
Improved Dropout for Shallow and Deep Learning

Zhe Li1, Boqing Gong2, Tianbao Yang1
1The University of Iowa, Iowa city, IA 52245

2University of Central Florida, Orlando, FL 32816
{zhe-li-1,tianbao-yang}@uiowa.edu

bgong@crcv.ucf.edu

Abstract

Dropout has been witnessed with great success in training deep neural networks by
independently zeroing out the outputs of neurons at random. It has also received
a surge of interest for shallow learning, e.g., logistic regression. However, the
independent sampling for dropout could be suboptimal for the sake of conver-
gence. In this paper, we propose to use multinomial sampling for dropout, i.e.,
sampling features or neurons according to a multinomial distribution with different
probabilities for different features/neurons. To exhibit the optimal dropout proba-
bilities, we analyze the shallow learning with multinomial dropout and establish
the risk bound for stochastic optimization. By minimizing a sampling dependent
factor in the risk bound, we obtain a distribution-dependent dropout with sampling
probabilities dependent on the second order statistics of the data distribution. To
tackle the issue of evolving distribution of neurons in deep learning, we propose
an efficient adaptive dropout (named evolutional dropout) that computes the sam-
pling probabilities on-the-fly from a mini-batch of examples. Empirical studies on
several benchmark datasets demonstrate that the proposed dropouts achieve not
only much faster convergence and but also a smaller testing error than the standard
dropout. For example, on the CIFAR-100 data, the evolutional dropout achieves
relative improvements over 10% on the prediction performance and over 50% on
the convergence speed compared to the standard dropout.

1 Introduction

Dropout has been widely used to avoid overfitting of deep neural networks with a large number of
parameters [9, 16], which usually identically and independently at random samples neurons and sets
their outputs to be zeros. Extensive experiments [4] have shown that dropout can help obtain the
state-of-the-art performance on a range of benchmark data sets. Recently, dropout has also been
found to improve the performance of logistic regression and other single-layer models for natural
language tasks such as document classification and named entity recognition [21].

In this paper, instead of identically and independently at random zeroing out features or neurons, we
propose to use multinomial sampling for dropout, i.e., sampling features or neurons according to
a multinomial distribution with different probabilities for different features/neurons. Intuitively, it
makes more sense to use non-uniform multinomial sampling than identical and independent sampling
for different features/neurons. For example, in shallow learning if input features are centered, we
can drop out features with small variance more frequently or completely allowing the training to
focus on more important features and consequentially enabling faster convergence. To justify the
multinomial sampling for dropout and reveal the optimal sampling probabilities, we conduct a
rigorous analysis on the risk bound of shallow learning by stochastic optimization with multinomial
dropout, and demonstrate that a distribution-dependent dropout leads to a smaller expected risk (i.e.,
faster convergence and smaller generalization error).

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Inspired by the distribution-dependent dropout, we propose a data-dependent dropout for shallow
learning, and an evolutional dropout for deep learning. For shallow learning, the sampling probabili-
ties are computed from the second order statistics of features of the training data. For deep learning,
the sampling probabilities of dropout for a layer are computed on-the-fly from the second-order
statistics of the layer’s outputs based on a mini-batch of examples. This is particularly suited for deep
learning because (i) the distribution of each layer’s outputs is evolving over time, which is known
as internal covariate shift [5]; (ii) passing through all the training data in deep neural networks (in
particular deep convolutional neural networks) is much more expensive than through a mini-batch
of examples. For a mini-batch of examples, we can leverage parallel computing architectures to
accelerate the computation of sampling probabilities.

