 P2 · · · Pm

C1 | C2 | · · · | Cn

• R is the rule’s name (for reference)
• Each Pi is a premise, each Ci is a conclusion

5 / 32

Proof Rules

• Take an input proof state S
• Are only applicable if S satisfies some premises

• Return one or more derived proof states, the conclusions

Notation:

R
P1 P2 · · · Pm

C1 | C2 | · · · | Cn

• R is the rule’s name (for reference)
• Each Pi is a premise, each Ci is a conclusion

5 / 32

Proof Rules

• Take an input proof state S
• Are only applicable if S satisfies some premises

• Return one or more derived proof states, the conclusions

Notation:

R
P1 P2 · · · Pm

C1 | C2 | · · · | Cn

• R is the rule’s name (for reference)
• Each Pi is a premise, each Ci is a conclusion

Note: Intuitively, premises are conjunctive; conclusions are disjunctive

5 / 32

A Proof System for Propositional Logic

Let PPL = ⟨SPL,RPL⟩ where every proof state S ∈ SPL is a set of wffs of PL

If RPL contains the modus ponens rule (MP for short) we can writeMP as follows:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Technically,MP is a proof rule schema

• α and β are parameters, and each possible instantiation with wffs is a separate proof rule

• For convenience, we will refer to proof rule schemas also as proof rules

6 / 32

A Proof System for Propositional Logic

Let PPL = ⟨SPL,RPL⟩ where every proof state S ∈ SPL is a set of wffs of PL

If RPL contains the modus ponens rule (MP for short) we can writeMP as follows:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Technically,MP is a proof rule schema

• α and β are parameters, and each possible instantiation with wffs is a separate proof rule

• For convenience, we will refer to proof rule schemas also as proof rules

6 / 32

A Proof System for Propositional Logic

Let PPL = ⟨SPL,RPL⟩ where every proof state S ∈ SPL is a set of wffs of PL

If RPL contains the modus ponens rule (MP for short) we can writeMP as follows:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Technically,MP is a proof rule schema

• α and β are parameters, and each possible instantiation with wffs is a separate proof rule

• For convenience, we will refer to proof rule schemas also as proof rules

6 / 32

A Proof System for Propositional Logic

Let PPL = ⟨SPL,RPL⟩ where every proof state S ∈ SPL is a set of wffs of PL

If RPL contains the modus ponens rule (MP for short) we can writeMP as follows:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Technically,MP is a proof rule schema

• α and β are parameters, and each possible instantiation with wffs is a separate proof rule

• For convenience, we will refer to proof rule schemas also as proof rules

6 / 32

A Proof System for Propositional Logic

Let PPL = ⟨SPL,RPL⟩ where every proof state S ∈ SPL is a set of wffs of PL

If RPL contains the modus ponens rule (MP for short) we can writeMP as follows:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Technically,MP is a proof rule schema

• α and β are parameters, and each possible instantiation with wffs is a separate proof rule

• For convenience, we will refer to proof rule schemas also as proof rules

6 / 32

Example

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Let a, b, c, d be propositional variables

What is the result of applyingMP to the following proof states?
1. {a, a ⇒ b} {a, a ⇒ b, b}

2. {¬d, a ∨ ¬c,¬d ⇒ b} {a ∨ ¬c,¬d,¬d ⇒ b, b}

3. {c, d, c ⇒ d} does not apply

7 / 32

Example

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Let a, b, c, d be propositional variables

What is the result of applyingMP to the following proof states?
1. {a, a ⇒ b} {a, a ⇒ b, b}

2. {¬d, a ∨ ¬c,¬d ⇒ b} {a ∨ ¬c,¬d,¬d ⇒ b, b}

3. {c, d, c ⇒ d} does not apply

7 / 32

Example

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Let a, b, c, d be propositional variables

What is the result of applyingMP to the following proof states?
1. {a, a ⇒ b} {a, a ⇒ b, b}

2. {¬d, a ∨ ¬c,¬d ⇒ b} {a ∨ ¬c,¬d,¬d ⇒ b, b}

3. {c, d, c ⇒ d} does not apply

7 / 32

Example

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Let a, b, c, d be propositional variables

What is the result of applyingMP to the following proof states?
1. {a, a ⇒ b} {a, a ⇒ b, b}

2. {¬d, a ∨ ¬c,¬d ⇒ b} {a ∨ ¬c,¬d,¬d ⇒ b, b}

3. {c, d, c ⇒ d} does not apply

7 / 32

Example

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Let a, b, c, d be propositional variables

What is the result of applyingMP to the following proof states?
1. {a, a ⇒ b} {a, a ⇒ b, b}

2. {¬d, a ∨ ¬c,¬d ⇒ b} {a ∨ ¬c,¬d,¬d ⇒ b, b}

3. {c, d, c ⇒ d} does not apply

7 / 32

Example

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Let a, b, c, d be propositional variables

What is the result of applyingMP to the following proof states?
1. {a, a ⇒ b} {a, a ⇒ b, b}

2. {¬d, a ∨ ¬c,¬d ⇒ b} {a ∨ ¬c,¬d,¬d ⇒ b, b}

3. {c, d, c ⇒ d} does not apply

7 / 32

Example

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Let a, b, c, d be propositional variables

What is the result of applyingMP to the following proof states?
1. {a, a ⇒ b} {a, a ⇒ b, b}

2. {¬d, a ∨ ¬c,¬d ⇒ b} {a ∨ ¬c,¬d,¬d ⇒ b, b}

3. {c, d, c ⇒ d} does not apply

7 / 32

Example

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Let a, b, c, d be propositional variables

What is the result of applyingMP to the following proof states?
1. {a, a ⇒ b} {a, a ⇒ b, b}

2. {¬d, a ∨ ¬c,¬d ⇒ b} {a ∨ ¬c,¬d,¬d ⇒ b, b}

3. {c, d, c ⇒ d} does not apply

7 / 32

A Proof System for Propositional Logic

Let V be the set of all propositional variables

Consider the following rule for PPL:

SPLIT
α ∈ V α occurs in some formula of S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

8 / 32

A Proof System for Propositional Logic

Let V be the set of all propositional variables

Consider the following rule for PPL:

SPLIT
α ∈ V α occurs in some formula of S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

8 / 32

A Proof System for Propositional Logic

Let V be the set of all propositional variables

Consider the following rule for PPL:

SPLIT
α ∈ V α occurs in some formula of S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

Can we apply SPLIT to {a ∨ (b ∧ c),¬d}?

