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Propositional Logic

® Syntax
® Semantics, Satisfiability, and Validity
® Proof by deduction
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Automating Inference

Automated Reasoning tries to automated the process of

deriving consequences of a given set of statements

3/49



Automating Inference

Automated Reasoning tries to automated the process of

deriving consequences of a given set of statements

In AR, both the given and the derived knowledge are expressed in a formal language
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Formal Languages for Knowledge Representation

Unlike natural languages (such as English), formal languages allow us
to represent knowledge in a precise, unambiguous way
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Formal Languages for Knowledge Representation

Unlike natural languages (such as English), formal languages allow us
to represent knowledge in a precise, unambiguous way

Just as importantly, statements in a formal language are machine-processable
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Formal Logics

Formal languages for knowledge representation and reasoning
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Formal Logics

Formal languages for knowledge representation and reasoning

Many (formal) logics have been developed and studied,
with various degrees of expressiveness and mechanizability

We will consider a couple in this course, starting with the most basic one:
Propositional Logic (PL)
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Defining features of formal logics
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Defining features of formal logics

A is
e defined by its syntax and semantics

® equipped with one or more inference/proof systems

a set of symbols and rules for combining them
to form sentences (formulas) of the logic

a systematic, math-based way to assign meaning to sentences

a system of formal rules of inference
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Classical logics

Formalize natural language statements that can be either true or false (but not both)
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Classical logics

Formalize natural language statements that can be either true or false (but not both)

Basic sentences are called

Ve

Examples:
1.
2. lowa City isin lowa

3.
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Classical logics

Formalize natural language statements that can be either true or false (but not both)

More complex sentences are built from simpler ones via a small number of constructs

Examples:

1. Iflowa City is in lowa then University Height is lowa

2. or
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Truth of atomic sentences

Each proposition formalizes a statement that is either true or false
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Truth of atomic sentences

t

The (true or false) of an atomic proposition ” depends on ’s

Example What is the truth value of the equality ?
e jtisfalse, if we interpret 1 and 10 as integers in decimal notation
(and -+ as addition)

e itistrue,if weinterpret 1 and 10 as integers in binary notation
(and + as addition)
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Truth of complex sentences

Let o be a complex sentence built with a construct ¢ from simpler sentences
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2. the truth value of
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Truth of complex sentences

Let o be a complex sentence built with a construct ¢ from simpler sentences

The truth value of o is uniquely determined by

1. the meaning of

2. the truth value of

More precisely, itis a function (determined by ) of the truth values of

Ve

Example

is true if at least one of , is true

.
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Propositional Logic (PL)

Simplest and most fundamental classical logic
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Propositional Logic (PL)

Simplest and most fundamental classical logic

All other classical logics are extensions of PL
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Propositional Logic Syntax: symbols

The set of symbols, or , of propositional logic consists of
1. aset 5 of or
e truth constants: T (for ), L (for )

® propositional variables:
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The set of symbols, or , of propositional logic consists of
1. aset 5 of or
e truth constants: T (for ), L (for )

® propositional variables:

2. connectives (i.e., -, /\, VV, =, <), parentheses (i.e., (, ))

Note: We will use the same characters: (" and ‘)’ at three levels of discourse:
1. as part of propositional logic formulas, as in
2. in mathematical notation, as in Do not confuse the three!
3. inregular text (as in here)
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Propositional Logic Syntax: expressions

A sentence, or formula, is a finite sequence of symbols
[ ]
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Propositional Logic Syntax: expressions

A sentence, or formula, is a finite sequence of symbols
[ ]

Not all sequences of symbols are formulas:
[ ]
[ ]

Part of the syntax are rules that restrict formulas to a specific set of sequences
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Propositional Logic Syntax: Formula-building operations

Consider the defined as follows for all formulas o and

o (negation)

A conjunction)

(
° (disjunction)
° (implication)

. (double implication)
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Propositional Logic Syntax: Formula-building operations

Consider the defined as follows for all formulas o and

o (negation)

A conjunction)

(
° (disjunction)

° (implication)
. (double implication)
The set )/ of ,or simply or ,is the set of

all sentences finitely-generated by the operators above from the atoms in
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Propositional Logic Syntax: Formula-building operations

