SEP-Nets: Small and Effective Pattern Networks

Zhe Li†,‡, Xiaoyu Wang†, Xutao Lv† and Tianbao Yang‡

†Snap Research, ‡The University of Iowa

Thursday 24th August, 2017
1 Motivation

2 The Proposed Method

3 The Ingredients for SEP-Nets
 • Pattern Residient Block
 • SEP-Net Module
 • Group-wise Convolution

4 The Proposed SEP-Nets

5 Experimental Results

6 Conclusion
1 Motivation

2 The Proposed Method

3 The Ingredients for SEP-Nets
 • Pattern Residient Block
 • SEP-Net Module
 • Group-wise Convolution

4 The Proposed SEP-Nets

5 Experimental Results

6 Conclusion
The success of deep learning

Accuracy on Image Classification

Shallow Learning
Deep learning

Year
2010 2011 2012 2013 2014 2015
Accuracy(%)
71.8 74.2 83.6 88.3 93.3 96.43
Three aspects of deep learning

- Performance (Test accuracy): Almost Done
Three aspects of deep learning

- Performance (Test accuracy): Almost Done
- Computation (Number of floating point operations): Not Yet
Three aspects of deep learning

- Performance (Test accuracy): Almost Done
- Computation (Number of floating point operations): Not Yet
- Memory (Number of parameters): Not Yet
Let’s see performance and memory

![Accuracy vs Model Size for Different Models](image)

- GoogleNet
- ResNet-101
- AlexNet
- VGG-Net
What’s wrong?

Not affordable for large neural network models

- Mobile device

Highly require small and effective neural networks
What’s wrong?

Not affordable for large neural network models

- Mobile device
- Embedded device

Highly require small and effective neural networks
Outline

1 Motivation

2 The Proposed Method

3 The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution

4 The Proposed SEP-Nets

5 Experimental Results

6 Conclusion
Where to start?

Let’s review the most successful neural network structures:

- **AlexNet**: 2012
- **VGG-Net**: 2013
- **Inception-Net**: 2014
- **Res-Net**: 2015

- Fully connected layers and convolution layers have most parameters in neural network models.

Focus on convolutional layers
Where to start?

Let’s review the most successful neural network structures:

- Fully connected layers and convolution layers have most parameters in neural network models.
- Fully connected layers have been removed in modern deep CNN (Inception-Net, ResNets)

Focus on convolutional layers
Zoom in convolutional layers
Zoom in convolutional layers
Zoom in convolutional layers
Zoom in convolutional layers

- 7×7, 5×5, 3×3 filters
Zoom in convolutional layers

- $7 \times 7, 5 \times 5, 3 \times 3$ filters
- 1×1 filters
Pattern Binarization

- \(k \times k (k > 1) \) filters serve as spatial pattern extraction.

A trained 3 \(\times \) 3 filter from GoogleNet (Left) and its binarized version (right)
Pattern Binarization

- $k \times k (k > 1)$ filters serve as spatial pattern extraction.
- 1×1 filters serve as data transformation.

![Pattern Binarization Example](image)

A trained 3×3 filter from GoogleNet (Left) and its binarized version (right)
Pattern Binarization

- $k \times k (k > 1)$ filters serve as spatial pattern extraction.
- 1×1 filters serve as data transformation.
- Reduced number of parameters in model dramatically.

A trained 3×3 filter from GoogleNet (Left) and its binarized version (right).
How to use Pattern Binarization?

Easily adopted to any successful networks structures such as GoogleNet, ResNet including the designed SEP-Nets as following procedure:

- Train a full neural network such as GoogleNet, ResNet and SEP-Net from scratch
How to use Pattern Binarization?

Easily adopted to any successful networks structures such as GoogleNet, ResNet including the designed SEP-Nets as following procedure:

- Train a full neural network such as GoogleNet, ResNet and SEP-Net from scratch
- Binarize $k \times k (k > 1)$ convolutional filters in the well-trained neural network model
How to use Pattern Binarization?

