Constraint Satisfaction and Backtrack Search

22c:31 Algorithms

Overview
- Constraint Satisfaction Problems (CSP) share some common features and have specialized methods
 - View a problem as a set of variables to which we have to assign values that satisfy a number of problem-specific constraints.
 - Constraint solvers, constraint logic programming…
- Algorithms for CSP
 - Backtracking (systematic search)
 - Variable ordering heuristics

Informal Definition of CSP
- CSP = Constraint Satisfaction Problem
- Given \(\langle V, D, C \rangle \)
 1. \(V \): a finite set of variables
 2. \(D \): a domain of possible values (often finite)
 3. \(C \): a set of constraints that limit the values the variables can take on
- A solution is an assignment of a value to each variable such that all the constraints are satisfied.
- Tasks might be to decide if a solution exists, to find a solution, to find all solutions, or to find the “best solution” according to some metric \(f \).

Example: Path of Length \(k \)
- Given an undirected graph \(G = (V, E) \), does \(G \) have a simple path of length \(k \)?
- Variables: \(x_0, x_1, \ldots, x_k \)
- Domain of variables: \(V \)
- Constraints:
 - (a) all values to \(x_i \) are distinct;
 - (b) \((x_i, x_{i+1}) \) is in \(E \).

Example: Vertex Cover of Size \(k \)
- Given an undirected graph \(G = (V, E) \), does \(G \) have a vertex cover of size \(k \)?
- Variables: \(X = \{ x_1, x_2, \ldots, x_n \} \), where \(n = |V| \)
- Domain of variables: \(\{ \text{true}, \text{false} \} \)
- Constraints:
 - (a) \(x_i \) is in the vertex cover if \(x_i \) is true;
 - (b) For each edge \((a, b) \) of \(E \), \(a \) or \(b \) is in \(X \).
Example: Clique of Size k

- Given an undirected graph $G = (V, E)$, does G have a clique of size k?
- Variables: $X = \{ x_1, x_2, \ldots, x_k \}$
- Domain of variables: V
- Constraints:
 - (a) all values to x_i are distinct;
 - (b) (x_i, x_j) is in E for any i and j.

Example: Map Coloring

- Color the following map using three colors (red, green, blue) such that no two adjacent regions have the same color.

- Variables: A, B, C, D, E all of domain RGB
- Domains: RGB = \{red, green, blue\}
- Constraints:
 - $A \neq B, A \neq C, A \neq E, A \neq D, B \neq C, C \neq D, D \neq E$
- One solution: A=red, B=green, C=blue, D=green, E=blue

N-queens Example (4 in our case)

- Standard test case in CSP research
- Variables are the rows: r_1, r_2, r_3, r_4
- Values are the columns: \{1, 2, 3, 4\}
- So, the constraints include:
 - $C_{r_1, r_2} = \{(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)\}$
 - $C_{r_1, r_3} = \{(1,2),(1,4),(2,1),(2,3),(3,2),(3,4), (4,1),(4,3)\}$
 - Etc.
 - What do these constraints mean?

Example: SATisfiability

- Given a set of propositional variables and Boolean formulas, find an assignment of the variables to \{false, true\} that satisfies the formulas.
- Example:
 - Boolean variables = \{ A, B, C, D\}
 - Boolean formulas: $A \lor B \lor \neg C, \neg A \lor D, B \lor C \lor D$
 - (the first two equivalent to $C \Rightarrow A \lor B, A \Rightarrow D$)
 - Are satisfied by
 - A = false
 - B = true
 - C = false
 - D = false

Real-world problems

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision
- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design
A constraint satisfaction problem (CSP) consists of:

- a set of variables \(X = \{x_1, x_2, \ldots, x_n\} \)
 - each with an associated domain of values \(\{d_1, d_2, \ldots, d_n\} \).
 - The domains are typically finite
- a set of constraints \(\{c_1, c_2, \ldots, c_m\} \) where
 - each constraint defines a predicate which is a relation over a particular subset of \(X \).
 - E.g., \(c_i \) involves variables \(\{X_{i1}, X_{i2}, \ldots, X_{ik}\} \) and defines the relation \(R_i \subseteq D_{i1} \times D_{i2} \times \cdots \times D_{ik} \)

Instantiations:
- An instantiation of a subset of variables \(S \) is an assignment of a domain value to each variable in \(S \).
- An instantiation is legal iff it does not violate any (relevant) constraints.
- A solution is a legal instantiation of all of the variables in the network.