8 / 32

A Proof System for Propositional Logic

Let V be the set of all propositional variables

Consider the following rule for PPL:

SPLIT
α ∈ V α occurs in some formula of S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

Can we apply SPLIT to {a ∨ (b ∧ c),¬d}?

Yes, if we choose to instantiate α with a, b, or c but not d

8 / 32

A Proof System for Propositional Logic

Let V be the set of all propositional variables

Consider the following rule for PPL:

SPLIT
α ∈ V α occurs in some formula of S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

Let SPLITb be the proof rule obtained by instantiating α with b

8 / 32

A Proof System for Propositional Logic

Let V be the set of all propositional variables

Consider the following rule for PPL:

SPLIT
α ∈ V α occurs in some formula of S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

Let SPLITb be the proof rule obtained by instantiating α with b

Then, formally:

{a ∨ (b ∧ c),¬d} SPLITb7−→ {{a ∨ (b ∧ c),¬d, b}, {a ∨ (b ∧ c),¬d,¬b}}

8 / 32

A Proof System for Propositional Logic

Let V be the set of all propositional variables and let L = V ∪ {¬α | α ∈ V }

L is the set of all propositional literals, variables or negations of variables

Now consider the following rule for PPL:

CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

where UNSAT is a distinguished state

Note: The rule applies only to states with contradictory literals

9 / 32

A Proof System for Propositional Logic

Let V be the set of all propositional variables and let L = V ∪ {¬α | α ∈ V }

L is the set of all propositional literals, variables or negations of variables

Now consider the following rule for PPL:

CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

where UNSAT is a distinguished state

Note: The rule applies only to states with contradictory literals

9 / 32

Derivation Trees

Let P = ⟨S,R⟩ be an abstract proof system

• A derivation tree (in P) from S0 is a finite tree with
• nodes from S
• root S0
• an edge from a node S to a node S ′ iff

S ′ is a conclusion of the application of a rule of R to S ′

• A proof state S ∈ S is reducible (in P) if one or more proof rules of R applies to S
It is irreducible (in P) otherwise

• A derivation tree is reducible (in P) if at least one of its leaves is reducible
It is irreducible (in P) otherwise

10 / 32

Derivation Trees

Let P = ⟨S,R⟩ be an abstract proof system

• A derivation tree (in P) from S0 is a finite tree with
• nodes from S
• root S0
• an edge from a node S to a node S ′ iff

S ′ is a conclusion of the application of a rule of R to S ′

• A proof state S ∈ S is reducible (in P) if one or more proof rules of R applies to S
It is irreducible (in P) otherwise

• A derivation tree is reducible (in P) if at least one of its leaves is reducible
It is irreducible (in P) otherwise

10 / 32

Derivation Trees

Let P = ⟨S,R⟩ be an abstract proof system

• A derivation tree (in P) from S0 is a finite tree with
• nodes from S
• root S0
• an edge from a node S to a node S ′ iff

S ′ is a conclusion of the application of a rule of R to S ′

• A proof state S ∈ S is reducible (in P) if one or more proof rules of R applies to S
It is irreducible (in P) otherwise

• A derivation tree is reducible (in P) if at least one of its leaves is reducible
It is irreducible (in P) otherwise

10 / 32

Derivation Trees

Let P = ⟨S,R⟩ be an abstract proof system

• A derivation tree (in P) from S0 is a finite tree with
• nodes from S
• root S0
• an edge from a node S to a node S ′ iff

S ′ is a conclusion of the application of a rule of R to S ′

• A proof state S ∈ S is reducible (in P) if one or more proof rules of R applies to S
It is irreducible (in P) otherwise

• A derivation tree is reducible (in P) if at least one of its leaves is reducible
It is irreducible (in P) otherwise

10 / 32

Derivation Tree Example

What could a derivation tree from {b ⇒ c,¬b ⇒ c,¬c} look like?

11 / 32

Derivation Tree Example

What could a derivation tree from {b ⇒ c,¬b ⇒ c,¬c} look like?

{b ⇒ c,¬b ⇒ c,¬c}

11 / 32

Derivation Tree Example

What could a derivation tree from {b ⇒ c,¬b ⇒ c,¬c} look like?

{b ⇒ c,¬b ⇒ c,¬c}
{b ⇒ c,¬b ⇒ c,¬c, b} {b ⇒ c,¬b ⇒ c,¬c,¬b}

SPLIT

11 / 32

Derivation Tree Example

What could a derivation tree from {b ⇒ c,¬b ⇒ c,¬c} look like?

{b ⇒ c,¬b ⇒ c,¬c}
{b ⇒ c,¬b ⇒ c,¬c, b}
{b ⇒ c,¬b ⇒ c,¬c, b, c}

MP
{b ⇒ c,¬b ⇒ c,¬c,¬b}

SPLIT

11 / 32

Derivation Tree Example

What could a derivation tree from {b ⇒ c,¬b ⇒ c,¬c} look like?

{b ⇒ c,¬b ⇒ c,¬c}
{b ⇒ c,¬b ⇒ c,¬c, b}

{b ⇒ c,¬b ⇒ c,¬c, b, c}
UNSAT

CONTR

MP
{b ⇒ c,¬b ⇒ c,¬c,¬b}

SPLIT

11 / 32

Derivation Tree Example

What could a derivation tree from {b ⇒ c,¬b ⇒ c,¬c} look like?