Consider the defined as follows for all formulas o and

o (negation)
] (conjunction)
° (disjunction)
° (implication)

. (double implication)

In other words,

® everyatomin 5 is a wff
e if v and J are wffs,

so are the expressions generated from them by
® nothing else is a wff

) ) ) ) and
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Closed sets and generated sets

AsetSis a set F of operators if applying any of those operators to elements of
results in an element thatis also in
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Closed sets and generated sets

AsetSis

a set F of operators if applying any of those operators to elements of

results in an element that is also in

p
Examples

® The set

® The set

® The set

® The set

of all natural numbers is closed under addition and multiplication but not negation
of all integer numbers is closed under addition, multiplication, and negation
of all even integers is closed under addition, multiplication, and negation

of all odd integers is closed under multiplication and negation but not addition
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Closed sets and generated sets

AsetSis a set F of operators if applying any of those operators to elements of
results in an element thatis also in

A set from a set B by a set - of operators if it is the smallest set that is closed
under F and contains

'a R
Examples

® The set I\ of all natural numbers is generated from by
® Theset 7 of all integer numbers is generated from by
® The set £ of all even integers is generated from by

® The set [} of all real number is generated from no sets of numbers®

“Generated sets are necessarily countable.
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The Structural Induction Principle

Consider a set C generated from a set B by a set - of operators
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The Structural Induction Principle
Consider a set C generated from a set B by a set - of operators

If a set Sincludes B and is closed under F, we say S is

E Example 7 is inductive w.r.t. I (which is generated from by ) J
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The Structural Induction Principle
Consider a set C generated from a set B by a set - of operators

If a set Sincludes B and is closed under F, we say S is

We can use the structural induction principle to show that a set like C above has a particular
property

The argument goes like this:

1. Consider aset S whose elements all have property

2. Show that Sisinductive with respect to

This proves that and thus all elements of C have property
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The Structural Induction Principle
Consider a set C generated from a set B by a set - of operators

If a set Sincludes B and is closed under F, we say S is

We can use the structural induction principle to show that a set like C above has a particular
property

[ We often use structural induction to prove properties about formulas ]
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Structural Induction: Example

Given our inductive definition of well-formed formulas,
we can use the induction principle to prove things about the set ) of wffs
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Prove that every wff has the same number of left parentheses and right parentheses
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Structural Induction: Example

Given our inductive definition of well-formed formulas,
we can use the induction principle to prove things about the set ) of wffs

Ve

Example

Prove that every wff has the same number of left parentheses and right parentheses

Proof
Let be the number of left parentheses and
let be the number of right parentheses in an expression

Let S be the set of all expressions « such that

We wish to show that

This follows from the induction principle if we can show that S is inductive w.r.t.
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Structural Induction: Example (cont.)

Base Case:
We must show that
Recall that /5 is the set of expressions consisting of a single propositional symbol

Itis clear that for such expressions,
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Structural Induction: Example (cont.)

Inductive Case:

We must show that S is closed under each formula-building operator
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Structural Induction: Example (cont.)

Inductive Case:
We must show that S is closed under each formula-building operator

Let . We know that .
It follows that and .
Since , we know that ; it follows that ,and thus
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Structural Induction: Example (cont.)

Inductive Case:

We must show that S is closed under each formula-building operator

Let . We know that .

It follows that and

Since , we know that ; it follows that ,and thus
[

Let . We know that

Thus and

As before, it follows from the inductive hypothesis that
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Structural Induction: Example (cont.)

Inductive Case:
We must show that S is closed under each formula-building operator

Let . We know that .

It follows that and .

