

CS:4980 Topics in Computer Science II
Introduction to Automated Reasoning

Abstract Proof Systems

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa, and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

Agenda

- Abstract Proof Systems
- Satisfiability Proof Systems
- Soundness, Completeness, Termination, and Progressiveness
- A Decision Procedure for Propositional Logic
- Strategies

Proofs for Automated Reasoning

In AR, representing algorithms as proof systems has several advantages

- They are modular and composable
- It is easier to prove things about the algorithms
- Can choose which implementation aspects to highlight and which to leave out

Abstract Proof Systems

An *abstract proof system* is a tuple $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$

where \mathbb{S} is a set of **proof states** and \mathbb{R} is a set of **proof rules**

Proof state: Data structure representing what is known at each stage of the proof

Example: a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state $S \supseteq \{\alpha, \alpha \Rightarrow \beta\}$ to the state set $\{S \cup \{\beta\}\}$

Abstract Proof Systems

An *abstract proof system* is a tuple $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$

where \mathbb{S} is a set of **proof states** and \mathbb{R} is a set of **proof rules**

Proof state: Data structure representing what is known at each stage of the proof

Example: a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state $S \supseteq \{\alpha, \alpha \Rightarrow \beta\}$ to the state set $\{S \cup \{\beta\}\}$

Abstract Proof Systems

An *abstract proof system* is a tuple $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$

where \mathbb{S} is a set of **proof states** and \mathbb{R} is a set of **proof rules**

Proof state: Data structure representing what is known at each stage of the proof

Example: a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state $\mathcal{S} \supseteq \{\alpha, \alpha \Rightarrow \beta\}$ to the state set $\{\mathcal{S} \cup \{\beta\}\}$

Proof Rules

- Take an input proof state \mathcal{S}
- Are only applicable if \mathcal{S} satisfies some *premises*
- Return one or more *derived* proof states, the *conclusions*

Notation:

- \mathcal{R} is the rule's name (for reference)
- Each P_j is a premise, each Q_j is a conclusion

Proof Rules

- Take an input proof state \mathcal{S}
- Are only applicable if \mathcal{S} satisfies some *premises*
- Return one or more *derived* proof states, the *conclusions*

Notation:

$$R \frac{P_1 \quad P_2 \quad \cdots \quad P_m}{C_1 \quad | \quad C_2 \quad | \quad \cdots \quad | \quad C_n}$$

- R is the rule's name (for reference)
- Each P_i is a premise, each C_i is a conclusion

Proof Rules

- Take an input proof state \mathcal{S}
- Are only applicable if \mathcal{S} satisfies some *premises*
- Return one or more *derived* proof states, the *conclusions*

Notation:

$$R \frac{P_1 \quad P_2 \quad \cdots \quad P_m}{C_1 \quad | \quad C_2 \quad | \quad \cdots \quad | \quad C_n}$$

- R is the rule's name (for reference)
- Each P_i is a premise, each C_i is a conclusion

Note: Intuitively, premises are **conjunctive**; conclusions are **disjunctive**

A Proof System for Propositional Logic

Let $\mathbb{P}_{PL} = \langle \mathbb{S}_{PL}, \mathbb{R}_{PL} \rangle$ where every proof state $\mathcal{S} \in \mathbb{S}_{PL}$ is a set of wffs of PL

If \mathbb{R}_{PL} contains the *modus ponens* rule (MP for short) we can write MP as follows:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Technically, MP is a proof rule *schema*

A Proof System for Propositional Logic

Let $\mathbb{P}_{\text{PL}} = \langle \mathbb{S}_{\text{PL}}, \mathbb{R}_{\text{PL}} \rangle$ where every proof state $\mathcal{S} \in \mathbb{S}_{\text{PL}}$ is a set of wffs of PL

If \mathbb{R}_{PL} contains the *modus ponens* rule (MP for short) we can write MP as follows:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Technically, MP is a proof rule *schema*

A Proof System for Propositional Logic

Let $\mathbb{P}_{\text{PL}} = \langle \mathbb{S}_{\text{PL}}, \mathbb{R}_{\text{PL}} \rangle$ where every proof state $\mathcal{S} \in \mathbb{S}_{\text{PL}}$ is a set of wffs of PL

If \mathbb{R}_{PL} contains the *modus ponens* rule (MP for short) we can write MP as follows:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Technically, MP is a proof rule *schema*

- α and β are *parameters*, and each possible instantiation with wffs is a separate proof rule
- For convenience, we will refer to proof rule schemas also as *proof rules*

A Proof System for Propositional Logic

Let $\mathbb{P}_{\text{PL}} = \langle \mathbb{S}_{\text{PL}}, \mathbb{R}_{\text{PL}} \rangle$ where every proof state $\mathcal{S} \in \mathbb{S}_{\text{PL}}$ is a set of wffs of PL

If \mathbb{R}_{PL} contains the *modus ponens* rule (MP for short) we can write MP as follows:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Technically, MP is a proof rule *schema*

- α and β are *parameters*, and each possible instantiation with wffs is a separate proof rule
- For convenience, we will refer to proof rule schemas also as *proof rules*

A Proof System for Propositional Logic

Let $\mathbb{P}_{\text{PL}} = \langle \mathbb{S}_{\text{PL}}, \mathbb{R}_{\text{PL}} \rangle$ where every proof state $\mathcal{S} \in \mathbb{S}_{\text{PL}}$ is a set of wffs of PL

If \mathbb{R}_{PL} contains the *modus ponens* rule (MP for short) we can write MP as follows:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Technically, MP is a proof rule *schema*

- α and β are *parameters*, and each possible instantiation with wffs is a separate proof rule
- For convenience, we will refer to proof rule schemas also as *proof rules*

Example

$$\text{MP} \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let a, b, c, d be propositional variables

What is the result of applying MP to the following proof states?

1. $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
2. $\{\neg d, a \vee \neg c, \neg d \Rightarrow b\}$ $\{a \vee \neg c, \neg d, \neg d \Rightarrow b, b\}$
3. $\{c, d, c \Rightarrow d\}$ does not apply

Example

$$\text{MP} \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let a, b, c, d be propositional variables

What is the result of applying MP to the following proof states?

1. $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
2. $\{\neg d, a \vee \neg c, \neg d \Rightarrow b\}$ $\{a \vee \neg c, \neg d, \neg d \Rightarrow b, b\}$
3. $\{c, d, c \Rightarrow d\}$ does not apply

Example

$$\text{MP} \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let a, b, c, d be propositional variables

What is the result of applying MP to the following proof states?

1. $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
2. $\{\neg d, a \vee \neg c, \neg d \Rightarrow b\}$ $\{a \vee \neg c, \neg d, \neg d \Rightarrow b, b\}$
3. $\{c, d, c \Rightarrow d\}$ does not apply

Example

$$\text{MP} \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let a, b, c, d be propositional variables

What is the result of applying MP to the following proof states?

1. $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
2. $\{\neg d, a \vee \neg c, \neg d \Rightarrow b\}$ $\{a \vee \neg c, \neg d, \neg d \Rightarrow b, b\}$
3. $\{c, d, c \Rightarrow d\}$ does not apply

Example

$$\text{MP} \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let a, b, c, d be propositional variables

What is the result of applying MP to the following proof states?

