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Proofs for Automated Reasoning

In AR, representing algorithms as proof systems has several advantages

® They are modularity and composable
® |tis easier to prove things about the algorithms

® Can choose which implementation aspects to highlight and which to leave out
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Abstract Proof Systems

An isatuple

where S is a set of proof states and [} is a set of proof rules
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Abstract Proof Systems

An isatuple

where S is a set of proof states and [} is a set of proof rules

Data structure representing what is known at each stage of the proof

Example: a set of propositional formulas

A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state to the state set
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Proof Rules
® Take an input proof state

® Areonly applicable if & satisfies some

® Return one or more proof states, the
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Proof Rules

® Take an input proof state
® Areonly applicable if & satisfies some

® Return one or more proof states, the

Notation:

® Risthe rule’s name (for reference)
® Each P isa premise, each C;is a conclusion

Note: Intuitively, premises are conjunctive; conclusions are disjunctive
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A Proof System for Propositional Logic

Let where every proof state is a set of wffs of PL
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A Proof System for Propositional Logic

Let where every proof state is a set of wffs of PL

If contains the rule (MP for short) we can write MP as follows:

MP

Technically, MP is a proof rule

® o and Jare , and each possible instantiation with wffs is a separate proof rule

® For convenience, we will refer to proof rule schemas also as proof rules
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Example

MP

Let be propositional variables

What is the result of applying MP to the following proof states?
1.
2.
3. does not apply
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A Proof System for Propositional Logic

Let ) be the set of all propositional variables
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Let ) be the set of all propositional variables

Consider the following rule for

SPLIT

Can we apply SPLIT to ?

Yes, if we choose to instantiate o with or ¢ but not
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A Proof System for Propositional Logic
Let ) be the set of all propositional variables

Consider the following rule for

SPLIT

Let SPLIT, be the proof rule obtained by instantiating o with

Then, formally:
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A Proof System for Propositional Logic

Let ) be the set of all propositional variables and let

is the set of all propositional , variables or negations of variables
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A Proof System for Propositional Logic

Let ) be the set of all propositional variables and let

is the set of all propositional , variables or negations of variables

Now consider the following rule for
CONTR

where is a distinguished state

Note: The rule applies only to states with contradictory literals

9/32



Derivation Trees

Let be an abstract proof system
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Derivation Trees

Let be an abstract proof system

o A (in ) from &y is a finite tree with
® nodes from
® root
® anedge from anode & to anode &7 iff
is a conclusion of the application of a rule of ¥ to

e Aproof state is (in ) if one or more proof rules of ¥ applies to
Itis (in I?) otherwise
® Aderivation treeis (in I?) if at least one of its leaves is reducible

Itis (in I?) otherwise
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Derivation Tree Example

What could a derivation tree from look like?
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Derivation Tree Example

What could a derivation tree from look like?

This treeis irreducible
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Let be an abstract proof system
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Derivations

Let be an abstract proof system
o A (in ) from a derivation tree 7, is a (possibly infinite) sequence of
derivation trees where
each is derivable from 7; by applying a rule from [ to a leaf of

e Aderivationis if itis finite and ends with an irreducible tree
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Satisfiability Proof Systems

Let be an abstract proof system
isa if 5 includes the distinguished states and
® Aruleof Risa rule if its only conclusion is
® Aruleof Risa rule if its only conclusion is
° A (from & in P) is a derivation tree from & with only leaves
o A (of S'in I?) is a derivation from & ending with a refutation tree
e A (from Sin ) is a derivation tree from
with at least one leaf
o A (of S'in [P from) is a derivation from & ending

with a corroborating tree
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A Satisfiability Proof System for Propositional Logic

Can we extend to be a satisfiability proof system?
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A Satisfiability Proof System for Propositional Logic

Can we extend to be a satisfiability proof system?

Yes, simply by adding sAT to
Rule CoNTR s a refuting rule

We have no corroborating rules, yet
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e [Pis (wrt ) if no state
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Soundness

Let be a satisfiability proof system
A set of ,or ,is asubset such that
and
e js (wrt ) if no state that has a refutationin I’ isin
e is (wrt ) if every that has a corroboration in Pisin

® Vis (wrt 5°7%) if it is both refutation and solution sound (wrt 5°°)
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Soundness

Let be a satisfiability proof system and
let be a satisfiability predicate

A proof rule is
° whenever, for all states ,
for some if
L whenever, for all states ,
for some if and only if

Note: We will say just “satisfiability preserving” to mean “strongly satisfiability preserving”
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Soundness
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A proof rule is
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for some if
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Theorem 1
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Soundness

Let be a satisfiability proof system and
let be a satisfiability predicate

A proof rule is
° whenever, for all states ,
for some if
L whenever, for all states ,
for some if and only if
Theorem 1

is sound if each of its proof rules is satisfiability preserving

Proof By induction on the length of derivations
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Soundness

Let be a satisfiability proof system and
let be a satisfiability predicate

A proof rule is
° whenever, for all states ,
for some if
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for some if and only if
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Soundness

Let be a satisfiability proof system and
let be a satisfiability predicate

A proof rule is
° whenever, for all states ,
for some if
L whenever, for all states ,
for some if and only if

Is sound wrt ? Yes!
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Soundness Examples

Consider again

Let
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Soundness Examples

Consider again

Let
Exercise. Argue that each of these rules is strongly satisfiability preserving wrt

MP CONTR

SPLIT
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Exercise

Consider again

Let

Which of these new rules is weakly/strongly/non satisfiability preserving wrt ?