We note that the proposed evolutional dropout achieves similar effect to the batch normalization
technique (Z-normalization based on a mini-batch of examples) [5] but with different flavors. Both
approaches can be considered to tackle the issue of internal covariate shift for accelerating the
convergence. Batch normalization tackles the issue by normalizing the output of neurons to zero
mean and unit variance and then performing dropout independently 1. In contrast, our proposed
evolutional dropout tackles this issue from another perspective by exploiting a distribution-dependent
dropout, which adapts the sampling probabilities to the evolving distribution of a layer’s outputs. In
other words, it uses normalized sampling probabilities based on the second order statistics of internal
distributions. Indeed, we notice that for shallow learning with Z-normalization (normalizing each
feature to zero mean and unit variance) the proposed data-dependent dropout reduces to uniform
dropout that acts similarly to the standard dropout. Because of this connection, the presented
theoretical analysis also sheds some lights on the power of batch normalization from the angle
of theory. Compared to batch normalization, the proposed distribution-dependent dropout is still
attractive because (i) it is rooted in theoretical analysis of the risk bound; (ii) it introduces no
additional parameters and layers without complicating the back-propagation and the inference; (iii) it
facilitates further research because its shares the same mathematical foundation as standard dropout
(e.g., equivalent to a form of data-dependent regularizer) [18].

We summarize the main contributions of the paper below.

• We propose a multinomial dropout and demonstrate that a distribution-dependent dropout
leads to a faster convergence and a smaller generalization error through the risk bound
analysis for shallow learning.

• We propose an efficient evolutional dropout for deep learning based on the distribution-
dependent dropout.

• We justify the proposed dropouts for both shallow learning and deep learning by experimen-
tal results on several benchmark datasets.

In the remainder, we first review some related work and preliminaries. We present the main results in
Section 4 and experimental results in Section 5.

2 Related Work

In this section, we review some related work on dropout and optimization algorithms for deep
learning.

Dropout is a simple yet effective technique to prevent overfitting in training deep neural networks [16].
It has received much attention recently from researchers to study its practical and theoretical properties.
Notably, Wager et al. [18], Baldi and Sadowski [2] have analyzed the dropout from a theoretical
viewpoint and found that dropout is equivalent to a data-dependent regularizer. The most simple
form of dropout is to multiply hidden units by i.i.d Bernoulli noise. Several recent works also found
that using other types of noise works as well as Bernoulli noise (e.g., Gaussian noise), which could
lead to a better approximation of the marginalized loss [20, 7]. Some works tried to optimize the
hyper-parameters that define the noise level in a Bayesian framework [23, 7]. Graham et al. [3] used
the same noise across a batch of examples in order to speed up the computation. The adaptive dropout
proposed in[1] overlays a binary belief network over a neural netowrk, incurring more computational
overhead to dropout because one has to train the additional binary belief network. In constrast,

1The author also reported that in some cases dropout is even not necessary

2

the present work proposes a new dropout with noise sampled according to distribution-dependent
sampling probabilities. To the best of our knowledge, this is the first work that rigorously studies this
type of dropout with theoretical analysis of the risk bound. It is demonstrated that the new dropout
can improve the speed of convergence.

Stochastic gradient descent with back-propagation has been used a lot in optimizing deep neural
networks. However, it is notorious for its slow convergence especially for deep learning. Recently,
there emerge a battery of studies trying to accelearte the optimization of deep learning [17, 12, 22, 5, 6],
which tackle the problem from different perspectives. Among them, we notice that the developed
evolutional dropout for deep learning achieves similar effect as batch normalization [5] addressing
the internal covariate shift issue (i.e., evolving distributions of internal hidden units).

3 Preliminaries

In this section, we present some preliminaries, including the framework of risk minimization in
machine learning and learning with dropout noise. We also introduce the multinomial dropout, which
allows us to construct a distribution-dependent dropout as revealed in the next section.

Let (x, y) denote a feature vector and a label, where x ∈ Rd and y ∈ Y . Denote by P the joint
distribution of (x, y) and denote by D the marginal distribution of x. The goal of risk minimization
is to learn a prediction function f(x) that minimizes the expected loss, i.e., minf∈H EP [`(f(x), y)],
where `(z, y) is a loss function (e.g., the logistic loss) that measures the inconsistency between z
and y and H is a class of prediction functions. In deep learning, the prediction function f(x) is
determined by a deep neural network. In shallow learning, one might be interested in learning a linear
model f(x) = w>x. In the following presentation, the analysis will focus on the risk minimization
of a linear model, i.e.,

min
w∈Rd

L(w) , EP [`(w>x, y)] (1)

