Chapter 3
Data Structures

Stack in Java

import java.util.*;
public class Stack<E> extends Vector<E> {
 public Stack<E>() {
 public static void main(String[] args) {
 Stack<Integer> st = new Stack<Integer>();
 st.push(44);
 int top = st.pop();
 System.out.println("the last item is " + top);
 if (st.empty())
 System.out.println("the top item is " + st.peek());
 else
 System.out.println("the top item is " + st.peek());
 }
 }
}

Queue in Java

public class Queue<E> extends Collection<E> {
 public Queue<E>() {
 public static void main(String[] args) {
 Queue<Integer> queue = new LinkedList<Integer>();
 for (int i = 10; i >= 0; i--) queue.add(i);
 while (!queue.isEmpty()) {
 System.out.println(queue.remove());
 }
 }
 }
}

All Known Implementing Classes:
AbstractQueue, ArrayBlockingQueue, ArrayDeque, ConcurrentLinkedQueue,
DelayQueue, LinkedBlockingQueue, LinkedBlockingDeque, LinkedList,
PriorityBlockingQueue, PriorityQueue, SynchronousQueue

Graphs

Graph. G = (V, E)
- V = nodes.
- E = edges between pairs of nodes.
- Captures pairwise relationship between objects:
 - Undirected graph represents symmetric relation
 - Directed graph represents general binary relation
- Graph size parameters: n = |V|, m = |E|.
- Simple: no loops and no multiple edges

Example: Display the digraph with V = (a, b, c, d),
E = ((a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)).

An edge of the form (b, b) is called a loop.

Relations vs Graph

A relation R on the set A is a subset of A x A.
There is 1-to-1 correspondence between R and (directed) G=(A, R).

Example: Let A = {1, 2, 3, 4}. Which ordered pairs are in the relation R = {(a, b) | a < b}?

R = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}
Relations on a Set

How many different relations can we define on a set A with n elements?

A relation on a set A is a subset of $A \times A$.

How many elements are in $A \times A$?

There are n^2 elements in $A \times A$, so how many subsets (relations on A) does $A \times A$ have?

The number of subsets that we can form out of a set with m elements is 2^m. Therefore, 2^{n^2} subsets can be formed out of $A \times A$.

Answer: We can define 2^{n^2} different relations on A. As a result, we have that much graphs on n points.

Properties of Relations

Definition: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

The graph that each node has a loop represents a reflexive relation.

Properties of Relations

Definitions:

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

A relation R on a set A is called antisymmetric if $a = b$ whenever $(a, b) \in R$ and $(b, a) \in R$.

A relation R on a set A is called asymmetric if $(a, b) \in R$ implies that $(b, a) \not\in R$ for all $a, b \in A$.

Every undirected graph represents a symmetric relation.

What is the relation between "antisymmetric" and "asymmetric"?

R is asymmetric iff R is antisymmetric and has no loops.

Properties of Relations

Definition: A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for all $a, b, c \in A$.

Whenever there is a path that goes from a to b, then there is an edge (a, b) in the graph, then the graph represents a transitive relation.

Are the following relation on $\{1, 2, 3\}$ transitive?

$R = \{(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)\}$

Combining Relations

Definition: Let R be a relation on the set A. The powers R^n, $n = 1, 2, 3, \ldots$, are defined inductively by

- $R^1 = R$
- $R^{n+1} = R^n \circ R$

In other words: $R^n = R \circ R \circ \ldots \circ R$ (n times the letter R)

The relation $R^n = R \cup R^2 \cup R^3 \cup \ldots \cup R^n$, where n is the number of nodes, is called the transitive closure of R.

To decide if (a, b) in R^n, we need to decide if there is a path from a to b in $G = (A, R)$.

Combining Relations

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

If $A = B = C$, and $S = R$, then $R \circ R$ can be written as R^2.

If R is represented by a graph, then (a, b) is in R^2 iff there is a path of length 2 from a to b.
Combining Relations

Theorem: The relation \(R \) on a set \(A \) is transitive if and only if \(R^n \subseteq R \) for all positive integers \(n \).

Remember the definition of transitivity:

Definition: A relation \(R \) on a set \(A \) is called transitive if whenever \((a, b) \in R \) and \((b, c) \in R \), then \((a, c) \in R \) for \(a, b, c \in A \).

The composite of \(R \) with itself contains exactly these pairs \((a, c)\).

Therefore, for a transitive relation \(R \), \(R \circ R \) does not contain any pairs that are not in \(R \), so \(R \circ R \subseteq R \).