Easily adopted to any successful networks structures such as GoogleNet, ResNet including the designed SEP-Nets as following procedure:

1. Train a full neural network such as GoogleNet, ResNet and SEP-Net from scratch
2. Binarize $k \times k (k > 1)$ convolutional filters in the well-trained neural network model
3. Fine-tune the scaling factors of all binarized $k \times k$ filters and the floating point representation of all 1×1 filters by back-propagation on the same dataset.
Outline

1. Motivation
2. The Proposed Method
3. The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution
4. The Proposed SEP-Nets
5. Experimental Results
6. Conclusion
Pattern Residient Block

Consists of 1×1 and $k \times k$ convolutions, which are executed in parallel and their feature map are added together.

Additive 1×1 convolutions act the residual between fully 3×3 filters maps and binarized 3×3 filtered maps.
Pattern Residient Block

Consists of 1×1 and $k \times k$ convolutions, which are executed in parallel and their feature map are added together.

Additive 1×1 convolutions act the residual between fully 3×3 filters maps and binarized 3×3 filtered maps.
Pattern Residient Block

- Consists of 1×1 and $k \times k$ convolutions, which are executed in parallel and their feature map are added together.
Pattern Residient Block

- Consists of 1×1 and $k \times k$ convolutions, which are executed in parallel and their feature map are added together.

- Additive 1×1 convolutions act the residual between fully 3×3 filters maps and binarized 3×3 filtered maps.
Pattern Resident Block

- Consists of 1×1 and $k \times k$ convolutions, which are executed in parallel and their feature map are added together.

- Additive 1×1 convolutions act the residual between fully 3×3 filters maps and binarized 3×3 filtered maps.
SEP-Net Module
SEP-Net Module

Pattern Residient Block
SEP-Net Module
Group-wise Convolution

Outline
Motivation
The Proposed Method
The Ingredients for SEP-Nets
The Proposed SEP-Nets
Experimental Results
Conclusion

SEP-Net Module

1 × 1 convolution layer: dimension reduction
2 PRB blocks with different output channels
1 × 1 convolution layer: dimension recovery
Skip connection
1 × 1 convolution layer: dimension reduction
SEP-Net Module

- 1×1 convolution layer: dimension reduction
- 2 PRB blocks with different output channels
SEP-Net Module

- 1 × 1 convolution layer: dimension reduction
- 2 PRB blocks with different output channels
- 1 × 1 convolution layer: dimension recovery
SEP-Net Module

- 1×1 convolution layer: dimension reduction
- 2 PRB blocks with different output channels
- 1×1 convolution layer: dimension recovery
- Skip connection
SEP-Net Module

- 1×1 convolution layer: dimension reduction
- 2 PRB blocks with different output channels
- 1×1 convolution layer: dimension recovery
- Skip connection
Group-wise Convolution

Adopt group convolution to reduce the model size. Split the input feature maps into N groups and apply convolution to each group. Set the group number as the number of input channels, which degenerates to depth-wise convolutions (used in Google's MobileNets).
Group-wise Convolution

Adopt group convolution to reduce the model size.
Split the input features maps into \(N \) groups and apply convolution to each group.
Set group number as the number of input channels, it degenerates to depth-wise convolutions (Used in Google's MobileNets).
Group-wise Convolution

- Adopt group convolution to reduce the model size.
Group-wise Convolution

- Adopt group convolution to reduce the model size.
- Split the input features maps into N groups and apply convolution to each group.
Group-wise Convolution

- Adopt group convolution to reduce the model size.
- Split the input features maps into N groups and apply convolution to each group.
- Set group number as the number of input channels, it degenerates to depth-wise convolutions (Used in Google's MobileNets)
Group-wise Convolution

- Adopt group convolution to reduce the model size.
- Split the input features maps into N groups and apply convolution to each group.
- Set group number as the number of input channels, it degenerates to depth-wise convolutions (Used in Google’s MobileNets)
Outline

1 Motivation
2 The Proposed Method
3 The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution
4 The Proposed SEP-Nets
5 Experimental Results
6 Conclusion
Proposed two small SEP-Nets for mobile/embeded devices.
The Proposed SEP-Net structures

- Proposed two small SEP-Nets for mobile/embeded devices.
- One model has 1.3M parameters while the other 1.7M.
The Proposed SEP-Net structures

- Proposed two small SEP-Nets for mobile/embeded devices.
- One model has 1.3M parameters while the other 1.7M.
- Shared same following structure with slightly difference (group number, output dimension of the last convolution layer)
Outline