In this paper, we are interested in learning with dropout, i.e., the feature vector x is corrupted by
a dropout noise. In particular, let ε ∼ M denote a dropout noise vector of dimension d, and the
corrupted feature vector is given by x̂ = x ◦ ε, where the operator ◦ represents the element-wise
multiplication. Let P̂ denote the joint distribution of the new data (x̂, y) and D̂ denote the marginal
distribution of x̂. With the corrupted data, the risk minimization becomes

min
w∈Rd

L̂(w) , EP̂ [`(w>(x ◦ ε), y)] (2)

In standard dropout [18, 4], the entries of the noise vector ε are sampled independently according
to Pr(εj = 0) = δ and Pr(εj = 1

1−δ) = 1 − δ, i.e., features are dropped with a probability δ and

scaled by 1
1−δ with a probability 1 − δ. We can also write εj =

bj
1−δ , where bj ∈ {0, 1}, j ∈ [d]

are i.i.d Bernoulli random variables with Pr(bj = 1) = 1 − δ. The scaling factor 1
1−δ is added to

ensure that Eε[x̂] = x. It is obvious that using the standard dropout different features will have equal
probabilities to be dropped out or to be selected independently. However, in practice some features
could be more informative than the others for learning purpose. Therefore, it makes more sense to
assign different sampling probabilities for different features and make the features compete with each
other.

To this end, we introduce the following multinomial dropout.
Definition 1. (Multinomial Dropout) A multinomial dropout is defined as x̂ = x ◦ ε, where
εi = mi

kpi
, i ∈ [d] and {m1, . . . ,md} follow a multinomial distribution Mult(p1, . . . , pd; k) with∑d

i=1 pi = 1 and pi ≥ 0.

Remark: The multinomial dropout allows us to use non-uniform sampling probabilities p1, . . . , pd
for different features. The value of mi is the number of times that the i-th feature is selected in k
independent trials of selection. In each trial, the probability that the i-th feature is selected is given by
pi. As in the standard dropout, the normalization by kpi is to ensure that Eε[x̂] = x. The parameter k
plays the same role as the parameter 1− δ in standard dropout, which controls the number of features
to be dropped. In particular, the expected total number of the kept features using multinomial dropout
is k and that using standard dropout is d(1 − δ). In the sequel, to make fair comparison between

3

the two dropouts, we let k = d(1− δ). In this case, when a uniform distribution pi = 1/d is used
in multinomial dropout to which we refer as uniform dropout, then εi = mi

1−δ , which acts similarly
to the standard dropout using i.i.d Bernoulli random variables. Note that another choice to make
the sampling probabilities different is still using i.i.d Bernoulli random variables but with different
probabilities for different features. However, multinomial dropout is more suitable because (i) it is
easy to control the level of dropout by varying the value of k; (ii) it gives rise to natural competition
among features because of the constraint

∑
i pi = 1; (iii) it allows us to minimize the sampling

dependent risk bound for obtaining a better distribution than uniform sampling.

Dropout is a data-dependent regularizer Dropout as a regularizer has been studied in [18, 2] for
logistic regression, which is stated in the following proposition for ease of discussion later.

Proposition 1. If `(z, y) = log(1 + exp(−yz)), then

EP̂ [`(w>x̂, y)] = EP [`(w>x, y)] +RD,M(w) (3)

whereM denotes the distribution of ε and RD,M(w) = ED,M

[
log

exp(w> x◦ε
2)+exp(−w> x◦ε

2)

exp(w>x/2)+exp(−w>x/2)

]
.