{b ⇒ c,¬b ⇒ c,¬c}
{b ⇒ c,¬b ⇒ c,¬c, b}

{b ⇒ c,¬b ⇒ c,¬c, b, c}
UNSAT

CONTR

MP
{b ⇒ c,¬b ⇒ c,¬c,¬b}

{b ⇒ c,¬b ⇒ c,¬c,¬b, c}
MP

SPLIT

11 / 32

Derivation Tree Example

What could a derivation tree from {b ⇒ c,¬b ⇒ c,¬c} look like?

{b ⇒ c,¬b ⇒ c,¬c}
{b ⇒ c,¬b ⇒ c,¬c, b}

{b ⇒ c,¬b ⇒ c,¬c, b, c}
UNSAT

CONTR

MP
{b ⇒ c,¬b ⇒ c,¬c,¬b}

{b ⇒ c,¬b ⇒ c,¬c,¬b, c}
UNSAT

CONTR

MP

SPLIT

11 / 32

Derivation Tree Example

What could a derivation tree from {b ⇒ c,¬b ⇒ c,¬c} look like?

{b ⇒ c,¬b ⇒ c,¬c}
{b ⇒ c,¬b ⇒ c,¬c, b}

{b ⇒ c,¬b ⇒ c,¬c, b, c}
UNSAT

CONTR

MP
{b ⇒ c,¬b ⇒ c,¬c,¬b}

{b ⇒ c,¬b ⇒ c,¬c,¬b, c}
UNSAT

CONTR

MP

SPLIT

This tree is irreducible

11 / 32

Derivations

Let P = ⟨S,R⟩ be an abstract proof system

• A derivation (in P) from a derivation tree τ0 is a (possibly infinite) sequence τ0, τ1, . . . of
derivation trees where
each τi+1 is derivable from τi by applying a rule from R to a leaf of τi

• A derivation is saturated if it is finite and ends with an irreducible tree

12 / 32

Derivations

Let P = ⟨S,R⟩ be an abstract proof system

• A derivation (in P) from a derivation tree τ0 is a (possibly infinite) sequence τ0, τ1, . . . of
derivation trees where
each τi+1 is derivable from τi by applying a rule from R to a leaf of τi

• A derivation is saturated if it is finite and ends with an irreducible tree

12 / 32

Derivations

Let P = ⟨S,R⟩ be an abstract proof system

• A derivation (in P) from a derivation tree τ0 is a (possibly infinite) sequence τ0, τ1, . . . of
derivation trees where
each τi+1 is derivable from τi by applying a rule from R to a leaf of τi

• A derivation is saturated if it is finite and ends with an irreducible tree

12 / 32

Satisfiability Proof Systems

Let P = ⟨S,R⟩ be an abstract proof system

P is a satisfiability proof system if S includes the distinguished states SAT and UNSAT

• A rule of R is a refuting rule if its only conclusion is UNSAT

• A rule of R is a corroborating rule if its only conclusion is SAT

• A refutation tree (from S in P) is a derivation tree from S with only UNSAT leaves

• A refutation (of S in P) is a derivation from S ending with a refutation tree

• A corroboration tree (from S in P) is a derivation tree from S
with at least one SAT leaf

• A corroboration (of S in P from) is a derivation from S ending
with a corroborating tree

13 / 32

Satisfiability Proof Systems

Let P = ⟨S,R⟩ be an abstract proof system

P is a satisfiability proof system if S includes the distinguished states SAT and UNSAT

• A rule of R is a refuting rule if its only conclusion is UNSAT

• A rule of R is a corroborating rule if its only conclusion is SAT

• A refutation tree (from S in P) is a derivation tree from S with only UNSAT leaves

• A refutation (of S in P) is a derivation from S ending with a refutation tree

• A corroboration tree (from S in P) is a derivation tree from S
with at least one SAT leaf

• A corroboration (of S in P from) is a derivation from S ending
with a corroborating tree

13 / 32

Satisfiability Proof Systems

Let P = ⟨S,R⟩ be an abstract proof system

P is a satisfiability proof system if S includes the distinguished states SAT and UNSAT

• A rule of R is a refuting rule if its only conclusion is UNSAT

• A rule of R is a corroborating rule if its only conclusion is SAT

• A refutation tree (from S in P) is a derivation tree from S with only UNSAT leaves

• A refutation (of S in P) is a derivation from S ending with a refutation tree

• A corroboration tree (from S in P) is a derivation tree from S
with at least one SAT leaf

• A corroboration (of S in P from) is a derivation from S ending
with a corroborating tree

13 / 32

Satisfiability Proof Systems

Let P = ⟨S,R⟩ be an abstract proof system

P is a satisfiability proof system if S includes the distinguished states SAT and UNSAT

• A rule of R is a refuting rule if its only conclusion is UNSAT

• A rule of R is a corroborating rule if its only conclusion is SAT

• A refutation tree (from S in P) is a derivation tree from S with only UNSAT leaves

• A refutation (of S in P) is a derivation from S ending with a refutation tree

• A corroboration tree (from S in P) is a derivation tree from S
with at least one SAT leaf

• A corroboration (of S in P from) is a derivation from S ending
with a corroborating tree

13 / 32

Satisfiability Proof Systems

Let P = ⟨S,R⟩ be an abstract proof system

P is a satisfiability proof system if S includes the distinguished states SAT and UNSAT

• A rule of R is a refuting rule if its only conclusion is UNSAT

• A rule of R is a corroborating rule if its only conclusion is SAT

• A refutation tree (from S in P) is a derivation tree from S with only UNSAT leaves

• A refutation (of S in P) is a derivation from S ending with a refutation tree

• A corroboration tree (from S in P) is a derivation tree from S
with at least one SAT leaf

• A corroboration (of S in P from) is a derivation from S ending
with a corroborating tree

