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1 Proof of Corollary]

Corollary 1. Suppose Assumption 1.c and 1.d hold. Let X; be the output of ADMM. For any x € Q,
we have

- Ix —xollz; | BlAIZIIx —xoll3 | »°
F(X:) (x) < o + o + Tﬁt

Proof. Lety = Ax, we have
(G —w) Fu) = & —%) (AT +F-y) A+ N =) (Ax—y)
= AT(AR, — 50) + N, (Ax —y)
== —)\T(Aﬁt - yt)

Then following Proposition 1, we have

~ . PN — 2 A(x — 2 A— M]3
f(xt) +¢(yt) _ [f(X) ‘l‘w(AX)} _ )\T(AXt _ yt) S HX 21(1”6' + B” (x2t Xl)”Q + || 25t1||2

Since the above inequality holds for any A € R™, we can maximize both sides over || A||2 < p, and
by noting A; = 0 we have

— 2 Alx — 2 2
&)+ 050 — 70 + w(Ax)] + p| 4R, — 3o < Xl PRl | 2o,

By Assumption 1.c, we have

P(AX:) — P(¥e) < pllAXe — T2

Thus,
< o b —xullg | BIAx—x)l3  »?
_ < L
) + (AR = (7o) + w(ax)) < ey ARl £
which completes the proof by noting that F'(x) = f(x) + ¢(Ax). O

2 Proof of Theorem

Theorem 2. Suppose Assumption 1 holds and F(x) obeys a local error bound condition on the ¢-
1— 2
sublevel. Let 3; = 22 K = [logy(eo/€)] and t = {M—‘ we have F(xg) — Fi. <

= TAlzeo’

2¢. The iteration complexity of LA-ADMM for achieving an 2¢-optimal solution is 6(1/61’6).
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To prove the theorem, we first present a lemma due to [2].

Lemma 1. /2] For any x € Q and € > 0, we have

dist(x!, Q)

2 (F(x) - Plx)))

I — x> < ¢

where x| € S, is the closest point in the e-sublevel set to X.

Proof of Theorem[2} Here we only prove for the case of G = vI — BAT A with v = B/ A3
Following the same analysis, we can easily prove the same result for using G = 0. Let xL_Le denote

1—6 1—6
the closest point to Xy, 1 in Sc. Define €, = 5. Then 3 = Hpj\ﬂ and v = Bk||Al3 = %.

We prove this by induction. Assume F'(wy_1) — Fy < €x—1 + €, which trivally holds for k = 1 due
to Assumption 1.a. We apply Corollary [I]to the k-th stage of LA-ADMM. For any x € (2, we have

< ellx = %k f3 . Brll All3lx = xk-all3 | p?

Fxx) = Fx) < 2 2 MBI
Letx = XLLE so that we have
T 2 2|~ T 2
Vellxp_1e =61l BellAlslIxg_ . —xk-1llz ~ p?
F — F(x! < ’ : . 1
(Xk) (Xk:fl,e) — 2t + 2t 2ﬁkt ( )

We consider two scenarios of xj_1. First, suppose x;_1 € S, so that x;_; = XIL1 .- Then

2 2 4 1-6
14 P || ||26kE €k
(k) (e < 201t — 2pel=98p|| Al 16’

which implies

F(xp) = F. < F(x}_, )~ Fi+ e < e+ e

Secondly, suppose xx_1 & S. so that F' (XL_LJ = F, +¢€ By Lemmaand the local error bound
condition of F', we have

dist(xz_l o ) ce’ -
kL T (F(xp1) — F(Xz—l,e)) < T 1T e

lXp—1 — X;LLGHQ <

where we use the assumption that F'(x;_1) — Fi < € + ¢x_1 and the fact F(XL_1 ) =F.+e
Plugging the above bound into (T)) we have

A 20262 A 20262 2
F(xy) — F(x}_, ) < BellAllzc*ei_y | BrllAllzc”er_y p
“ 2te2(1-0) 2te2(1=0) S5t
pe' CIlAIRCE | pPer]| Al
(| Alloexte2(1=6) 2pel =0t

. 8p|lA ax(c?,1
Since t > %, we have

€ €
Flxi) = Flxf_y ) < 5+ 36 < e

which implies
F(x) — F. <€ +e

We can finish the proof by the induction up to k = K = [log,(eo/€)], which yields F'(xx) — F
2e.