Remark: It is notable that RD,M ≥ 0 due to the Jensen inequality. Using the second order Taylor
expansion, [18] showed that the following approximation of RD,M(w) is easy to manipulate and
understand:

R̂D,M(w) =
ED[q(w>x)(1− q(w>x))w>CM(x ◦ ε)w]

2
(4)

where q(w>x) = 1
1+exp(−w>x/2) , and CM denotes the covariance matrix in terms of ε. In particular,

if ε is the standard dropout noise, then CM[x ◦ ε] = diag(x21δ/(1 − δ), . . . , x2dδ/(1 − δ)), where
diag(s1, . . . , sn) denotes a d×d diagonal matrix with the i-th entry equal to si. If ε is the multinomial
dropout noise in Definition 1, we have

CM[x ◦ ε] =
1

k
diag(x2i /pi)−

1

k
xx> (5)

4 Learning with Multinomial Dropout

In this section, we analyze a stochastic optimization approach for minimizing the dropout loss
in (2). Assume the sampling probabilities are known. We first obtain a risk bound of learning with
multinomial dropout for stochastic optimization. Then we try to minimize the factors in the risk
bound that depend on the sampling probabilities. We would like to emphasize that our goal here is
not to show that using dropout would render a smaller risk than without using dropout, but rather
focus on the impact of different sampling probabilities on the risk. Let the initial solution be w1. At
the iteration t, we sample (xt, yt) ∼ P and εt ∼M as in Definition 1 and then update the model by

wt+1 = wt − ηt∇`(w>t (xt ◦ εt), yt) (6)

where∇` denotes the (sub)gradient in terms of wt and ηt is a step size. Suppose we run the stochastic
optimization by n steps (i.e., using n examples) and compute the final solution as ŵn = 1

n

∑n
t=1 wt.

We note that another approach of learning with dropout is to minimize the empirical risk by marginal-
izing out the dropout noise, i.e., replacing the true expectations EP and ED in (3) with empirical
expectations over a set of samples (x1, y1), . . . , (xn, yn) denoted by EPn and EDn . Since the
data dependent regularizer RDn,M(w) is difficult to compute, one usually uses an approximation
R̂Dn,M(w) (e.g., as in (4)) in place of RDn,M(w). However, the resulting problem is a non-convex
optimization, which together with the approximation error would make the risk analysis much more
involved. In contrast, the update in (6) can be considered as a stochastic gradient descent update
for solving the convex optimization problem in (2), allowing us to establish the risk bound based
on previous results of stochastic gradient descent for risk minimization [14, 15]. Nonetheless, this
restriction does not lose the generality. Indeed, stochastic optimization is usually employed for
solving empirical loss minimization in big data and deep learning.

The following theorem establishes a risk bound of ŵn in expectation.

4

Theorem 1. Let L(w) be the expected risk of w defined in (1). Assume ED̂[‖x ◦ ε‖22] ≤ B2 and
`(z, y) is G-Lipschitz continuous. For any ‖w∗‖2 ≤ r, by appropriately choosing η, we can have

E[L(ŵn) +RD,M(ŵn)] ≤ L(w∗) +RD,M(w∗) +
GBr√
n

where E[·] is taking expectation over the randomness in (xt, yt, εt), t = 1, . . . , n.

Remark: In the above theorem, we can choose w∗ to be the best model that minimizes the expected
risk in (1). Since RD,M (w) ≥ 0, the upper bound in the theorem above is also the upper bound of
the risk of ŵn, i.e., L(ŵn), in expectation. The proof of the above theorem follows the standard
analysis of stochastic gradient descent. The detailed proof of theorem is included in the appendix.

4.1 Distribution Dependent Dropout

Next, we consider the sampling dependent factors in the risk bounds. From Theorem 1, we can
see that there are two terms that depend on the sampling probabilities, i.e., B2 - the upper bound
of ED̂[‖x ◦ ε‖22], and RD,M(w∗)−RD,M(ŵn) ≤ RD,M(w∗). We note that the second term also
depends on w∗ and ŵn, which is more difficult to optimize. We first try to minimize ED̂[‖x◦ε‖22] and
present the discussion on minimizing RD,M(w∗) later. From Theorem 1, we can see that minimizing
ED̂[‖x ◦ ε‖22] would lead to not only a smaller risk (given the same number of total examples, smaller
ED̂[‖x ◦ ε‖22] gives a smaller risk bound) but also a faster convergence (with the same number of
iterations, smaller ED̂[‖x ◦ ε‖22] gives a smaller optimization error).

