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Abstract

In this extended abstract, we will present and discuss opportunities and challenges
brought about by a new deep learning method by AUC maximization (aka Deep
AUC Maximization or DAM) for medical image classification. Since AUC (aka
area under ROC curve) is a standard performance measure for medical image clas-
sification, hence directly optimizing AUC could achieve a better performance for
learning a deep neural network than minimizing a traditional loss function (e.g.,
cross-entropy loss). Recently, there emerges a trend of using deep AUC maximiza-
tion for large-scale medical image classification. In this paper, we will discuss
these recent results by highlighting (i) the advancements brought by stochastic
non-convex optimization algorithms for DAM; (ii) the promising results on vari-
ous medical image classification problems. Then, we will discuss challenges and
opportunities of DAM for medical image classification from three perspectives,
feature learning, large-scale optimization, and learning trustworthy AI models.

1 A Brief history of AUC Maximization

AUC maximization has a history of almost two decades. During these two decades, there have
been a variety of methods for optimizing the AUC score. In order to better position deep AUC
maximization, we start by introducing the formulations and objectives for AUC maximization.

Definitions and Formulations. Let (x,y) ∼ P denote an input data and label pair following a
distribution P , where x ∈ Rd and y ∈ {1,−1}. Let hw(·) : Rd → R denote a predictive model
(e.g., a deep neural network, a linear model). The ROC curve is obtained by plotting the true pos-
itive rate (TPR) vs. the false positive rate (FPR) by varying the prediction threshold. AUC can
be calculated as the Riemann integral of the function TPR vs FPR. However, the complex nature
of computing Riemann integral makes it difficult to design optimization algorithms towards max-
imizing AUC for learning the model hw(·). The most popular approach is to use the probability
interpretation of AUC [25], i.e., AUC(hw(·),P) = Pr(hw(x) > hw(x′)|y = 1, y′ = −1), which
means that AUC (on the population level) is equivalent to the probability that a randomly selected
positive data is ranked higher than a randomly selected negative data by the predictive function,
where (x, y = 1) is a random positive data and (x′, y′ = −1) is a random negative data. On a given
dataset D = D+ ∪D−, where D+ = {(xi, yi) ∈ D : yi = 1} and D− = {(xi, yi) ∈ D : yi = −1},
the empirical AUC score can be computed as

AUC(hw(·),D) = 1

n+

1

n−

∑
xi∈D+

∑
x′i∈D−

s(hw(xi)− hw(x′i)), (1)

where n+ = |D+|, n− = |D−|, s(a) = 1 if a > 0, s(a) = 1/2 if a = 0, and s(a) = 0 if a < 0.

Full Batch based Methods (2000 - 2010). Earlier works for AUC maximization use full batch
based methods, which process all examples at each iteration. To the best of our knowledge, the
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earliest work dates back to 2000 [28], which considers the ordinal regression problem and proposes
support vector machine (SVM) formulation in the sense of pairwise classification. Later, the AUC
maximization problem has been tackled by [55] using gradient-based methods, by [20] for learning
decision-tree models, by [21] in the framework of boosting, by [31] in the framework of structured
SVM. Some works also proposed speed-up techniques by reducing the number of pairs [29, 47] or by
reducing the number of iterations [60]. Nevertheless, these full batch based algorithms could suffer
a quadratic time complexity in the worst-case or a super-linear (e.g. log-linear) time complexity
per-iteration, which makes them not scalable to large datasets.

Online Methods (2010 - 2015). To the best of our knowledge, Zhao et al. [62] is the first work that
considers AUC maximizing in the online learning fashion. To deal with large-scale data, they pro-
posed to maintain a dynamic buffer to store some historical data for updating the model parameter.
This online learning approach was also studied in several later works [33, 34]. In [33], the authors
also proposed mini-batch stochastic gradient methods that update the model parameters based on all
data pairs in the mini-batch. However, since these online methods do not consider all data pairs their
error bound or regret bound depends on the size of the buffer or mini-batch (e.g., 1/

√
B). Hence,

these algorithms will not converge unless the buffer size of mini-batch size B is infinitely large. Gao
et al. [22] proposed an one-pass AUC maximization algorithm based on the pairwise square loss for
learning a linear model, which optimizes an online version of AUC at each iteration that pairs each
received data with all historical data. To avoid storing all historical data, they leverage the structure
of the square loss and maintain and update mean and covariance matrix of data.

Stochastic mini-batch based Methods (2016 - present). [57] is a milestone work for stochas-
tic optimization of AUC. They restricted their attention to the pairwise square loss and proposed
to transform the non-decomposable objective into a decomposable min-max optimization problem,
which favors stochastic methods based on mini-batch of data without explicitly constructing the
pairs. Later on, the convergence of stochastic optimization of AUC based on the min-max formula-
tion was improved in [37, 41, 42]. The min-max formulation also serves as the basis for most recent
works on DAM discussed in next section.

2 DAM and Applications in Medical Image Classification
Recently, there is a trend of DAM based on large-scale stochastic optimization algorithms for solv-
ing the non-convex min-max formulation of the pairwise square loss or its variants. We briefly dis-
cuss the developments for large-scale non-convex min-max optimization and its application to AUC
maximization and then present some successful empirical studies on medical image classification.