Since \(R \circ R \) does not introduce any pairs that are not already in \(R \), it must also be true that \((R \circ R) \circ R \subseteq R \), and so on, so that \(R^n \subseteq R \).

Equivalence Relations

Equivalence relations are used to relate objects that are similar in some way.

Definition: A relation on a set \(A \) is called an equivalence relation if it is reflexive, symmetric, and transitive.

Two elements that are related by an equivalence relation \(R \) are called equivalent.

The best representation of an equivalence relation is Sets.

Graph Representation: Adjacency Matrix

- **Adjacency matrix.** \(n \)-by-\(n \) matrix with \(A_{uv} = 1 \) if \((u, v)\) is an edge.
 - Two 1's of each edge for undirected graph.
 - Space proportional to \(n^2 \).
 - Checking if \((u, v)\) is an edge takes \(O(1) \) time.
 - Identifying all edges takes \(O(n^2) \) time.

Graph Representation: Adjacency List

- **Adjacency list.** Node indexed array of lists.
 - Two representations of each edge for undirected graphs.
 - Space proportional to \(m + n \).
 - Checking if \((u, v)\) is an edge takes \(O(\text{deg}(u)) \) time.
 - Identifying all edges takes \(O(m + n) \) time.

Paths and Connectivity

- **Def.** A path in a graph \(G = (V, E) \) is a sequence \(P \) of nodes \(v_1, v_2, \ldots, v_{k-1}, v_k \) with the property that each consecutive pair \((v_i, v_{i+1})\) is an edge in \(E \).

- **Def.** A path is simple if all nodes are distinct.

- **Def.** An undirected graph is connected if for every pair of nodes \(u \) and \(v \), there is a path from \(u \) to \(v \).

- **Def.** A directed graph is strongly connected if for every pair of nodes \(u \) and \(v \), there is a path from \(u \) to \(v \).

Cycles

- **Def.** A cycle is a path \(v_1, v_2, \ldots, v_{k-1}, v_k \) in which \(v_1 = v_k \), \(k > 2 \), and the first \(k-1 \) nodes are all distinct.
Trees

Definition. An undirected graph is a **tree** if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.
- G is connected.
- G does not contain a cycle.
- G has $n-1$ edges.

Rooted Trees

Rooted tree. A directed graph where its underlying undirected graph is a tree and there is a node r called root and each edge points away from r.

Importance. Models hierarchical structure.

Tree Terminology

- **Node**
 - Internal node
 - Leaf (external node)
- **Branch (link, edge)**
- **Parent/child**
- **Descendant/ancestor**
- **Sibling**
- **Root**

Tree Terminology (continued)

- **Degree**
 - Binary tree
- **Level (depth)**
- **Height**
- **Subtree**
- **Ordered/unordered tree**
- **First (least) common ancestor**

Tree Terminology (continued again)

- **Full tree** — Every node has zero or as many children as possible
- **Complete tree** — Every level is full, except possibly the last level where every node is pushed to the left
- **Perfect tree** — Full and leaves are on the same level

Binary Trees Properties

- **Let:**
 - $M = \# \text{ branches}$
 - $N = \# \text{ nodes}$
 - $L = \# \text{ leaf nodes}$
 - $I = \# \text{ internal nodes}$
 - $H = \text{ tree height}$
 - $M = N - 1$
Binary Trees Properties

• In a perfect binary tree,
 \[N = 2^H - 1, \quad H = \log_2(N + 1) - 1\]
• In a perfect binary tree, \(L = 2^H\)
• If a binary tree has \(L\) leaf nodes and \(N_2\) nodes with 2 children, \(L = N_2 + 1\)
• In other words, there is one more leaf node than nodes with 2 children.

Computing the height of a binary tree

```java
public int height () {
    // Pre: assuming the current node is not null.
    // Post: return the height of the binary tree
    //       rooted by the current node.
    int h1 = h2 = 0;
    if (leftChild != null) h1 = leftChild.height() + 1;
    if (rightChild != null) h2 = rightChild.height() + 1;
    return (h1 < h2)? h2 : h1;
} // height
```

Tree Traversal

• Traversals visit a tree’s nodes in different orders

Preorder

• Visit the node, then recursively visit the children

\[\text{D B A C E}\]

Inorder (Symmetric)

• Recursively visit the left child, then the node, then recursively visit the right child

\[\text{A B C D E}\]

Postorder

• Recursively visit the children, then visit the node

\[\text{A C B E D}\]
Breadth-First

- Visit the nodes on each level of the tree before visiting any nodes on the next level

- DBEAC

Sorted Trees (Search Trees)