1. $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
2. $\{\neg d, a \vee \neg c, \neg d \Rightarrow b\}$ $\{a \vee \neg c, \neg d, \neg d \Rightarrow b, b\}$
3. $\{c, d, c \Rightarrow d\}$ does not apply

Example

$$\text{MP} \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let a, b, c, d be propositional variables

What is the result of applying MP to the following proof states?

1. $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
2. $\{\neg d, a \vee \neg c, \neg d \Rightarrow b\}$ $\{a \vee \neg c, \neg d, \neg d \Rightarrow b, b\}$
3. $\{c, d, c \Rightarrow d\}$ does not apply

Example

$$\text{MP} \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let a, b, c, d be propositional variables

What is the result of applying MP to the following proof states?

1. $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
2. $\{\neg d, a \vee \neg c, \neg d \Rightarrow b\}$ $\{a \vee \neg c, \neg d, \neg d \Rightarrow b, b\}$
3. $\{c, d, c \Rightarrow d\}$ does not apply

Example

$$\text{MP} \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

Let a, b, c, d be propositional variables

What is the result of applying MP to the following proof states?

1. $\{a, a \Rightarrow b\}$ $\{a, a \Rightarrow b, b\}$
2. $\{\neg d, a \vee \neg c, \neg d \Rightarrow b\}$ $\{a \vee \neg c, \neg d, \neg d \Rightarrow b, b\}$
3. $\{c, d, c \Rightarrow d\}$ does not apply

A Proof System for Propositional Logic

Let \mathcal{V} be the set of all propositional variables

Consider the following rule for PPL:

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula of } S \quad \alpha \notin S \quad \neg\alpha \notin S}{S \cup \{\alpha\} \quad \quad \mid \quad \quad S \cup \{\neg\alpha\}}$$

A Proof System for Propositional Logic

Let \mathcal{V} be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula of } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg\alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg\alpha\}}$$

A Proof System for Propositional Logic

Let \mathcal{V} be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula of } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg\alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg\alpha\}}$$

Can we apply **SPLIT** to $\{a \vee (b \wedge c), \neg d\}$?

A Proof System for Propositional Logic

Let \mathcal{V} be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula of } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg\alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg\alpha\}}$$

Can we apply **SPLIT** to $\{a \vee (b \wedge c), \neg d\}$?

Yes, if we choose to instantiate α with a , b , or c but not d

A Proof System for Propositional Logic

Let \mathcal{V} be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula of } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg\alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg\alpha\}}$$

Let SPLIT_b be the proof rule obtained by instantiating α with b

A Proof System for Propositional Logic

Let \mathcal{V} be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula of } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg\alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg\alpha\}}$$

Let SPLIT_b be the proof rule obtained by instantiating α with b

Then, formally:

$$\{a \vee (b \wedge c), \neg d\} \xrightarrow{\text{SPLIT}_b} \{\{a \vee (b \wedge c), \neg d, b\}, \{a \vee (b \wedge c), \neg d, \neg b\}\}$$

A Proof System for Propositional Logic

Let \mathcal{V} be the set of all propositional variables and let $\mathcal{L} = \mathcal{V} \cup \{ \neg\alpha \mid \alpha \in \mathcal{V} \}$

\mathcal{L} is the set of all propositional *literals*, variables or negations of variables

Now consider the following rule for PPL:

$$\text{CONTR} \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg\alpha \in \mathcal{S}}{\text{UNSAT}}$$

where UNSAT is a distinguished state

Note: The rule applies only to states with contradictory literals

A Proof System for Propositional Logic

Let \mathcal{V} be the set of all propositional variables and let $\mathcal{L} = \mathcal{V} \cup \{ \neg\alpha \mid \alpha \in \mathcal{V} \}$

\mathcal{L} is the set of all propositional *literals*, variables or negations of variables

Now consider the following rule for \mathbb{P}_{PL} :

$$\text{CONTR} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg\alpha \in \mathcal{S}}{\text{UNSAT}}$$

where **UNSAT** is a distinguished state

Note: The rule applies only to states with contradictory literals

Derivation Trees

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

Derivation Trees

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

- A *derivation tree* (in \mathbb{P}) from \mathcal{S}_0 is a finite tree with
 - nodes from \mathbb{S}
 - root \mathcal{S}_0
 - an edge from a node \mathcal{S} to a node \mathcal{S}' iff \mathcal{S}' is a conclusion of the application of a rule of \mathbb{R} to \mathcal{S}
- A proof state $\mathcal{S} \in \mathbb{S}$ is *reducible* (in \mathbb{P}) if one or more proof rules of \mathbb{R} applies to \mathcal{S}
It is *irreducible* (in \mathbb{P}) otherwise
- A derivation tree is *reducible* (in \mathbb{P}) if at least one of its leaves is reducible
It is *irreducible* (in \mathbb{P}) otherwise

Derivation Trees

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

- A *derivation tree* (in \mathbb{P}) from \mathcal{S}_0 is a finite tree with
 - nodes from \mathbb{S}
 - root \mathcal{S}_0
 - an edge from a node \mathcal{S} to a node \mathcal{S}' iff \mathcal{S}' is a conclusion of the application of a rule of \mathbb{R} to \mathcal{S}
- A proof state $\mathcal{S} \in \mathbb{S}$ is *reducible* (in \mathbb{P}) if one or more proof rules of \mathbb{R} applies to \mathcal{S}
It is *irreducible* (in \mathbb{P}) otherwise
- A derivation tree is *reducible* (in \mathbb{P}) if at least one of its leaves is reducible
It is *irreducible* (in \mathbb{P}) otherwise

Derivation Trees

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

- A *derivation tree* (in \mathbb{P}) from \mathcal{S}_0 is a finite tree with
 - nodes from \mathbb{S}
 - root \mathcal{S}_0
 - an edge from a node \mathcal{S} to a node \mathcal{S}' iff \mathcal{S}' is a conclusion of the application of a rule of \mathbb{R} to \mathcal{S}
- A proof state $\mathcal{S} \in \mathbb{S}$ is *reducible* (in \mathbb{P}) if one or more proof rules of \mathbb{R} applies to \mathcal{S}
It is *irreducible* (in \mathbb{P}) otherwise
- A derivation tree is *reducible* (in \mathbb{P}) if at least one of its leaves is reducible
It is *irreducible* (in \mathbb{P}) otherwise

Derivation Tree Example

What could a derivation tree from $\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$ look like?

Derivation Tree Example

What could a derivation tree from $\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$ look like?

$$\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$$

Derivation Tree Example

What could a derivation tree from $\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$ look like?

$$\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b\} \quad \{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b\}} \text{ SPLIT}$$

Derivation Tree Example

What could a derivation tree from $\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$ look like?

$$\frac{\frac{\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b\}} \text{ MP}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b, c\}} \text{ SPLIT}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b\}}$$

Derivation Tree Example

What could a derivation tree from $\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$ look like?

$$\frac{\frac{\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b\}} \text{ MP}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b, c\}} \text{ CONTR}}{\text{UNSAT}} \quad \text{SPLIT}$$

Derivation Tree Example

What could a derivation tree from $\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$ look like?

$$\frac{\frac{\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}}{\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b\}}{\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b, c\}}{\text{UNSAT}} \text{ CONTR}} \text{ MP}} \text{ SPLIT}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b\}} \text{ MP}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b, \text{c}\}}$$

