Introduction

How does a computer execute a program?

What is there inside a computer?
Are all computer hardwares alike?
What is the difference between a PC and a Mac?
Technologies

A computer is an instruction-execution engine.

Different hardware technologies are possible:

• Mechanical
• Pneumatic
• Electronic
• Quantum
• Biological

We will focus on **electronic technology** only, which is most common. It uses silicon-based integrated circuits
Classification

General purpose

- Your PC

Special purpose

- The computers in your car
- The computer in your cell phone
- The computer inside your camera
- The computer in your washing machine
Partial History of modern day computers

Eckert and Mauchley

Moore School of the U. of Pennsylvania, ENIAC

John Von Neumann

Princeton U.
EDVAC, the blueprint of the first stored program digital computer

Maurice Wilkes

Cambridge U., EDSAC, the first operational stored-program digital computer

John Vincent Atanasoff

Iowa State University
Designed a machine in 1939-1940 to solve differential equations. Recognition came much later.
Generations

First generation: vacuum tubes
Second generation: transistors
Third generation: integrated circuits
Fourth generation: LSI and VLSI

Measuring speed

MIPS \(10^6\) instructions per second
BIPS \(10^9\) instructions per second
MFLOPS \(10^6\) floating point ops per second
GFLOPS \(10^9\) floating point ops per second
TERAFLOPS \(10^{12}\) floating point ops per second
PETAFAOPS \(10^{15}\) floating point ops per second
Units of time

1 second

1 millisecond (ms) = 10^{-3} second

1 microsecond (µs) = 10^{-6} second

1 nanosecond (ns) = 10^{-9} second

1 picosecond (ps) = 10^{-12} second

Questions

How much time does it take to add two integers?

How much time does your computer take to read a 1 MB (megabyte) file from a disk?

What distance does light travel in 1 nanosecond?
A Basic Digital Computer

CPU or Processor MEMORY I/O
Measuring the Speed

MIPS = Million Instructions Per Second
MFLOPS = Million FLOating point ops Per Sec
GFLOPS = Billion (Giga) FLOating point ops Per Sec
TERAFLOPS = Trillion FLOating point ops Per Sec
PETA FLOPS = 10^{15} FLOating point ops Per Sec

What do we do with a TERA FLOP or a PETA FLOP machine? Do we have enough work for them?
Laws of Hardware

- Signals cannot travel faster than the speed of light.
- Memory is always slower than the CPU.
- Software is slower than hardware.

Moore’s Law.

The packaging density of transistors on an integrated circuit increases $2x$ every 18 months.

Gates Law.

The speed of software halves every 18 months
(Microsoft is the worst offender. Software bloat almost compensates for hardware improvement due to Moore’s law).

Amdahl’s law

Concerned with the speedup achievable from an improvement to a computation that affects a fraction of that computation.
Factors influencing computer performance

How fast can you solve a problem on a machine?

Depends on

- The algorithm used
- The HLL program code
- The efficiency of the compiler

And, of course, it also depends on the target machine. If the algorithm is lousy, then do not blame the computer!