ADD-VAR1 ADD-VAR2

AND1 AND2 OR-SPLIT

AND3 AND4 UNSAT
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Completeness and Termination

Let [P be a satisfiability proof system with satisfiability predicate
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Completeness and Termination

Let [P be a satisfiability proof system with satisfiability predicate

e [Pis (wrt ) if for every ,
there exists either a corroboration or a refutation (wrt )of Sin

® is if every derivation in I’ is finite

Recall

is sound (wrt ) if no state that has a refutation in P isin ,and
every that has a corroborationin P isin
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Completeness and Termination

proof rules:

MP CONTR

SPLIT
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Completeness and Termination

proof rules:
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SPLIT

Is terminating?  Yes!
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Completeness and Termination

proof rules:

MP

SPLIT

Is terminating?  Yes!

How would you prove it?

CONTR
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Completeness and Termination
proof rules:

MP

SPLIT

Is complete?  No!

Can you find a satisfiable state other than

How about ?

and

CONTR

thatisirreducible?
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Proof Systems and Decision Procedures

If is sound and complete wrt and terminating,
itinduces a decision procedure for checking whethera S'isin
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Proof Systems and Decision Procedures

If is sound and complete wrt and terminating,
itinduces a decision procedure for checking whethera S'isin

e Simply start with & and produce any derivation
® |t must eventually terminate
e |fthefinal treeis a refutation tree, then

® Otherwise,
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A Decision Procedure for Propositional Logic

Recall: A variable assignment v is a partial mapping from ) to , and
means that each formulain & evaluates to under
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A Decision Procedure for Propositional Logic

Recall: A variable assignment v is a partial mapping from ) to
means that each formulain & evaluates to under

, and

Let S be a set of propositional formulas

The is defined as follows:

if

1. visthevariable assignmentinduced by & and
2. foreach variable p occurringin S, either or
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A Decision Procedure for Propositional Logic

Let where

. consists of all sets of wffs plus the distinguished states sAT and
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A Decision Procedure for Propositional Logic

Let where

. consists of all sets of wffs plus the distinguished states

° consists of the following proof rules:

SPLIT

SAT

UNSAT

and
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A Decision Procedure for Propositional Logic

Let consist of and all satisfiable sets of wffs
Theorem 1
Each rule in ’1; is satisfiability preserving wrt
N\ J
' 7
Corollary 2
is sound wrt
N\ J
' 7
Theorem 3
is terminating
N\ J
Theorem 4
is complete
N\ J

Therefore, P; can be used as a decision procedure for the SAT problem
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Example

Consider the set of propositional formulas (. —a Vv b.a = —b}

{a,—-aV b,a = —b}

{a,-a Vv b,a= —b,b} {a,-a Vv b,a = —-b,—-b}
UNSAT UNSAT
UNSAT UNSAT

SPLIT
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Derivation Strategies

Sometimes, a proof system had some desirable properties

only if the rules are applied in a specific way
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Derivation Strategies

Sometimes, a proof system had some desirable properties

only if the rules are applied in a specific way

We capture those specific ways with rule application strategies
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Derivation Strategies

Let be a proof system

oA for ” is a partial function that, when defined,
takes a derivation tree 7 in I’ and returns a new derivation tree
such that is a derivation in

® Aderivation Din a strategy = for

1. if each non-initial derivation tree in D is the result of applying
to the previous derivation tree, and

2. if Dis finite, 7 is not defined for the final derivation tree
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Derivation Strategy Example

Let < be a total order on literals in £ defined as alphabetical by variable name,
with variables smaller than their negations (e.g., )
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if none, then stop (7, is undefined in that case)
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Derivation Strategy Example

Let < be a total order on literals in £ defined as alphabetical by variable name,
with variables smaller than their negations (e.g., )

Consider the following strategy 75, for , usable when every formula is
either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree;
if none, then stop (7, is undefined in that case)

2. if MP applies, apply it to the formulas /; and where [, is minimal according to —,
breaking ties by choosing a minimal

3. Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurringin
the state

4. Otherwise, apply CONTR if possible
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Exercise

Apply 74, to
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Properties of Strategies

Let be a satisfiability predicate for

A strategy 7 for IV is
o wrt to if
whenever there exists a corroboration in ” from & following

. wrt to if
whenever there exists a refutation in I from & following

. wrt if it is both refutation sound and solution sound wrt
. if every derivation in I’ following 7 is finite
° if itis defined for every derivation tree

that is not a refutation tree or a saturated tree
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Properties of Strategies

Let be a satisfiability predicate for

Note:
o |fPissound wrt , then every strategy for IV is also sound wrt

e |f ’is terminating, then every strategy for ” is also terminating
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Properties of Strategies

Let be a satisfiability predicate for

e h

Note:
o |fPissound wrt , then every strategy for IV is also sound wrt

e |f ’is terminating, then every strategy for ” is also terminating

e N
Theorem 5
is complete iff there exists a progressive and terminating strategy for it
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