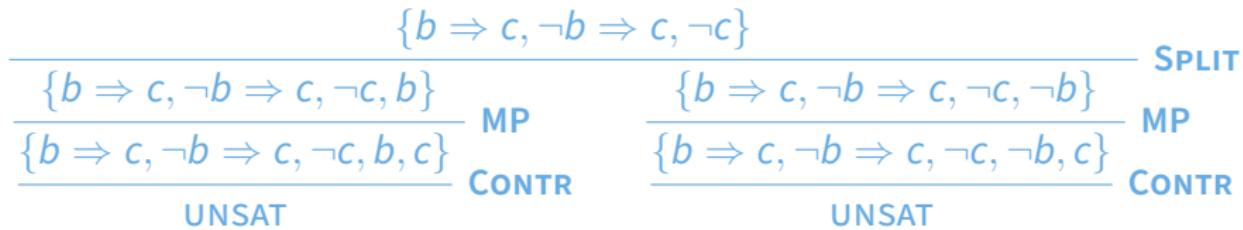
Derivation Tree Example

What could a derivation tree from $\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$ look like?

$$\frac{\frac{\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}}{\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b\}}{\frac{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, b, c\}}{\text{UNSAT}} \text{ CONTR}} \text{ MP}} \text{ SPLIT}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b\}} \text{ MP}}{\{b \Rightarrow c, \neg b \Rightarrow c, \neg c, \neg b, c\}} \text{ CONTR} \text{ UNSAT}$$

Derivation Tree Example

What could a derivation tree from $\{b \Rightarrow c, \neg b \Rightarrow c, \neg c\}$ look like?



This tree is **irreducible**

Derivations

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

- A *derivation* (in \mathbb{P}) from a derivation tree τ_0 is a (possibly infinite) sequence τ_0, τ_1, \dots of derivation trees where each τ_{i+1} is derivable from τ_i by applying a rule from \mathbb{R} to a leaf of τ_i
- A derivation is *saturated* if it is finite and ends with an irreducible tree

Derivations

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

- A *derivation* (in \mathbb{P}) from a derivation tree τ_0 is a (possibly infinite) sequence τ_0, τ_1, \dots of derivation trees where each τ_{i+1} is derivable from τ_i by applying a rule from \mathbb{R} to a leaf of τ_i
- A derivation is *saturated* if it is finite and ends with an irreducible tree

Derivations

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

- A *derivation* (in \mathbb{P}) from a derivation tree τ_0 is a (possibly infinite) sequence τ_0, τ_1, \dots of derivation trees where each τ_{i+1} is derivable from τ_i by applying a rule from \mathbb{R} to a leaf of τ_i
- A derivation is *saturated* if it is finite and ends with an irreducible tree

Satisfiability Proof Systems

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

\mathbb{P} is a *satisfiability proof system* if \mathbb{S} includes the distinguished states **SAT** and **UNSAT**

- A rule of \mathbb{R} is a *refuting* rule if its only conclusion is **UNSAT**
- A rule of \mathbb{R} is a *corroborating* rule if its only conclusion is **SAT**
- A *refutation tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with only **UNSAT** leaves
- A *refutation* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a refutation tree
- A *corroboration tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with at least one **SAT** leaf
- A *corroboration* (of \mathcal{S} in \mathbb{P} from) is a derivation from \mathcal{S} ending with a corroborating tree

Satisfiability Proof Systems

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

\mathbb{P} is a *satisfiability proof system* if \mathbb{S} includes the distinguished states **SAT** and **UNSAT**

- A rule of \mathbb{R} is a *refuting* rule if its only conclusion is **UNSAT**
- A rule of \mathbb{R} is a *corroborating* rule if its only conclusion is **SAT**
- A *refutation tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with only **UNSAT** leaves
- A *refutation* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a refutation tree
- A *corroboration tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with at least one **SAT** leaf
- A *corroboration* (of \mathcal{S} in \mathbb{P} from) is a derivation from \mathcal{S} ending with a corroborating tree

Satisfiability Proof Systems

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

\mathbb{P} is a *satisfiability proof system* if \mathbb{S} includes the distinguished states **SAT** and **UNSAT**

- A rule of \mathbb{R} is a *refuting* rule if its only conclusion is **UNSAT**
- A rule of \mathbb{R} is a *corroborating* rule if its only conclusion is **SAT**
- A *refutation tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with only **UNSAT** leaves
- A *refutation* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a refutation tree
- A *corroboration tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with at least one **SAT** leaf
- A *corroboration* (of \mathcal{S} in \mathbb{P} from) is a derivation from \mathcal{S} ending with a corroborating tree

Satisfiability Proof Systems

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

\mathbb{P} is a *satisfiability proof system* if \mathbb{S} includes the distinguished states **SAT** and **UNSAT**

- A rule of \mathbb{R} is a *refuting rule* if its only conclusion is **UNSAT**
- A rule of \mathbb{R} is a *corroborating rule* if its only conclusion is **SAT**
- A *refutation tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with only **UNSAT** leaves
- A *refutation* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a refutation tree
- A *corroboration tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with at least one **SAT** leaf
- A *corroboration* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a corroborating tree

Satisfiability Proof Systems

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

\mathbb{P} is a *satisfiability proof system* if \mathbb{S} includes the distinguished states **SAT** and **UNSAT**

- A rule of \mathbb{R} is a *refuting rule* if its only conclusion is **UNSAT**
- A rule of \mathbb{R} is a *corroborating rule* if its only conclusion is **SAT**
- A *refutation tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with only **UNSAT** leaves
- A *refutation* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a refutation tree
- A *corroboration tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with at least one **SAT** leaf
- A *corroboration* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a corroborating tree

Satisfiability Proof Systems

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

\mathbb{P} is a *satisfiability proof system* if \mathbb{S} includes the distinguished states **SAT** and **UNSAT**

- A rule of \mathbb{R} is a *refuting* rule if its only conclusion is **UNSAT**
- A rule of \mathbb{R} is a *corroborating* rule if its only conclusion is **SAT**
- A *refutation tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with only **UNSAT** leaves
- A *refutation* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a refutation tree
- A *corroboration tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with at least one **SAT** leaf
- A *corroboration* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a corroborating tree

Satisfiability Proof Systems

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

\mathbb{P} is a *satisfiability proof system* if \mathbb{S} includes the distinguished states **SAT** and **UNSAT**

- A rule of \mathbb{R} is a *refuting* rule if its only conclusion is **UNSAT**
- A rule of \mathbb{R} is a *corroborating* rule if its only conclusion is **SAT**
- A *refutation tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with only **UNSAT** leaves
- A *refutation* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a refutation tree
- A *corroboration tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with at least one **SAT** leaf
- A *corroboration* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a corroborating tree

Satisfiability Proof Systems

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

\mathbb{P} is a *satisfiability proof system* if \mathbb{S} includes the distinguished states **SAT** and **UNSAT**

- A rule of \mathbb{R} is a *refuting* rule if its only conclusion is **UNSAT**
- A rule of \mathbb{R} is a *corroborating* rule if its only conclusion is **SAT**
- A *refutation tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with only **UNSAT** leaves
- A *refutation* (of \mathcal{S} in \mathbb{P}) is a derivation from \mathcal{S} ending with a refutation tree
- A *corroboration tree* (from \mathcal{S} in \mathbb{P}) is a derivation tree from \mathcal{S} with at least one **SAT** leaf
- A *corroboration* (of \mathcal{S} in \mathbb{P} from) is a derivation from \mathcal{S} ending with a corroborating tree

A Satisfiability Proof System for Propositional Logic

Can we extend \mathbb{P}_{PL} to be a satisfiability proof system?