13 / 32

Satisfiability Proof Systems

Let P = ⟨S,R⟩ be an abstract proof system

P is a satisfiability proof system if S includes the distinguished states SAT and UNSAT

• A rule of R is a refuting rule if its only conclusion is UNSAT

• A rule of R is a corroborating rule if its only conclusion is SAT

• A refutation tree (from S in P) is a derivation tree from S with only UNSAT leaves

• A refutation (of S in P) is a derivation from S ending with a refutation tree

• A corroboration tree (from S in P) is a derivation tree from S
with at least one SAT leaf

• A corroboration (of S in P from) is a derivation from S ending
with a corroborating tree

13 / 32

Satisfiability Proof Systems

Let P = ⟨S,R⟩ be an abstract proof system

P is a satisfiability proof system if S includes the distinguished states SAT and UNSAT

• A rule of R is a refuting rule if its only conclusion is UNSAT

• A rule of R is a corroborating rule if its only conclusion is SAT

• A refutation tree (from S in P) is a derivation tree from S with only UNSAT leaves

• A refutation (of S in P) is a derivation from S ending with a refutation tree

• A corroboration tree (from S in P) is a derivation tree from S
with at least one SAT leaf

• A corroboration (of S in P from) is a derivation from S ending
with a corroborating tree

13 / 32

Satisfiability Proof Systems

Let P = ⟨S,R⟩ be an abstract proof system

P is a satisfiability proof system if S includes the distinguished states SAT and UNSAT

• A rule of R is a refuting rule if its only conclusion is UNSAT

• A rule of R is a corroborating rule if its only conclusion is SAT

• A refutation tree (from S in P) is a derivation tree from S with only UNSAT leaves

• A refutation (of S in P) is a derivation from S ending with a refutation tree

• A corroboration tree (from S in P) is a derivation tree from S
with at least one SAT leaf

• A corroboration (of S in P from) is a derivation from S ending
with a corroborating tree

13 / 32

A Satisfiability Proof System for Propositional Logic

Can we extend PPL to be a satisfiability proof system?

Yes, simply by adding SAT to SPL

Rule CONTR is a refuting rule

We have no corroborating rules, yet

14 / 32

A Satisfiability Proof System for Propositional Logic

Can we extend PPL to be a satisfiability proof system?

Yes, simply by adding SAT to SPL

Rule CONTR is a refuting rule

We have no corroborating rules, yet

14 / 32

A Satisfiability Proof System for Propositional Logic

Can we extend PPL to be a satisfiability proof system?

Yes, simply by adding SAT to SPL

Rule CONTR is a refuting rule

We have no corroborating rules, yet

14 / 32

A Satisfiability Proof System for Propositional Logic

Can we extend PPL to be a satisfiability proof system?

Yes, simply by adding SAT to SPL

Rule CONTR is a refuting rule

We have no corroborating rules, yet

14 / 32

A Satisfiability Proof System for Propositional Logic

Can we extend PPL to be a satisfiability proof system?

Yes, simply by adding SAT to SPL

Rule CONTR is a refuting rule

We have no corroborating rules, yet

14 / 32

Soundness

Let P = ⟨S,R⟩ be a satisfiability proof system

A set of satisfiable proof states, or satisfiability predicate, is a subset SSat ⊆ S such that
SAT ∈ SSat and UNSAT ̸∈ SSat

• P is refutation sound (wrt SSat) if no state S ∈ S that has a refutation in P is in SSat

• P is solution sound (wrt SSat) if every S ∈ S that has a corroboration in P is in SSat

• P is sound (wrt SSat) if it is both refutation and solution sound (wrt SSat)

15 / 32

Soundness

Let P = ⟨S,R⟩ be a satisfiability proof system

A set of satisfiable proof states, or satisfiability predicate, is a subset SSat ⊆ S such that
SAT ∈ SSat and UNSAT ̸∈ SSat

• P is refutation sound (wrt SSat) if no state S ∈ S that has a refutation in P is in SSat

• P is solution sound (wrt SSat) if every S ∈ S that has a corroboration in P is in SSat

• P is sound (wrt SSat) if it is both refutation and solution sound (wrt SSat)

15 / 32

Soundness

Let P = ⟨S,R⟩ be a satisfiability proof system

A set of satisfiable proof states, or satisfiability predicate, is a subset SSat ⊆ S such that
SAT ∈ SSat and UNSAT ̸∈ SSat

• P is refutation sound (wrt SSat) if no state S ∈ S that has a refutation in P is in SSat

• P is solution sound (wrt SSat) if every S ∈ S that has a corroboration in P is in SSat

• P is sound (wrt SSat) if it is both refutation and solution sound (wrt SSat)

15 / 32

Soundness

Let P = ⟨S,R⟩ be a satisfiability proof system

A set of satisfiable proof states, or satisfiability predicate, is a subset SSat ⊆ S such that
SAT ∈ SSat and UNSAT ̸∈ SSat

• P is refutation sound (wrt SSat) if no state S ∈ S that has a refutation in P is in SSat

• P is solution sound (wrt SSat) if every S ∈ S that has a corroboration in P is in SSat

• P is sound (wrt SSat) if it is both refutation and solution sound (wrt SSat)

15 / 32

Soundness

Let P = ⟨S,R⟩ be a satisfiability proof system

A set of satisfiable proof states, or satisfiability predicate, is a subset SSat ⊆ S such that
SAT ∈ SSat and UNSAT ̸∈ SSat

• P is refutation sound (wrt SSat) if no state S ∈ S that has a refutation in P is in SSat

• P is solution sound (wrt SSat) if every S ∈ S that has a corroboration in P is in SSat

• P is sound (wrt SSat) if it is both refutation and solution sound (wrt SSat)

15 / 32

Soundness
Let P = ⟨S,R⟩ be a satisfiability proof system and
let SSat be a satisfiability predicate

A proof rule P ∈ R is

• weakly satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if S ∈ SSat

• (strongly) satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if and only if S ∈ SSat

