LibAUC: A Deep Learning Library for X-risk Optimization

Tianbao Yang University of Iowa

Outline

- Overview & Background
- Algorithmic Foundation
- Use Cases and Impact

Why Training Matters

BIG DATA

BIG MODEL

Example: GPT-3 175 Billion Parameters 45 TB text data 355 GPU Years \$4.6M

https://lambdalabs.com/blog/demystifying-gpt-3/

Carbon footprint for 'training GPT-3' same as driving to our natural satellite and back

Optimization for Machine Learning

$$\min_{\mathbf{w}} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}, \mathbf{z}_i)$$

Empirical Risk Minimization (ERM)

SGD: Stochastic Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla \ell(\mathbf{w}_t, \mathbf{z}_t)$$

0.9 0.9 0.7 0.0 0.5 0.4

0.3 0.2 0.1 0

batch

In the Era of Deep Learning (2012 -)

Imagenet classification with deep convolutional neural net A Krizhevsky, I Sutskever, GE Hinton Advances in neural information processing systems 25, 1097-1105	works	99188	2012
Stochastic Heavy-ball Method (SHB)			
On the importance of initialization and momentum in deep I Sutskever, J Martens, G Dahl, G Hinton International conference on machine learning, 1139-1147	learning	4069	2013
Stochastic Nesterov's Accelerated Gradient (SNAG)			
Adam: A method for stochastic optimization D Kingma, J Ba International Conference on Learning Representations		92479	2015
Adam	Mom	entum term	
$\mathbf{w}_{t+1} = \mathbf{w}_{t+1}$	$t - \eta_t abla \ell(\mathbf{w}_t, \mathbf{z}_t) +$ Adaptive or Stagewise	$-\delta_t$	

Beyond ERM: Deep X-risk Optimization

What is X-risk?

Compositional measures that involve **C**omparison between each data and a set of data

Why are SGD/ADAM NOT Enough?

Compositional
$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f(g(\mathbf{w}, \mathbf{z}_i, \mathcal{S}))$$

Challenge: Unbiased Stochastic Gradient is Not Available

Outline

- Algorithmic Foundation
 - Deep AUROC Maximization (Min-max Opt.)
 - Deep AUPRC/AP Maximization (Compositional Opt.)
 - Deep Top-K NDCG Maximization (Bilevel Opt.)
- Use Cases
 - Medical Image Classification
 - Drug Discovery
 - Recommender System

Deep AUROC Maximization

Medical Image Diagnosis

Wu et al. 2020

Irvin et al. 2019

Evaluation Metric: AUC (ROC)

Non-parametric Estimator

Formulation: Pairwise Surrogate Loss

Limitations

- Need to Construct Pairs
- Not Suitable for Online Optimization
- Not Suitable for Distributed Optimization

Deep AUC Maximization (DAM)

Limitations of Literature on AUROC Maximization

- (1) Linear/Kernelized Models (Convex Analysis) or
- (2) Not Scalable to Big Data

Our Contributions:

- (1) New Formulation based on Min-Max Opt.
- (2) First Algorithms and Theories for Non-Convex Min-Max
- (3) Optimal Theory and Practical Algorithm
- (4) Federated Learning Algorithms

(NeurIPS'19, ICLR'20, ICML'20, ICCV'21, ICML'21, OMS'21, ICLR'22)

Our Formulation: Min-Max Margin Objective

Our Formulation: Min-Max Margin Objective

Negative

(ICCV 2021) Non-Convex Strongly Concave Min-Max Optimization

$$\min_{\mathbf{w},a,b} \max_{\alpha \ge 0} F(\mathbf{w}, a, b, \alpha) := \mathbb{E}_{\mathbf{z}} \left[F(\mathbf{w}, a, b, \alpha; \mathbf{z}) \right],$$
Idea: $(a(\mathbf{w}) - b(\mathbf{w}) - c)^2 \longrightarrow \max(0, a(\mathbf{w}) - b(\mathbf{w}) - c)^2$

Positive

ONoisy

Algorithm (PESG)

$$\min_{\mathbf{w}} \max_{\alpha \in \Omega} F(\mathbf{w}, \alpha) = \mathbb{E}_{\mathbf{z}}[F(\mathbf{w}, \alpha; \mathbf{z})]$$
Make Non-Convex Function Convex
For k=1, ... K
Step 1: Construct $F_k(\mathbf{w}, \alpha) = F(\mathbf{w}, \alpha) + \frac{\gamma}{2} ||\mathbf{w} - \mathbf{w}_0^k||^2$
Step 2: Initialize α_0^k
Step 3: Solve $(\mathbf{w}_k, \alpha_k) = \mathcal{A}(F_k, \mathbf{w}_0^k, \alpha_0^k, \eta_k, T_k)$
Any Suitable Stochastic Alg.

