Theory of Computation, Homework 3 Sample Solution

3.8
b.) The following machine M will do:

$M = \text{"On input string Ψ:

1. Scan the tape and mark the first 1 which has not been marked. If no unmarked 1 is found, go to step 5. Otherwise, move the head back to the front of the tape.
2. Scan the tape and mark the first 0 which has not been marked. If no unmarked 0 is found, reject.
3. Move on to mark the next unmarked 0. If no such unmarked 0 is found, reject.
4. Move the head back to the front of the tape and go to step 1.
5. Move the head back to the front of the tape. Scan the tape to see if there is any unmarked 0 found. If yes, reject. Otherwise, accept."

c.) This machine is identical to 3.8b) if we switch "reject" with "accept".

$M = \text{"On input string Ψ:

1. Scan the tape and mark the first 1 which has not been marked. If no unmarked 1 is found, go to step 5. Otherwise, move the head back to the front of the tape.
2. Scan the tape and mark the first 0 which has not been marked. If no unmarked 0 is found, accept.
3. Move on to mark the next unmarked 0. If no such unmarked 0 is found, accept.
4. Move the head back to the front of the tape and go to step 1.
5. Move the head back to the front of the tape. Scan the tape to see if there is any unmarked 0 found. If yes, accept. Otherwise, reject."}
3.12
Let \mathcal{M}_L be a Turing machine with left reset and \mathcal{M} be an ordinary Turing machine. If \mathcal{M}_L can simulate all the operations that \mathcal{M} can perform, \mathcal{M}_L recognizes the class of Turing-recognizable language. Obviously, \mathcal{M}_L can simulate \mathcal{M} without problems. How \mathcal{M}_L simulates $\delta(q, a) = (r, b, R)$ of \mathcal{M} is described as follows.

1. overwrite a with a marked b
2. reset to the left-hand end
3. shift the whole tape one cell to the right but keep the mark in the same position
4. reset to the left-hand end
5. scan right to find the marked symbol; the next move will treat the marked symbol as a normal symbol.

We assume the following during the shifting for Step 3:

a. We use states to remember the symbol to be shifted right.
b. The first symbol of the tape after the shift is a symbol not used by the original M.
c. If the current symbol is c and the next symbol is the marked b, after the shifting, c becomes marked but b is not marked.
d. The shifting stops when we see a blank symbol.
3.15
b.)
Let L_1 and L_2 be two decidable languages and M_1 and M_2 be the corresponding TMs. The aim is to construct a TM M_L based on M_1 and M_2 such that the concatenation $L = L_1L_2$ is also decidable. Since a given input concatenation w of strings $x \in L_1$ and $y \in L_2$ has finite possible partitions, a nondeterministic TM is chosen to simplify the description.

NTM M_L =

1. Nondeterministically split w into x and y
2. run M_1 on x and M_2 on y
3. accept if both M_1 accepts x and M_2 accepts y; reject otherwise

Obviously, the NTM M_L accepts an input w if there exists a split of w such that M_1 accepts x and M_2 accepts y. Besides, M_L eventually halts because M_1 and M_2 are both deciders. Therefore, $L = L_1L_2$ is decidable since there exists an NTM M_L which decides L.

c.)
Let L be a decidable language and M be the corresponding TM. The aim is to construct a TM M_L based on M such that L^* is also decidable. Since a given input w has finite possible combinations of strings $x_1x_2\cdots x_n$ where $x_i \in L$ and $i = 1, 2, \ldots, n$, a nondeterministic TM is chosen to simplify the description.

NTM M_L =

1. accept if $w = \varepsilon$
2. if $w \neq \varepsilon$, nondeterministically split w into $x_1x_2\cdots x_n$, where x_i is not empty.
3. run M on x_i for all i.
4. accept if M accepts all x_i, $i = 1, 2, \ldots, n$; reject otherwise

Obviously, the NTM M_L accepts an input w if $w = \varepsilon$ or there exists a combination of w such that M accepts $x_1x_2\cdots x_n$. Besides, M_L eventually halts because M is a decider. Therefore, L^* is decidable since there exists an NTM M_L which decides L^*.
d.) Let L be a decidable language and M be the corresponding TM. The aim is to construct a TM M_L based on M such that L', the complement of L, is also decidable. The resulting TM M_L is described as follows.

$$TM\; M_L = \text{"On input } w \text{"}$$
1. run M on w
2. accept if M rejects w
3. reject if M accepts w

Obviously, M_L accepts an input w iff M rejects w. Besides, M_L eventually halts because M is a decider. Therefore, L' is decidable since there exists a TM M_L which decides L'.