Yes, simply by adding SAT to \mathbb{S}_{PL}

Rule CONTR is a refuting rule

We have no corroborating rules, yet

A Satisfiability Proof System for Propositional Logic

Can we extend \mathbb{P}_{PL} to be a satisfiability proof system?

Yes, simply by adding SAT to \mathbb{S}_{PL}

Rule CONTR is a refuting rule

We have no corroborating rules, yet

A Satisfiability Proof System for Propositional Logic

Can we extend \mathbb{P}_{PL} to be a satisfiability proof system?

Yes, simply by adding SAT to \mathbb{S}_{PL}

Rule **CONTR** is a refuting rule

We have no corroborating rules, yet

A Satisfiability Proof System for Propositional Logic

Can we extend \mathbb{P}_{PL} to be a satisfiability proof system?

Yes, simply by adding SAT to \mathbb{S}_{PL}

Rule **CONTR** is a refuting rule

We have no corroborating rules, yet

A Satisfiability Proof System for Propositional Logic

Can we extend \mathbb{P}_{PL} to be a satisfiability proof system?

Yes, simply by adding SAT to \mathbb{S}_{PL}

Rule **CONTR** is a refuting rule

We have no corroborating rules, yet

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system

A set of *satisfiable proof states*, or *satisfiability predicate*, is a subset $\mathbb{S}^{\text{Sat}} \subseteq \mathbb{S}$ such that $\text{SAT} \in \mathbb{S}^{\text{Sat}}$ and $\text{UNSAT} \notin \mathbb{S}^{\text{Sat}}$

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system

A set of *satisfiable proof states*, or *satisfiability predicate*, is a subset $\mathbb{S}^{\text{Sat}} \subseteq \mathbb{S}$ such that $\text{SAT} \in \mathbb{S}^{\text{Sat}}$ and $\text{UNSAT} \notin \mathbb{S}^{\text{Sat}}$

- \mathbb{P} is *refutation sound* (wrt \mathbb{S}^{Sat}) if no state $S \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat}
- \mathbb{P} is *solution sound* (wrt \mathbb{S}^{Sat}) if every $S \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}
- \mathbb{P} is *sound* (wrt \mathbb{S}^{Sat}) if it is both refutation and solution sound (wrt \mathbb{S}^{Sat})

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system

A set of *satisfiable proof states*, or *satisfiability predicate*, is a subset $\mathbb{S}^{\text{Sat}} \subseteq \mathbb{S}$ such that $\text{SAT} \in \mathbb{S}^{\text{Sat}}$ and $\text{UNSAT} \notin \mathbb{S}^{\text{Sat}}$

- \mathbb{P} is *refutation sound* (wrt \mathbb{S}^{Sat}) if **no** state $S \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat}
- \mathbb{P} is *solution sound* (wrt \mathbb{S}^{Sat}) if every $S \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}
- \mathbb{P} is *sound* (wrt \mathbb{S}^{Sat}) if it is **both** refutation and solution sound (wrt \mathbb{S}^{Sat})

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system

A set of *satisfiable proof states*, or *satisfiability predicate*, is a subset $\mathbb{S}^{\text{Sat}} \subseteq \mathbb{S}$ such that $\text{SAT} \in \mathbb{S}^{\text{Sat}}$ and $\text{UNSAT} \notin \mathbb{S}^{\text{Sat}}$

- \mathbb{P} is *refutation sound* (wrt \mathbb{S}^{Sat}) if **no** state $S \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat}
- \mathbb{P} is *solution sound* (wrt \mathbb{S}^{Sat}) if **every** $S \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}
- \mathbb{P} is *sound* (wrt \mathbb{S}^{Sat}) if it is **both** refutation and solution sound (wrt \mathbb{S}^{Sat})

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system

A set of *satisfiable proof states*, or *satisfiability predicate*, is a subset $\mathbb{S}^{\text{Sat}} \subseteq \mathbb{S}$ such that $\text{SAT} \in \mathbb{S}^{\text{Sat}}$ and $\text{UNSAT} \notin \mathbb{S}^{\text{Sat}}$

- \mathbb{P} is *refutation sound* (wrt \mathbb{S}^{Sat}) if **no** state $S \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat}
- \mathbb{P} is *solution sound* (wrt \mathbb{S}^{Sat}) if **every** $S \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}
- \mathbb{P} is *sound* (wrt \mathbb{S}^{Sat}) if it is **both** refutation and solution sound (wrt \mathbb{S}^{Sat})

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

- *weakly satisfiability preserving* whenever, for all states $S \in \mathbb{S}$,
 $S' \in \mathbb{S}^{\text{Sat}}$ for some $S' \in P(S)$ if $S \in \mathbb{S}^{\text{Sat}}$
- *(strongly) satisfiability preserving* whenever, for all states $S \in \mathbb{S}$,
 $S' \in \mathbb{S}^{\text{Sat}}$ for some $S' \in P(S)$ if and only if $S \in \mathbb{S}^{\text{Sat}}$

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

- *weakly satisfiability preserving* whenever, for all states $S \in \mathbb{S}$,
 $S' \in \mathbb{S}^{\text{Sat}}$ for some $S' \in P(S)$ if $S \in \mathbb{S}^{\text{Sat}}$
- *(strongly) satisfiability preserving* whenever, for all states $S \in \mathbb{S}$,
 $S' \in \mathbb{S}^{\text{Sat}}$ for some $S' \in P(S)$ if and only if $S \in \mathbb{S}^{\text{Sat}}$

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

- *weakly satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$
- *(strongly) satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if and only if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

- *weakly satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$
- *(strongly) satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if and only if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$

Note: We will say just “satisfiability preserving” to mean “strongly satisfiability preserving”

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

- *weakly satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$
- *(strongly) satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if and only if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$

Theorem 1

\mathbb{P} is sound if each of its proof rules is satisfiability preserving

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

- *weakly satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$
- *(strongly) satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if and only if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$

Theorem 1

\mathbb{P} is sound if each of its proof rules is satisfiability preserving

Proof By induction on the length of derivations

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

- *weakly satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$
- *(strongly) satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if and only if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$

Is \mathbb{P}_{PL} sound wrt \mathbb{S}^{Sat} ?

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system and let \mathbb{S}^{Sat} be a satisfiability predicate

A proof rule $P \in \mathbb{R}$ is

- *weakly satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$
- *(strongly) satisfiability preserving* whenever, for all states $\mathcal{S} \in \mathbb{S}$,
 $\mathcal{S}' \in \mathbb{S}^{\text{Sat}}$ for some $\mathcal{S}' \in P(\mathcal{S})$ if and only if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$

Is \mathbb{P}_{PL} sound wrt \mathbb{S}^{Sat} ? Yes!