1. Motivation
2. The Proposed Method
3. The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution
4. The Proposed SEP-Nets
5. Experimental Results
6. Conclusion
Experimental Results

- Justify that pattern binarization can reduce number of parameters dramatically. *(Small)*
Experimental Results

- Justify that pattern binarization can reduce number of parameters dramatically. (Small)
 - CIFAR10 with ResNet-20, 34, 44, 50
Justify that pattern binarization can reduce number of parameters dramatically. (Small)

- CIFAR10 with ResNet-20, 34, 44, 50
- ImageNet with GoogleNet, Customize-Inception-Net
Experimental Results

- Justify that pattern binarization can reduce number of parameters dramatically. (Small)
 - CIFAR10 with ResNet-20, 34, 44, 50
 - ImageNet with GoogleNet, Costomize-Inception-Net

- Justify that fine-tuning other parameters of the binarized network with fixed binarized pattern could achieve comparable performance. (Effective)
Justify that pattern binarization can reduce number of parameters dramatically. (Small)

- CIFAR10 with ResNet-20, 34, 44, 50
- ImageNet with GoogleNet, Customized-Inception-Net

Justify that fine-tuning other parameters of the binarized network with fixed binarized pattern could achieve comparable performance. (Effective)

- same as the above setting.
Experimental Results

- Justify that pattern binarization can reduce number of parameters dramatically. (Small)
 - CIFAR10 with ResNet-20, 34, 44, 50
 - ImageNet with GoogleNet, Customize-Inception-Net

- Justify that fine-tuning other parameters of the binarized network with fixed binarized pattern could achieve comparable performance. (Effective)
 - same as the above setting.

- Show that the designed SEP-Net structures could achieve better or comparable performance on ImageNet than using similar sized networks such as MobileNet. (Small & Effective)
Experimental Results–Training strategy

CIFAR10

- Preprocessed by Global Contrast Normalization and ZCA whitening.
CIFAR10

- Preprocessed by Global Contrast Normalization and ZCA whitening.
- 32×32 crop is randomly sampled from the padded image.
Experimental Results—Training strategy

CIFAR10

- Preprocessed by Global Contrast Normalization and ZCA whitening.
- 32×32 crop is randomly sampled from the padded image.
- Initial learning rate is 0.1 and divided by 10 at iteration $32K$, $48K$.
CIFAR10
- Preprocessed by Global Contrast Normalization and ZCA whitening.
- 32×32 crop is randomly sampled from the padded image.
- Initial learning rate is 0.1 and divided by 10 at iteration $32K$, $48K$.
- Maximum number of iteration is $64K$.
Experimental Results—Training strategy

CIFAR10

- Preprocessed by Global Contrast Normalization and ZCA whitening.
- 32×32 crop is randomly sampled from the padded image.
- Initial learning rate is 0.1 and divided by 10 at iteration $32K$, $48K$.
- Maximum number of iteration is $64K$.
- The momentum is 0.9 and the weight decay is 0.0001.
Experimental Results–Training strategy

CIFAR10

- Preprocessed by Global Contrast Normalization and ZCA whitening.
- 32×32 crop is randomly sampled from the padded image.
- Initial learning rate is 0.1 and divided by 10 at iteration $32K$, $48K$.
- Maximum number of iteration is $64K$.
- The momentum is 0.9 and the weight decay is 0.0001.
- Train on one GPU using mini-batch SGD with a batch size 256.
Experimental Results on Pattern Binarization