LA



3 Proof of Corollary 3|

Corollary 3. Suppose Assumption 1.c, 1.d and Assumption 2 hold. Let G, = vI —nBATA = I in
Algorithm 3. For any x € (),
LR NG LS A WL

oy Pyl
F(x:) - F(x) < 5 + ol n

2t 20t

+ (E[gT] —gT)T(XT—X).

S
M“

T=1

To prove this Corollary, we first present a theorem whose proof will be presented later.

Theorem 5. Suppose Assumption 1.c and 1.d hold. By running Algorithm 3 with t iterations, for any
x € Q we hae

77 ||g7'|| 1 ||X7— - XH2GT HXT-H - XH%JT
F(x) — Z ~ 4 = B) B 2

’I7t T=1
BllA(x1 — x)|3
< 2t + 26T> t

+ Z(E[g'r] - gT)T(XT - X)

pllAGXE —xrp1)ll2 | 1
t
1

t
T=

Proof of Corollary[3] By Theorem 5] we have

t

¢ e lI2- —x||2 — x||2
- 7 mllg-r 1 xr —xllg,  lIxre1 —x[E,
F(Xt)*F(X)SEE T+ﬁ ( 5 - 5
T=1 =1

(ﬂAI sl —xl ) n pHAHzllxlt* Xi41) |2

1 t
2t 2t t7 > (Elgs] — ) (%, —x). ()

T=1

Since G, = GI and G, = I, we have GT_1 = I so that the first term in the R.H.S. of (2) is bounded
by

L e II2,- ! e R
n e 7] 77 7]
" U I~ 3
DN o P ©
On the other hand,
1 (e —xlE ) 1 (el ol
nt — 2 2 nt 2 2
I = %I, _ Al —xl3 “
2nt - 2nt
Plugging inequalities (3) and (@) into (Z), we complete the proof. O

4 Proof of Theoremd

Theorem 4. Suppose Assumptions 1 and 2 hold and F(x) obeys the local error bound condition

on S.. Given § € (0,1), let § = §/K, K = [logy(2)], m = g5, B = 755, D1 > 54,

2 N 2 2 2
t be the smallest integer such that t > max{ 69121 l:g(l/d)Dl, 12sz€40|\le7 L Lﬁ‘“?} and G, =
0

21 — 1 AT A = I. Then LA-SADMM guarantees that, with a probability 1 — 6, we have F(Xx) —
F, < 2e. The iteration complexity of LA-SADMM for achieving an 2e-optimal solution with a high
probability 1 — 6 is O(log(1/6)/e2=9) provided D, = O(21% )-

To prove Theorem [} we first bound the last term of the upper bound in Corollary [3|using the following
lemma whose proof can be found in [1]] (in the proof of their Lemma 10).



Lemma 2. Suppose Assumption 2 holds. Given xj,_1, let XL_ 1,c be the closest solution to X1
in the e-sublevel set S.. Let Dy, be the upper bound of ||xx—1 — x};_l 2. Apply t-iterations of
xF = Tons_ 1,00 [XE — 1Y, where E[gF] € 0f (xF). For any § € (0,1), with a probability
of at least 1 — 0, we have
t
1 4RDy+/3log(1/9)
£ D (Bt — )T — ) < VB
T=1

Proof of Theoremd} To prove the theorem, we apply Corollary [3|to each stage of LA-SADMM with
X = XLLC, where X,LLE denotes the closest solution to x;_1 in the e-sublevel set. We will prove
this by induction. Define €}, = ;—2 Let us assume that F'(xx—1) — Fix < €x_1 + €. First, we need to
show that xL_LE € QN B(xk_1, Dg). It suffices to show ||x};_17€ — Xg—1ll2 < Dy, which is true
because

)

dist(x,t_1 o )
€

dist(x] ,Q,

< ( k—1,e )

(F(xie-1) — F(x}_,.))

dist(xlfl’e, Q. )er—1

I}y . — xp-ill2 <

[ek—1 +€e—€] =

€ €
T 0
c(F(x —F)¢,_ 0
< (F( k—l,e) ) er—1 < celer1 _ Celk_el <D,
€ € el—

Then, by Corollary |3|and Lemma with a probability 1 — 8, we have

T 2 2 T 2
L L e R | Bl AlllIxk—1 — x5y |l 2
F(Xk) _ F(X'I];71 E) Snk + k—1,ell2 + 2 k—1,ell2 14