16 / 32

Soundness
Let P = ⟨S,R⟩ be a satisfiability proof system and
let SSat be a satisfiability predicate

A proof rule P ∈ R is

• weakly satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if S ∈ SSat

• (strongly) satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if and only if S ∈ SSat

16 / 32

Soundness
Let P = ⟨S,R⟩ be a satisfiability proof system and
let SSat be a satisfiability predicate

A proof rule P ∈ R is

• weakly satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if S ∈ SSat

• (strongly) satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if and only if S ∈ SSat

16 / 32

Soundness
Let P = ⟨S,R⟩ be a satisfiability proof system and
let SSat be a satisfiability predicate

A proof rule P ∈ R is

• weakly satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if S ∈ SSat

• (strongly) satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if and only if S ∈ SSat

Note: We will say just “satisfiability preserving” to mean “strongly satisfiability preserving”

16 / 32

Soundness
Let P = ⟨S,R⟩ be a satisfiability proof system and
let SSat be a satisfiability predicate

A proof rule P ∈ R is

• weakly satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if S ∈ SSat

• (strongly) satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if and only if S ∈ SSat

Theorem 1
P is sound if each of its proof rules is satisfiability preserving

16 / 32

Soundness
Let P = ⟨S,R⟩ be a satisfiability proof system and
let SSat be a satisfiability predicate

A proof rule P ∈ R is

• weakly satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if S ∈ SSat

• (strongly) satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if and only if S ∈ SSat

Theorem 1
P is sound if each of its proof rules is satisfiability preserving

Proof By induction on the length of derivations

16 / 32

Soundness
Let P = ⟨S,R⟩ be a satisfiability proof system and
let SSat be a satisfiability predicate

A proof rule P ∈ R is

• weakly satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if S ∈ SSat

• (strongly) satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if and only if S ∈ SSat

Is PPL sound wrt SSat?

16 / 32

Soundness
Let P = ⟨S,R⟩ be a satisfiability proof system and
let SSat be a satisfiability predicate

A proof rule P ∈ R is

• weakly satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if S ∈ SSat

• (strongly) satisfiability preserving whenever, for all states S ∈ S,
S ′ ∈ SSat for some S ′ ∈ P(S) if and only if S ∈ SSat

Is PPL sound wrt SSat? Yes!

16 / 32

Soundness Examples

Consider again PPL = ⟨SPL,RPL⟩

Let SSat = { SAT } ∪ {S ∈ SPL | S ⊆ W and S is propositionally satisfiable }

17 / 32

Soundness Examples

Consider again PPL = ⟨SPL,RPL⟩

Let SSat = { SAT } ∪ {S ∈ SPL | S ⊆ W and S is propositionally satisfiable }

Exercise. Argue that each of these rules is strongly satisfiability preserving wrt SSat

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β} CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

SPLIT
α ∈ V α occurs in some formula in S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

17 / 32

Exercise

Consider again PPL = ⟨SPL,RPL⟩

Let SSat = { SAT } ∪ {S ∈ SPL | S ⊆ W and S is propositionally satisfiable }

Which of these new rules is weakly/strongly/non satisfiability preserving wrt SSat?

ADD-VAR1
α ∈ V α ̸∈ S ¬α ̸∈ S

S ∪ {α} ADD-VAR2
α ∈ V α occurs nowhere in S

S ∪ {α}

AND1
α ∧ β ∈ S
S ∪ {α} AND2

α ∧ β ∈ S
S ∪ {α, β} OR-SPLIT

α ∨ β ∈ S
S ∪ {α} | S ∪ {β}

AND3
S = S1 ∪ {α ∧ β}

S1 ∪ {α} AND4
S = S1 ∪ {α ∧ β}

S1 ∪ {α, β} UNSAT
S = UNSAT

{α}

18 / 32

Completeness and Termination

Let P be a satisfiability proof system with satisfiability predicate SSat

• P is complete (wrt SSat) if for every S ∈ S,
there exists either a corroboration or a refutation (wrt SSat) of S in P

• P is terminating if every derivation in P is finite

Recall
P is sound (wrt SSat) if (i) no state S ∈ S that has a refutation in P is in SSat, and

(ii) every S ∈ S that has a corroboration in P is in SSat

19 / 32

Completeness and Termination

Let P be a satisfiability proof system with satisfiability predicate SSat

• P is complete (wrt SSat) if for every S ∈ S,
there exists either a corroboration or a refutation (wrt SSat) of S in P

• P is terminating if every derivation in P is finite

Recall
P is sound (wrt SSat) if (i) no state S ∈ S that has a refutation in P is in SSat, and

(ii) every S ∈ S that has a corroboration in P is in SSat

19 / 32

Completeness and Termination

Let P be a satisfiability proof system with satisfiability predicate SSat

• P is complete (wrt SSat) if for every S ∈ S,
there exists either a corroboration or a refutation (wrt SSat) of S in P

• P is terminating if every derivation in P is finite

Recall
P is sound (wrt SSat) if (i) no state S ∈ S that has a refutation in P is in SSat, and

(ii) every S ∈ S that has a corroboration in P is in SSat

19 / 32

Completeness and Termination

Let P be a satisfiability proof system with satisfiability predicate SSat

• P is complete (wrt SSat) if for every S ∈ S,
there exists either a corroboration or a refutation (wrt SSat) of S in P

• P is terminating if every derivation in P is finite

Recall
P is sound (wrt SSat) if (i) no state S ∈ S that has a refutation in P is in SSat, and

(ii) every S ∈ S that has a corroboration in P is in SSat

19 / 32

Completeness and Termination

PPL proof rules:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β} CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

SPLIT
α ∈ V α occurs in some formula in S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

20 / 32

Completeness and Termination

PPL proof rules:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β} CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

SPLIT
α ∈ V α occurs in some formula in S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

Is PPL terminating?