Typical Tasks for CSP:

- Solutions:
 - Does a solution exist?
 - Find one solution
 - Find all solutions
 - Given a partial instantiation, do any of the above
- Transform the CSP into an equivalent CSP that is easier to solve.

Constraint Solving is Hard:

Constraint solving is not possible for general constraints.
Example (Fermat's Last Theorem):
\[
C: \quad n > 2
\]
\[
C': \quad a^n + b^n = c^n
\]

Constraint programming separates constraints into
- basic constraints: complete constraint solving
- non-basic constraints: propagation (incomplete); search needed

Systematic search: Backtracking (backtrack depth-first search):

- Consider the variables in some order
- Pick an unassigned variable and give it a provisional value such that it is consistent with all of the constraints
- If no such assignment can be made, we've reached a dead end and need to backtrack to the previous variable
- Continue this process until a solution is found or we backtrack to the initial variable and have exhausted all possible values.

 - DFS: When backtrack, a node is marked as "processed"
 - CSP: When backtrack, a node is unmarked as "discovered"

Backtrack Procedure:

\[
\text{Backtrack}(a, k) \quad \{ \text{ // A is a vector of length k} \\
\text{if } (k > n) \quad \{ \\
\text{if } (A \text{ is a solution) print(A)} \\
\text{else} \quad \{ \\
\text{compute } S_k \quad \text{the domain of } a_k \\
\text{while } S_k \not= \text{empty do} \\
\text{A}_k = \text{ an element in } S_k \\
\text{S}_k = S_k - \{A_k\} \\
\text{Backtrack}(a, k+1) \\
\text{\} \} \}
\]
Problems with backtracking

- Thrashing: keep repeating the same failed variable assignments
 - Consistency checking can help
 - Intelligent backtracking schemes can also help
- Inefficiency: can explore areas of the search space that aren’t likely to succeed
 - Variable ordering can help

Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
Most constrained variable

- Most constrained variable: choose the variable with the fewest legal values

 - a.k.a. minimum remaining values (MRV) heuristic

Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables

Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

Symmetry Breaking

Often, the most efficient model admits many different solutions that are essentially the same (“symmetric” to each other).

Symmetry breaking tries to improve the performance of search by eliminating such symmetries.

Example: Map Coloring

- Variables: A, B, C, D, E all of domain RGB
- Domains: RGB = {red, green, blue}
- Constraints: A ≠ B, A ≠ C, A ≠ E, A ≠ D, B ≠ C, C ≠ D, D ≠ E
- One solution: A = red, B = green, C = blue, D = green, E = blue

Performance of Symmetry Breaking

- All solution search: Symmetry breaking usually improves performance; often dramatically
- One solution search: Symmetry breaking may or may not improve performance
The Sudoku Puzzle

- Number place
- Main properties
 - NP-complete [Yato 03]
 - Well-formed Sudoku: has 1 solution [Simonis 05]
- Minimal Sudoku
 - In a 9x9 Sudoku: smallest known number of givens is 17 [Royle]
- Symmetrical puzzles
 - Many axes of symmetry
 - Position of the givens, not their values
 - Often makes the puzzle non-minimal
- Level of difficulties
 - Varied ranking systems exist
 - Minimality and difficulty not related

Sudoku as a CSP

- Variables are the cells
- Domains are sets \{1,\ldots,9\}
- Two models
 - Binary constraints: 810 all-different binary constraint between variables
 - Non-binary constraints: 27 all-different 9-ary constraints

Solving Sudoku as a CSP

- Search
 - Builds solutions by enumerating consistent combinations
- Constraint propagation
 - Removes values that do not appear in a solution
 - Example, arc-consistency:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Search

- Backtrack search
 - Systematically enumerate solutions by instantiating one variable after another
 - Backtracks when a constraint is broken
 - Is sound and complete (guaranteed to find solution if one exists)
- Propagation
 - Cleans up domain of ‘future’ variables, during search, given current instantiations

The way people play

- ‘Cross-hash,’ sweep through lines, columns, and blocks
- Pencil in possible positions of values
- Generally, look for patterns, some intricate, and give them funny names:
 - Naked single, locked pairs, swordfish, medusa, etc.
- ‘Identified’ dozens of strategies
 - Many fall under a unique constraint propagation technique
- But humans do not seem to be able to carry simple inference (i.e., propagation) in a systematic way for more than a few steps

SEND + MORE = MONEY

Assign distinct digits to the letters
\[S, E, N, D, M, O, R, Y \]
such that
\[
\begin{align*}
S & \text{ E N D} \\
+ & \text{ M O R E} \\
\hline
& \text{ M O N E Y}
\end{align*}
\]
holds.
SEND + MORE = MONEY

Assign distinct digits to the letters
S, E, N, D, M, O, R, Y
such that
SEND + MORE = MONEY
holds.