’ 2 217kt 2t 2ﬁkt

pllAl2llxk—1 — xF 2 . 4RDy+\/31log(1/6)

+
t Vi
ne R? ey Bl All3c*e_y p’
- 2 2nte2(1-0) 2te2(1-6) 285t
pllAllsDy  4RDxy/3log(1/0)
n . 5)
t Vi
where the second inequality is fzromz@ and the fact thag xF 41 € 123 (Xk—1, Dg). Setting n, = 3%,
B = % and ¢ > max { P '};‘”2, mp”fo”ZDl , 69121 l(€)2g(1/5)D1 } in the right hand side of the
2 0
inequality above, we have
F(xi) — F(x_,,) < %“ X 6 = c.
Hence, conditioned on F'(x;_1) — Fi < €1 + €, we have
F(Wk)—F* <e€p+e€
with a probability of 1 — §. By induction, with a probability of (1 — )% > 1 — §, we have
Fwg)—F. <exg+e<2e
O

5 Proof of Theorem

Proof. To prove the theorem, we first introduce some notations and technical lemmas. Define

X —AT)
uz(y), F(u) = A ,
A Ax —y

SO
Ay = (0f (x¢) — gt)T(Xt —-Xx), Ur = T ;ut-&-l-



Lemma 3. Let G - 0 and w. be given by
. 1 2
Wy = arggggh(x) + %”X_W”G (6)
Then for any x € )
1

Vhiws) (i ) < 5

(Iw =x[1g = llwy = xII& = ws - wlZ)

Proof. By the optimality condition, we have
1
(x—wy)" <Vh(w+) + 5G(W+ — W)> >0, Vzre.

It is easy to verify that

1 1
i W) Gwy —w) = % (Iw = xl1 = llwy = xII& = ws —wlZ).

We now begin to prove Theorem [5} By the convexity of f(x), for any x € €2, we have

Flxe) = F(x) <Of(xe)T(xe —x) = g/ (x¢ —x) + Ay = g/ (Xep1 — X) + 8/ (Xt — Xp11) + (A7t).

Applying Lemma[3|to
xepn = angmin g x - x"ATA 4 5 Ax -yl + 5k - il
leads to
(8¢ — AT A\ + BAT (Axppy — Yt))T (Xp41 — %) < % (Ixe = x11&, = %1 — x|, = IIxepr —xd1E,) -
which further implies
g/ (X111 — %) < - (lIxe = %2, = lIxer1 = xI1Z, = ko1 = xell&,) = (xepr = %) TAT(B(AXe11 = ¥e) = Ao)-

21
Then, combining the inequality above with (7), we have
f(xe) — f(x) = (x¢41 — X)TAT)\tJrl
1
< % (th - X||%;t = %41 — X||%;t — Ix¢41 — Xt||%;t) — (%41 — X)TAT(B(AXt+1 — Vi) — At)

— (ki1 = %) TAT N1+ 8/ (e — xp1) + A

1
= (IIxe = xlIE, = %1 — x1&, — %41 — xe[1E,) — (Kep1 — x) T AT (B(Axiq1 — yi) — M)
— (%41 — %) T AT (N = B(AX¢t1 — Yir1)) + & (X — Xeq1) + Ay
1 2 2 2 T AT ¢ — Xt+1\|%;t
= o (Ixe — %12, = lIxepr — x[1E, = %41 —xellE,) — (o1 — %) AT Blyesr — ye) + T
n
+ 5 lleelE s + A
1

n
= % ((th - X||20t = [|%41 — X||%;t) + §||gt||é;1 + Ap+ (xe41 — %) TAT Byt — yer)-
To handle the last term in the previous inequality, we observe that

(xe41 = %) TATB(ys = Yer1) = B(Axp1 — A%) T (ys — Yer1)

[HAX - }’t||% — || Ax — Yt+1||§ + [[Axy 41 — }’t+1||% — [|Axs 11 — Yt||§]

<

NIRe Sl Ry

1
[IIAx — y¢[|5 — |Ax — yeqall3] + %H)\Hl — Aell3



Thus we have

fxe) = f(x) = (x50 —x) T AT Apqy
1 n
< o ((Ixe — xl1E, = lIxer1 — x[|&,) + §||gt||i;;1 + Ay (8)
ﬁ 1
[||AX yill3 = [1Ax — yi41]l3) +ﬁH)\tH - Aell3

Next by the optimality cond1t10n of y¢41, there exists 9v(y¢+1) such that
(v = ye+1) T (00(yer1) + M — B(AXeq1 — yeg1)) = 0.

