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Agenda

• Abstract Proof Systems

• Satisfiability Proof Systems

• Soundness, Completeness, Termination, and Progressiveness

• A Decision Procedure for Propositional Logic

• Strategies
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Proofs for Automated Reasoning

In AR, representing algorithms as proof systems has several advantages

• They are modularity and composable

• It is easier to prove things about the algorithms

• Can choose which implementation aspects to highlight and which to leave out
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Abstract Proof Systems

An abstract proof system is a tuple P = ⟨S,R⟩
where S is a set of proof states and R is a set of proof rules

Proof state: Data structure representing what is known at each stage of the proof

Example: a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state S ⊇ {α, α ⇒ β } to the state set { S ∪ {β } }
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Proof Rules

• Take an input proof state S
• Are only applicable if S satisfies some premises

• Return one or more derived proof states, the conclusions

Notation:

R
P1 P2 · · · Pm

C1 | C2 | · · · | Cn

• R is the rule’s name (for reference)
• Each Pi is a premise, each Ci is a conclusion
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Proof Rules

• Take an input proof state S
• Are only applicable if S satisfies some premises

• Return one or more derived proof states, the conclusions

Notation:

R
P1 P2 · · · Pm

C1 | C2 | · · · | Cn

• R is the rule’s name (for reference)
• Each Pi is a premise, each Ci is a conclusion

Note: Intuitively, premises are conjunctive; conclusions are disjunctive
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A Proof System for Propositional Logic

Let PPL = ⟨SPL,RPL⟩ where every proof state S ∈ SPL is a set of wffs of PL

If RPL contains the modus ponens rule (MP for short) we can writeMP as follows:

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Technically,MP is a proof rule schema

• α and β are parameters, and each possible instantiation with wffs is a separate proof rule

• For convenience, we will refer to proof rule schemas also as proof rules
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Example

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β}

Let a, b, c, d be propositional variables

What is the result of applyingMP to the following proof states?
1. {a, a ⇒ b} {a, a ⇒ b, b}

2. {¬d, a ∨ ¬c,¬d ⇒ b} {a ∨ ¬c,¬d,¬d ⇒ b, b}

3. {c, d, c ⇒ d} does not apply
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A Proof System for Propositional Logic

Let V be the set of all propositional variables

Consider the following rule for PPL:

SPLIT
α ∈ V α occurs in some formula of S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}
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Can we apply SPLIT to {a ∨ (b ∧ c),¬d}?
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S ∪ {α} | S ∪ {¬α}

Can we apply SPLIT to {a ∨ (b ∧ c),¬d}?

Yes, if we choose to instantiate α with a, b, or c but not d
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Let V be the set of all propositional variables

Consider the following rule for PPL:

SPLIT
α ∈ V α occurs in some formula of S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}

Let SPLITb be the proof rule obtained by instantiating α with b

Then, formally:

{a ∨ (b ∧ c),¬d} SPLITb7−→ {{a ∨ (b ∧ c),¬d, b}, {a ∨ (b ∧ c),¬d,¬b}}
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A Proof System for Propositional Logic

Let V be the set of all propositional variables and let L = V ∪ {¬α | α ∈ V }

L is the set of all propositional literals, variables or negations of variables

Now consider the following rule for PPL:

CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

where UNSAT is a distinguished state

Note: The rule applies only to states with contradictory literals
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Derivation Trees

Let P = ⟨S,R⟩ be an abstract proof system

• A derivation tree (in P) from S0 is a finite tree with
• nodes from S
• root S0
• an edge from a node S to a node S ′ iff

S ′ is a conclusion of the application of a rule of R to S ′

• A proof state S ∈ S is reducible (in P) if one or more proof rules of R applies to S
It is irreducible (in P) otherwise

• A derivation tree is reducible (in P) if at least one of its leaves is reducible
It is irreducible (in P) otherwise
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Derivation Tree Example

What could a derivation tree from {b ⇒ c,¬b ⇒ c,¬c} look like?
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{b ⇒ c,¬b ⇒ c,¬c}
{b ⇒ c,¬b ⇒ c,¬c, b}