Due to the limited space, the proofs of Proposition 2, 3, 4 are included in supplement. The following
proposition simplifies the expectation ED̂[‖x ◦ ε‖22].
Proposition 2. Let ε follow the distributionM defined in Definition 1. Then

ED̂[‖x ◦ ε‖22] =
1

k

d∑
i=1

1

pi
ED[x2i] +

k − 1

k

d∑
i=1

ED[x2i] (7)

Given the expression of ED̂[‖x ◦ ε‖22] in Proposition 2, we can minimize it over p, leading to the
following result.
Proposition 3. The solution to p∗ = arg minp≥0,p>1=1 ED̂[‖x ◦ ε‖22] is given by

p∗i =

√
ED[x2i]∑d

j=1

√
ED[x2j]

, i = 1, . . . , d (8)

Next, we examine RD,M(w∗). Since direct manipulation on RD,M(w∗) is difficult, we try to
minimize the second order Taylor expansion R̂D,M(w∗) for logistic loss. The following theorem
establishes an upper bound of R̂D,M(w∗).

Proposition 4. Let ε follow the distribution M defined in Definition 1. We have R̂D,M(w∗) ≤
1
8k‖w∗‖

2
2

(∑d
i=1

ED[x2
i]

pi
− ED[‖x‖22]

)
Remark: By minimizing the relaxed upper bound in Proposition 4, we obtain the same sampling
probabilities as in (8). We note that a tighter upper bound can be established, however, which will
yield sampling probabilities dependent on the unknown w∗.

In summary, using the probabilities in (8), we can reduce both ED̂[‖x ◦ ε‖22] and RD,M(w∗) in the
risk bound, leading to a faster convergence and a smaller generalization error. In practice, we can use
empirical second-order statistics to compute the probabilities, i.e.,

pi =

√
1
n

∑n
j=1[[xj]2i]∑d

i′=1

√
1
n

∑n
j=1[[xj]2i′]

(9)

where [xj]i denotes the i-th feature of the j-th example, which gives us a data-dependent dropout.
We state it formally in the following definition.

5

Evolutional Dropout for Deep Learning
Input: a batch of outputs of a layer: X l = (xl1, . . . ,x

l
m)

and dropout level parameter k ∈ [0, d]

Output: X̂ l = X l ◦ Σl

Compute sampling probabilities by (10)
For j = 1, . . . ,m

Sample ml
j ∼Mult(pl1, . . . , p

l
d; k)

Construct εlj =
ml
j

kpl
∈ Rd, where pl = (pl1, . . . , p

l
d)
>

Let Σl = (εl1, . . . , ε
l
m) and compute X̂ l = X l ◦ Σl

Figure 1: Evolutional Dropout applied to a layer over a mini-batch

Definition 2. (Data-dependent Dropout) Given a set of training examples (x1, y1), . . . , (xn, yn). A
data-dependent dropout is defined as x̂ = x ◦ ε, where εi = mi

kpi
, i ∈ [d] and {m1, . . . ,md} follow a

multinomial distribution Mult(p1, . . . , pd; k) with pi given by (9).

Remark: Note that if the data is normalized such that each feature has zero mean and unit variance
(i.e., according to Z-normliazation), the data-dependent dropout reduces to uniform dropout. It
implies that the data-dependent dropout achieves similar effect as Z-normalization plus uniform
dropout. In this sense, our theoretical analysis also explains why Z-normalization usually speeds up
the training [13].

4.2 Evolutional Dropout for Deep Learning

Next, we discuss how to implement the distribution-dependent dropout for deep learning. In training
deep neural networks, the dropout is usually added to the intermediate layers (e.g., fully connected
layers and convolutional layers). Let xl = (xl1, . . . , x

l
d) denote the outputs of the l-th layer (with the

index of data omitted). Adding dropout to this layer is equivalent to multiplying xl by a dropout
noise vector εl, i.e., feeding x̂l = xl ◦ εl as the input to the next layer. Inspired by the data-
dependent dropout, we can generate εl according to a distribution given in Definition 1 with sampling
probabilities pli computed from {xl1, . . . ,xln} similar to that (9). However, deep learning is usually
trained with big data and a deep neural network is optimized by mini-batch stochastic gradient
descent. Therefore, at each iteration it would be too expensive to afford the computation to pass
through all examples. To address this issue, we propose to use a mini-batch of examples to calculate
the second-order statistics similar to what was done in batch normalization. Let X l = (xl1, . . . ,x

l
m)

denote the outputs of the l-th layer for a mini-batch of m examples. Then we can calculate the
probabilities for dropout by

pli =

√
1
m

∑m
j=1[[xlj]