Since , we know that ; it follows that ,and thus
[

Let . We know that

Thus and

As before, it follows from the inductive hypothesis that

® The argumentsfor £, & ., and £, are analogous to the one for
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Notational conventions for formulas

® We fix a countably infinite set of propositional variables
We typically use to denote them

19/49



Notational conventions for formulas

® We may omit outermost parentheses, e.g., write instead of
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Notational conventions for formulas

® We may further omit parentheses by defining

® Negation binds most strongly, with small as possible scope: means
® / binds more strongly than Vv: means
® v/ binds more strongly than =, < means

® Binary connectives are treated as right-associative: means
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We typically use to denote them
® We may omit outermost parentheses, e.g., write instead of

We may further omit parentheses by defining

® Negation binds most strongly, with small as possible scope: means
® / binds more strongly than Vv: means

® v/ binds more strongly than =, < means

® Binary connectives are treated as right-associative: means

® We use to denote arbitrary wffs
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Propositional Logic: Compositional Semantics

The meaning of a wff « is a truth value: or
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Propositional Logic: Compositional Semantics

The meaning of a wff « is a truth value: or

Given a mapping v from the propositional variables in o to ,
the meaning of o is depends on the meaning of its subformulas

The mapping visa , or , of (the variables of)
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Propositional Logic: Semantics

Let v be a variable assignment for all the propositional variables of
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Propositional Logic: Semantics
Let v be a variable assignment for all the propositional variables of

We can extend v to an interpretation for the whole set of )V,
defined by structural induction on wffs as follows:

. and

° for all propositional variables
. iff

. iff

. iff or

° iff or
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Propositional Logic: Semantics

Let v be a variable assignment for all the propositional variables of

For every , we will use the following statements interchangeably
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Propositional Logic: Semantics

Let v be a variable assignment for all the propositional variables of

For every , we will use the following statements interchangeably
.
°
® yisa of

® visa of
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Satisfiability of formulas

Awff o is
if for some interpretation
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Satisfiability of formulas

Awff o is

if for some interpretation
A wff o is

if for some interpretation
Awff o is

if it is not satisfiable, i.e., for all interpretations
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Satisfiability of formulas

Awffais
if for some interpretation
A wff o is
if for some interpretation
Awff o is
if it is not satisfiable, i.e., for all interpretations
A set is

if there is (no) interpretation v such that forall
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Logical implication and validity

A set or a wff 7, written ,
if every satisfying assignment v for U satisfies /7 as well
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We also say that and Jisa
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Logical implication and validity

A set or a wff 7, written
if every satisfying assignment v for U satisfies /7 as well

We also say that and Jisa

of

g
Special cases:
o |f ,isa oris and write

° are , written , iff

® \We write as a shorthand for

and

24 /49



Logical implication and validity

A set or a wff 7, written ,
if every satisfying assignment v for U satisfies /7 as well

We also say that and Jisa of

s A

Note: We use for two different relations:

1. satisfaction between a variable assignment and a formula ( )
2. entailment between a set of formulas and a formula ( )

Use context to disambiguate!

. J
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Satisfiability vs. validity

Satisfiability and validity are dual concepts:

a wff v is valid iff is unsatisfiable
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Satisfiability vs. validity

Satisfiability and validity are dual concepts:

a wff o is valid iff is unsatisfiable

Consequence:

If we have a procedure that can check satisfiability, then we can also check validity,
and vice versa
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Examples

, J propositional variables , 4, ~ formulas
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Examples

, J propositional variables , 11, 7 formulas
p
Note:
e T isvalidand | is unsatisfiable

® Everyvalid formulais satisfiable but not falsifiable

® Every unsatisfiable formula is falsifiable
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Examples

, J propositional variables , 11, 7 formulas
° , , are all satisfiable
° , , are all falsifiable
. , , are all valid
L ) ) )
[ Note:

e | isvalidand | isunsatisfiable
® Everyvalid formulais satisfiable but not falsifiable

® Every unsatisfiable formula is falsifiable
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Implication (=) vs. logical implication ()

The two concepts are semantically related:

iff
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Implication (=) vs. logical implication ()

The two concepts are semantically related:
iff

Proof: Exercise
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Implication (=) vs. logical implication ()

The two concepts are semantically related:

iff
Correspondingly:
iff
because
iff
and

and

and
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Implication (=) vs. logical implication ()

The two concepts are semantically related:

iff

Correspondingly:

[ Note: and are mathematical statements, not formulas }
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Defining One Operator in Terms of Another

A binary connective o over wffs is a set of connectives
if for all wffs o and 3, ,
where - is constructed by applying only connectivesin C to o and
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Defining One Operator in Terms of Another

A binary connective o over wffs is a set of connectives
if for all wffs o and 3, ,
where - is constructed by applying only connectivesin C to o and