Theories Goal Complexity $O\left(\frac{1}{\epsilon^4} + \frac{n}{\epsilon^2}\right)$ OMS $\|\nabla F(\mathbf{w})\| \le \epsilon$ (2018) $O\left(\frac{1}{\epsilon^4}\right)$ **NeurIPS** $\|\nabla F(\mathbf{w})\| \le \epsilon$ (2020) $O\left(\frac{1}{\epsilon}\right)$ $F(\mathbf{w}) - F_* \leq \epsilon$ ICLR (2019) arXiv (2020) 21

(ICLR 2020)

Purple and Blue are ours

Image Classification

Convolutional Neural Networks

22

Deep AUPRC/AP Maximization

MIT AlCures Challenge

Fighting Secondary Effects of Covid

Stokes et al. 2020. Cell.

Evaluation Metric: AUPRC

	(a) Test PRC-AUC					
Rank	Model	Author	Submissions	Test PRC-AUC		
1	MolecularG	AIDrug@PA	7	0.725		
_2		AGL Team	20	0.702		
3	MoleculeKit	DIVE@TAMU	7	0.677		
4	GB	BI	6	0.67		
5	Chemprop ++	AICures@MIT	4	0.662		
6	-	Mingjun Liu	3	0.657		
7	Pre-trained OGB-GIN (ensemble)	Weihua Hu@Stanford	2	0.651		
8	RF + fingerprint	Cyrus Maher@Vir Bio	1	0.649		
9	Graph Self-supervised Learning	SJTU_NRC_Mila	3	0.622		
10	-	Congjie He	10	0.611		

_	(b) Test ROC-AUC						
Rank	Model	Author	Submissions	Test ROC-AUC			
1	MoleculeKit	DIVE@TAMU	7	0.928			
2	Chemprop ++	AICures@MIT	4	0.877			
3	-	Gianluca Bontempi	7	0.848			
4	-	Apoorv Umang	1	0.84			
5	Pre-trained OGB-GIN (ensemble)	Weihua Hu@Stanford	2	0.837			
6	-	Kexin Huang	1	0.824			
7	Chemprop	Rajat Gupta	7	0.818			
8	MLP	IITM	7	0.807			
9	Graph Self-supervised Learning	SJTU_NRC_Mila	3	0.8			
10	-	Congjie He	10	0.8			

Why AUROC Max. is NOT Enough?

Non-Parametric Estimator: Average Precision

$$AP(h) = \underbrace{\frac{1}{n_{+}} \sum_{\mathbf{x}_{i} \in \mathcal{S}_{+}} Precision(h(\mathbf{x}_{i}))}_{\text{Positive Examples}}$$

$$Precision(h(\mathbf{x}_{i})) = \frac{\sum_{\mathbf{x}_{j} \in \mathcal{S}_{+}} \mathbb{I}(h(\mathbf{x}_{j}) \ge h(\mathbf{x}_{i}))}{\sum_{\mathbf{x}_{j} \in \mathcal{S}} \mathbb{I}(h(\mathbf{x}_{j}) \ge h(\mathbf{x}_{i}))}$$

$$All Examples$$

Deep AUPRC Maximization

Limitations of Literature on AUPRC Maximization

- (1) Small Data or
- (2) Heuristic (No Convergence)

Our Contributions:

- (1) New Formulation based on Compositional Opt.
- (2) **F**irst Algorithms with Convergence Theory
- (3) Practical Algorithms and Improved Theory

⁽NeurIPS'21, AISTATS'22, ICML'22)

