Big Data Analytics: Optimization and Randomization

Tianbao Yang

Tutorial@ACML 2015 Hong Kong

[†]Department of Computer Science, The University of Iowa, IA, USA

Nov. 20, 2015

Tutorial for ACML'15

イロト 不得 トイラト イラト 二日

URL

http://www.cs.uiowa.edu/~tyng/acml15-tutorial.pdf

Yang

Tutorial for ACML'15

Nov. 20, 2015 2 / 210

Some Claims

No

- This tutorial is not an exhaustive literature survey
- It is not a survey on different machine learning algorithms

Yes

• It is about how to efficiently solve machine learning (formulated as optimization) problems for big data

イロト イボト イヨト イヨト

Outline

- Part I: Basics
- Part II: Optimization
- Part III: Randomization

イロト イボト イヨト イヨト

Big Data Analytics: Optimization and Randomization **Part I: Basics**

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Outline

- Introduction
- Notations and Definitions

€ 990

<ロト <回ト < 回ト < 回ト

Three Steps for Machine Learning

Yang

Nov. 20, 2015 7 / 210

-

DQC

Big Data Challenge

Nov. 20, 2015 8 / 210

э

Sac

イロト イボト イヨト イヨト

Big Data Challenge

60 million parameters

-		~		
- LL	itorial	tor	ACM	15

э

DQC

<ロト <回ト < 回ト < 回ト < 回ト -

Learning as Optimization

Ridge Regression Problem:

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n(y_i-\mathbf{w}^{\top}\mathbf{x}_i)^2+\frac{\lambda}{2}\|\mathbf{w}\|_2^2$$

- $\mathbf{x}_i \in \mathbb{R}^d$: *d*-dimensional feature vector
- $y_i \in \mathbb{R}$: target variable
- $\mathbf{w} \in \mathbb{R}^d$: model parameters
- n: number of data points

Learning as Optimization

Ridge Regression Problem:

- $\mathbf{x}_i \in \mathbb{R}^d$: *d*-dimensional feature vector
- $y_i \in \mathbb{R}$: target variable
- $\mathbf{w} \in \mathbb{R}^d$: model parameters
- n: number of data points

Learning as Optimization

Ridge Regression Problem:

- $\mathbf{x}_i \in \mathbb{R}^d$: *d*-dimensional feature vector
- $y_i \in \mathbb{R}$: target variable
- $\mathbf{w} \in \mathbb{R}^d$: model parameters
- n: number of data points

Learning as Optimization

Classification Problems:

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\ell(y_i\mathbf{w}^\top\mathbf{x}_i)+\frac{\lambda}{2}\|\mathbf{w}\|_2^2$$

- $y_i \in \{+1, -1\}$: label
- Loss function $\ell(z)$: $z = y \mathbf{w}^\top \mathbf{x}$
 - 1. SVMs: (squared) hinge loss $\ell(z) = \max(0, 1-z)^p$, where p = 1, 2
 - 2. Logistic Regression: $\ell(z) = \log(1 + \exp(-z))$

Nov. 20, 2015 13 / 210

イロト イポト イヨト イヨト 二日

Learning as Optimization

- ℓ_1 regularization $\|\mathbf{w}\|_1 = \sum_{i=1}^d |w_i|$
- λ controls sparsity level

Learning as Optimization

Feature Selection using Elastic Net:

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\ell(\mathbf{w}^{\top}\mathbf{x}_i,y_i)+\lambda\left(\|\mathbf{w}\|_1+\gamma\|\mathbf{w}\|_2^2\right)$$

Image: A match a ma

• Elastic net regularizer, more robust than ℓ_1 regularizer

글 > 글

Learning as Optimization

Multi-class/Multi-task Learning:

$$\min_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{W} \mathbf{x}_{i}, y_{i}) + \lambda r(\mathbf{W})$$

•
$$\mathbf{W} \in \mathbb{R}^{K \times d}$$

• $r(\mathbf{W}) = \|\mathbf{W}\|_{F}^{2} = \sum_{k=1}^{K} \sum_{j=1}^{d} W_{kj}^{2}$: Frobenius Norm
• $r(\mathbf{W}) = \|\mathbf{W}\|_{*} = \sum_{i} \sigma_{i}$: Nuclear Norm (sum of singular values)
• $r(\mathbf{W}) = \|\mathbf{W}\|_{1,\infty} = \sum_{j=1}^{d} \|W_{:j}\|_{\infty}$: $\ell_{1,\infty}$ mixed norm