- Nodes are arranged so an inorder traversal visits them in sorted order

Binary Search Tree

```java
class BinaryNode {
    KeyType Key;
    BinaryNode LeftChild;
    BinaryNode RightChild;
    BinaryNode parent; // optional
    
    BinaryNode Constructor(KeyType key){
        Key = key; parent = null;
    }
}
```

Binary Search Tree Property

- Binary search tree property:
 - If y is in left subtree of x, then y.Key ≤ x.Key
 - If y is in right subtree of x, then y.Key ≥ x.Key

Traversing a Binary Search Tree

- **Alg**: INORDER-TREE-WALK(x)
 1. if x ≠ NIL
 2. then INORDER-TREE-WALK (x.LeftChild)
 3. print x.Key
 4. INORDER-TREE-WALK (x.RightChild)

- **E.g.**: Output: 2 3 5 5 7 9

- Running time:
 - $\Theta(n)$, where n is the size of the tree rooted at x

Traversing a Binary Search Tree

- **Inorder** tree walk:
 - Root is printed between the values of its left and right subtrees: left, root, right
 - Keys are printed in sorted order
- **Preorder** tree walk:
 - root printed first: root, left, right
- **Postorder** tree walk:
 - root printed last: left, right, root

- Inorder: 2 3 5 5 7 9
 - Preorder: 5 3 2 5 7 9
 - Postorder: 2 5 3 9 7 5
Binary Search Trees

- Support many dynamic set operations
 - SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT, DELETE
- Running time of basic operations on binary search trees: $O(h)$, h is the height of the tree
 - On average: $\Theta(\log_2(n))$
 - The expected height of the tree is $\log_2(n)$
 - In the worst case: $\Theta(n)$
 - The tree is a linear chain of n nodes

Searching for a Key

- Given a pointer to the root of a tree and a key k:
 - Return a node with key k if one exists
 - Otherwise return NIL
- Idea
 - Starting at the root: trace down a path by comparing k with the key of the current node:
 - If the keys are equal: we have found the key
 - If $k < x.Key$ search in the left subtree of x
 - If $k > x.Key$ search in the right subtree of x

Alg: TREE-SEARCH(x, k)
1. if $x = NIL$ or $k = x.Key$
2. then return x
3. if $k < x.Key$
4. then return TREE-SEARCH(x.LeftChild, k)
5. else return TREE-SEARCH(x.RightChild, k)

Running Time: $O(h)$, h – the height of the tree

Finding the Minimum in a Binary Search Tree

- Goal: find the minimum value in a BST
 - Following left child pointers from the root, until a NIL is encountered
Alg: TREE-MINIMUM(x)
1. while x.LeftChild \neq NIL
2. do $x \leftarrow x$.LeftChild
3. return x

Running time: $O(h)$, h – height of tree
Finding the Maximum in a Binary Search Tree

- **Goal:** find the maximum value in a BST
 - Following right child pointers from the root, until a NIL is encountered

Alg: TREE-MAXIMUM(Binary Node: x)
1. while x.RightChild ≠ NIL
 1. x ← x.RightChild
2. return x

- Running time: O(h), h – height of tree

Maximum = 20

Successor

Def: successor(x) = y, such that y.Key is the smallest key > x.Key

- **E.g.:** successor(15) = 17
 - successor(13) = 15
 - successor(9) = 13

- **Case 1:** x.RightChild is non-empty
 - successor(x) = the minimum in x.RightChild

- **Case 2:** x.RightChild is empty
 - go up the tree until the current node is a left child: successor(x) is the parent of the current node
 - if you cannot go further (and you reached the root): x is the largest element and successor(x) = nil.

Finding the Successor (with parent link)

Alg: TREE-SUCCESSOR(Binary Node: x)

// Pre: x ≠ NIL
// Post: return the successor of node x
1. if x.RightChild = NIL
 1. then return TREE-MINIMUM(x.RightChild)
2. y ← x.parent
3. while y ≠ NIL and x ≠ y.RightChild
4. do x ← y
5. y ← y.parent
6. return y

Running time: O(h), h – height of the tree

Predecessor

Def: predecessor(x) = y, such that y.Key is the biggest key < x.Key

- **E.g.:** predecessor(15) = 13
 - predecessor(9) = 7
 - predecessor(7) = 6

- **Case 1:** x.LeftChild is non-empty
 - predecessor(x) = the maximum in x.LeftChild

- **Case 2:** x.LeftChild is empty
 - go up the tree until the current node is a right child: predecessor(x) is the parent of the current node
 - if you cannot go further (and you reached the root): x is the smallest element and predecessor(x) = nil.