2
i]∑d

i′=1

√
1
m

∑m
j=1[[xlj]

2
i′]
, i = 1, . . . , d (10)

which define the evolutional dropout named as such because the probabilities pli will also evolve as
the the distribution of the layer’s outputs evolve. We describe the evolutional dropout as applied to a
layer of a deep neural network in Figure 1.

Finally, we would like to compare the evolutional dropout with batch normalization. Similar to batch
normalization, evolutional dropout can also address the internal covariate shift issue by adapting
the sampling probabilities to the evolving distribution of layers’ outputs. However, different from
batch normalization, evolutional dropout is a randomized technique, which enjoys many benefits
as standard dropout including (i) the back-propagation is simple to implement (just multiplying the
gradient of X̂ l by the dropout mask to get the gradient of X l); (ii) the inference (i.e., testing) remains
the same 2; (iii) it is equivalent to a data-dependent regularizer with a clear mathematical explanation;

2Different from some implementations for standard dropout which doest no scale by 1/(1− δ) in training
but scale by 1− δ in testing, here we do scale in training and thus do not need any scaling in testing.

6

(iv) it prevents units from co-adapting of neurons, which facilitate generalization. Moreover, the
evolutional dropout has its root in distribution-dependent dropout, which has theoretical guarantee to
accelerate the convergence and improve the generalization for shallow learning.

5 Experimental Results

In the section, we present some experimental results to justify the proposed dropouts. In all ex-
periments, we set δ = 0.5 in the standard dropout and k = 0.5d in the proposed dropouts for fair
comparison, where d represents the number of features or neurons of the layer that dropout is applied
to. For the sake of clarity, we divided the experiments into three parts. In the first part, we compare
the performance of the data-dependent dropout (d-dropout) to the standard dropout (s-dropout)
for logistic regression. In the second part, we compare the performance of evolutional dropout
(e-dropout) to the standard dropout for training deep convolutional neural networks. Finally, we
compare e-dropout with batch normalization.

of iters ×10
4

0 1 2 3 4 5 6

e
rr

o
r

0

0.05

0.1

0.15

0.2

0.25

0.3

s-dropout(tr)
s-dropout(te)
d-dropout(tr)
d-dropout(te)

of iters ×10
4

0 1 2 3 4

e
rr

o
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

s-dropout(tr)
s-dropout(te)
d-dropout(tr)
d-dropout(te)

of iters ×10
5

0 2 4 6 8
e

rr
o

r
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

s-dropout(tr)
s-dropout(te)
d-dropout(tr)
d-dropout(te)

of iters ×10
4

0 1 2 3 4 5 6 7

te
s
t

a
c
c
u

ra
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

no BN and no Dropout
BN
BN+Dropout
Evolutional Dropout

Figure 2: Left three: data-dependent dropout vs. standard dropout on three data sets (real-sim,
news20, RCV1) for logistic regression; Right: Evolutional dropout vs BN on CIFAR-10. (best seen
in color).

5.1 Shallow Learning

We implement the presented stochastic optimization algorithm. To evaluate the performance
of data-dependent dropout for shallow learning, we use the three data sets: real-sim, news20
and RCV13. In this experiment, we use a fixed step size and tune the step size in
[0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001] and report the best results in terms of convergence
speed on the training data for both standard dropout and data-dependent dropout. The left three
panels in Figure 2 show the obtained results on these three data sets. In each figure, we plot both
the training error and the testing error. We can see that both the training and testing errors using the
proposed data-dependent dropout decrease much faster than using the standard dropout and also a
smaller testing error is achieved by using the data-dependent dropout.