e.) Let L_1 and L_2 be two decidable languages and M_1 and M_2 be the corresponding TMs. The aim is to construct a TM M_L based on M_1 and M_2 such that the intersection $L = L_1 \cap L_2$ is also decidable. The resulting TM M_L is described as follows.

$$M_L = \text{"On input } w \text{"}$$
4. run M_1 and M_2 on w
1. accept if both M_1 and M_2 accepts w; reject otherwise

Obviously, the NTM M_L accepts an input w iff w is accepted by M_1 and M_2. Besides, M_L eventually halts because M_1 and M_2 are both deciders. Therefore, $L = L_1 \cap L_2$ is decidable since there exists a TM M_L which decides L.
b.) Let L_1 and L_2 be two Turing-recognizable languages and M_1 and M_2 be the corresponding TMs. The aim is to construct a TM M_L based on M_1 and M_2 such that the concatenation $L = L_1 | L_2$ is also Turing-recognizable. Since a given input concatenation w of strings $x \in L_1$ and $y \in L_2$ has finite possible partitions, a nondeterministic TM is chosen to simplify the description.

\[NTM \ M_L = \begin{array}{c}
\text{On input } w \\
1. \text{Nondeterministically split } w \text{ into } x \text{ and } y \\
2. \text{run } M_1 \text{ on input } x \\
3. \text{reject if } M_1 \text{ halts and rejects} \\
4. \text{run } M_2 \text{ on input } y \\
5. \text{accept if } M_2 \text{ accepts } y; \text{ reject if } M_2 \text{ halts and rejects}
\end{array}\]

Obviously, the NTM M_L recognizes an input w iff there exists a partition of w such that M_1 accepts x and M_2 accepts y. However, M_L may loop forever on some input because M_1 and M_2 are not deciders. Therefore, $L = L_1 | L_2$ is Turing-recognizable since there exists an NTM M_L which recognizes L.

c.) Let L be a Turing-recognizable language and M be the corresponding TM. The aim is to construct a TM M_L based on M such that L^y is also Turing-recognizable. Since a given input w has finite possible combinations of strings $x_1 x_2 \ldots x_n$ where $x_i \in L$, $i = 1, 2, \ldots, n$, a nondeterministic TM is chosen to simplify the description.

\[NTM \ M_L = \begin{array}{c}
\text{On input } w \\
1. \text{accept if } w = \varepsilon \\
2. \text{if } w \neq \varepsilon \text{ nondeterministically split } w \text{ into } x_1 x_2 \ldots x_n, \text{ where } x_i \text{ is not empty.} \\
3. \text{run } M \text{ on } x_i \text{ for all } i. \\
4. \text{accept if } M \text{ accepts all } x_i, \text{ } i = 1, 2, \ldots, n; \\
5. \text{reject if } M \text{ halts and rejects for any } x_i.
\end{array}\]

Obviously, the NTM M_L recognizes an input w iff $w = \varepsilon$ or there exists a combination of w such that M accepts $x_1 x_2 \ldots x_n$. However, M_L may loop forever on some input because M is not a decider. Therefore, L^y is Turing-recognizable since there exists an NTM M_L which recognizes L^y.
d.)
Let \(L_1 \) and \(L_2 \) be two Turing-recognizable languages and \(M_1 \) and \(M_2 \) be the corresponding TMs. The aim is to construct a TM \(M_L \) based on \(M_1 \) and \(M_2 \) such that the intersection \(L = L_1 \cap L_2 \) is also Turing-recognizable. The resulting TM \(M_L \) is described as follows.

\[
M_L = \text{"On input } w \text{"
1. run } M_1 \text{ on } w
2. rejects if } M_1 \text{ halts and rejects
3. run } M_2 \text{ on } w
4. accept if } M_2 \text{ accepts } w; \text{ reject if } M_2 \text{ halts and rejects"
}

Obviously, the TM \(M_L \) recognizes an input \(w \) iff \(w \) is accepted by \(M_1 \) and then \(M_2 \). However, \(M_L \) may loop forever on some input because \(M_1 \) and \(M_2 \) both are not deciders. Therefore, \(L = L_1 \cap L_2 \) is Turing-recognizable since there exists a TM \(M_L \) which recognizes \(L \).

4.4
Since \(A_{\mathbf{CFC}} \) is just a special case of \(A_{\mathbf{CFG}} \), it is possible to adapt TM S for \(A_{\mathbf{CFC}} \) as follows.