3

590

<ロト <回ト < 回ト < 回ト < 回ト -

Learning as Optimization

Regularized Empirical Loss Minimization

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\ell(\mathbf{w}^{\top}\mathbf{x}_i,y_i)+R(\mathbf{w})$$

- Both ℓ and R are convex functions
- Extensions to Matrix Cases are possible (sometimes straightforward)
- Extensions to Kernel methods can be combined with randomized approaches
- Extensions to Non-convex (e.g., deep learning) are in progress

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Instance-feature Matrix: $X \in \mathbb{R}^{n \times d}$

э

Image: A match a ma

The output vector:
$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^{n \times 1}$$

- continuous $y_i \in \mathbb{R}$: regression (e.g., house price)
- discrete, e.g., $y_i \in \{1, 2, 3\}$: classification (e.g., species of iris)

Virginica

S	e	t	D	s	а

Nov. 20, 2015 19 / 210

The Instance-Instance Matrix: $K \in \mathbb{R}^{n \times n}$

- Similarity Matrix
- Kernel Matrix

Yang

Some machine learning tasks are formulated on the kernel matrix

- Clustering
- Kernel Methods

The Feature-Feature Matrix: $C \in \mathbb{R}^{d \times d}$

- Covariance Matrix
- Distance Metric Matrix

Nov. 20, 2015 22 / 210

3

イロト 不得 トイヨト イヨト

Some machine learning tasks requires the covariance matrix

- Principal Component Analysis
- Top-k Singular Value (Eigen-Value) Decomposition of the Covariance Matrix

Why Learning from Big Data is Challenging?

- High per-iteration cost
- High memory cost
- High communication cost
- Large iteration complexity

= nar

イロト 人間ト イヨト イヨト

Outline

Introduction

• Notations and Definitions

₹ 990

<ロト <回ト < 回ト < 回ト

Vector $\mathbf{x} \in \mathbb{R}^d$

- Euclidean vector norm: $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^\top \mathbf{x}} = \sqrt{\sum_{i=1}^d x_i^2}$
- ℓ_p -norm of a vector: $\|\mathbf{x}\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}$ where $p \ge 1$
 - **1** ℓ_2 norm $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^d x_i^2}$ **2** ℓ_1 norm $\|\mathbf{x}\|_1 = \sum_{i=1}^d |x_i|$
 - 3 ℓ_{∞} norm $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$

イロト (四) (三) (三) (二) (つ)

Vector $\mathbf{x} \in \mathbb{R}^d$

- Euclidean vector norm: $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^\top \mathbf{x}} = \sqrt{\sum_{i=1}^d x_i^2}$

Vector $\mathbf{x} \in \mathbb{R}^d$

- Euclidean vector norm: $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^\top \mathbf{x}} = \sqrt{\sum_{i=1}^d x_i^2}$

Matrix Factorization

Matrix $X \in \mathbb{R}^{n \times d}$

- Singular Value Decomposition $X = U \Sigma V^{\top}$
 - **1** $U \in \mathbb{R}^{n \times r}$: orthonormal columns $(U^{\top} U = I)$: span column space
 - **2** $\Sigma \in \mathbb{R}^{r \times r}$: diagonal matrix $\Sigma_{ii} = \sigma_i > 0$, $\sigma_1 \ge \sigma_2 \ldots \ge \sigma_r$
 - **③** $V \in \mathbb{R}^{d \times r}$: orthonormal columns $(V^{\top}V = I)$: span row space
 - $r \leq \min(n, d)$: max value such that $\sigma_r > 0$: rank of X
 - **(a)** $U_k \Sigma_k V_k^{\top}$: top-*k* approximation

• Pseudo inverse: $X^{\dagger} = V \Sigma^{-1} U^{\top}$

- QR factorization: $X = QR (n \ge d)$
 - $Q \in \mathbb{R}^{n \times d}$: orthonormal columns
 - $R \in \mathbb{R}^{d \times d}$: upper triangular matrix