Hence,
(yis1) = 0¥) < = = yir) W (yir1) < (y —yir) T (A — B(AX11 — yig)) ©)
= (Y = yer1) A1
By the updating rule of A\, we have
1
A1 = A) T (Axep1 = yer1) = (Mg = A) T (A = M)
0 (10)

1
=35 (X=Xl = I = Xea [P = 12 = A [13) -
Adding the three inequalities in (8)), (9) and (T0) gives
Fx) = F(2) + 0(yir1) —0(y) + (1 —x) T (AT A) + (v —y) T A

1 "
+ (A1 = A) T (Axep1 = Y1) < o (e = xl1, = Ixer =x11&,) + Sllgeller + A

N

1
+ 35 (A=Al = I = Aeal?) + 5 (1A% = yell3 = [[Ax = yisa[13]

which can be written as
fxe) = F(x) + U(yi1) — (y) + (e —a) T F(ugsq)

1 7
<% (e =18, = lIxer1 —xI3,) + §Ilgtll oAt o (IIA Al = 1IA = A [?)

B
+ 5 (1A% = yell5 = [ Ax = yisall3] -

Taking the summation overt = 1,..., 7, we have
T T T
Z(f( )+ Z (Yt+1) Z Uiy — ) Flugg)
t=1 1

T ( nllgel?

T T
1 Gt 1
— ke —xlG, — Ixepr = xlI2,) + ) ————+ =[A- M3+ > A
2 2 28

t=1 t=1

t=

=

+ax -y
By the convexity of f(x) and ¢(y) and the monotonicity of F(-), we have
f&r) = f(x) +9(Fr) —¢(y) + (@ —w) " F(ur)

T T T
1
< T (Z(f( )+ Z (Ye+1) ) + Z W —u)l (Ut+1)>
=1 t=1 t=1
Lz
2
< 2T 2= (Ixe = %11, = lIxer1 —x|[1Z,) + Z ||gtH 25T”/\ Ak
B 1 «
ol Ax =yl + 72 A 11
# gkl 2 -



Due to the fact that
(7 —w)" F(iir) = Xz — %) " (~ATA) + (¥ —y) D + Or = \)(A%r — 1)
=M (Ax —y) = A (A% — 1) = —\ (A%7 — ¥7),

we have

max (ar — u)T}"(ﬁT) = p||Axr — yrll2,
IM2<p

which, by Assumption 1.c, implies

U(Axr) ~ U(37) < pll A%y Frll < max (br —w) F(ir)
230

According to this inequality and the fact that A; = 0, if we fix x and y = Ax but change X to
maximize both sides of (TI)) over ||A||2 < p, we obtain

f&r) - f( ) + ¥(Axr) — d(y)

1 2
7T Z % = %1%, = %41 — x[I2,) T o7 Z HgtH -1+ QﬂiT

8 S

t=1

Adding ¢ (AXr) — ¥ (AX7) to both sides of this inequality leads to
f(xr) = f(x) + ¥(AX7) — ¥(y)

T
1 2
< g 2 (e =, — s = xJ3,) + QTZHgtH o

T
ol Ax =y 5 + ZAt+¢(A§T) — ¢(Axr)

T
1
< T Z (IIxe = %11, = lIxer1 —x[1Z,) + o7 Z HgtH -1+ 257

T
o llAx =y 3 + ZAtJrPIIA(iT—?T)Hz

t:l

T
1 2
7T z_: % = %12, = %41 = x[|Z,) + Z HgtH -1+ TﬁT

T
B 2, 1 Pl AL — x741) |2
+ﬁ||Ax—y1\|2+TZAt+ - :

where the second inequality is a result of Assumption 1.c and the third inequality is by the definition
of X7 and Xr. O

6 Practical Variants of Locally Adaptive ADMM

In this section, we present variants of locally adaptive ADMM algorithms that can be implemented
with unknown constant ¢ and unknown exponent parameter . Following the idea of [2], we propose
using another level of restarting on our ADMM. In particular, we apply our ADMM method in epochs
where we start the first epoch with a relatively large number of iterations ¢; and then after each epoch
we increase it gradually. We present the detailed steps in Algorithms[5|and[6} and the convergence
results in Theorems [6] and [8] for unknown ¢ but known 6 € (0,1) and in Theorems [9] and [10] for
unknown c and 6.