{b ⇒ c,¬b ⇒ c,¬c, b, c}
UNSAT
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{b ⇒ c,¬b ⇒ c,¬c,¬b}
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CONTR

MP

SPLIT

This tree is irreducible
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Derivations

Let P = ⟨S,R⟩ be an abstract proof system

• A derivation (in P) from a derivation tree τ0 is a (possibly infinite) sequence τ0, τ1, . . . of
derivation trees where
each τi+1 is derivable from τi by applying a rule from R to a leaf of τi

• A derivation is saturated if it is finite and ends with an irreducible tree
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Satisfiability Proof Systems

Let P = ⟨S,R⟩ be an abstract proof system

P is a satisfiability proof system if S includes the distinguished states SAT and UNSAT

• A rule of R is a refuting rule if its only conclusion is UNSAT

• A rule of R is a corroborating rule if its only conclusion is SAT

• A refutation tree (from S in P) is a derivation tree from S with only UNSAT leaves

• A refutation (of S in P) is a derivation from S ending with a refutation tree

• A corroboration tree (from S in P) is a derivation tree from S
with at least one SAT leaf

• A corroboration (of S in P from) is a derivation from S ending
with a corroborating tree
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A Satisfiability Proof System for Propositional Logic

Can we extend PPL to be a satisfiability proof system?

Yes, simply by adding SAT to SPL

Rule CONTR is a refuting rule

We have no corroborating rules, yet
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Soundness

Let P = ⟨S,R⟩ be a satisfiability proof system

A set of satisfiable proof states, or satisfiability predicate, is a subset SSat ⊆ S such that
SAT ∈ SSat and UNSAT ̸∈ SSat

• P is refutation sound (wrt SSat) if no state S ∈ S that has a refutation in P is in SSat

• P is solution sound (wrt SSat) if every S ∈ S that has a corroboration in P is in SSat

• P is sound (wrt SSat) if it is both refutation and solution sound (wrt SSat)
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Soundness Examples

Consider again PPL = ⟨SPL,RPL⟩

Let SSat = { SAT } ∪ {S ∈ SPL | S ⊆ W and S is propositionally satisfiable }
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Consider again PPL = ⟨SPL,RPL⟩

Let SSat = { SAT } ∪ {S ∈ SPL | S ⊆ W and S is propositionally satisfiable }

Exercise. Argue that each of these rules is strongly satisfiability preserving wrt SSat

MP
α ∈ S α ⇒ β ∈ S β ̸∈ S

S ∪ {β} CONTR
α ∈ V α ∈ S ¬α ∈ S

UNSAT

SPLIT
α ∈ V α occurs in some formula in S α ̸∈ S ¬α ̸∈ S

S ∪ {α} | S ∪ {¬α}
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Exercise

Consider again PPL = ⟨SPL,RPL⟩

Let SSat = { SAT } ∪ {S ∈ SPL | S ⊆ W and S is propositionally satisfiable }

Which of these new rules is weakly/strongly/non satisfiability preserving wrt SSat?

ADD-VAR1
α ∈ V α ̸∈ S ¬α ̸∈ S

S ∪ {α} ADD-VAR2
α ∈ V α occurs nowhere in S

S ∪ {α}

AND1
α ∧ β ∈ S
S ∪ {α} AND2

α ∧ β ∈ S
S ∪ {α, β} OR-SPLIT

α ∨ β ∈ S
S ∪ {α} | S ∪ {β}

AND3
S = S1 ∪ {α ∧ β}

S1 ∪ {α} AND4
S = S1 ∪ {α ∧ β}

S1 ∪ {α, β} UNSAT
S = UNSAT

{α}
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Completeness and Termination

Let P be a satisfiability proof system with satisfiability predicate SSat

• P is complete (wrt SSat) if for every S ∈ S,
there exists either a corroboration or a refutation (wrt SSat) of S in P

• P is terminating if every derivation in P is finite

Recall
P is sound (wrt SSat) if (i) no state S ∈ S that has a refutation in P is in SSat, and

(ii) every S ∈ S that has a corroboration in P is in SSat
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Is PPL complete? No!