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Matrix Factorization

Matrix $X \in \mathbb{R}^{n \times d}$

- Singular Value Decomposition $X = U \Sigma V^{\top}$
 - **1** $U \in \mathbb{R}^{n \times r}$: orthonormal columns $(U^{\top} U = I)$: span column space
 - **2** $\Sigma \in \mathbb{R}^{r \times r}$: diagonal matrix $\Sigma_{ii} = \sigma_i > 0$, $\sigma_1 \ge \sigma_2 \ldots \ge \sigma_r$
 - **(3)** $V \in \mathbb{R}^{d \times r}$: orthonormal columns $(V^{\top} V = I)$: span row space
 - $r \leq \min(n, d)$: max value such that $\sigma_r > 0$: rank of X
 - **(a)** $U_k \Sigma_k V_k^{\top}$: top-*k* approximation
- Pseudo inverse: $X^{\dagger} = V \Sigma^{-1} U^{\top}$
- QR factorization: $X = QR (n \ge d)$
 - $Q \in \mathbb{R}^{n \times d}$: orthonormal columns
 - $R \in \mathbb{R}^{d \times d}$: upper triangular matrix

▲日▼▲□▼▲目▼▲目▼ ヨー ショマ

Matrix Factorization

Matrix $X \in \mathbb{R}^{n \times d}$

- Singular Value Decomposition $X = U \Sigma V^{\top}$
 - **1** $U \in \mathbb{R}^{n \times r}$: orthonormal columns $(U^{\top} U = I)$: span column space
 - **2** $\Sigma \in \mathbb{R}^{r \times r}$: diagonal matrix $\Sigma_{ii} = \sigma_i > 0$, $\sigma_1 \ge \sigma_2 \ldots \ge \sigma_r$
 - **③** $V \in \mathbb{R}^{d \times r}$: orthonormal columns $(V^{\top}V = I)$: span row space
 - $r \leq \min(n, d)$: max value such that $\sigma_r > 0$: rank of X
 - **(a)** $U_k \Sigma_k V_k^{\top}$: top-*k* approximation
- Pseudo inverse: $X^{\dagger} = V \Sigma^{-1} U^{\top}$
- QR factorization: $X = QR (n \ge d)$
 - $Q \in \mathbb{R}^{n \times d}$: orthonormal columns
 - $R \in \mathbb{R}^{d imes d}$: upper triangular matrix

▲日▼▲□▼▲目▼▲目▼ ヨー ショマ

Matrix $X \in \mathbb{R}^{n \times d}$

- Frobenius norm: $\|X\|_F = \sqrt{tr(X^{\top}X)} = \sqrt{\sum_{i=1}^n \sum_{j=1}^d X_{ij}^2}$
- Spectral (induced norm) of a matrix: ||X||₂ = max_{||u||2} ||Xu||₂
 ||X||₂ = σ₁ (maximum singular value)

イロト (四) (三) (三) (二) (つ)

Matrix $X \in \mathbb{R}^{n \times d}$

- Frobenius norm: $\|X\|_F = \sqrt{tr(X^{\top}X)} = \sqrt{\sum_{i=1}^n \sum_{j=1}^d X_{ij}^2}$
- Spectral (induced norm) of a matrix: $||X||_2 = \max_{||\mathbf{u}||_2=1} ||X\mathbf{u}||_2$
 - $||X||_2 = \sigma_1$ (maximum singular value)

Convex Optimization

$\min_{x\in\mathcal{X}}f(x)$

- \mathcal{X} is a convex domain
 - for any $x, y \in \mathcal{X}$, their convex combination $\alpha x + (1 \alpha)y \in \mathcal{X}$

• f(x) is a convex function

э

Convex Function

Characterization of Convex Function

local optimum is global optimum

Tutorial for ACML'15

Nov. 20, 2015 30 / 210

Convex Function

Characterization of Convex Function

local optimum is global optimum
Convex vs Strongly Convex

Convex function:

$$f(x) \geq f(y) +
abla f(y)^{ op} (x-y) \ orall x, y \in \mathcal{X}$$

Strongly Convex function:

$$f(x) \geq f(y) +
abla f(y)^{ op} (x-y) + rac{\lambda}{2} \|x-y\|_2^2 \, orall x, y \in \mathcal{X}$$