20 / 32

Completeness and Termination

PPL proof rules:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β} CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

SPLIT
α ∈ V α occurs in some formula in S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

Is PPL terminating? Yes!

20 / 32

Completeness and Termination

PPL proof rules:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β} CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

SPLIT
α ∈ V α occurs in some formula in S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

Is PPL terminating? Yes!

How would you prove it?

20 / 32

Completeness and Termination

PPL proof rules:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β} CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

SPLIT
α ∈ V α occurs in some formula in S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

Is PPL complete?

20 / 32

Completeness and Termination

PPL proof rules:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β} CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

SPLIT
α ∈ V α occurs in some formula in S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

Is PPL complete? No!

Can you find a satisfiable state other than SAT and UNSAT that is irreducible?

20 / 32

Completeness and Termination

PPL proof rules:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β} CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

SPLIT
α ∈ V α occurs in some formula in S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

Is PPL complete? No!

Can you find a satisfiable state other than SAT and UNSAT that is irreducible?

How about {b}?

20 / 32

Proof Systems and Decision Procedures

If P is sound and complete wrt SSat and terminating,
it induces a decision procedure for checking whether a S is in SSat:

• Simply start with S and produce any derivation

• It must eventually terminate

• If the final tree is a refutation tree, then S ̸∈ SSat

• Otherwise, S ∈ SSat

21 / 32

Proof Systems and Decision Procedures

If P is sound and complete wrt SSat and terminating,
it induces a decision procedure for checking whether a S is in SSat:

• Simply start with S and produce any derivation

• It must eventually terminate

• If the final tree is a refutation tree, then S ̸∈ SSat

• Otherwise, S ∈ SSat

21 / 32

A Decision Procedure for Propositional Logic

Recall: A variable assignment v is a partial mapping from V to {true, false}, and v |= S
means that each formula in S evaluates to true under v

Let S be a set of propositional formulas

The variable assignment v induced by S is defined as follows:

v(p) =


true if p ∈ S
false if ¬p ∈ S
undefined otherwise

S fully defines v if

1. v is the variable assignment induced by S and
2. for each variable p occurring in S, either p ∈ S or ¬p ∈ S

22 / 32

A Decision Procedure for Propositional Logic

Recall: A variable assignment v is a partial mapping from V to {true, false}, and v |= S
means that each formula in S evaluates to true under v

Let S be a set of propositional formulas

The variable assignment v induced by S is defined as follows:

v(p) =


true if p ∈ S
false if ¬p ∈ S
undefined otherwise

S fully defines v if

1. v is the variable assignment induced by S and
2. for each variable p occurring in S, either p ∈ S or ¬p ∈ S

22 / 32

A Decision Procedure for Propositional Logic

Recall: A variable assignment v is a partial mapping from V to {true, false}, and v |= S
means that each formula in S evaluates to true under v

Let S be a set of propositional formulas

The variable assignment v induced by S is defined as follows:

v(p) =


true if p ∈ S
false if ¬p ∈ S
undefined otherwise

S fully defines v if

1. v is the variable assignment induced by S and
2. for each variable p occurring in S, either p ∈ S or ¬p ∈ S

22 / 32

A Decision Procedure for Propositional Logic

Recall: A variable assignment v is a partial mapping from V to {true, false}, and v |= S
means that each formula in S evaluates to true under v

Let S be a set of propositional formulas

The variable assignment v induced by S is defined as follows:

v(p) =


true if p ∈ S
false if ¬p ∈ S
undefined otherwise

S fully defines v if

1. v is the variable assignment induced by S and
2. for each variable p occurring in S, either p ∈ S or ¬p ∈ S

22 / 32

A Decision Procedure for Propositional Logic

Let PE = ⟨SE,RE⟩ where

• SE consists of all sets of wffs plus the distinguished states SAT and UNSAT

• RE consists of the following proof rules:

SPLIT
p ∈ V p occurs in some formula in S p ̸∈ S ¬p ̸∈ S

S ∪ {p} | S ∪ {¬p}

SAT
S fully defines v v |= S

SAT

UNSAT
S fully defines v v ̸|= α for some α ∈ S

UNSAT

23 / 32

A Decision Procedure for Propositional Logic

Let PE = ⟨SE,RE⟩ where

• SE consists of all sets of wffs plus the distinguished states SAT and UNSAT

• RE consists of the following proof rules:

SPLIT
p ∈ V p occurs in some formula in S p ̸∈ S ¬p ̸∈ S

S ∪ {p} | S ∪ {¬p}

SAT
S fully defines v v |= S

SAT

UNSAT
S fully defines v v ̸|= α for some α ∈ S

UNSAT

23 / 32

A Decision Procedure for Propositional Logic
Let SSat consist of SAT and all satisfiable sets of wffs