Can you find a satisfiable state other than SAT and UNSAT that is irreducible?

How about {b}?

20 / 32



Proof Systems and Decision Procedures

If P is sound and complete wrt SSat and terminating,
it induces a decision procedure for checking whether a S is in SSat:

• Simply start with S and produce any derivation

• It must eventually terminate

• If the final tree is a refutation tree, then S ̸∈ SSat

• Otherwise, S ∈ SSat
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A Decision Procedure for Propositional Logic

Recall: A variable assignment v is a partial mapping from V to {true, false}, and v |= S
means that each formula in S evaluates to true under v

Let S be a set of propositional formulas

The variable assignment v induced by S is defined as follows:

v(p) =


true if p ∈ S
false if ¬p ∈ S
undefined otherwise

S fully defines v if

1. v is the variable assignment induced by S and
2. for each variable p occurring in S, either p ∈ S or ¬p ∈ S
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A Decision Procedure for Propositional Logic

Let PE = ⟨SE,RE⟩ where

• SE consists of all sets of wffs plus the distinguished states SAT and UNSAT

• RE consists of the following proof rules:

SPLIT
p ∈ V p occurs in some formula in S p ̸∈ S ¬p ̸∈ S

S ∪ {p} | S ∪ {¬p}

SAT
S fully defines v v |= S

SAT

UNSAT
S fully defines v v ̸|= α for some α ∈ S

UNSAT
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A Decision Procedure for Propositional Logic
Let SSat consist of SAT and all satisfiable sets of wffs

Theorem 1
Each rule in PE is satisfiability preserving wrt SSat

Corollary 2
PE is sound wrt SSat

Theorem 3
PE is terminating

Theorem 4
PE is complete

Therefore, PE can be used as a decision procedure for the SAT problem
24 / 32



Example

Consider the set of propositional formulas {a,¬a ∨ b, a ⇒ ¬b}
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Example
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Derivation Strategies

Sometimes, a proof system had some desirable properties
only if the rules are applied in a specific way

We capture those specific ways with rule application strategies
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Derivation Strategies

Let P = ⟨S,R⟩ be a proof system

• A (derivation) strategy for P is a partial function that, when defined,
takes a derivation tree τ in P and returns a new derivation tree τ ′

such that (τ, τ ′) is a derivation in P

• A derivation D in P follows a strategy π for P
1. if each non-initial derivation tree in D is the result of applying π

to the previous derivation tree, and

2. if D is finite, π is not defined for the final derivation tree
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Derivation Strategy Example

Let ≺ be a total order on literals in L defined as alphabetical by variable name,
with variables smaller than their negations (e.g., a ≺ ¬a ≺ b ≺ ¬b ≺ · · · )

Consider the following strategy πPL for PPL, usable when every formula is
either a literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree;
if none, then stop (πPL is undefined in that case)

2. if MP applies, apply it to the formulas l1 and l1 ⇒ l2 where l1 is minimal according to ≺,
breaking ties by choosing a minimal l2

3. Otherwise, if SPLIT applies, apply it to the smallest variable p among those occurring in
the state

4. Otherwise, apply CONTR if possible
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Exercise
Apply πPL to

S = {a ⇒ c, a ⇒ ¬b,¬b ⇒ ¬a}

30 / 32



Properties of Strategies

Let SSat be a satisfiability predicate for P

A strategy π for P is

• solution sound wrt to SSat if S ∈ SSat

whenever there exists a corroboration in P from S following π

• refutation sound wrt to SSat if S /∈ SSat

whenever there exists a refutation in P from S following π

• sound wrt SSat if it is both refutation sound and solution sound wrt SSat

• terminating if every derivation in P following π is finite

• progressive if it is defined for every derivation tree
that is not a refutation tree or a saturated tree
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Properties of Strategies

Let SSat be a satisfiability predicate for P

Note:

• If P is sound wrt SSat, then every strategy for P is also sound wrt SSat

• If P is terminating, then every strategy for P is also terminating

Theorem 5
P is complete iff there exists a progressive and terminating strategy for it
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