- **Effective** on CIFAR10

<table>
<thead>
<tr>
<th>Model</th>
<th>Acc</th>
<th>Ref</th>
<th>Full</th>
<th>BiPattern</th>
<th>Refined</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-20</td>
<td>Top-1</td>
<td>0.9125</td>
<td>0.9118</td>
<td>0.1546</td>
<td>0.8649</td>
</tr>
<tr>
<td></td>
<td>Top-5</td>
<td>-</td>
<td>0.9974</td>
<td>0.5104</td>
<td>0.9941</td>
</tr>
<tr>
<td>ResNet-32</td>
<td>Top-1</td>
<td>0.9249</td>
<td>0.9276</td>
<td>0.2634</td>
<td>0.9021</td>
</tr>
<tr>
<td></td>
<td>Top-5</td>
<td>-</td>
<td>0.9972</td>
<td>0.6932</td>
<td>0.9962</td>
</tr>
<tr>
<td>ResNet-44</td>
<td>Top-1</td>
<td>0.9283</td>
<td>0.9283</td>
<td>0.4825</td>
<td>0.9145</td>
</tr>
<tr>
<td></td>
<td>Top-5</td>
<td>-</td>
<td>0.9982</td>
<td>0.8765</td>
<td>0.9965</td>
</tr>
<tr>
<td>ResNet-56</td>
<td>Top-1</td>
<td>0.9303</td>
<td>0.9375</td>
<td>0.5382</td>
<td>0.9302</td>
</tr>
<tr>
<td></td>
<td>Top-5</td>
<td>-</td>
<td>0.9977</td>
<td>0.9574</td>
<td>0.9971</td>
</tr>
</tbody>
</table>
Experimental Results on Pattern Binarization

- **Small** on CIFAR10.

<table>
<thead>
<tr>
<th>Model</th>
<th>Full Network</th>
<th>Pattern Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-20</td>
<td>292K</td>
<td>55K</td>
</tr>
<tr>
<td>ResNet-32</td>
<td>487K</td>
<td>78K</td>
</tr>
<tr>
<td>ResNet-44</td>
<td>682K</td>
<td>100K</td>
</tr>
<tr>
<td>ResNet-56</td>
<td>876K</td>
<td>123K</td>
</tr>
</tbody>
</table>
Experimental Results on Pattern Binarization

- **Small** on CIFAR10.

<table>
<thead>
<tr>
<th>Model</th>
<th>Full Network</th>
<th>Pattern Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-20</td>
<td>292K</td>
<td>55K</td>
</tr>
<tr>
<td>ResNet-32</td>
<td>487K</td>
<td>78K</td>
</tr>
<tr>
<td>ResNet-44</td>
<td>682K</td>
<td>100K</td>
</tr>
<tr>
<td>ResNet-56</td>
<td>876K</td>
<td>123K</td>
</tr>
</tbody>
</table>

- Use one number to represent a binarized 3×3.
Experimental Results–Training strategy

ImageNet on GoogleNet
- Initial learning rate is 0.01 and follow a polynomial decay.

ImageNet on C-InceptionNet
Experimental Results—Training strategy

ImageNet on GoogleNet
- Initial learning rate is 0.01 and follow a polynomial decay.
- Maximum number of iteration is $600K$.

ImageNet on C-InceptionNet
Experimental Results–Training strategy

ImageNet on GoogleNet

- Initial learning rate is 0.01 and follow a polynomial decay.
- Maximum number of iteration is $600K$.
- The momentum is 0.9 and the weight decay is 0.0001.

ImageNet on C-InceptionNet
Experimental Results–Training strategy

ImageNet on GoogleNet

- Initial learning rate is 0.01 and follow a polynomial decay.
- Maximum number of iteration is 600K.
- The momentum is 0.9 and the weight decay is 0.0001.
- Train on one GPU using mini-batch SGD with a batch size 128.

ImageNet on C-InceptionNet
Experimental Results—Training strategy

ImageNet on GoogleNet
- Initial learning rate is 0.01 and follow a polynomial decay.
- Maximum number of iteration is 600K.
- The momentum is 0.9 and the weight decay is 0.0001.
- Train on one GPU using mini-batch SGD with a batch size 128.

ImageNet on C-InceptionNet
- Initial learning rate is 0.1 and divided learning rate 10 time after every 24 epochs.
Experimental Results—Training strategy

ImageNet on GoogleNet

- Initial learning rate is 0.01 and follow a polynomial decay.
- Maximum number of iteration is 600K.
- The momentum is 0.9 and the weight decay is 0.0001.
- Train on one GPU using mini-batch SGD with a batch size 128.