Theorem 1
Each rule in PE is satisfiability preserving wrt SSat

Corollary 2
PE is sound wrt SSat

Theorem 3
PE is terminating

Theorem 4
PE is complete

Therefore, PE can be used as a decision procedure for the SAT problem
24 / 32

Example

Consider the set of propositional formulas {a,¬a ∨ b, a ⇒ ¬b}

25 / 32

Example

Consider the set of propositional formulas {a,¬a ∨ b, a ⇒ ¬b}

{a,¬a ∨ b, a ⇒ ¬b}

25 / 32

Example

Consider the set of propositional formulas {a,¬a ∨ b, a ⇒ ¬b}

{a,¬a ∨ b, a ⇒ ¬b}
{a,¬a ∨ b, a ⇒ ¬b, b} {a,¬a ∨ b, a ⇒ ¬b,¬b}

SPLIT

25 / 32

Example

Consider the set of propositional formulas {a,¬a ∨ b, a ⇒ ¬b}

{a,¬a ∨ b, a ⇒ ¬b}
{a,¬a ∨ b, a ⇒ ¬b, b} {a,¬a ∨ b, a ⇒ ¬b,¬b}

SPLIT

25 / 32

Example

Consider the set of propositional formulas {a,¬a ∨ b, a ⇒ ¬b}

{a,¬a ∨ b, a ⇒ ¬b}
{a,¬a ∨ b, a ⇒ ¬b, b}

UNSAT
UNSAT

{a,¬a ∨ b, a ⇒ ¬b,¬b}
SPLIT

25 / 32

Example

Consider the set of propositional formulas {a,¬a ∨ b, a ⇒ ¬b}

{a,¬a ∨ b, a ⇒ ¬b}
{a,¬a ∨ b, a ⇒ ¬b, b}

UNSAT
UNSAT

{a,¬a ∨ b, a ⇒ ¬b,¬b}
SPLIT

25 / 32

Example

Consider the set of propositional formulas {a,¬a ∨ b, a ⇒ ¬b}

{a,¬a ∨ b, a ⇒ ¬b}
{a,¬a ∨ b, a ⇒ ¬b, b}

UNSAT
UNSAT

{a,¬a ∨ b, a ⇒ ¬b,¬b}
UNSAT

UNSAT

SPLIT

25 / 32

Example

Alternatively, consider the set of propositional formulas {a,¬a ∨ ¬b, a ∧ ¬b}

26 / 32

Example

Alternatively, consider the set of propositional formulas {a,¬a ∨ ¬b, a ∧ ¬b}

{a,¬a ∨ ¬b, a ∧ ¬b}

26 / 32

Example

Alternatively, consider the set of propositional formulas {a,¬a ∨ ¬b, a ∧ ¬b}

{a,¬a ∨ ¬b, a ∧ ¬b}
{a,¬a ∨ ¬b, a ∧ ¬b, b} {a,¬a ∨ ¬b, a ∧ ¬b,¬b}

SPLIT

26 / 32

Example

Alternatively, consider the set of propositional formulas {a,¬a ∨ ¬b, a ∧ ¬b}

{a,¬a ∨ ¬b, a ∧ ¬b}
{a,¬a ∨ ¬b, a ∧ ¬b, b} {a,¬a ∨ ¬b, a ∧ ¬b,¬b}

SPLIT

26 / 32

Example

Alternatively, consider the set of propositional formulas {a,¬a ∨ ¬b, a ∧ ¬b}

{a,¬a ∨ ¬b, a ∧ ¬b}
{a,¬a ∨ ¬b, a ∧ ¬b, b}

UNSAT
UNSAT

{a,¬a ∨ ¬b, a ∧ ¬b,¬b}
SPLIT

26 / 32

Example

Alternatively, consider the set of propositional formulas {a,¬a ∨ ¬b, a ∧ ¬b}

{a,¬a ∨ ¬b, a ∧ ¬b}
{a,¬a ∨ ¬b, a ∧ ¬b, b}

UNSAT
UNSAT

{a,¬a ∨ ¬b, a ∧ ¬b,¬b}
SAT

SAT

SPLIT

26 / 32

Derivation Strategies

Sometimes, a proof system had some desirable properties
only if the rules are applied in a specific way

We capture those specific ways with rule application strategies

27 / 32

Derivation Strategies

Sometimes, a proof system had some desirable properties
only if the rules are applied in a specific way

We capture those specific ways with rule application strategies

27 / 32

Derivation Strategies

Let P = ⟨S,R⟩ be a proof system

• A (derivation) strategy for P is a partial function that, when defined,
takes a derivation tree τ in P and returns a new derivation tree τ ′

such that (τ, τ ′) is a derivation in P

• A derivation D in P follows a strategy π for P
1. if each non-initial derivation tree in D is the result of applying π

to the previous derivation tree, and

2. if D is finite, π is not defined for the final derivation tree

28 / 32

Derivation Strategies

Let P = ⟨S,R⟩ be a proof system

• A (derivation) strategy for P is a partial function that, when defined,
takes a derivation tree τ in P and returns a new derivation tree τ ′

such that (τ, τ ′) is a derivation in P

• A derivation D in P follows a strategy π for P
1. if each non-initial derivation tree in D is the result of applying π

to the previous derivation tree, and

2. if D is finite, π is not defined for the final derivation tree

28 / 32

Derivation Strategies

Let P = ⟨S,R⟩ be a proof system

• A (derivation) strategy for P is a partial function that, when defined,
takes a derivation tree τ in P and returns a new derivation tree τ ′

such that (τ, τ ′) is a derivation in P

• A derivation D in P follows a strategy π for P
1. if each non-initial derivation tree in D is the result of applying π

to the previous derivation tree, and

2. if D is finite, π is not defined for the final derivation tree

28 / 32

Derivation Strategy Example

Let ≺ be a total order on literals in L defined as alphabetical by variable name,
with variables smaller than their negations (e.g., a ≺ ¬a ≺ b ≺ ¬b ≺ · · ·)

Consider the following strategy πPL for PPL, usable when every formula is
either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree;
if none, then stop (πPL is undefined in that case)

2. if MP applies, apply it to the formulas l1 and l1 ⇒ l2 where l1 is minimal according to ≺,
breaking ties by choosing a minimal l2

3. Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in
the state

4. Otherwise, apply CONTR if possible

29 / 32

Derivation Strategy Example

Let ≺ be a total order on literals in L defined as alphabetical by variable name,
with variables smaller than their negations (e.g., a ≺ ¬a ≺ b ≺ ¬b ≺ · · ·)

Consider the following strategy πPL for PPL, usable when every formula is
either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree;
if none, then stop (πPL is undefined in that case)

2. if MP applies, apply it to the formulas l1 and l1 ⇒ l2 where l1 is minimal according to ≺,
breaking ties by choosing a minimal l2

3. Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in
the state

4. Otherwise, apply CONTR if possible

29 / 32

Derivation Strategy Example

Let ≺ be a total order on literals in L defined as alphabetical by variable name,
with variables smaller than their negations (e.g., a ≺ ¬a ≺ b ≺ ¬b ≺ · · ·)