Global optimum is unique

e.g., $\frac{\lambda}{2} \| \mathbf{w} \|_2^2$ is λ -strongly convex

Convex vs Strongly Convex

Convex function:

$$f(x) \ge f(y) + \nabla f(y)^{\top} (\begin{array}{c} \text{strong convexity} \\ \text{constant} \end{array}$$

Strongly Convex function:
$$f(x) \ge f(y) + \nabla f(y)^{\top} (x - y) + \frac{\lambda}{2} ||x - y||_2^2 \forall x, y \in \mathcal{X}$$

Global optimum is unique

e.g.,
$$rac{\lambda}{2} \| oldsymbol{w} \|_2^2$$
 is λ -strongly convex

イロト 不得 トイヨト イヨト

3

590

Non-smooth function vs Smooth function

Non-smooth function

• Lipschitz continuous: e.g. absolute loss f(x) = |x|

•
$$|f(x) - f(y)| \le G ||x - y||_2$$

• Subgradient: $f(x) \ge f(y) + \partial f(y)^{\top}(x-y)$

Smooth function

e.g. logistic loss f(x) = log(1 + exp(-x))
 ||∇f(x) - ∇f(y)||₂ ≤ L||x - y||₂

Nov. 20, 2015 32 / 210

Non-smooth function vs Smooth function

Non-smooth function

• Lipschitz continuous: e.g. absolute loss f(x) = |x|

•
$$|f(x) - f(y)| \le G ||x - y||_2$$

• Subgradient: $f(x) \ge f(y) + \partial f(y)^{\top}(x - y)$

Smooth function

• e.g. logistic loss $f(x) = \log(1 + \exp(-x))$

•
$$\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$$

Non-smooth function vs Smooth function

• Subgradient: $f(x) \ge f(y) + \partial f(y)^{\top}(x - y)$

Next ...

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\ell(\mathbf{w}^{\top}\mathbf{x}_i,y_i)+R(\mathbf{w})$$

Part II: Optimization

- stochastic optimization
- distributed optimization

Reduce Iteration Complexity: utilizing properties of functions and the structure of the problem

3

イロト イボト イヨト イヨト

Part III: Randomization

- Classification, Regression
- SVD, K-means, Kernel methods

Reduce Data Size: utilizing properties of data

Please stay tuned!

3

イロト 不得下 イヨト イヨト

Big Data Analytics: Optimization and Randomization Part II: Optimization

3

イロト 不得 トイヨト イヨト

Outline

Optimization

- (Sub)Gradient Methods
- Stochastic Optimization Algorithms for Big Data
 - Stochastic Optimization
 - Distributed Optimization

3

ヘロト 人間 ト 人団 ト 人団 ト

Learning as Optimization

Regularized Empirical Loss Minimization

$$\min_{\mathbf{w}\in\mathbb{R}^{d}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}^{\top} \mathbf{x}_{i}, y_{i}) + R(\mathbf{w})}_{F(\mathbf{w})}$$

3

590

・ロト ・四ト ・ヨト・

• Most optimization algorithms are iterative

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \Delta \mathbf{w}_t$$

Image: A matrix and a matrix

臣

590

• Most optimization algorithms are iterative

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \Delta \mathbf{w}_t$$

 Iteration Complexity: the number of iterations *T*(ε) needed to have

$$F(\widehat{\mathbf{w}}_{\mathcal{T}}) - \min_{\mathbf{w}} F(\mathbf{w}) \le \epsilon \quad (\epsilon \ll 1)$$

• Most optimization algorithms are iterative

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \Delta \mathbf{w}_t$$

 Iteration Complexity: the number of iterations *T*(ε) needed to have

$$F(\widehat{\mathbf{w}}_{\mathcal{T}}) - \min_{\mathbf{w}} F(\mathbf{w}) \leq \epsilon \quad (\epsilon \ll 1)$$

• Convergence Rate: after *T* iterations, how good is the solution

$$F(\widehat{\mathbf{w}}_{T}) - \min_{\mathbf{w}} F(\mathbf{w}) \leq \epsilon(T)$$