6.1 Locally Adaptive ADMM for unknown c

When the constant ¢ is unknown but 8 € (0, 1) is known, we present formal guarantee of Algorithm
in the following theorem.

Theorem 6 (RLA-ADMM with unknown c¢). Suppose Assumption 1 holds. Let ¢ < ¢y/4 and
K = [logy(2)] in Algorithm Suppose 6%1) is sufficiently small so that there exists é1 € [e, €0/2],
with which F(-) satisfies a local error bound condition on S;, with § € (0, 1) and the constant c,

~1—6
and ﬂil) = V25 gy t = L;ff—‘ and S = [log,(é1/€)]| + 1.Then, with a total number of
1 €0

— cllAllze0

S calls of RLA-ADMM in Algorithm we find a solution x5 such that F(X(S)> — Fy < 2e¢. The
total number of iterations of RLA-ADMM for obtaining 2¢-optimal solution is upper bounded by

Ts = O(1/e9).
To prove the above theorem, we need the following theorem.
Theorem 7. Suppose Assumption 1 holds and F(x) obeys a local error bound condition on the

e-sublevel. Let K = [log,(eo/€)], B1 = ‘C/ﬁﬁiﬁ;: andt = [;f;—‘ in Algorithm 2, we have

F(xk)— Fi < 2e.

Proof. Here we only prove for the case of G = vI — BAT A with v = || A||3. Following the same
analysis, we can easily prove the same result for using G = 0. Let x,t_l . denote the closest point to

pe' °J A2
2ceg

1—6
. _ _ _ 2 _ .
Xj—1 in Sc. Define ¢, = 5¢. Then ), = 7\/5‘;‘14“2% and v, = Bk ||All5 = . We prove this

by induction. Assume F(wy_1) — F, < ex_1 + €, which trivally holds for k¥ = 1 due to Assumption
l.a. We apply Corollary|[I]to the k-th stage of LA-ADMM. For any x € 2, we have

_ 2 A 2 _ 2 2
Pl Fog < Xl | BlAIIx —xal | o
2t 2t 203t
Letx = xLl . so that we have
1 2 2|[~ T 2
’VkHXk—1e —xp-1l3 = BrllAlll%;_, . —xk-1]3 p2

F(xy) — F(x! < : : . 12
(Xk) (Xk:—l,e) = ot + ot 2ﬂkt ( )

We consider two scenarios of x;_1. First, suppose xx_1 € S¢ so that x;,_1 = xLl .- Then

PP PPV2|Alae e €k

F(xg) — F(xl_, )< T2
(xk) (X)_1,0) < 20kt = 200 \2ep|| Al 2

which implies
F(xk)fF* SF(XL_le)fF*‘FEk <€+ €.

Secondly, suppose xx—1 € S. so that F' (XL_l ) =F.+¢€ By Lemmaand the local error bound
condition of F', we have

dist(xl_1 o ) ce? CEL_1
T (Flxim) — Fx Ly ) € e = g

[ S -

where we use the assumption that F(x;_1) — Fi < € + €;_1 and the fact F(XLLE) =F, +e
Plugging the above bound into (I2)) we have

A 20262 A 20262 2
F(xy) *F(XL_l ) < BellAllzc*ei—y | BrllAllzc*ei_y p
“ 2te2(1-0) 2te2(1-6) 2Bt
_ eVl AIBCE L VEepPer|| Al
V2¢|| Al 2€te2(1=0) 2pel—0¢

. Zep|| A
Since t > %, we have

F(xg) — F(XZ_l,e) < <o



Algorithm 5 LA-ADMM with Restarting (RLA-ADMM)

Input: the number of iterations ¢; per epoch and the penalty parameter ﬂil) in the first stage.
Initialization: x(*)
fors=1,2,...,do
Let x(®) =LA-ADMM (x(=1) 8% K t,)
Let o1 = £,2170, glsT) = g(®) j91-0
end for
Output: x(%)

A A SR ol

Algorithm 6 LA-SADMM with Restarting (RLA-SADMM)

Input: the number of iterations ¢; per epoch and the radius Dgl) in the first stage.
egs qs . 0 o _ 6R?
Initialization: x(©), 5, = a57: b1 = TAlZe

fors=1,2,...,do
Let x(*) =LA-SADMM(x(~1, D'*) K t,)
Lettyy = £,220-0), pi**tY) = p{*g1-0
end for
Output: x(%)

A A S ol e

which implies

F(Xk)fF*§€k+€.