The connectives can be defined from — and one of

Vs

Example: defining from
®
®

28/49



Defining One Operator in Terms of Another

A binary connective o over wffs is a set of connectives
if for all wffs o and 3, ,
where - is constructed by applying only connectivesin C to o and

The connectives can be defined from — and one of

Why do we care about this?

e To simplify arguments by structural induction

® Many algorithms are defined over normal forms using a specified subset of connectives
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Decision Procedure in Propositional Logic

Let

A for U is a terminating procedure! that takes wffs as input and
for each input o returns

yes if no if

A procedure does not necessarily terminate, whereas an algorithm does, by definition
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Decision Procedure in Propositional Logic

Let

A for U is a terminating procedure! that takes wffs as input and
for each input o returns

yes if no if

This course: We consider decision procedures for validity/satisfiability,
hence U will the set of valid/satisfiable formulas

A procedure does not necessarily terminate, whereas an algorithm does, by definition
29/49



Basic Decision Procedures for Validity/Satisfiability

Two fundamental strategies for deciding validity/satisfiability:
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Basic Decision Procedures for Validity/Satisfiability

Two fundamental strategies for deciding validity/satisfiability:

search the space of possible interpretations of the given wff

use an inference system based on axioms and inference rules to deduce validity

[ SAT solvers (covered later) interleave search and deduction ]
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The Truth-table Method
In PL, it is possible to enumerate all the interpretations, e.g., with
Example: is avalid formula?

Writing O for and 1 for , for conciseness:

= = O O
= O~ O
o
[
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The Truth-table Method

In PL, it is possible to enumerate all the interpretations, e.g., with

Example: is avalid formula?

Writing O for and 1 for , for conciseness:
0|0 0 1 1 1
0 1 0 0 0 1
1 0 0 1 1 1
1 1 1 0 1 1

Drawbacks?

® Need to evaluate a formula for each of 2" possible interpretations
This can be memory efficient but is runtime inefficient
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The Truth-table Method

In PL, it is possible to enumerate all the interpretations, e.g., with

Example: is avalid formula?

Writing O for and 1 for , for conciseness:
0|0 0 1 1 1
0 1 0 0 0 1
1 0 0 1 1 1
1 1 1 0 1 1

Drawbacks?

® Need to evaluate a formula for each of 2" possible interpretations
This can be memory efficient but is runtime inefficient

® Works because the number of interpretations of a formula is finite

31/49
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Proof by deduction
Informally, a consists of a set of

A proof rule consists of:

. (or antecedents): facts that must hold for the rule apply

° (or consequents): facts deduced/derived from applying the rule

indicate derivation of multiple conclusions

indicate alternative conclusions (giving rise to )
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Proof by deduction
Informally, a consists of a set of

A proof rule consists of:
. (or antecedents): facts that must hold for the rule apply

° (or consequents): facts deduced/derived from applying the rule

Examples:
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Proof by deduction: semantic arguments

Premises and conclusions can be anything

including satisfiability assertions about some interpretation
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Proof by deduction: semantic arguments

To prove that a wff v is valid:
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Proof by deduction: semantic arguments

To prove that a wff v is valid:

® Assume «vis notvalid, i.e., there is a interpretation v such that

e Apply semantic arguments in the form of previous proof rules

In the presence of multi-conclusion rules, proof evolves as a tree
A proof tree branch is if it ends with ,andis otherwise

A semantic argument is when no more proof rules are applicable
e |tisa proof of the validity of « if every branch is closed

® Otherwise, each open branch describes an interpretation that falsifies
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Some useful tautologies

® Associative and Commutative laws icati
e /,/,and ® |mplication
° =3 (—aV b
e Distributive laws (o .) (Favh)
o A ()> v A!) = ((\ A ;) v ((l A ﬂ") ® Excluded Middle
e oV —
e aV(BAY) S (aVB)A(aVA) .e t“ y t”
. ontradiction
® Negation O
® & a
® Contraposition
° \((\ = )’) = ((\ A = ))) o ((\ N ‘)7) . (ﬁ(; o ﬁ(\)
* ~(aep)e (an-08)V(~aAnp) e Exportation
® De Morgan’s laws e (aAB)=17)e (a=(8=17))