Our Formulation

Finite-sum Coupled Compositional Optimization

Key Idea of SOAP

Theories

Goal

 $\|\nabla F(\mathbf{w})\| \le \epsilon$

NeurIPS'21

First Algorithm with Convergence Guarantee SGD-style Update

ICML'22, AISTATS'22

Improved Convergence

Momentum or Adam-style Update

Dataset	Method	GINE	MPNN	ML-MPNN
	CE	$0.2774~(\pm 0.0101)$	$0.3197~(\pm 0.0050)$	$0.2988~(\pm 0.0076)$
	CB-CE	$0.3082~(\pm 0.0101)$	$0.3056~(\pm~0.0018)$	$0.3291 (\pm 0.0189)$
	Focal	$0.3236 (\pm 0.0078)$	$0.3136 (\pm 0.0197)$	$0.3279 (\pm 0.0173)$
HIV	LDAM	$0.2904~(\pm 0.0008)$	$0.2994 (\pm 0.0128)$	$0.3044 \ (\pm \ 0.0116)$
	AUC-M	$0.2998 (\pm 0.0010)$	$0.2786 (\pm 0.0456)$	$0.3305 (\pm 0.0165)$
	SmothAP	$0.2686 (\pm 0.0007)$	$0.3276 (\pm 0.0063)$	$0.3235 (\pm 0.0092)$
	FastAP	$0.0169 (\pm 0.0031)$	$0.0826 (\pm 0.0112)$	$0.0202 (\pm 0.0002)$
	MinMax	$0.2874~(\pm 0.0073)$	0.3119 (± 0.0075)	0.3098 (± 0.0167)
	SOAP	$0.3485~(\pm~0.0083)$	$0.3401~(\pm~0.0045)$	$0.3547~(\pm~0.0077)$
	CE	0.0017 (±0.0001)	0.0021 (±0.0002)	0.0025 (±0.0004)
	CB-CE	0.0055 (±0.0011)	0.0483 (±0.0083)	0.0121 (±0.0016)
	Focal	0.0041 (±0.0007)	0.0281 (±0.0141)	$0.0122 (\pm 0.0001)$
MUV	LDAM	0.0044 (±0.0022)	0.0118 (±0.0098)	$0.0059(\pm 0.0021)$
	AUC-M	0.0026 (±0.0001)	0.0040 (±0.0012)	0.0028 (±0.0012)
	SmoothAP	0.0073 (±0.0012)	0.0068 (±0.0038)	$0.0029 (\pm 0.0005)$
	FastAP	0.0016 (±0.0000)	0.0023 (±0.0021)	0.0022 (±0.0012)
	MinMax	0.0028 (±0.0008)	0.0027 (±0.0005)	0.0043 (±0.0015)
	SOAP	$0.0493 (\pm 0.0261)$	0.3352 (±0.0008)	0.0236 (±0.0038)

3.5% Positive 2~3% Improvement

0.2% Positive 33% Improvement

MIT AICURES Data Networks **GINE MPNN** CE $0.5037 (\pm 0.0718)$ $0.6282 (\pm 0.0634)$ **CB-CE** $0.5655 (\pm 0.0453)$ $0.6308 (\pm 0.0263)$ Focal $0.5143 (\pm 0.1062)$ $0.5875 (\pm 0.0774)$ $0.5236 (\pm 0.0551)$ $0.6489 (\pm 0.0556)$ LDAM AUC-M $0.5149 (\pm 0.0748)$ $0.5542 (\pm 0.0474)$ **SmothAP** $0.2899 (\pm 0.0220)$ $0.4081 (\pm 0.0352)$ FastAP $0.4777 (\pm 0.0896)$ $0.4518 (\pm 0.1495)$ MinMax $0.5292 (\pm 0.0330)$ $0.5774 (\pm 0.0468)$ $0.6639 (\pm 0.0515)$ SOAP $0.6547 (\pm 0.0616)$

2.2% Positive 3% Improvement

Molecular Properties Prediction

Graph Neural Networks

Deep top-K NDCG Maximization

Most Relevant Items on the Top Search Engines Ideal Order of Items Recommender Relevance Systems 3 3 0 Position 1 2 3 4 5 Social Media

NDCG

Top-K NDCG

Deep top-K NDCG Maximization

Limitations of Literature on NDCG Maximization

- (1) Small Data or
- (2) Not Applicable to Deep Learning

Our Contributions: (ICML'22)