Finding the Successor (without parent link)

Alg: Find-SUCCESSOR(KeyType: k, Binary Node: root, default)

// return the minimum node x in the tree rooted by "root" where
// x.Key > k; if k >= the max key in the tree, return "default"
1. if [root == NIL] return default;
2. if (root.Key == k)
3. if (root.RightChild == NIL)
4. return TREE-MINIMUM(root.RightChild)
5. else return default
6. else if (root.Key > k)
7. return Find-SUCCESSOR(root.LeftChild, root)
8. else
9. return Find-SUCCESSOR(root.RightChild, default)

Running time: O(h), h – height of the tree

Adding Nodes

- If the new value is smaller than the current node's value, move down the left branch
- If the new value is larger than the current node's value, move down the right branch
- When there is no branch, add a new node
Insertion

- **Goal:**
 - Insert value \(v \) into a binary search tree
- **Idea:**
 - If \(x.\text{Key} < v \) move to the right child of \(x \),
 - else move to the left child of \(x \)
 - When \(x \) is NIL, we found the correct position
 - If \(v < y.\text{Key} \) insert the new node as \(y \)'s left child
 - else insert it as \(y \)'s right child
 - Beginning at the root, go down the tree and maintain:
 - Node \(x \): traces the downward path (current node)
 - Node \(y \): parent of \(x \) ("trailing pointer")

Alg: TREE-INSERT(BinaryNode: root, z)

1. \(y \leftarrow \text{NIL} \)
2. \(x \leftarrow \text{root} \)
3. while \(x \neq \text{NIL} \)
4. \(y \leftarrow x \)
5. if \(z.\text{Key} < x.\text{Key} \)
6. then \(x \leftarrow x.\text{LeftChild} \)
7. else \(x \leftarrow x.\text{RightChild} \)
8. \(z.\text{parent} \leftarrow y \)
9. if \(y == \text{NIL} \)
10. then \(\text{root} \leftarrow z \)
 Tree was empty
11. else if \(z.\text{Key} < y.\text{Key} \)
12. then \(y.\text{LeftChild} \leftarrow z \)
13. else \(y.\text{RightChild} \leftarrow z \)
 Running time: \(O(h) \)

Example: TREE-INSERT

Insert 13:

Deletion

- **Goal:**
 - Delete a given node \(z \) from a binary search tree
- **Idea:**
 - **Case 1:** \(z \) has no children
 - Delete \(z \) by making the parent of \(z \) point to NIL
 - **Case 2:** \(z \) has one child
 - Delete \(z \) by making the parent of \(z \) point to \(z \)'s child, instead of to \(z \)
 - **Case 3:** \(z \) has two children
 - \(z \)'s successor (\(y \)) is the minimum node in \(z \)'s right subtree
 - \(y \) has either no children or one right child (but no left child)
 - Delete \(y \) from the tree (via Case 1 or 2)
 - Replace \(z \)'s key and satellite data with \(y \)'s.
TREE-DELETE(root, z)

1. if z.LeftChild == NIL or z.RightChild == NIL
 then y ← z
 else y ← TREE-SUCCESSOR(z)
2. if y.LeftChild == NIL or y.RightChild == NIL
 then y ← z
3. else y ← y.RightChild
4. if y.LeftChild == NIL
 then x ← y.LeftChild
5. else x ← y.RightChild
6. if x == NIL
 then root ← y
7. if y.parent == NIL
 then root ← x
8. if y == (y.parent).LeftChild
 then (y.parent).LeftChild ← x
9. else (y.parent).RightChild ← x
10. if y == z then z.Key ← y.Key
11. return y

Binary Search Trees - Summary

- Operations on binary search trees (h: height of tree):
 - SEARCH O(h)
 - PREDECESSOR O(h)
 - SUCCESSOR O(h)
 - MINIMUM O(h)
 - MAXIMUM O(h)
 - INSERT O(h)
 - DELETE O(h)

- These operations are fast if the height of the tree is *small* — otherwise their performance is similar to that of a linked list

Operations

<table>
<thead>
<tr>
<th>Operations</th>
<th>Unsorted array</th>
<th>Sorted array</th>
<th>Binary search tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEARCH</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(h)</td>
</tr>
<tr>
<td>PREDECESSOR</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>SUCCESSOR</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(h)</td>
</tr>
<tr>
<td>HICUMUM</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(h)</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>INSERT</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>DELETE</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

- These operations are fast if the height of the tree is *small* — otherwise their performance is similar to that of a linked list