Nov. 20, 2015 38 / 210

• Most optimization algorithms are iterative

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \Delta \mathbf{w}_t$$

 Iteration Complexity: the number of iterations *T*(ε) needed to have

$$F(\widehat{\mathbf{w}}_{\mathcal{T}}) - \min_{\mathbf{w}} F(\mathbf{w}) \leq \epsilon \quad (\epsilon \ll 1)$$

• Convergence Rate: after *T* iterations, how good is the solution

$$F(\widehat{\mathbf{w}}_{T}) - \min_{\mathbf{w}} F(\mathbf{w}) \leq \epsilon(T)$$

Nov. 20, 2015 38 / 210

• Big $O(\cdot)$ notation: explicit dependence on T or ϵ

	Convergence Rate		Iteration Complexity	
linear	$O\left(\mu^{T} ight) (\mu$	< 1)	$O\left(\log\left(rac{1}{\epsilon} ight) ight)$	
sub-linear	$O\left(\frac{1}{T^{\alpha}}\right) \alpha$	> 0	$O\left(rac{1}{\epsilon^{1/lpha}} ight)$	

Why are we interested in Bounds?

3

イロト 不得 トイヨト イヨト

• Big $O(\cdot)$ notation: explicit dependence on T or ϵ

	Convergence Rate	Iteration Complexity	
linear	$O\left(\mu^{\mathcal{T}} ight) (\mu < 1)$	$O\left(\log\left(\frac{1}{\epsilon}\right)\right)$	
sub-linear	$O\left(\frac{1}{T^{\alpha}}\right) \alpha > 0$	$O\left(rac{1}{\epsilon^{1/lpha}} ight)$	

Why are we interested in Bounds?

3

イロト 不得下 イヨト イヨト

	Convergence Rate	Iteration Complexity	
linear	$O(\mu^{ op})$ $(\mu < 1)$	$O\left(\log(rac{1}{\epsilon}) ight)$	
sub-linear	$O(\frac{1}{T^{lpha}}) lpha > 0$	$O\left(rac{1}{\epsilon^{1/lpha}} ight)$	

DQC

	Convergence Rate	Iteration Complexity	
linear	$O(\mu^{ op})$ $(\mu < 1)$	$O\left(\log(rac{1}{\epsilon}) ight)$	
sub-linear	$O(\frac{1}{T^{lpha}}) lpha > 0$	$O\left(rac{1}{\epsilon^{1/lpha}} ight)$	

	Convergence Rate	Iteration Complexity	
linear	$O(\mu^{ op})$ $(\mu < 1)$	$O\left(\log(rac{1}{\epsilon}) ight)$	
sub-linear	$O(\frac{1}{T^{lpha}}) lpha > 0$	$O\left(rac{1}{\epsilon^{1/lpha}} ight)$	

	Convergence Rate	Iteration Complexity	
linear	$O(\mu^{ op})$ $(\mu < 1)$	$O\left(\log(rac{1}{\epsilon}) ight)$	
sub-linear	$O(\frac{1}{T^{\alpha}}) \alpha > 0$	$O\left(rac{1}{\epsilon^{1/lpha}} ight)$	

Non-smooth V.S. Smooth

- Smooth $\ell(z)$
 - squared hinge loss: $\ell(\mathbf{w}^{\top}\mathbf{x}, y) = \max(0, 1 y\mathbf{w}^{\top}\mathbf{x})^2$
 - logistic loss: $\ell(\mathbf{w}^{\top}\mathbf{x}, y) = \log(1 + \exp(-y\mathbf{w}^{\top}\mathbf{x}))$
 - square loss: $\ell(\mathbf{w}^{\top}\mathbf{x}, y) = (\mathbf{w}^{\top}\mathbf{x} y)^2$
- Non-smooth $\ell(z)$
 - hinge loss: $\ell(\mathbf{w}^{\top}\mathbf{x}, y) = \max(0, 1 y\mathbf{w}^{\top}\mathbf{x})$
 - absolute loss: $\ell(\mathbf{w}^{\top}\mathbf{x}, y) = |\mathbf{w}^{\top}\mathbf{x} y|$