Solution

\[
\begin{align*}
S &= 9 \\
E &= 5 \\
N &= 6 \\
D &= 7 \\
M &= 1 \\
O &= 0 \\
R &= 8 \\
Y &= 2
\end{align*}
\]

Modeling

Formalize the problem as a CSP:

- Variables: \(v_1, \ldots, v_n\)
- Domains: \(Z\), integers
- Constraints: \(c_1, \ldots, c_m\) \(\subseteq \mathbb{Z}^n\)
- Problem: Find \(a = (v_1, \ldots, v_n) \in \mathbb{Z}^n\) such that \(a \in c_i\), for all \(1 \leq i \leq m\)

A Model for MONEY

- Variables: \(\{S, E, N, D, M, O, R, Y\}\)
- Constraints:
 1. \(c_1 = \{(S, E, N, D, M, O, R, Y) \in \mathbb{Z}^8 \mid 0 \leq S, \ldots, Y \leq 9\}\)
 2. \(c_2 = \{(S, E, N, D, M, O, R, Y) \in \mathbb{Z}^8 \mid 1000S + 100E + 10N + D + 1000M + 100O + 10R + E = 10000M + 1000O + 100N + 10E + Y\}\)
 3. \(c_3 = \{(S, E, N, D, M, O, R, Y) \in \mathbb{Z}^8 \mid S \neq 0\}\)
 4. \(c_4 = \{(S, E, N, D, M, O, R, Y) \in \mathbb{Z}^8 \mid M \neq 0\}\)
 5. \(c_5 = \{(S, E, N, D, M, O, R, Y) \in \mathbb{Z}^8 \mid S, \ldots, Y \text{ all different}\}\)

Solution for MONEY

\[
\begin{align*}
c_1 &= \{(S, E, N, D, M, O, R, Y) \in \mathbb{Z}^8 \mid 0 \leq S, \ldots, Y \leq 9\}\) \\
c_2 &= \{(S, E, N, D, M, O, R, Y) \in \mathbb{Z}^8 \mid 1000S + 100E + 10N + D + 1000M + 100O + 10R + E = 10000M + 1000O + 100N + 10E + Y\}\)
\end{align*}
\]

Solution:
(9, 5, 6, 7, 1, 0, 8, 2) \(\in \mathbb{Z}^8\)
Propagate

\[
\begin{align*}
\text{SEND} + \text{MORE} &= \text{MONEY} \\
S &\in \{0 \ldots 9\} \\
E &\in \{0 \ldots 9\} \\
N &\in \{0 \ldots 9\} \\
D &\in \{0 \ldots 9\} \\
M &\in \{0 \ldots 9\} \\
O &\in \{0 \ldots 9\} \\
R &\in \{0 \ldots 9\} \\
Y &\in \{0 \ldots 9\} \\
\end{align*}
\]

\[
1000S + 100E + 10N + D \\
+ 1000M + 100O + 10R + E \\
= 10000M + 1000O + 100N + 10E + Y
\]
Optimization Problem

- Let CSP = (V, D, C)
 1. V: a finite set of variables
 2. D: a domain of possible values (often finite)
 3. C: a set of constraints that limit the values the variables can take on
- Define a numeric function \(f(V) \)
- A solution is an assignment of a value to each variable such that all the constraints are satisfied and \(f(V) \) is minimal (maximal).

Optimization: Longest Paths

What is the longest (simple) path from A to B?

DFS: When backtrack, a node is marked as “processed”
CSP: When backtrack, a node is unmarked as “discovered”

Algorithms for Optimization

Key Components:
- Propagation algorithms: identify propagation algorithms for optimization function
- Branching algorithms: identify branching algorithms that lead to good solutions early
- Exploration algorithms: extend existing exploration algorithms to achieve optimization

Optimization: Example

\[\text{SEND} + \text{MOST} = \text{MONEY} \]
SEND + MOST = MONEY

Assign distinct digits to the letters S, E, N, D, M, O, T, Y such that

\[
\begin{array}{c}
S E N D \\
+ M O S T \\
\hline
M O N E Y
\end{array}
\]

holds and
MONEY is maximal.

Branch and Bound

Identify a branching algorithm that finds good solutions early.

Example: TSP: Traveling Salesman Problem

Idea: Use the earlier found value as a bound for the rest branches.