ImageNet on C-InceptionNet

- Initial learning rate is 0.1 and divided learning rate 10 times after every 24 epochs.
- Train total 90 epochs.
Experimental Results on Pattern Binarization

- **Effective on ImageNet**

<table>
<thead>
<tr>
<th>Model</th>
<th>Acc Top-1</th>
<th>Acc Top-5</th>
<th>Ref</th>
<th>Full</th>
<th>BiPattern</th>
<th>Ref</th>
<th>Full</th>
<th>Ref</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoogLeNet</td>
<td>0.8993</td>
<td>0.8891</td>
<td>0.6865</td>
<td>0.8891</td>
<td>1x1 pattern: 0.0013</td>
<td>0.6117</td>
<td>0.636</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0075</td>
<td>0.8395</td>
<td>0.856</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2x8 3x3 pattern: 0.3706</td>
<td>0.6797</td>
<td>0.6893</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6290</td>
<td>0.8827</td>
<td>0.8898</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5x5 pattern: 0.5141</td>
<td>0.6917</td>
<td>0.6984</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7619</td>
<td>0.8904</td>
<td>0.8965</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3x3 & 5x5 pattern: 0.1428</td>
<td>0.6694</td>
<td>0.6812</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.31738</td>
<td>0.8763</td>
<td>0.8844</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-InceptionNet</td>
<td>0.648</td>
<td>0.863</td>
<td>0.0476</td>
<td>0.1464</td>
<td>0.6400</td>
<td>0.6521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8550</td>
<td>0.8626</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Results on Pattern Binarization

- **Small** on ImageNet

<table>
<thead>
<tr>
<th>Model</th>
<th>Full Network</th>
<th>Pattern Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoogLeNet</td>
<td>6.99M</td>
<td>3 × 3 4.43M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 × 5 6.43M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 × 3 and 5 × 5 3.87M</td>
</tr>
<tr>
<td>C-InceptionNet</td>
<td>5.10M</td>
<td>2.43M</td>
</tr>
</tbody>
</table>
Experimental Results on Pattern Binarization

- **Small** on ImageNet

<table>
<thead>
<tr>
<th>Model</th>
<th>Full Network</th>
<th>Pattern Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoogLeNet</td>
<td>6.99M</td>
<td>3 x 3 4.43M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 x 5 6.43M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 x 3 and 5 x 5 3.87M</td>
</tr>
<tr>
<td>C-InceptionNet</td>
<td>5.10M</td>
<td>2.43M</td>
</tr>
</tbody>
</table>

- Use one number to represent a 3 x 3 or 5 x 5 kernel.
Experimental Results for the Designed SEP-Nets

- **Small and Effective** on the designed SEP-Nets

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter Number</th>
<th>Size (bytes)</th>
<th>Top-1 Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MobileNet</td>
<td>1.3M</td>
<td>5.2MB</td>
<td>0.637</td>
</tr>
<tr>
<td></td>
<td>2.6M</td>
<td>10.4MB</td>
<td>0.684</td>
</tr>
<tr>
<td>SEP-Net-R</td>
<td>1.3M (small)</td>
<td>5.2MB</td>
<td>0.658</td>
</tr>
<tr>
<td></td>
<td>1.7M (large)</td>
<td>6.7MB</td>
<td>0.667</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SqueezeNet</td>
<td>1.2M</td>
<td>4.8MB</td>
<td>0.604</td>
</tr>
<tr>
<td>MobileNet</td>
<td>1.3M</td>
<td>5.2MB</td>
<td>0.637</td>
</tr>
<tr>
<td>SEP-Net-R (small)</td>
<td>1.3M</td>
<td>5.2MB</td>
<td>0.658</td>
</tr>
<tr>
<td>SEP-Net-B (small)</td>
<td>1.1M</td>
<td>4.2MB</td>
<td>0.637</td>
</tr>
<tr>
<td>SEP-Net-BQ (small)</td>
<td>1.1M</td>
<td>1.3MB</td>
<td>0.635</td>
</tr>
</tbody>
</table>

SEP-Net-R: SEP-Net with raw valued weights
SEP-Net-B: SEP-Net with pattern binarization
SEP-Net-BQ: SEP-Net with pattern binarization and other weights quantized using linear quantization with 8 bits
Another Angle to Pattern Binarization

Analyze the effect of binarizing 1×1 filters and $k \times k$ filter from the view of quantization error:

- Let W denote an $c \times k \times k$ convolutional filter.
Another Angle to Pattern Binarization

Analyse the effect of binarizing 1×1 filters and $k \times k$ filter from the view of quantization error:

- Let W denote an $c \times k \times k$ convolutional filter.
- Binarization seeks to approximate it by αB, where B is a binary filter with entries from $\{1, -1\}$ and α is a scaling factor.
Another Angle to Pattern Binarization

Analyze the effect of binarizing 1×1 filters and $k \times k$ filter from the view of quantization error:

- Let W denote an $c \times k \times k$ convolutional filter.
- Binarization seeks to approximate it by αB, where B is a binary filter with entries from $\{1, -1\}$ and α is a scaling factor.
- From the viewpoint of minimizing the quantization error, α, B can be sought by solving the following problem:

$$
\min_{\alpha \in \mathbb{R}, B \in \{1, -1\}^{c \times k \times k}} E(W, B, \alpha) \triangleq \|W - \alpha B\|^2_F \quad (1)
$$
Another Angle to Pattern Binarization

Analyze the effect of binarizing 1×1 filters and $k \times k$ filters from the view of quantization error:

- The optimal B^* can be found by thresholding, i.e., $B_{i,j,l}^* = 1$ if $W_{i,j,l} \geq 0$ and $B_{i,j,l}^* = -1$ if $W_{i,j,l} < 0$.

The optimal α^* can be computed by $\alpha^* = \sum_{i,j,l} |W_{i,j,l}| c \times k \times k$.

To quantitatively understand the effect of binarizing 1×1 filters and $k \times k$ filters, we compute the quantization error for all filters in the well-trained GoogleNet and obtain averaged quantization error for different filters:

- 1×1: 0.0462
- 3×3: 0.0029
- 5×5: 0.0056
Another Angle to Pattern Binarization

Analyze the effect of binarizing 1×1 filters and $k \times k$ filters from the view of quantization error:

- The optimal B^* can be found by thresholding, i.e., $B_{i,j,l}^* = 1$ if $W_{i,j,l} \geq 0$ and $B_{i,j,l}^* = -1$ if $W_{i,j,l} < 0$.

- The optimal α^* can be computed by $\alpha^* = \frac{\sum_{i,j,l} |W_{i,j,l}|}{c \times k \times k}$.
Another Angle to Pattern Binarization

Analyze the effect of binarizing 1×1 filters and $k \times k$ filters from the view of quantization error:

- The optimal B^* can be found by thresholding, i.e., $B^*_{i,j,l} = 1$ if $W_{i,j,l} \geq 0$ and $B^*_{i,j,l} = -1$ if $W_{i,j,l} < 0$.

- The optimal α^* can be computed by $\alpha^* = \frac{\sum_{i,j,l} |W_{i,j,l}|}{c \times k \times k}$.

- To quantitatively understand the effect of binarizing 1×1 filters and $k \times k$ filters, we compute the quantization error for all filters in the well-trained GoogleNet and obtain averaged quantization error for different filters:

<table>
<thead>
<tr>
<th>Filter Size</th>
<th>Quantization Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1</td>
<td>0.0462</td>
</tr>
<tr>
<td>3×3</td>
<td>0.0029</td>
</tr>
<tr>
<td>5×5</td>
<td>0.0056</td>
</tr>
</tbody>
</table>
Outline

1. Motivation
2. The Proposed Method
3. The Ingredients for SEP-Nets
 - Pattern Residient Block
 - SEP-Net Module
 - Group-wise Convolution
4. The Proposed SEP-Nets
5. Experimental Results
6. Conclusion
Conclusion

- Proposed pattern binarization method.
Conclusion

- Proposed pattern binarization method.
- Designed a new pattern residual block.
Conclusion

- Proposed pattern binarization method.
- Designed a new pattern residual block.
- Designed a novel SEP-Net Module.
Conclusion

- Proposed pattern binarization method.
- Designed a new pattern residual block.
- Designed a novel SEP-Net Module.
- Proposed Small and Effective Pattern Networks.
Conclusion

- Proposed pattern binarization method.
- Designed a new pattern residual block.
- Designed a novel SEP-Net Module.
- Proposed Small and Effective Pattern Networks.
- Achieved the-state-of-art performance.
future future following this work

- Train the pattern network with binarized $k \times k$ filters from scratch?
Future future following this work

- Train the pattern network with binarized $k \times k$ filters from scratch?
- Reduce computation cost (number of floating point operation)?
Question?