We can finish the proof by the induction up to k = K = [log,(€o/€)], which yields F(xx) — Fi <
2e. O
Proof of Theorem 6] Following the proof of Theorem[7] we can show that

F(xW) = F, <2¢ < «. (13)

~1—6 b
with K = [logy ()] > [logy(£2)], %1) — V24" and t; = {2’32—‘ By running LA-ADMM

= ATz (L

starting from x(1) which satisfies with K = [logy ()] > [logy(:9%5)]1. B3 = WM jo1-0 —

a/2
V2p(e /M0 g = 210 = prg —‘,Theoremensures that

c||Al|2€0 §2)50

F(x®)—F, <& <e.
Applying this argument recursively, we can show
F(x®) —F, <26,/2°71 < ¢, fors =1,2,....
With S = [log,(é1/€)] + 1, we prove that
F(x¥)) — F, <2¢ /2571 < 2.
The total number of iterations for the .S calls of LA-ADMM is bounded by

S S g .
Ts = KZTS - Kzt12(s—1)(1_0) — Kt,2(5-D01-0) Z (1/2(1_9)>S
s=1

s=1 s=1 e

. N\ (1-6)
1 € ~
s-na-o____ 1 a (1-0)
< Kt,2 Yoy go(ml (E) ) < O(1/e1=9),

O

When the constant ¢ is unknown but § € (0,1) is known, the formal guarantee of Algorithm [f]is
presented in the following theorem.



Theorem 8 (RFA-SADMM with unknown c). Suppose Assumptions 1 and 2 hold. Let € < €y/4 and
K = [logy(<2)] in Algorithm@ Suppose Dgl) is sufficiently large so that there exists €1 € [e, e0/2),
with which F'(-) satisfies a local error bound condition on S;, with 6 € (0, 1) and the constant ¢, and

2 5 (1)y2 (1)
D§1) _ % Lett; = max{sng log(;/é)(Dl ) , 12p||All2 D} 7p2|1\%;1||§ } S = [logy(é1/e)] +1

1 €0 €0

and b = KLS. Then, with a total number of S calls of LA-SADMM in Algorithm@ we find a solution
x5) such that F(X(S)) — F, < 2e¢. The total number of iterations of RLA-SADMM for obtaining
2e-optimal solution is upper bounded by Ts = O(log(1/5)/e>(1=9).

Proof. With K = [log,(<2)] > [log,(£*)] and
. {691232 log(1/8)(D{")? 12p]|Al|. D" ﬂmn%}
1 = max 3 s , 5
€5 €0 R

and D%l) = %, by Theorem we can show that
€1

F(xM) - F, <26 < ¢ (14)

with a probability of at least 1 — %. By running RLA-SADMM starting from x(*) which satisfies
" with K = |_10g2(%0)—| 2 |—10g2(g21€/12 )| and

. {6912R2log<1/8><D§2>>2 129]| Al Df” p2||A||§}

ty = 122079 > ma ,
2 - €2 €0 R?

with DEZ) = (gl/czeg’l_e > (616/2;)11_9 , Theorem@ensures that

F(x?)-F <& <e
with a probality of at least (1 — §/5)2. Applying this argument repeatedly, we have
F(x®)—F, <26,/2°"! < ¢, fors =1,2,...,5

with a probality of at least (1 — §/5)%. With S = [log,(é1/¢)] + 1, we can prove that, with a
probality of at least (1 — §/5)% > 1 — 4,

F(x®)) - F, <26 /2571 < 2.
The total number of iterations for the S calls of RLA-SADMM is bounded by
s s s

Tg = KZTS _ Kztﬂz(sq)(ke) — Kt,22(5-1D)(1-0) Z (1/22(1,9))875
s=1 s=1 s=1
2(S—1)(1—6) 1 e ~ 2(1-6)

O

6.2 Locally Adaptive ADMM for unknown ¢

In this subsection, we show that the iteration complexity of the proposed algorithms can be no worse
than standard ADMM algorithms even the value of 6 is unknown. If the exponent parameter 6 is
unkown, we observe that F'(-) satisfies a local error bound condition on S, with § = 0 and ¢ = B/
with ¢’ > ¢ for any € > 0. Then, the following theorem is derived based on this observation.