イロト 不得 トイヨト イヨト ニヨー

Strongly convex V.S. Non-strongly convex

- λ -strongly convex $R(\mathbf{w})$
 - ℓ_2 regularizer: $\frac{\lambda}{2} \|\mathbf{w}\|_2^2$
 - Elastic net regularizer: $\tau \|\mathbf{w}\|_1 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$
- Non-strongly convex $R(\mathbf{w})$
 - unregularized problem: $R(\mathbf{w}) \equiv 0$
 - ℓ_1 regularizer: $\tau \| \mathbf{w} \|_1$

э

Gradient Method in Machine Learning

$$F(\mathbf{w}) = rac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}^{\top} \mathbf{x}_i, y_i) + rac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- Suppose $\ell(z, y)$ is smooth
- Full gradient: $\nabla F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(\mathbf{w}^{\top} \mathbf{x}_{i}, y_{i}) + \lambda \mathbf{w}$
- Per-iteration cost: O(nd)

Gradient Descent

$$\mathbf{w}_t = \mathbf{w}_{t-1} - \gamma_t \nabla F(\mathbf{w}_{t-1})$$

step size

$$\gamma_t = \text{constant}, \quad e.g., \frac{1}{I}$$

Gradient Method in Machine Learning

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}^{\top} \mathbf{x}_i, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

• Suppose
$$\ell(z, y)$$
 is smooth

- Full gradient: $\nabla F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(\mathbf{w}^{\top} \mathbf{x}_{i}, y_{i}) + \lambda \mathbf{w}$
- Per-iteration cost: O(nd)

Gradient Descent

step size

1

$$\mathbf{w}_t = \mathbf{w}_{t-1} - \gamma_t
abla F(\mathbf{w}_{t-1})$$

step size

$$\gamma_t = \text{constant}, \quad e.g., \frac{1}{L}$$

Gradient Method in Machine Learning

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}^{\top} \mathbf{x}_{i}, y_{i}) + \underbrace{\frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}}_{R(\mathbf{w})}$$

- If $\lambda = 0$: $R(\mathbf{w})$ is non-strongly convex
- Iteration complexity $O(\frac{1}{\epsilon})$
- If $\lambda > 0$: $R(\mathbf{w})$ is λ -strongly convex
- Iteration complexity $O(\frac{1}{\lambda}\log(\frac{1}{\epsilon}))$

< ロト < 同ト < 三ト

Accelerated Full Gradient (AFG)

Nesterov's Accelerated Gradient Descent

$$\mathbf{w}_t = \mathbf{v}_{t-1} - \gamma_t \nabla F(\mathbf{v}_{t-1})$$

$$\mathbf{v}_t = \mathbf{w}_t + \eta_t (\mathbf{w}_t - \mathbf{w}_{t-1})$$

• \mathbf{w}_t is the output and \mathbf{v}_t is an auxiliary sequence.

3

(日)

Accelerated Full Gradient (AFG)

• \mathbf{w}_t is the output and \mathbf{v}_t is an auxiliary sequence.

э

イロト イ押ト イヨト イヨト

Accelerated Full Gradient (AFG)

$$F(\mathbf{w}) = rac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}^{\top} \mathbf{x}_i, y_i) + rac{\lambda}{2} \|\mathbf{w}\|_2^2$$

• If
$$\lambda = 0$$
: $R(\mathbf{w})$ is non-strongly convex

- Iteration complexity $O(\frac{1}{\sqrt{\epsilon}})$, better than $O(\frac{1}{\epsilon})$
- If $\lambda > 0$: $R(\mathbf{w})$ is λ -strongly convex
- Iteration complexity $O(\frac{1}{\sqrt{\lambda}}\log(\frac{1}{\epsilon}))$, better than $O(\frac{1}{\lambda}\log(\frac{1}{\epsilon}))$ for small λ

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Deal with non-smooth regularizer

Consider ℓ_1 norm regularization

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w}) = \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \mathbf{x}_i, y_i)}_{f(\mathbf{w})} + \underbrace{\tau \|\mathbf{w}\|_1}_{R(\mathbf{w})}$$

• $f(\mathbf{w})$: smooth

• $R(\mathbf{w})$: non-smooth and non-strongly convex

1

イロト 人間ト イヨト イヨト

Accelerated Proximal Gradient (APG)