- (1) New Formulation based on Bilevel Optimization
- (2) First Algorithms with Convergence Theory
- (3) Practical Algorithms

Transforming Top-K Selector

(ICML 2022) Prediction score The (K+1)-th largest score $\mathbb{I}(h_{\mathbf{w}}(\mathbf{x}_i;q) > \lambda_q(\mathbf{w}))$

$$\lambda_q(\mathbf{w}) = \arg\min_{\lambda} \frac{K+\varepsilon}{n} \lambda + \frac{1}{n} \sum_{i=1}^n (h_{\mathbf{w}}(\mathbf{x}_i; q) - \lambda)_+$$

New Formulation

Challenges

- Large number of query-item pairs
- Large number of queries/items

Algorithms (SONG/K-SONG)

For t=1, ..., TStep 1: Update λ_q^t by one-step SGD Step 2: Update $u_{q,i}^{(t+1)} = \beta_0 \hat{g}_{q,i}(\mathbf{w}_t) + (1 - \beta_0) u_{q,i}^{(t)}$ Step 3: Update \mathbf{w} by a momentum/Adam-style update

Theories

Goal

$\|\nabla F(\mathbf{w})\| \le \epsilon$

ICML'22

	Method		MSLR WEB30K		YAHOO! LTR DA		TASET	
		NDCG@10	NDCG@30	NDCG@60	NDCG@10	NDCG@30	NDCG@60	
Learning to	RANKNET	$0.5227 {\pm} 0.0012$	$0.5837 {\pm} 0.0006$	$0.6481{\pm}0.0007$	$0.7668 {\pm} 0.0007$	$0.8319 {\pm} 0.0008$	$0.8491 {\pm} 0.0008$	
-	LISTNET	$0.5337 {\pm} 0.0022$	$0.5910{\pm}0.0019$	$0.6535{\pm}0.0014$	$0.7805{\pm}0.0010$	$0.8441{\pm}0.0006$	$0.8613{\pm}0.0005$	
rank	LISTMLE	$0.5210{\pm}0.0017$	$0.5800{\pm}0.0015$	$0.6450{\pm}0.0012$	$0.7796{\pm}0.0007$	$0.8436{\pm}0.0006$	$0.8606 {\pm} 0.0006$	
	LAMBDARANK	$0.5324{\pm}0.0037$	$0.5885{\pm}0.0032$	$0.6529{\pm}0.0026$	$0.7794{\pm}0.0009$	$0.8442{\pm}0.0008$	$0.8619{\pm}0.0007$	
	ApproxNDCG	$0.5339{\pm}0.0008$	$0.5906{\pm}0.0005$	$0.6530{\pm}0.0003$	$0.7688{\pm}0.0004$	$0.8367{\pm}0.0004$	$0.8556{\pm}0.0004$	
	NEURALNDCG	$0.5329{\pm}0.0027$	$0.5881{\pm}0.0013$	$0.6510{\pm}0.0012$	$0.7812{\pm}0.0002$	$0.8443{\pm}0.0002$	$0.8622{\pm}0.0003$	
	SONG	$0.5382{\pm}0.0007$	$0.5953{\pm}0.0006$	0.6573±0.0005	$0.7842{\pm}0.0004$	0.8477 ±0.0003	0.8644 ±0.0003	
	K-SONG	0.5397 ±0.0009	0.5955±0.0004	$0.6571{\pm}0.0003$	0.7859 ±0.0003	$0.8464{\pm}0.0002$	$0.8642{\pm}0.0003$	

Table 2: The test NDCG on two Learning to Rank datasets. We report the average NDCG@k ($k \in [10, 30, 60]$) and standard deviation (within brackets) over 5 runs with different random seeds.

Table 4: The test NDCG on two movie recommendation datasets. We report the average NDCG@k ($k \in [10, 20, 50]$) and standard deviation (within brackets) over 5 runs with different random seeds.