Soundness Examples

Consider again $\mathbb{P}_{\text{PL}} = \langle \mathbb{S}_{\text{PL}}, \mathbb{R}_{\text{PL}} \rangle$

Let $\mathbb{S}^{\text{Sat}} = \{ \text{SAT} \} \cup \{ \mathcal{S} \in \mathbb{S}_{\text{PL}} \mid \mathcal{S} \subseteq \mathcal{W} \text{ and } \mathcal{S} \text{ is propositionally satisfiable} \}$

Soundness Examples

Consider again $\mathbb{P}_{\text{PL}} = \langle \mathbb{S}_{\text{PL}}, \mathbb{R}_{\text{PL}} \rangle$

Let $\mathbb{S}^{\text{Sat}} = \{ \text{SAT} \} \cup \{ \mathcal{S} \in \mathbb{S}_{\text{PL}} \mid \mathcal{S} \subseteq \mathcal{W} \text{ and } \mathcal{S} \text{ is propositionally satisfiable} \}$

Exercise. Argue that each of these rules is strongly satisfiability preserving wrt \mathbb{S}^{Sat}

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

$$\text{CONTR} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg\alpha \in \mathcal{S}}{\text{UNSAT}}$$

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula in } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg\alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg\alpha\}}$$

Exercise

Consider again $\mathbb{P}_{\text{PL}} = \langle \mathbb{S}_{\text{PL}}, \mathbb{R}_{\text{PL}} \rangle$

Let $\mathbb{S}^{\text{Sat}} = \{ \text{SAT} \} \cup \{ \mathcal{S} \in \mathbb{S}_{\text{PL}} \mid \mathcal{S} \subseteq \mathcal{W} \text{ and } \mathcal{S} \text{ is propositionally satisfiable} \}$

Which of these new rules is weakly/strongly/non satisfiability preserving wrt \mathbb{S}^{Sat} ?

$$\text{ADD-VAR1} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \notin \mathcal{S} \quad \neg\alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\}}$$

$$\text{ADD-VAR2} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs nowhere in } \mathcal{S}}{\mathcal{S} \cup \{\alpha\}}$$

$$\text{AND1} \quad \frac{\alpha \wedge \beta \in \mathcal{S}}{\mathcal{S} \cup \{\alpha\}}$$

$$\text{AND2} \quad \frac{\alpha \wedge \beta \in \mathcal{S}}{\mathcal{S} \cup \{\alpha, \beta\}}$$

$$\text{OR-SPLIT} \quad \frac{\alpha \vee \beta \in \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \mid \mathcal{S} \cup \{\beta\}}$$

$$\text{AND3} \quad \frac{\mathcal{S} = \mathcal{S}_1 \cup \{\alpha \wedge \beta\}}{\mathcal{S}_1 \cup \{\alpha\}}$$

$$\text{AND4} \quad \frac{\mathcal{S} = \mathcal{S}_1 \cup \{\alpha \wedge \beta\}}{\mathcal{S}_1 \cup \{\alpha, \beta\}}$$

$$\text{UNSAT} \quad \frac{\mathcal{S} = \text{UNSAT}}{\{\alpha\}}$$

Completeness and Termination

Let \mathbb{P} be a satisfiability proof system with satisfiability predicate \mathbb{S}^{Sat}

- \mathbb{P} is *complete* (wrt \mathbb{S}^{Sat}) if for every $S \in \mathbb{S}$,
there exists either a *corroboration* or a *refutation* (wrt \mathbb{S}^{Sat}) of S in \mathbb{P}
- \mathbb{P} is *terminating* if every derivation in \mathbb{P} is finite

Recall

\mathbb{P} is *sound* (wrt \mathbb{S}^{Sat}) if (i) no state $S \in \mathbb{S}$ that has a *refutation* in \mathbb{P} is in \mathbb{S}^{Sat} , and
(ii) every $S \in \mathbb{S}$ that has a *corroboration* in \mathbb{P} is in \mathbb{S}^{Sat}

Completeness and Termination

Let \mathbb{P} be a satisfiability proof system with satisfiability predicate \mathbb{S}^{Sat}

- \mathbb{P} is *complete* (wrt \mathbb{S}^{Sat}) if for every $\mathcal{S} \in \mathbb{S}$,
there exists either a corroboration or a refutation (wrt \mathbb{S}^{Sat}) of \mathcal{S} in \mathbb{P}
- \mathbb{P} is *terminating* if every derivation in \mathbb{P} is finite

Recall

\mathbb{P} is *sound* (wrt \mathbb{S}^{Sat}) if (i) no state $\mathcal{S} \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat} , and
(ii) every $\mathcal{S} \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}

Completeness and Termination

Let \mathbb{P} be a satisfiability proof system with satisfiability predicate \mathbb{S}^{Sat}

- \mathbb{P} is *complete* (wrt \mathbb{S}^{Sat}) if for every $\mathcal{S} \in \mathbb{S}$,
there exists either a corroboration or a refutation (wrt \mathbb{S}^{Sat}) of \mathcal{S} in \mathbb{P}
- \mathbb{P} is *terminating* if every derivation in \mathbb{P} is finite

Recall

\mathbb{P} is sound (wrt \mathbb{S}^{Sat}) if (i) no state $\mathcal{S} \in \mathbb{S}$ that has a refutation in \mathbb{P} is in \mathbb{S}^{Sat} , and
(ii) every $\mathcal{S} \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}

Completeness and Termination

Let \mathbb{P} be a satisfiability proof system with satisfiability predicate \mathbb{S}^{Sat}

- \mathbb{P} is *complete* (wrt \mathbb{S}^{Sat}) if for every $\mathcal{S} \in \mathbb{S}$,
there exists either a corroboration or a refutation (wrt \mathbb{S}^{Sat}) of \mathcal{S} in \mathbb{P}
- \mathbb{P} is *terminating* if every derivation in \mathbb{P} is finite

Recall

\mathbb{P} is **sound** (wrt \mathbb{S}^{Sat}) if (i) no state $\mathcal{S} \in \mathbb{S}$ that has a **refutation** in \mathbb{P} is in \mathbb{S}^{Sat} , and
(ii) every $\mathcal{S} \in \mathbb{S}$ that has a **corroboration** in \mathbb{P} is in \mathbb{S}^{Sat}

Completeness and Termination

\mathbb{P}_{PL} proof rules:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

$$\text{CONTR} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg \alpha \in \mathcal{S}}{\text{UNSAT}}$$

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula in } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg \alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg \alpha\}}$$

Completeness and Termination

\mathbb{P}_{PL} proof rules:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

$$\text{CONTR} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg \alpha \in \mathcal{S}}{\text{UNSAT}}$$

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula in } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg \alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} terminating?

Completeness and Termination

\mathbb{P}_{PL} proof rules:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

$$\text{CONTR} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg \alpha \in \mathcal{S}}{\text{UNSAT}}$$

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula in } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg \alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} terminating? Yes!

Completeness and Termination

\mathbb{P}_{PL} proof rules:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

$$\text{CONTR} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg \alpha \in \mathcal{S}}{\text{UNSAT}}$$

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula in } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg \alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} terminating? **Yes!**

How would you prove it?

Completeness and Termination

\mathbb{P}_{PL} proof rules:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

$$\text{CONTR} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg \alpha \in \mathcal{S}}{\text{UNSAT}}$$

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula in } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg \alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} complete?

Completeness and Termination

\mathbb{P}_{PL} proof rules:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

$$\text{CONTR} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg \alpha \in \mathcal{S}}{\text{UNSAT}}$$

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula in } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg \alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} complete? **No!**

Can you find a satisfiable state other than **SAT** and **UNSAT** that is irreducible?