5.2 Evolutional Dropout for Deep Learning

We would like to emphasize that we are not aiming to obtain better prediction performance by trying
different network structures and different engineering tricks such as data augmentation, whitening,
etc., but rather focus on the comparison of the proposed dropout to the standard dropout using
Bernoulli noise on the same network structure. In our experiments, we use the default splitting of
training and testing data in all data sets. We directly optimize the neural networks using all training
images without further splitting it into a validation data to be added into the training in later stages,
which explains some marginal gaps from the literature results that we observed (e.g., on CIFAR-10
compared with [19]).

We conduct experiments on four benchmark data sets for comparing e-dropout and s-dropout: MNIST
[10], SVHN [11], CIFAR-10 and CIFAR-100 [8]. We use the same or similar network structure as in
the literatures for the four data sets. In general, the networks consist of convolution layers, pooling
layers, locally connected layers, fully connected layers, softmax layers and a cost layer. For the
detailed neural network structures and their parameters, please refer to the supplementary materials.
The dropout is added to some fully connected layers or locally connected layers. The rectified linear
activation function is used for all neurons. All the experiments are conducted using the cuda-convnet
library 4. The training procedure is similar to [9] using mini-batch SGD with momentum (0.9). The

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
4https://code.google.com/archive/p/cuda-convnet/

7

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://code.google.com/archive/p/cuda-convnet/

of iters
0 2000 4000 6000 8000

e
rr

o
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

s-dropout(tr)
s-dropout(te)
e-dropout(tr)
e-dropout(te)

(a) MNIST
of iters

0 2000 4000 6000 8000 10000 12000

e
rr

o
r

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

s-dropout(tr)
s-dropout(te)
e-dropout(tr)
e-dropout(te)

(b) SVHN

of Iters ×10
5

0 1 2 3 4 5 6

e
rr

o
r

0

0.1

0.2

0.3

0.4

0.5

0.6

s-dropout(tr)
s-dropout(te)
e-dropout(tr)
e-dropout(te)

(c) CIFAR-10

of iters ×10
4

0 2 4 6 8 10 12

e
rr

o
r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s-dropout(tr)
s-dropout(te)
e-dropout(tr)
e-dropout(te)

(d) CIFAR-100

Figure 3: Evolutional dropout vs. standard dropout on four benchmark datasets for deep learning
(best seen in color).

size of mini-batch is fixed to 128. The weights are initialized based on the Gaussian distribution
with mean zero and standard deviation 0.01. The learning rate (i.e., step size) is decreased after a
number of epochs similar to what was done in previous works [9]. We tune the initial learning rates
for s-dropout and e-dropout separately from 0.001, 0.005, 0.01, 0.1 and report the best result on each
data set that yields the fastest convergence.

Figure 3 shows the training and testing error curves in the optimization process on the four data sets
using the standard dropout and the evolutional dropout. For SVHN data, we only report the first
12000 iterations, after which the error curves of the two methods almost overlap. We can see that
using the evolutional dropout generally converges faster than using the standard dropout. On CIFAR-
100 data, we have observed significant speed-up. In particular, the evolutional dropout achieves
relative improvements over 10% on the testing performance and over 50% on the convergence speed
compared to the standard dropout.

5.3 Comparison with the Batch Normalization (BN)

Finally, we make a comparison between the evolutional dropout and the batch normalization. For
batch normalization, we use the implementation in Caffe 5. We compare the evolutional dropout with
the batch normalization on CIFAR-10 data set. The network structure is from the Caffe package and
can be found in the supplement, which is different from the one used in the previous experiment.
It contains three convolutional layers and one fully connected layer. Each convolutional layer is
followed by a pooling layer. We compare four methods: (1) No BN and No dropout - without using
batch normalization and dropout; (2) BN; (3) BN with standard dropout; (4) Evolutional Dropout.
The rectified linear activation is used in all methods. We also tried BN with the sigmoid activation
function, which gives worse results. For the methods with BN, three batch normalization layers are
inserted before or after each pooling layer following the architecture given in Caffe package (see
supplement). For the evolutional dropout training, only one layer of dropout is added to the the last
convolutional layer. The mini-batch size is set to 100, the default value in Caffe. The initial learning
rates for the four methods are set to the same value (0.001), and they are decreased once by ten times.
The testing accuracy versus the number of iterations is plotted in the right panel of Figure 2, from
which we can see that the evolutional dropout training achieves comparable performance with BN
+ standard dropout, which justifies our claim that evolutional dropout also addresses the internal
covariate shift issue.