	Метнор		MovieLens20M N		NET	TFLIX PRIZE DATASET		
		NDCG@10	NDCG@20	NDCG@50	NDCG@10	NDCG@20	NDCG@50	
Movio	RankNet	$0.0109{\pm}0.0011$	$0.0190{\pm}0.0010$	$0.0450{\pm}0.0016$	$0.0090 {\pm} 0.0007$	$0.0146{\pm}0.0008$	0.0261 ± 0.0010	
MOVIE	LISTNET	$0.0182{\pm}0.0004$	$0.0305{\pm}0.0002$	$0.0587{\pm}0.0004$	$0.0115{\pm}0.0018$	$0.0191{\pm}0.0013$	$0.0347{\pm}0.0014$	
Pacammandation	LISTMLE	$0.0117{\pm}0.0005$	$0.0210{\pm}0.0011$	$0.0493{\pm}0.0010$	$0.0081{\pm}0.0005$	$0.0134{\pm}0.0009$	$0.0253{\pm}0.0005$	
Recommendation	LAMBDARANK	$0.0178{\pm}0.0010$	$0.0310{\pm}0.0008$	$0.0595{\pm}0.0006$	$0.0103{\pm}0.0003$	$0.0175 {\pm} 0.0003$	$0.0332{\pm}0.0004$	
	ApproxNDCG	$0.0202{\pm}0.0004$	$0.0338{\pm}0.0004$	$0.0629{\pm}0.0004$	$0.0121{\pm}0.0015$	$0.0198{\pm}0.0005$	$0.0360{\pm}0.0006$	
	NEURALNDCG	$0.0194{\pm}0.0013$	$0.0322{\pm}0.0011$	$0.0609 {\pm} 0.0012$	$0.0113 {\pm} 0.0011$	$0.0186{\pm}0.0008$	$0.0342{\pm}0.0007$	
	SONG	$0.0232{\pm}0.0003$	$0.0369{\pm}0.0004$	$0.0646{\pm}0.0003$	$0.0141{\pm}0.0004$	$0.0222{\pm}0.0005$	0.0384 ±0.0003	
	K-SONG	$0.0248 {\pm} 0.0003$	$0.0381 {\pm} 0.0003$	0.0662 ±0.0004	$0.0154 {\pm} 0.0003$	$0.0234 {\pm} 0.0006$	$0.0377 {\pm} 0.0005$	

Outline

- Algorithmic Foundation
 - Deep AUROC Maximization (Min-max Opt.)
 - Deep AUPRC/AP Maximization (Compositional Opt.)
 - Deep Top-K NDCG Maximization (Bilevel Opt.)
- Use Cases and Impact
 - Medical Image Classification
 - Drug Discovery
 - Recommender System

Stanford CheXpert Competition

1st Place

Andrew Ng's Group

150+ Teams Worldwide

Leaderboard

Will your model perform as well as radiologists in detecting different pathologies in chest X-rays?

Rank	Date	Model	AUC	Num Rads Below Curve	
1	Aug 31, 2020	DeepAUC-v1 <i>ensemble</i> https://arxiv.org/abs/201 2.03173	0.930	2.8	
2	Sep 01, 2019	Hierarchical-Learning- V1 (ensemble) <i>Vingroup Big Data Institute</i> https://arxiv.org/abs/191 1.06475	0.930	2.6	
3	Oct 16, 2019	Conditional-Training- LSR <i>ensemble</i>	0.929	2.6	
4	Dec 04, 2019	Hierarchical-Learning- V4 (ensemble) <i>Vingroup Big Data Institute</i> https://arxiv.org/abs/191 1.06475	0.929	2.6	44

(ICCV 2021)

Disease	Image Domain	#pos/#all	# Training	Improvements	Competition Results
Lung-related	Chest X-ray	20.21%	224,316	2%	1/150+
Melanoma	Skin Lesion	7.1%	46,131	1%	33/3314
Breast Cancer	Mammogram	13%	55,000	1.5%	NA
Tumor	Microscopic	1%	148,960	5%	NA

Convolutional Neural Networks

Outline

- Algorithmic Foundation
 - Deep AUROC Maximization (Min-max Opt.)
 - Deep AUPRC/AP Maximization (Compositional Opt.)
 - Deep Top-K NDCG Maximization (Bilevel Opt.)
- Use Cases and Impact
 - Medical Image Classification
 - Drug Discovery
 - Recommender System

MIT AICures Challenge Evaluation Metric: AUPRC

1st Place

Fighting Secondary Effects of Covid

H_2N $N-N$ N N N NO_2
Halicin

Stokes et al. 2020. Cell.

