Depth-First Search
Subgraphs

- A subgraph S of a graph G is a graph such that:
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G
Connectivity

- A graph is connected if there is a path between every pair of vertices.
- A connected component of a graph G is a maximal connected subgraph of G.

Connected graph

Non connected graph with two connected components
Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - T has no cycles
This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles

- The connected components of a forest are trees
Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest
Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph.
- A DFS traversal of a graph G:
 - Visits all the vertices and edges of G.
 - Determines whether G is connected.
 - Computes the connected components of G.
 - Computes a spanning forest of G.
- DFS on a graph with \(n \) vertices and \(m \) edges takes \(O(n + m) \) time.
- DFS can be further extended to solve other graph problems:
 - Find and report a path between two given vertices.
 - Find a cycle in the graph.
- Depth-first search is to graphs what Euler tour is to binary trees.
DFS Algorithm from a Vertex

Algorithm DFS\((G, u) \):

Input: A graph \(G \) and a vertex \(u \) of \(G \)

Output: A collection of vertices reachable from \(u \), with their discovery edges

Mark vertex \(u \) as visited.

for each of \(u \)'s outgoing edges, \(e = (u, v) \) **do**

if vertex \(v \) has not been visited **then**

Record edge \(e \) as the discovery edge for vertex \(v \).

Recursively call DFS\((G, v) \).
/** Performs depth-first search of Graph g starting at Vertex u. */
public static <V,E> void DFS(Graph<V,E> g, Vertex<V> u,
 Set<Vertex<V>> known, Map<Vertex<V>,Edge<E>> forest) {
 known.add(u); // u has been discovered
 for (Edge<E> e : g.outgoingEdges(u)) {
 Vertex<V> v = g.opposite(u, e);
 if (!known.contains(v)) {
 forest.put(v, e); // e is the tree edge that discovered v
 DFS(g, v, known, forest); // recursively explore from v
 }
 }
}
Example

- **A**: unexplored vertex
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **back edge**

Diagram showing the progression of a depth-first search algorithm.
Example (cont.)
DFS - Iterative

DFS-Iterative(G,v):
 let S be a stack
 S.push(v)
 while S is not empty
 v = S.pop()
 if v is not labeled as discovered:
 label v as discovered
 For edges from v to w G.adjacentEdges(v) do
 S.push(w)
The DFS algorithm is similar to a classic strategy for exploring a maze:

- We mark each intersection, corner and dead end (vertex) visited.
- We mark each corridor (edge) traversed.
- We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack).
Properties of DFS

Property 1

$DFS(G, v)$ visits all the vertices and edges in the connected component of v

Property 2

The discovery edges labeled by $DFS(G, v)$ form a spanning tree of the connected component of v
Analysis of DFS

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- DFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \text{deg}(v) = 2m$
Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices \(u\) and \(z\) using the template method pattern.
- We call \(DFS(G, u)\) with \(u\) as the start vertex.
- We use a stack \(S\) to keep track of the path between the start vertex and the current vertex.
- As soon as destination vertex \(z\) is encountered, we return the path as the contents of the stack.

Algorithm \(\text{pathDFS}(G, v, z)\)

- \(\text{setLabel}(v, \text{VISITED})\)
- \(S.\text{push}(v)\)
- \(\text{if } v = z \text{ return } S.\text{elements}()\)
- \(\text{for all } e \in G.\text{incidentEdges}(v) \text{ if } \text{getLabel}(e) = \text{UNEXPLORED} \text{ then } w \leftarrow \text{opposite}(v, e) \text{ if } \text{getLabel}(w) = \text{UNEXPLORED} \text{ then } \text{setLabel}(e, \text{DISCOVERY}) \text{ S.\text{push}(e) \text{ pathDFS}(G, w, z) S.\text{pop}(e)} \text{ else } \text{setLabel}(e, \text{BACK}) \text{ S.\text{pop}(v)}\)
Path Finding in Java

```java
/** Returns an ordered list of edges comprising the directed path from u to v. */
public static <V,E> PositionalList<Edge<E>>
constructPath(Graph<V,E> g, Vertex<V> u, Vertex<V> v,
             Map<Vertex<V>,Edge<E>> forest) {
    PositionalList<Edge<E>> path = new LinkedPositionalList<>();
    if (forest.get(v) != null) { // v was discovered during the search
        Vertex<V> walk = v; // we construct the path from back to front
        while (walk != u) {
            Edge<E> edge = forest.get(walk);
            path.addFirst(edge); // add edge to *front* of path
            walk = g.opposite(walk, edge); // repeat with opposite endpoint
        }
    }
    return path;
}
```
Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack \(S \) to keep track of the path between the start vertex and the current vertex
- As soon as a back edge \((v, w)\) is encountered, we return the cycle as the portion of the stack from the top to vertex \(w \)

Algorithm \(\text{cycleDFS}(G, v, z) \)

1. \(\text{setLabel}(v, \text{VISITED}) \)
2. \(S.\text{push}(v) \)
3. for all \(e \in G.\text{incidentEdges}(v) \) do
 4. if \(\text{getLabel}(e) = \text{UNEXPLORED} \) then
 5. \(w \leftarrow \text{opposite}(v, e) \)
 6. \(S.\text{push}(e) \)
 7. if \(\text{getLabel}(w) = \text{UNEXPLORED} \) then
 8. \(\text{setLabel}(e, \text{DISCOVERY}) \)
 9. \(\text{pathDFS}(G, w, z) \)
 10. \(S.\text{pop}(e) \)
 else
 11. \(T \leftarrow \text{new empty stack} \)
 12. repeat
 13. \(o \leftarrow S.\text{pop}() \)
 14. \(T.\text{push}(o) \)
 until \(o = w \)
 15. return \(T.\text{elements}() \)
3. \(S.\text{pop}(v) \)
DFS for an Entire Graph

- The algorithm uses a mechanism for setting and getting “labels” of vertices and edges.

Algorithm $\text{DFS}(G, v)$

Input graph G and a start vertex v of G

Output labeling of the edges of G in the connected component of v
as discovery edges and back edges

- $\text{setLabel}(v, \text{VISITED})$
- for all $e \in G.\text{incidentEdges}(v)$
 - if $\text{getLabel}(e) = \text{UNEXPLORED}$
 - $w \leftarrow \text{opposite}(v, e)$
 - if $\text{getLabel}(w) = \text{UNEXPLORED}$
 - $\text{setLabel}(e, \text{DISCOVERY})$
 - $\text{DFS}(G, w)$
 - else
 - $\text{setLabel}(e, \text{BACK})$
All Connected Components

- Loop over all vertices, doing a DFS from each unvisited one.

```java
/** Performs DFS for the entire graph and returns the DFS forest as a map. */
public static <V,E> Map<Vertex<V>,Edge<E>> DFSComplete(Graph<V,E> g) {
    Set<Vertex<V>> known = new HashSet<>();
    Map<Vertex<V>,Edge<E>> forest = new ProbeHashMap<>();
    for (Vertex<V> u : g.vertices())
        if (!known.contains(u))
            DFS(g, u, known, forest); // (re)start the DFS process at u
    return forest;
```