6 Conclusion

In this paper, we have proposed a distribution-dependent dropout for both shallow learning and
deep learning. Theoretically, we proved that the new dropout achieves a smaller risk and faster
convergence. Based on the distribution-dependent dropout, we developed an efficient evolutional
dropout for training deep neural networks that adapts the sampling probabilities to the evolving
distributions of layers’ outputs. Experimental results on various data sets verified that the proposed
dropouts can dramatically improve the convergence and also reduce the testing error.

Acknowledgments

We thank anonymous reviewers for their comments. Z. Li and T. Yang are partially supported by
National Science Foundation (IIS-1463988, IIS-1545995). B. Gong is supported in part by NSF
(IIS-1566511) and a gift from Adobe.

5https://github.com/BVLC/caffe/

8

https://github.com/BVLC/caffe/

References
[1] Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural networks. In Advances in Neural

Information Processing Systems, pages 3084–3092, 2013.

[2] Pierre Baldi and Peter J Sadowski. Understanding dropout. In Advances in Neural Information Processing
Systems, pages 2814–2822, 2013.

[3] Benjamin Graham, Jeremy Reizenstein, and Leigh Robinson. Efficient batchwise dropout training using
submatrices. CoRR, abs/1502.02478, 2015.

[4] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. Im-
proving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580,
2012.

[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014.

[7] Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. CoRR, abs/1506.02557, 2015.

[8] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[10] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised
feature learning, volume 2011, page 4. Granada, Spain, 2011.

[12] Behnam Neyshabur, Ruslan R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized optimization in
deep neural networks. In Advances in Neural Information Processing Systems, pages 2413–2421, 2015.

[13] Marc’Aurelio Ranzato, Alex Krizhevsky, and Geoffrey E. Hinton. Factored 3-way restricted boltzmann
machines for modeling natural images. In AISTATS, pages 621–628, 2010.

[14] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic convex optimization.
In The 22nd Conference on Learning Theory (COLT), 2009.

[15] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast rates. In Advances
in Neural Information Processing Systems 23 (NIPS), pages 2199–2207, 2010.

[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15
(1):1929–1958, 2014.

[17] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and
momentum in deep learning. In Proceedings of the 30th international conference on machine learning
(ICML-13), pages 1139–1147, 2013.

[18] Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as adaptive regularization. In Advances in
Neural Information Processing Systems, pages 351–359, 2013.

[19] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural networks
using dropconnect. In Proceedings of the 30th International Conference on Machine Learning (ICML-13),
pages 1058–1066, 2013.

[20] Sida Wang and Christopher Manning. Fast dropout training. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pages 118–126, 2013.

[21] Sida I Wang, Mengqiu Wang, Stefan Wager, Percy Liang, and Christopher D Manning. Feature noising for
log-linear structured prediction. In EMNLP, pages 1170–1179, 2013.

[22] Sixin Zhang, Anna Choromanska, and Yann LeCun. Deep learning with elastic averaging sgd. arXiv
preprint arXiv:1412.6651, 2014.

[23] Jingwei Zhuo, Jun Zhu, and Bo Zhang. Adaptive dropout rates for learning with corrupted features. In
IJCAI, pages 4126–4133, 2015.

9

	Introduction
	Related Work
	Preliminaries
	Learning with Multinomial Dropout
	Distribution Dependent Dropout
	Evolutional Dropout for Deep Learning

	Experimental Results
	Shallow Learning
	Evolutional Dropout for Deep Learning
	Comparison with the Batch Normalization (BN)

	Conclusion