Collaborating with Prof. Shuiwang Ji's group at TAMU

Rank	Model	Author	Submissions	10-fold CV ROC-AUC	10-fold CV PRC- AUC	Test ROC- AUC	Test PRC- AUC
1		DIVE@TAMU	11			0.957	0.729
2	MolecularG	AlDrug@PA	9			0.7	0.725
3		AGL Team	20			0.675	0.702
4		phucdoitoan@Fujitsu	14	0.898 +/- 0.113	0.508 +/- 0.253	0.867	0.694
5	GB	BI	6			0.698	0.67
6	Chemprop ++	AICures@MIT	4			0.877	0.662
7		Mingjun Liu	3			0.72	0.657
8	Pre-trained OGB-GIN (ensemble)	Weihua Hu@Stanford	2	0.905 +/- 0.133	0.494 +/- 0.333	0.837	0.651
9	RF + fingerprint	Cyrus Maher@Vir Bio	1	0.896 +/- 0.074	0.481 +/- 0.338	0.799	0.649
10	Graph Self-supervised Learning	SJTU_NRC_Mila	3	0.825 +/- 0.210	0.530 +/- 0.342	0.800	0.622

Comparison with w/o DAM

5% Improvement in AUPRC, 3% Improvement in AUROC

Outline

- Algorithmic Foundation
 - Deep AUROC Maximization (Min-max Opt.)
 - Deep AUPRC/AP Maximization (Compositional Opt.)
 - Deep Top-K NDCG Maximization (Bilevel Opt.)
- Use Cases and Impact
 - Medical Image Classification
 - Drug Discovery
 - Recommender System

Movielens: 20 Millions User-Movie Pairs

Other Use Cases: Optimization for BIG Models

Self-supervised Contrastive Learning

(ICML'22, Collaboration with Google)

$$\frac{1}{n}\sum_{i=1}^{n}f(g_i(\mathbf{w}))$$

Small batch size Does not hurt Performance

Deep X Optimization 📫 Non-Convex Optimization

Representation Learning

- Pre-training
- Compositional Training

libauc.org

FALSE POSTIVE	AUC ↓ Notifications ♀ Fork 17 ☆ Star 117 -
	LIDAUC Installation Examples Research Talks Team Github
	A DEEP LEARNING LIBRARY FOR X-RISK OPTIMIZATION An open-source library that translates theories to real-world applications Latest News Install
	[2022-06] 7 papers about optimization for ML/AI accepted to ICML 2022!

KEY FEATURES & CAPABILITIES

Impact of LibAUC Library

QUICK FACTS

The achievements we made so far.

3+

Challenges winning solution (e.g., Stanford CheXpert, MIT AlCures, OGB Graph Property Prediction). 3+

Collaborations with multiple top industrial units.

17+

Scientific publications on top-tier AI Conferences (such as ICML, NeurIPS, ICLR).

11000+

Downloaded by more than 11K+ times from over 11 countries.

What is Next

Deep X-risk Optimization

Acknowledgements: Students

Main Development

Zhuoning Yuan PhD Student University of Iowa

Zi-Hao Qiu PhD Student Nanjing University

Dixian Zhu PhD Student University of Iowa

Gang Li PhD Student University of Iowa

Acknowledgements: Students

Other Contributors

Zhishuai Guo PhD Student University of Iowa

Quanqi Hu PhD Student University of Iowa

Bokun Wang PhD Student University of Iowa

PhD Student University of Iowa

Yongjian Zhong PhD Student University of Iowa

Mingrui Liu Assistant Professor George Mason University

Yan Yan Assistant Professor Washington State University

Yi Xu Associate Professor Dalian University of Technology

Acknowledgements: Collaborators

Milan Sonka (Ulowa)

Nitesh Chawla

Qihang Lin (Ulowa)

Yiming Ying (UAlbany)

Hassan Rafique (UIndy)

Shuiwang Ji (TAMU)

Acknowledgements

Big Data, Career, III, RI, Engineering, Smart Health, Fair AI

Tencent 腾讯