* ~(aNnpP)E (—aVp)

* ~(aVpP) e (~an-p)
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e Distributive laws (o ) & (maVvp)

* aA(BVA) S (aAB)V(ann) ® Excluded Middle
* aV(BAy)e (aVB)A(aVry)

° Negatit{ These tautologies can be proven with semantic arguments

® oV

® Contraposition
L4 ((\ = )’) <~ (‘\ ] = ﬁ([)
® Exportation

De Morgan’s laws e ((anB)=17) e (a=(B=17))
* ~(aNnpP)E (—aVp)

L4 ﬁ((\ V f) = (*(\ N — )’)
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Semantic arguments for satisfiability

The previous proof system was used to prove a formula is valid

It can also be used to prove that a formula o is unsatisfiable:

1. Again by contradiction, start with the assertion

2. Try to derive a proof tree T whose branches are all closed

Such a tree proves that o is unsatisfiable

If 7 has an open branch B where no (more) rules apply
then « is satisfiable with an interpretation v constructible from
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A consistent, sound and complete deductive system for propositional logic

Axiom schemas ( are arbitrary wffs):
Al:
A2:
A3:

Rules

(modus ponens)
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Proofs in

Proofs can be complicated, even for trivial formulas (or formula schemas)

Ve

Example: Prove

1
2
3.
4
5

(by A2)
(by A1)
(by MP 1, 2)
(by A1)
(by MP 3, 4)
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Proofs in

Proofs can be complicated, even for trivial formulas (or formula schemas)
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Example: Prove

o W
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(by A2)
(by A1)
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Proofs in

Proofs can be complicated, even for trivial formulas (or formula schemas)

Solution:

Introduce proof rules, additional rules whose conclusion can be proved
from their premises using no derived proof rules
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Derived Rules in 7,

(assumption)

Uu{a}lra
Uk 25 = ~a (contrapositive)
UFa=0 P
UkFa=p Uk B =~ .
(transitivity)
Uk a=n

Uka=(8="7)
Uk B = (a=7)

(exchange of antecedent)

Uu{a} kg deducti
Uka=p (deduction)

UF ——a i

= (double negation 1)

Ul o i
" (double negation 2)

UPE o= L (reductio ad absurdum)

Uk «
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Using derived rules in

With the deduction rule, the proof of becomes trivial

1. (by assumption)
2. (by deduction on 1)
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Using derived rules in

With the deduction rule, the proof of becomes trivial
1. (by assumption)
2. (by deduction on 1)

This is because we front-load the proof burden in proving that
the assumption and the deduction rule are derived rules
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Soundness of rules in

Example 2: prove

W EeNGO AL

—
e
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(double negation 1)
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(MP 2, 3)

(Ex. 1)

(MP 2, 5)
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Soundness of rules in

Example 2: prove

NN

©

10. + (gO:} ‘\@) = T

(assumption)

(double negation 1)
(assumption)

(MP 2, 3)

(Ex. 1)

(MP 2, 5)

(MP 4, 6)

(deduction 7)

(reductio ad absurdum 8)
(deduction 9)

(deduction)
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Soundness of rules in

A proof rule

is if whenever Y ey

[ Theorem: Axioms 1-3, modus ponens, and all the derived rules of are sound J
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All rules of /75 are sound

F o Fa= 3

(modus ponens)

5]
——  (assumption) Uu{a} kg
Uu{alF i bl RN '
{a}F a IFa=3 (deduction)
UF -8 = -« t i UL
Uka=3 (contrapositive) —— < (double negation 1)
Uk «
UFa=p U B =~ . Uk
— (t tivit _Jrao i
UFa=, (transitivity) UF oea (double negation 2)
UFa= (=1 Ul —-a= 1 .
= — (exchange of antecedent) U : (reductio ad absurdum)

Uk B=(a=7)
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Alternative proof systems

Another way to define a proof system is to

¢ include more logical connectives and

® have lots of proof rules

Proofs can be simpler to (manually) carry out in such a system

However, it becomes harder to prove properties about the proof system
Either way, Hilbert-style proof systems are difficult to automate

We will focus on proof systems more similar to semantic arguments
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