Non-Convex Min-Max Optimization and Stochastic DAM. Stochastic non-convex min-max opti-
mization algorithms were first analyzed in [46] with provable convergence guarantee. Thereafter, the
theoretical developments have been the major topic of a wave of studies [7, 24, 30, 35, 38, 54, 56].
Liu et al. [36] developed the first practical and provable stochastic algorithms for DAM based on
the min-max formulation of the pairwise square loss function, which enjoy a fast convergence rate.
Recently, DAM has been also studied in the framework of federated learning [23, 58].

DAM for Medical Image Classification. To the best of our knowledge, [59] is the first work that
evaluates the performance of DAM on large-scale medical image data with hundreds of thousands
images, which is two orders larger than that was used in earlier works, e.g., [53]. They proposed
a new objective for robust AUC maximization to alleviate the issues of the square loss, namely the
sensitivity to noisy data and the adverse effect on easy data. The new loss function can be also cast
into a min-max objective, to which all existing non-convex min-max optimization algorithms can be
applied. It was shown to be more robust than the commonly used square loss, while enjoying the
same advantage in terms of large-scale stochastic optimization. They conducted extensive empirical
studies of DAM on four difficult medical image classification tasks, including (i) classification of
chest X-ray images for identifying many threatening diseases, (ii) classification of images of skin
lesions for identifying melanoma, (iii) classification of mammogram for breast cancer screening, and
(iv) classification of microscopic images for identifying tumor tissue. In Table 1, we summarize their
results on various medical image datasets. The percentage in the column "Improvements" shows the
improvement over the baseline method that is trained by minimizing the standard cross-entropy loss,
the column "Competition Results" shows their rank over all participating teams in competitions. The
authors also released a library for DAM called LibAUC 1.

1www.libauc.org
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Table 1: Summary of DAM’s performance on several medical image classification tasks from [59].
The CheXpert data was released in the Stanford CheXpert competition [1], the Melanoam data was
released in the 2020 Kaggle Melanoma Competition [2].

Dataset Image Domain #pos/#all # Training Improvements Competition Results
CheXpert Chest X-ray 20.21% 224,316 2% 1/150+
Melanoma Skin Lesion 7.1% 46,131 1% 33/3314
DDSM+ Mammogram 13% 55,000 1.5% NA

PatchCamelyon Microscopic 1% 148,960 5% NA

3 Challenges and Opportunities

In this section, we will discuss outstanding challenges and new opportunities of DAM for medical
image classification.

Feature Learning. Feature learning is an important capability of deep learning for tackling un-
structured image data. The current practice of DAM uses a two-stage approach: the first stage is to
learn the encoder network by optimizing the traditional cross-entropy loss and the second stage is to
fine tune the encoder network and to learn the classifier by DAM [59]. It is still not fully understood
why optimizing the AUC loss in an end-to-end fashion does not yield better feature representations,
and it remains an open problem how to learn better encoder networks by using DAM. One direction
is to improve the end-to-end learning paradigm that could enjoy the benefit of both feature learning
and robust classifier learning. Another direction is to consider self-supervised pre-training methods
on large-scale unlabeled medical datasets. This approach was recently explored in [52, 61, 4]. But
its success on downstream tasks of using DAM remains to be demonstrated. In this direction, we
could consider pre-training on much larger medical datasets than those used in existing studies and
demonstrate the performance of DAM on multiple downstream medical image classification tasks.

Large-scale Optimization. Although large-scale optimization algorithms for DAM have been de-
veloped, there are still many open problems to be addressed. Below, we will list several important
questions. (i) How is the performance of optimizing a min-max loss compared with that of opti-
mizing the conventional pairwise surrogate loss based on mini-batch data? It remains unclear which
approach is faster and more robust for deep learning. (ii) How to optimize partial AUC for deep
learning? Partial AUC maximization is much more challenging than standard AUC maximization
since the former involves the ordering of prediction scores among a large number of examples. (iii)
How to optimize area under precision-recall curve (AUPRC)? AUPRC is shown to be more appro-
priate for assessing the performance of a classifier on highly imbalanced data [18, 49]. Its close
sibling performance metric named averaged precision (AP) and its optimization has attracted much
attention in information retrieval and computer vision [9–11, 14–16, 19, 27, 40, 43, 45, 48]. Re-
cently, there is a breakthrough on large-scale AP optimization with provable convergence guarantee
by Qi et al. [44]. Nevertheless, it is still an open area for developing faster and robust methods for
deep AUPRC maximization.

Learning fair and interpretable AI models. Building trustworthy AI is important for healthcare
domains, in particular medical image classification. Two issues are of foremost importance, namely
fairness [5, 6, 12, 39] and interpretability [13, 26, 3]. Although these issues have received tremen-
dous attention in the literature for medical image classification [17, 51, 50], developing fair and
interpretable DAM methods remains to be explored. Some outstanding questions and work include
(i) how to develop scalable in-processing algorithms for optimizing AUC under AUC-based fairness
constraints [8, 32]; (ii) how to develop scalable and interpretable DAM methods; (iii) evaluating
these fairness-aware and interpretable AUC optimizaiton methods on large-scale medical image
datasets.

4 Conclusions

In this extended abstract, we have discussed the history of AUC maximization in the last two
decades. We then presented the recent studies on non-convex deep AUC maximization and its appli-
cations on various medical image classification problems. Finally, we discussed some outstanding
challenges and new opportunities of deep AUC maximization, which serve as good research topics
in the next few years.
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