Theorem 9 (RLA-ADMM with unknown ). Let § = 0, ¢ < eo/4 and K = [logy(<2)] in
Algorithm Assume ﬁgl) is sufficiently small such that there exists €, € [e, €9/2] rendering ﬁil) =

%. Let t) = Lﬁlﬁf-‘ and S = [log,(é1/€)] + 1. Then, with a total number of S calls
€1 1 €0

of LA-ADMM in Algorithm El we find a solution x5 such that F(x5)) — F, < 2e. The total
number of iterations of RLA-ADMM for obtaining 2¢-optimal solution is upper bounded by Ts =

O (pI\AHzBel )

€
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Remark: Compared to the standard ADMM (see remark below Corollary [T), we can see that
RLA-ADMM converges no slower than standard ADMM as long as Bil) is sufficiently small.

Proof. This proof is similar to the proof of Theorem|§|except that = 0 and ¢ = Be,. Given that

€ € V2B: A 1 é
K = [logy ()] > [logy(£)], t1 = [W—‘ and gV = %,by Theorem we have

F(xWM) = F, <2¢ < «. (15)

By running LA-ADMM starting from x(!) which satisfies (15) with K = [log,(£2)] > [log,(:95)],

51/2
to =12 = {%—‘ ,and ﬁf) - 5%1)/2 = %, Theoremensures that

F(x®) - F, <& < «.
Applying this argument repeatedly, with S = [log,(€1/€)] + 1 we can prove that
F(X(S)) - F. < 261/25_1 < 2e.
The total number of iterations for the S calls of LA-ADMM is bounded by

S S S
Ts=KY T,=K» ;2070 = Kt;25-D %" (1/2)%*
s=1 s=1 s=1
_ ]. é Bg HA”Q €0
<Kt285-V = <o(Kt;L) =0 222000 (207 ).
< 1 1_1/2_0 16 0 p (OgQ(eﬂ

O

Theorem 10 (RLA-SADMM with unknown 6). Let 6 = 0, € < €o/4 and K = [logy(<2)] in

Algorithm @ Assume Dgl) is sufficiently large such that there exists €, € [e,€y/2] rendering
5 (pM DM 2

691287 105(1/5) (D) 12pl1Al2 D p2}|§|é}, S = [log,(é1/e)] + 1

Eg ’ €0 ’
and § = %. Then, with a total number of S calls of LA-SADMM in Algorithm@ we find a solution

x9) such that F(X(S )) — F, < 2e. The total number of iterations of RLA-SADMM for obtaining
2e-optimal solution is upper bounded by Ts = O(log(1/8)/€?).

B:
D(l) = 299 Jett; = max
1 7

Proof. This proof is quite similar to that of Theorem@except for setting # = 0 and ¢ = Be,. Given
K = [logy ()] = [logy(g})] and

N 1 1
. max{ww log(1/5)(D{")* 120l 412D oAl } |

€2 €0 R2

where Dgl) = B%:O following the proof of Theorem we can show that with a probability 1 — <,

F(wW) = F, <2¢ < «. (16)
By running RLA-SADMM starting from x(1) which satisfies (16) with K = log, (<2 >
y g g 2\
. 2 S (2)y2 (2)
logy(Z0)], t2 = 12" > maX{6912R los(L/B)(DP)? 121412D p21AlE
Be, €0

B., 2¢,
@ 2 @

- p and Df) =

Theorem 4| ensures that
FxP)—F, <é.

with a probability of at least (1 — 6/.5)2. Applying this argument repeatedly, we can prove that, with
a probability of at least (1 — 6/.5)°%,

F(x¥) = F, <26/2°7" <2, fors =1,2,....
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Figure 2: Comparison of different algorithms for solving different tasks. RR + LR represents robust
regression with a low rank regularizer. LRR represents low-rank representation.

Let S = [log,(é1/€)| + 1, we have
F(x®) = F, <2¢6,/2571 < 2

holds with a probability of at least (1 — §/S)° > 1 — §. The total number of iterations for the S calls
of RLA-SADMM is bounded by

S S S
Ts=KY T,=KY 22670 = k1,227 37 (1/22)
s=1 s=1 s=1

2(5-1) &\’ A
<A <o (2 ) <o

7 Additional Experiments

To examine the convergence behavior of different algorithms in terms of running time (cpu time), we
provide the running time results in Figure[2] The results indicate that our methods are much faster
than their corresponding baselines, which is similar to the results in Figure 1.
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