Completeness and Termination

\mathbb{P}_{PL} proof rules:

$$\text{MP} \quad \frac{\alpha \in \mathcal{S} \quad \alpha \Rightarrow \beta \in \mathcal{S} \quad \beta \notin \mathcal{S}}{\mathcal{S} \cup \{\beta\}}$$

$$\text{CONTR} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg \alpha \in \mathcal{S}}{\text{UNSAT}}$$

$$\text{SPLIT} \quad \frac{\alpha \in \mathcal{V} \quad \alpha \text{ occurs in some formula in } \mathcal{S} \quad \alpha \notin \mathcal{S} \quad \neg \alpha \notin \mathcal{S}}{\mathcal{S} \cup \{\alpha\} \quad | \quad \mathcal{S} \cup \{\neg \alpha\}}$$

Is \mathbb{P}_{PL} complete? **No!**

Can you find a satisfiable state other than **SAT** and **UNSAT** that is irreducible?

How about $\{b\}$?

Proof Systems and Decision Procedures

If \mathbb{P} is **sound** and **complete** wrt \mathbb{S}^{Sat} and **terminating**,
it induces a **decision procedure** for checking whether a \mathcal{S} is in \mathbb{S}^{Sat} :

- Simply start with \mathcal{S} and produce any derivation
- It must eventually terminate
- If the final tree is a refutation tree, then $\mathcal{S} \notin \mathbb{S}^{\text{Sat}}$
- Otherwise, $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$

Proof Systems and Decision Procedures

If \mathbb{P} is **sound** and **complete** wrt \mathbb{S}^{Sat} and **terminating**,
it induces a **decision procedure** for checking whether a \mathcal{S} is in \mathbb{S}^{Sat} :

- Simply start with \mathcal{S} and produce any derivation
- It must eventually terminate
- If the final tree is a refutation tree, then $\mathcal{S} \notin \mathbb{S}^{\text{Sat}}$
- Otherwise, $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$

A Decision Procedure for Propositional Logic

Recall: A **variable assignment** v is a partial mapping from \mathcal{V} to $\{\text{true}, \text{false}\}$, and $v \models \mathcal{S}$ means that each formula in \mathcal{S} evaluates to **true** under v

Let \mathcal{S} be a set of propositional formulas

The *variable assignment* v *induced* by \mathcal{S} is defined as follows:

$$v(p) = \begin{cases} \text{true} & \text{if } p \in \mathcal{S} \\ \text{false} & \text{if } \neg p \in \mathcal{S} \\ \text{undefined} & \text{otherwise} \end{cases}$$

\mathcal{S} *fully defines* v if

1. v is the variable assignment induced by \mathcal{S} and
2. for each variable p occurring in \mathcal{S} , either $p \in \mathcal{S}$ or $\neg p \in \mathcal{S}$

A Decision Procedure for Propositional Logic

Recall: A **variable assignment** v is a partial mapping from \mathcal{V} to $\{\text{true}, \text{false}\}$, and $v \models \mathcal{S}$ means that each formula in \mathcal{S} evaluates to **true** under v

Let \mathcal{S} be a set of propositional formulas

The *variable assignment* v induced by \mathcal{S} is defined as follows:

$$v(p) = \begin{cases} \text{true} & \text{if } p \in \mathcal{S} \\ \text{false} & \text{if } \neg p \in \mathcal{S} \\ \text{undefined} & \text{otherwise} \end{cases}$$

\mathcal{S} fully defines v if

1. v is the variable assignment induced by \mathcal{S} and
2. for each variable p occurring in \mathcal{S} , either $p \in \mathcal{S}$ or $\neg p \in \mathcal{S}$

A Decision Procedure for Propositional Logic

Recall: A **variable assignment** v is a partial mapping from \mathcal{V} to $\{\text{true}, \text{false}\}$, and $v \models \mathcal{S}$ means that each formula in \mathcal{S} evaluates to **true** under v

Let \mathcal{S} be a set of propositional formulas

The **variable assignment** v induced by \mathcal{S} is defined as follows:

$$v(p) = \begin{cases} \text{true} & \text{if } p \in \mathcal{S} \\ \text{false} & \text{if } \neg p \in \mathcal{S} \\ \text{undefined} & \text{otherwise} \end{cases}$$

\mathcal{S} fully defines v if

1. v is the variable assignment induced by \mathcal{S} and
2. for each variable p occurring in \mathcal{S} , either $p \in \mathcal{S}$ or $\neg p \in \mathcal{S}$

A Decision Procedure for Propositional Logic

Recall: A **variable assignment** v is a partial mapping from \mathcal{V} to $\{\text{true}, \text{false}\}$, and $v \models \mathcal{S}$ means that each formula in \mathcal{S} evaluates to **true** under v

Let \mathcal{S} be a set of propositional formulas

The **variable assignment** v *induced* by \mathcal{S} is defined as follows:

$$v(p) = \begin{cases} \text{true} & \text{if } p \in \mathcal{S} \\ \text{false} & \text{if } \neg p \in \mathcal{S} \\ \text{undefined} & \text{otherwise} \end{cases}$$

\mathcal{S} *fully defines* v if

1. v is the variable assignment induced by \mathcal{S} and
2. for each variable p occurring in \mathcal{S} , either $p \in \mathcal{S}$ or $\neg p \in \mathcal{S}$

A Decision Procedure for Propositional Logic

Let $\mathbb{P}_E = \langle \mathbb{S}_E, \mathbb{R}_E \rangle$ where

- \mathbb{S}_E consists of all sets of wffs plus the distinguished states **SAT** and **UNSAT**
- \mathbb{R}_E consists of the following proof rules:

$$\text{SPLIT} \quad \frac{p \in \mathcal{V} \quad p \text{ occurs in some formula in } \mathcal{S} \quad p \notin \mathcal{S} \quad \neg p \notin \mathcal{S}}{\mathcal{S} \cup \{p\} \quad \mid \quad \mathcal{S} \cup \{\neg p\}}$$

$$\text{SAT} \quad \frac{\mathcal{S} \text{ fully defines } \nu \quad \nu \models \mathcal{S}}{\text{SAT}}$$

$$\text{UNSAT} \quad \frac{\mathcal{S} \text{ fully defines } \nu \quad \nu \nvDash \alpha \text{ for some } \alpha \in \mathcal{S}}{\text{UNSAT}}$$

A Decision Procedure for Propositional Logic

Let $\mathbb{P}_E = \langle \mathbb{S}_E, \mathbb{R}_E \rangle$ where

- \mathbb{S}_E consists of all sets of wffs plus the distinguished states **SAT** and **UNSAT**
- \mathbb{R}_E consists of the following proof rules:

$$\text{SPLIT} \quad \frac{p \in \mathcal{V} \quad p \text{ occurs in some formula in } \mathcal{S} \quad p \notin \mathcal{S} \quad \neg p \notin \mathcal{S}}{\mathcal{S} \cup \{p\} \quad | \quad \mathcal{S} \cup \{\neg p\}}$$

$$\text{SAT} \quad \frac{\mathcal{S} \text{ fully defines } v \quad v \models \mathcal{S}}{\text{SAT}}$$

$$\text{UNSAT} \quad \frac{\mathcal{S} \text{ fully defines } v \quad v \not\models \alpha \text{ for some } \alpha \in \mathcal{S}}{\text{UNSAT}}$$

A Decision Procedure for Propositional Logic

Let \mathbb{S}^{Sat} consist of SAT and all satisfiable sets of wffs

Theorem 1

Each rule in \mathbb{P}_E is satisfiability preserving wrt \mathbb{S}^{Sat}

Corollary 2

\mathbb{P}_E is sound wrt \mathbb{S}^{Sat}

Theorem 3

\mathbb{P}_E is terminating

Theorem 4

\mathbb{P}_E is complete

Therefore, \mathbb{P}_E can be used as a decision procedure for the SAT problem

Example

Consider the set of propositional formulas $\{a, \neg a \vee b, a \Rightarrow \neg b\}$