Consider the following strategy πPL for PPL, usable when every formula is
either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree;
if none, then stop (πPL is undefined in that case)

2. if MP applies, apply it to the formulas l1 and l1 ⇒ l2 where l1 is minimal according to ≺,
breaking ties by choosing a minimal l2

3. Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in
the state

4. Otherwise, apply CONTR if possible

29 / 32

Derivation Strategy Example

Let ≺ be a total order on literals in L defined as alphabetical by variable name,
with variables smaller than their negations (e.g., a ≺ ¬a ≺ b ≺ ¬b ≺ · · ·)

Consider the following strategy πPL for PPL, usable when every formula is
either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree;
if none, then stop (πPL is undefined in that case)

2. if MP applies, apply it to the formulas l1 and l1 ⇒ l2 where l1 is minimal according to ≺,
breaking ties by choosing a minimal l2

3. Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in
the state

4. Otherwise, apply CONTR if possible

29 / 32

Derivation Strategy Example

Let ≺ be a total order on literals in L defined as alphabetical by variable name,
with variables smaller than their negations (e.g., a ≺ ¬a ≺ b ≺ ¬b ≺ · · ·)

Consider the following strategy πPL for PPL, usable when every formula is
either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree;
if none, then stop (πPL is undefined in that case)

2. if MP applies, apply it to the formulas l1 and l1 ⇒ l2 where l1 is minimal according to ≺,
breaking ties by choosing a minimal l2

3. Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in
the state

4. Otherwise, apply CONTR if possible

29 / 32

Derivation Strategy Example

Let ≺ be a total order on literals in L defined as alphabetical by variable name,
with variables smaller than their negations (e.g., a ≺ ¬a ≺ b ≺ ¬b ≺ · · ·)

Consider the following strategy πPL for PPL, usable when every formula is
either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree;
if none, then stop (πPL is undefined in that case)

2. if MP applies, apply it to the formulas l1 and l1 ⇒ l2 where l1 is minimal according to ≺,
breaking ties by choosing a minimal l2

3. Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in
the state

4. Otherwise, apply CONTR if possible

29 / 32

Exercise
Apply πPL to

S = {a ⇒ c, a ⇒ ¬b,¬b ⇒ ¬a}

30 / 32

Properties of Strategies

Let SSat be a satisfiability predicate for P

A strategy π for P is

• solution sound wrt to SSat if S ∈ SSat

whenever there exists a corroboration in P from S following π

• refutation sound wrt to SSat if S /∈ SSat

whenever there exists a refutation in P from S following π

• sound wrt SSat if it is both refutation sound and solution sound wrt SSat

• terminating if every derivation in P following π is finite

• progressive if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

31 / 32

Properties of Strategies

Let SSat be a satisfiability predicate for P

A strategy π for P is

• solution sound wrt to SSat if S ∈ SSat

whenever there exists a corroboration in P from S following π

• refutation sound wrt to SSat if S /∈ SSat

whenever there exists a refutation in P from S following π

• sound wrt SSat if it is both refutation sound and solution sound wrt SSat

• terminating if every derivation in P following π is finite

• progressive if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

31 / 32

Properties of Strategies

Let SSat be a satisfiability predicate for P

A strategy π for P is

• solution sound wrt to SSat if S ∈ SSat

whenever there exists a corroboration in P from S following π

• refutation sound wrt to SSat if S /∈ SSat

whenever there exists a refutation in P from S following π

• sound wrt SSat if it is both refutation sound and solution sound wrt SSat

• terminating if every derivation in P following π is finite

• progressive if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

31 / 32

Properties of Strategies

Let SSat be a satisfiability predicate for P

A strategy π for P is

• solution sound wrt to SSat if S ∈ SSat

whenever there exists a corroboration in P from S following π

• refutation sound wrt to SSat if S /∈ SSat

whenever there exists a refutation in P from S following π

• sound wrt SSat if it is both refutation sound and solution sound wrt SSat

• terminating if every derivation in P following π is finite

• progressive if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

31 / 32

Properties of Strategies

Let SSat be a satisfiability predicate for P

A strategy π for P is

• solution sound wrt to SSat if S ∈ SSat

whenever there exists a corroboration in P from S following π

• refutation sound wrt to SSat if S /∈ SSat

whenever there exists a refutation in P from S following π

• sound wrt SSat if it is both refutation sound and solution sound wrt SSat

• terminating if every derivation in P following π is finite

• progressive if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

31 / 32

Properties of Strategies

Let SSat be a satisfiability predicate for P

A strategy π for P is

• solution sound wrt to SSat if S ∈ SSat

whenever there exists a corroboration in P from S following π

• refutation sound wrt to SSat if S /∈ SSat

whenever there exists a refutation in P from S following π

• sound wrt SSat if it is both refutation sound and solution sound wrt SSat

• terminating if every derivation in P following π is finite

• progressive if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

31 / 32

Properties of Strategies

Let SSat be a satisfiability predicate for P

A strategy π for P is

• solution sound wrt to SSat if S ∈ SSat

whenever there exists a corroboration in P from S following π

• refutation sound wrt to SSat if S /∈ SSat

whenever there exists a refutation in P from S following π

• sound wrt SSat if it is both refutation sound and solution sound wrt SSat

• terminating if every derivation in P following π is finite

• progressive if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

31 / 32

Properties of Strategies

Let SSat be a satisfiability predicate for P

Note:

• If P is sound wrt SSat, then every strategy for P is also sound wrt SSat

• If P is terminating, then every strategy for P is also terminating

Theorem 5
P is complete iff there exists a progressive and terminating strategy for it

32 / 32

Properties of Strategies

Let SSat be a satisfiability predicate for P

Note:

• If P is sound wrt SSat, then every strategy for P is also sound wrt SSat

• If P is terminating, then every strategy for P is also terminating

Theorem 5
P is complete iff there exists a progressive and terminating strategy for it

32 / 32