Accelerated Gradient Descent

$$\mathbf{w}_{t} = \boxed{\underset{\mathbf{w} \in \mathbb{R}^{d}}{\arg\min} \nabla f(\mathbf{v}_{t-1})^{\top} \mathbf{w} + \frac{1}{2\gamma_{t}} \|\mathbf{w} - \mathbf{v}_{t-1}\|_{2}^{2}} + \tau \|\mathbf{w}\|_{1}$$
$$\mathbf{v}_{t} = \mathbf{w}_{t} + \eta_{t} (\mathbf{w}_{t} - \mathbf{w}_{t-1})$$

- Proximal mapping has close-form solution: Soft-thresholding
- Iteration complexity and runtime remain the same as for smooth and non-strongly convex, i.e., $O(\frac{1}{\sqrt{\epsilon}})$

イロト イボト イヨト イヨト

Optimization (Sub)Gradient Methods

Accelerated Proximal Gradient (APG)

- Proximal mapping has close-form solution: Soft-thresholding
- Iteration complexity and runtime remain the same as for smooth and non-strongly convex, i.e., $O(\frac{1}{\sqrt{\epsilon}})$

Image: A match a ma

Deal with non-smooth but strongly convex regularizer

Consider the elastic net regularization

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \underbrace{\frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \tau \|\mathbf{w}\|_1}_{R(\mathbf{w})}$$

• $R(\mathbf{w})$: non-smooth but strongly convex

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w}) = \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2}_{f(\mathbf{w})} + \underbrace{\tau \|\mathbf{w}\|_1}_{R'(\mathbf{w})}$$

- $f(\mathbf{w})$: smooth and strongly convex
- $R'(\mathbf{w})$: non-smooth and non-strongly convex
- Iteration Complexity: $O\left(\frac{1}{\sqrt{\lambda}}\log\left(\frac{1}{\epsilon}\right)\right)$

Nov. 20, 2015 52 / 210

Image: A matrix and a matrix

Sub-Gradient Method in Machine Learning

$$F(\mathbf{w}) = rac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}^{\top} \mathbf{x}_i, y_i) + rac{\lambda}{2} \|\mathbf{w}\|_2^2$$

• Suppose $\ell(z, y)$ is non-smooth

• Full sub-gradient: $\partial F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \partial \ell(\mathbf{w}^{\top} \mathbf{x}_{i}, y_{i}) + \lambda \mathbf{w}$

Sub-Gradient Descent

$$\mathbf{w}_t = \mathbf{w}_{t-1} - \gamma_t \partial F(\mathbf{w}_{t-1})$$

step size

$$\gamma_t \longrightarrow 0$$

Sub-Gradient Method in Machine Learning

$$F(\mathbf{w}) = rac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}^{\top} \mathbf{x}_i, y_i) + rac{\lambda}{2} \|\mathbf{w}\|_2^2$$

• Suppose $\ell(z, y)$ is non-smooth

• Full sub-gradient: $\partial F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \partial \ell(\mathbf{w}^{\top} \mathbf{x}_{i}, y_{i}) + \lambda \mathbf{w}$

Sub-Gradient Descent

$$\mathbf{w}_t = \mathbf{w}_{t-1} - \gamma_t \partial F(\mathbf{w}_{t-1})$$

step size

$$\gamma_t \longrightarrow 0$$

Yang

Sub-Gradient Method

$$\mathcal{F}(\mathbf{w}) = rac{1}{n}\sum_{i=1}^n \ell(\mathbf{w}^{ op}\mathbf{x}_i, y_i) + rac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- If $\lambda = 0$: $R(\mathbf{w})$ is non-strongly convex
- \bullet generalizes to ℓ_1 norm and other non-strongly convex regularizer
- Iteration complexity $O(\frac{1}{\epsilon^2})$
- If $\lambda > 0$: $R(\mathbf{w})$ is λ -strongly convex
- generalizes to elastic net and other strongly convex regularizer
- Iteration complexity $O(\frac{1}{\lambda\epsilon})$
- No efficient acceleration scheme in general

Problem Classes and Iteration Complexity

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\ell(\mathbf{w}^{\top}\mathbf{x}_i,y_i)+R(\mathbf{w})$$

• Iteration complexity

		$\ell(z) \equiv \ell(z,y)$		
		Non-smooth	Smooth	
$R(\mathbf{w})$	Non-strongly convex	$O\left(rac{1}{\epsilon^2} ight)$	$O\left(\frac{1}{\sqrt{\epsilon}}\right)$	
	λ -strongly convex	$O\left(rac{1}{\lambda\epsilon} ight)$	$O\left(\frac{1}{\sqrt{\lambda}}\log\left(\frac{1}{\epsilon}\right)\right)$	

• Per-iteration cost: O(nd), too high if *n* or *d* are large.