Example

Consider the set of propositional formulas $\{a, \neg a \vee b, a \Rightarrow \neg b\}$

$$\underline{\{a, \neg a \vee b, a \Rightarrow \neg b\}}$$

Example

Consider the set of propositional formulas $\{a, \neg a \vee b, a \Rightarrow \neg b\}$

$$\frac{\{a, \neg a \vee b, a \Rightarrow \neg b\}}{\{a, \neg a \vee b, a \Rightarrow \neg b, b\} \quad \{a, \neg a \vee b, a \Rightarrow \neg b, \neg b\}} \text{ SPLIT}$$

Example

Consider the set of propositional formulas $\{a, \neg a \vee b, a \Rightarrow \neg b\}$

$$\frac{\{a, \neg a \vee b, a \Rightarrow \neg b\}}{\{a, \neg a \vee b, a \Rightarrow \neg b, b\} \quad \{a, \neg a \vee b, a \Rightarrow \neg b, \neg b\}} \text{ SPLIT}$$

Example

Consider the set of propositional formulas $\{a, \neg a \vee b, a \Rightarrow \neg b\}$

$$\frac{\{a, \neg a \vee b, a \Rightarrow \neg b\}}{\frac{\{a, \neg a \vee b, a \Rightarrow \neg b, b\} \text{ UNSAT}}{\{a, \neg a \vee b, a \Rightarrow \neg b, \neg b\}}} \text{ SPLIT}$$

Example

Consider the set of propositional formulas $\{a, \neg a \vee b, a \Rightarrow \neg b\}$

$$\frac{\{a, \neg a \vee b, a \Rightarrow \neg b\}}{\frac{\{a, \neg a \vee b, a \Rightarrow \neg b, b\} \text{ UNSAT}}{\{a, \neg a \vee b, a \Rightarrow \neg b, \neg b\}}} \text{ SPLIT}$$

Example

Consider the set of propositional formulas $\{a, \neg a \vee b, a \Rightarrow \neg b\}$

$$\frac{\{a, \neg a \vee b, a \Rightarrow \neg b\}}{\frac{\{a, \neg a \vee b, a \Rightarrow \neg b, b\} \text{ UNSAT}}{\text{UNSAT}} \quad \frac{\{a, \neg a \vee b, a \Rightarrow \neg b, \neg b\} \text{ UNSAT}}{\text{UNSAT}}} \text{ SPLIT}$$

Example

Alternatively, consider the set of propositional formulas $\{a, \neg a \vee \neg b, a \wedge \neg b\}$

Example

Alternatively, consider the set of propositional formulas $\{a, \neg a \vee \neg b, a \wedge \neg b\}$

$\{a, \neg a \vee \neg b, a \wedge \neg b\}$

Example

Alternatively, consider the set of propositional formulas $\{a, \neg a \vee \neg b, a \wedge \neg b\}$

$$\frac{\{a, \neg a \vee \neg b, a \wedge \neg b\}}{\{a, \neg a \vee \neg b, a \wedge \neg b, b\} \quad \{a, \neg a \vee \neg b, a \wedge \neg b, \neg b\}} \text{ SPLIT}$$

Example

Alternatively, consider the set of propositional formulas $\{a, \neg a \vee \neg b, a \wedge \neg b\}$

$$\frac{\{a, \neg a \vee \neg b, a \wedge \neg b\}}{\{a, \neg a \vee \neg b, \textcolor{red}{a \wedge \neg b}, b\} \quad \{a, \neg a \vee \neg b, a \wedge \neg b, \neg b\}} \text{ SPLIT}$$

Example

Alternatively, consider the set of propositional formulas $\{a, \neg a \vee \neg b, a \wedge \neg b\}$

$$\frac{\{a, \neg a \vee \neg b, a \wedge \neg b\}}{\{a, \neg a \vee \neg b, a \wedge \neg b, b\} \text{ UNSAT} \quad \{a, \neg a \vee \neg b, a \wedge \neg b, \neg b\}} \text{ SPLIT}$$

Example

Alternatively, consider the set of propositional formulas $\{a, \neg a \vee \neg b, a \wedge \neg b\}$

$$\frac{\{a, \neg a \vee \neg b, a \wedge \neg b\}}{\frac{\{a, \neg a \vee \neg b, a \wedge \neg b, b\}}{\text{UNSAT}} \quad \frac{\{a, \neg a \vee \neg b, a \wedge \neg b, \neg b\}}{\text{SAT}}} \text{SPLIT}$$

Derivation Strategies

Sometimes, a proof system had some desirable properties
only if the rules are applied in a specific way

We capture those specific ways with rule application strategies

Derivation Strategies

Sometimes, a proof system had some desirable properties
only if the rules are applied in a specific way

We capture those specific ways with rule application **strategies**

Derivation Strategies

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a proof system

- A *(derivation) strategy* for \mathbb{P} is a partial function that, when defined, takes a derivation tree τ in \mathbb{P} and returns a new derivation tree τ' such that (τ, τ') is a derivation in \mathbb{P}
- A derivation D in \mathbb{P} *follows* a strategy π for \mathbb{P}
 1. if each non-initial derivation tree in D is the result of applying π to the previous derivation tree, and
 2. if D is finite, π is not defined for the final derivation tree

Derivation Strategies

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a proof system

- A *(derivation) strategy* for \mathbb{P} is a partial function that, when defined, takes a derivation tree τ in \mathbb{P} and returns a new derivation tree τ' such that (τ, τ') is a derivation in \mathbb{P}
- A derivation D in \mathbb{P} *follows* a strategy π for \mathbb{P}
 1. if each non-initial derivation tree in D is the result of applying π to the previous derivation tree, and
 2. if D is finite, π is not defined for the final derivation tree

Derivation Strategies

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a proof system

- A *(derivation) strategy* for \mathbb{P} is a partial function that, when defined, takes a derivation tree τ in \mathbb{P} and returns a new derivation tree τ' such that (τ, τ') is a derivation in \mathbb{P}
- A derivation D in \mathbb{P} *follows* a strategy π for \mathbb{P}
 1. if each non-initial derivation tree in D is the result of applying π to the previous derivation tree, and
 2. if D is finite, π is not defined for the final derivation tree

Derivation Strategy Example

Let \prec be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a \prec \neg a \prec b \prec \neg b \prec \dots$)

Consider the following strategy π_{PL} for \mathbb{P}_{PL} , usable when every formula is either a literal or an implication between literal:

Derivation Strategy Example

Let \prec be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a \prec \neg a \prec b \prec \neg b \prec \dots$)

Consider the following strategy π_{PL} for \mathbb{P}_{PL} , usable when every formula is either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree; if none, then stop (π_{PL} is undefined in that case)
2. if MP applies, apply it to the formulas l_1 and $l_1 \Rightarrow l_2$ where l_1 is minimal according to \prec , breaking ties by choosing a minimal l_2
3. Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in the state
4. Otherwise, apply CONTR if possible

Derivation Strategy Example

Let \prec be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a \prec \neg a \prec b \prec \neg b \prec \dots$)

Consider the following strategy π_{PL} for \mathbb{P}_{PL} , usable when every formula is either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree; if none, then stop (π_{PL} is undefined in that case)
2. if MP applies, apply it to the formulas l_1 and $l_1 \rightarrow l_2$ where l_1 is minimal according to \prec , breaking ties by choosing a minimal l_2
3. Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in the state
4. Otherwise, apply CONTR if possible