TM S = "On input \(\{G, \varepsilon\} \), where \(G \) is a CFG and \(\varepsilon \) is an empty string:
1. Convert \(G \) to an equivalent grammar in Chomsky normal form.
2. If \(S \to \varepsilon \) is a production rule in Chomsky normal form, accept; if not, reject."

4.10
To decide \(\text{INFINITE}_{PDA} \) is to determine if there exist strings generated by \(M \) with lengths at least the pumping length \(p \). Let \(G \) be a CFG for \(L(M) \) and design a TM \(M_G \) that decides \(L(M) \). The construction of TM \(M_G \) is as follows, deciding \(\text{INFINITE}_{PDA} \):

TM \(M_G = \text{"On input: } <M> \text{"
1. convert } G \text{ to Chomsky normal form
2. calculate the pumping length } p = 2|V| \text{ from } G, \text{ where } |V| \text{ is the number of variables in } G
\text{ (in Chomsky normal form, each rule has 0 or two variables at the right, so the pumping length is } 2|V| \text{ that is computable)
3. accept if } G \text{ produces a string of length at least } p \text{ because the string can be pumped to generate infinitely other strings
4. otherwise, reject""}

For step 3, it is decidable since it is possible to construct a DFA \(D \) such that the regular language recognized by \(D \) is the set of strings of lengths at least \(p \). Let \(L \) be \(L(D) \cap L(M) \) which is a CFL from Problem 2.18a and \(G_L \) be the CFG of \(L \). Then TM \(R \) in Theorem 4.8 can decide \(E_G \). If TM \(R \) accepts, \(G \) produces no strings of lengths at least \(p \). If not, \(G \) produces a string of length at least \(p \).
4.12 If \(L(R) \subseteq L(S) \), \(L(R) = L(S) \cap L(R) \). Therefore, we can first construct two equivalent DFA \(D_R \) and \(D_S \) recognizing \(L(R) \) and \(L(S) \cap L(R) \) and then run TM \(F \) in theorem 4.5 to decide if the two DFA are equivalent.

TM \(M_{RS} \):

1. construct the equivalent NFA \(N_R \) and \(N_S \) for \(R \) and \(S \)
2. construct the equivalent DFA \(D_R \) and \(D_S \) for the \(N_R \) and \(N_S \)
3. construct a DFA \(D_{SR} \) accepting \(L(S) \cap L(R) \)
4. run TM \(F \) to decide if \(D_{SR} \) and \(D_R \) are equivalent
5. accept if TM \(F \) accepts; reject if TM \(F \) rejects

4.24 Let \(L_{PAL} = \{ x \mid x \text{ is a palindrome} \} \) be a CFL containing all the palindromes, \(L(M) \) be the regular language accepted by \(M \) and \(L = L_{PAL} \cap L(M) \). The goal is that \(PAL_{DFA} \) is decidable if the emptiness of \(L \) is also decidable. Since \(L = L_{PAL} \cap L(M) \) is a CFL from Problem 2.18, its emptiness can be decided by TM \(R \) in theorem 4.8. Let \(G_L \) be the CFG of \(L \).

TM \(PAL_{DFA} \):

1. Let \(L_{PAL} = \{ x \mid x \text{ is a palindrome} \} \) be a CFL containing all the palindromes
2. Let \(L(M) \) be the regular language accepted by \(M \)
3. derive the CFG for \(L = L_{PAL} \cap L(M) \)
4. run TM \(R \) to decide \(E_G \)
5. accept if TM \(R \) accepts; reject if TM \(R \) rejects.
Let us prove it by contradiction. Suppose that every decider is in A. Since A is Turing-recognizable, A is also enumerable. Let M_i be the i^{th} decider in A. We may construct the following decider M_D as follows:

$M_D =$ On input w,
(1) decide the order number of w, i.e., $w = x_i$, the index of w be i;
(2) accept x_i if M_i rejects; rejects if M_i accepts.

Apparently, M_D is a decider as (1)-(2) halts. M_D is different from any M_i in A, which is a contradiction to the assumption that every decider is in A.

To show that M_D is different from any M_i in A, let $S = \{x_1, x_2, x_3, \ldots\}$ be the list of all the strings in an canonical order of string (length than dictionary order). Then M_D can be derived by applying the diagonalization method as illustrated by the following table.

The table below demonstrates an example D.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>...</td>
</tr>
<tr>
<td>M_2</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>...</td>
</tr>
<tr>
<td>M_3</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>M_D</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>...</td>
</tr>
</tbody>
</table>

Obviously, D is different from any language decided by M_i whose description appears in A.