Derivation Strategy Example

Let \prec be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a \prec \neg a \prec b \prec \neg b \prec \dots$)

Consider the following strategy π_{PL} for \mathbb{P}_{PL} , usable when every formula is either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree; if none, then stop (π_{PL} is undefined in that case)
2. if **MP** applies, apply it to the formulas l_1 and $l_1 \Rightarrow l_2$ where l_1 is minimal according to \prec , breaking ties by choosing a minimal l_2
3. Otherwise, if **SPLIT** applies, apply it to the smallest variable p among those occurring in the state
4. Otherwise, apply **CONTR** if possible

Derivation Strategy Example

Let \prec be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a \prec \neg a \prec b \prec \neg b \prec \dots$)

Consider the following strategy π_{PL} for \mathbb{P}_{PL} , usable when every formula is either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree; if none, then stop (π_{PL} is undefined in that case)
2. if **MP** applies, apply it to the formulas l_1 and $l_1 \Rightarrow l_2$ where l_1 is minimal according to \prec , breaking ties by choosing a minimal l_2
3. Otherwise, if **SPLIT** applies, apply it to the smallest variable p among those occurring in the state
4. Otherwise, apply **CONTR** if possible

Derivation Strategy Example

Let \prec be a total order on literals in \mathcal{L} defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a \prec \neg a \prec b \prec \neg b \prec \dots$)

Consider the following strategy π_{PL} for \mathbb{P}_{PL} , usable when every formula is either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree; if none, then stop (π_{PL} is undefined in that case)
2. if **MP** applies, apply it to the formulas l_1 and $l_1 \Rightarrow l_2$ where l_1 is minimal according to \prec , breaking ties by choosing a minimal l_2
3. Otherwise, if **SPLIT** applies, apply it to the smallest variable p among those occurring in the state
4. Otherwise, apply **CONTR** if possible

Exercise

Apply π_{PL} to

$$\mathcal{S} = \{a \Rightarrow c, a \Rightarrow \neg b, \neg b \Rightarrow \neg a\}$$

Properties of Strategies

Let \mathbb{S}^{Sat} be a satisfiability predicate for \mathbb{P}

A strategy π for \mathbb{P} is

Properties of Strategies

Let \mathbb{S}^{Sat} be a satisfiability predicate for \mathbb{P}

A strategy π for \mathbb{P} is

- *solution sound* wrt to \mathbb{S}^{Sat} if $S \in \mathbb{S}^{\text{Sat}}$
whenever there exists a corroboration in \mathbb{P} from S following π
- *refutation sound* wrt to \mathbb{S}^{Sat} if $S \notin \mathbb{S}^{\text{Sat}}$
whenever there exists a refutation in \mathbb{P} from S following π
- *sound* wrt \mathbb{S}^{Sat} if it is both refutation sound and solution sound wrt \mathbb{S}^{Sat}
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

Properties of Strategies

Let \mathbb{S}^{Sat} be a satisfiability predicate for \mathbb{P}

A strategy π for \mathbb{P} is

- *solution sound* wrt to \mathbb{S}^{Sat} if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$
whenever there exists a corroboration in \mathbb{P} from \mathcal{S} following π
- *refutation sound* wrt to \mathbb{S}^{Sat} if $\mathcal{S} \notin \mathbb{S}^{\text{Sat}}$
whenever there exists a refutation in \mathbb{P} from \mathcal{S} following π
- *sound* wrt \mathbb{S}^{Sat} if it is both refutation sound and solution sound wrt \mathbb{S}^{Sat}
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

Properties of Strategies

Let \mathbb{S}^{Sat} be a satisfiability predicate for \mathbb{P}

A strategy π for \mathbb{P} is

- *solution sound* wrt to \mathbb{S}^{Sat} if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$
whenever there exists a corroboration in \mathbb{P} from \mathcal{S} following π
- *refutation sound* wrt to \mathbb{S}^{Sat} if $\mathcal{S} \notin \mathbb{S}^{\text{Sat}}$
whenever there exists a refutation in \mathbb{P} from \mathcal{S} following π
- *sound* wrt \mathbb{S}^{Sat} if it is both refutation sound and solution sound wrt \mathbb{S}^{Sat}
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

Properties of Strategies

Let \mathbb{S}^{Sat} be a satisfiability predicate for \mathbb{P}

A strategy π for \mathbb{P} is

- *solution sound* wrt to \mathbb{S}^{Sat} if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$
whenever there exists a corroboration in \mathbb{P} from \mathcal{S} following π
- *refutation sound* wrt to \mathbb{S}^{Sat} if $\mathcal{S} \notin \mathbb{S}^{\text{Sat}}$
whenever there exists a refutation in \mathbb{P} from \mathcal{S} following π
- *sound* wrt \mathbb{S}^{Sat} if it is both refutation sound and solution sound wrt \mathbb{S}^{Sat}
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

Properties of Strategies

Let \mathbb{S}^{Sat} be a satisfiability predicate for \mathbb{P}

A strategy π for \mathbb{P} is

- *solution sound* wrt to \mathbb{S}^{Sat} if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$
whenever there exists a corroboration in \mathbb{P} from \mathcal{S} following π
- *refutation sound* wrt to \mathbb{S}^{Sat} if $\mathcal{S} \notin \mathbb{S}^{\text{Sat}}$
whenever there exists a refutation in \mathbb{P} from \mathcal{S} following π
- *sound* wrt \mathbb{S}^{Sat} if it is both refutation sound and solution sound wrt \mathbb{S}^{Sat}
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

Properties of Strategies

Let \mathbb{S}^{Sat} be a satisfiability predicate for \mathbb{P}

A strategy π for \mathbb{P} is

- *solution sound* wrt to \mathbb{S}^{Sat} if $\mathcal{S} \in \mathbb{S}^{\text{Sat}}$
whenever there exists a corroboration in \mathbb{P} from \mathcal{S} following π
- *refutation sound* wrt to \mathbb{S}^{Sat} if $\mathcal{S} \notin \mathbb{S}^{\text{Sat}}$
whenever there exists a refutation in \mathbb{P} from \mathcal{S} following π
- *sound* wrt \mathbb{S}^{Sat} if it is both refutation sound and solution sound wrt \mathbb{S}^{Sat}
- *terminating* if every derivation in \mathbb{P} following π is finite
- *progressive* if it is defined for every derivation tree
that is not a refutation tree or a saturated tree

Properties of Strategies

Let \mathbb{S}^{Sat} be a satisfiability predicate for \mathbb{P}

Note:

- If \mathbb{P} is sound wrt \mathbb{S}^{Sat} , then every strategy for \mathbb{P} is also sound wrt \mathbb{S}^{Sat}
- If \mathbb{P} is terminating, then every strategy for \mathbb{P} is also terminating

Theorem 5

\mathbb{P} is complete iff there exists a progressive and terminating strategy for it

Properties of Strategies

Let \mathbb{S}^{Sat} be a satisfiability predicate for \mathbb{P}

Note:

- If \mathbb{P} is sound wrt \mathbb{S}^{Sat} , then every strategy for \mathbb{P} is also sound wrt \mathbb{S}^{Sat}
- If \mathbb{P} is terminating, then every strategy for \mathbb{P} is also terminating

Theorem 5

\mathbb{P} is complete iff there exists a progressive and terminating strategy for it