3

イロト 不得下 イヨト イヨト
Outline

Optimization

- (Sub)Gradient Methods
- Stochastic Optimization Algorithms for Big Data
 Stochastic Optimization
 - Distributed Optimization

3

イロト イヨト イヨト

Stochastic First-Order Method by Sampling

- Randomly Sample Example
 - Stochastic Gradient Descent (SGD)
 - Stochastic Variance Reduced Gradient (SVRG)
 - Stochastic Average Gradient Algorithm (SAGA)
 - Stochastic Dual Coordinate Ascent (SDCA)
- Randomly Sample Feature
 - Randomized Coordinate Descent (RCD)
 - Accelerated Proximal Coordinate Gradient (APCG)

(日) (同) (三) (三)

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}^{\top} \mathbf{x}_i, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- Full sub-gradient: $\partial F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \partial \ell(\mathbf{w}^{\top} \mathbf{x}_{i}, y_{i}) + \lambda \mathbf{w}$
- Randomly sample $i \in \{1, \ldots, n\}$
- Stochastic sub-gradient: $\partial \ell(\mathbf{w}^T \mathbf{x}_i, y_i) + \lambda \mathbf{w}$

$$\mathbb{E}_i[\partial \ell(\mathbf{w}^T \mathbf{x}_i, y_i) + \lambda \mathbf{w}] = \partial F(\mathbf{w})$$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Applicable in all settings!

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

sample:
$$i_t \in \{1, ..., n\}$$

update: $\mathbf{w}_t = \mathbf{w}_{t-1} - \gamma_t \left(\partial \ell(\mathbf{w}_{t-1}^T \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}_{t-1} \right)$

output:
$$\overline{\mathbf{w}}_T = \frac{1}{T} \sum_{t=1}^{I} \mathbf{w}_t$$

step size:
$$\gamma_t \longrightarrow 0$$

Applicable in all settings!

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

$$\begin{array}{ll} \mathsf{sample:} & i_t \in \{1, \dots, n\} \\ \mathsf{update:} & \mathbf{w}_t = \mathbf{w}_{t-1} - \gamma_t \left(\partial \ell(\mathbf{w}_{t-1}^{\mathcal{T}} \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}_{t-1} \right) \end{array}$$

output:
$$\overline{\mathbf{w}}_T = \frac{1}{T} \sum_{t=1}^T \mathbf{w}_t$$

step size:
$$\gamma_t \longrightarrow 0$$

Nov. 20, 2015 59 / 210

$$\mathcal{F}(\mathbf{w}) = rac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^{ op} \mathbf{x}_i, y_i) + rac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- If $\lambda = 0$: $R(\mathbf{w})$ is non-strongly convex
- \bullet generalizes to ℓ_1 norm and other non-strongly convex regularizer
- Iteration complexity $O(\frac{1}{\epsilon^2})$
- If $\lambda > 0$: $R(\mathbf{w})$ is λ -strongly convex
- generalizes to elastic net and other strongly convex regularizer
- Iteration complexity $O(\frac{1}{\lambda\epsilon})$
- Exactly the same as sub-gradient descent!

▲ロト ▲ 課 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Total Runtime

- Per-iteration cost: O(d)
- Much lower than full gradient method
- e.g. hinge loss (SVM)

stochastic gradient:
$$\partial \ell(\mathbf{w}^{\top}\mathbf{x}_{i_t}, y_{i_t}) = \begin{cases} -y_{i_t}\mathbf{x}_{i_t}, & 1 - y_{i_t}\mathbf{w}^{\top}\mathbf{x}_{i_t} > 0 \\ 0, & \text{otherwise} \end{cases}$$

1

イロト イボト イヨト イヨト

Total Runtime

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\ell(\mathbf{w}^{\top}\mathbf{x}_i,y_i)+R(\mathbf{w})$$

• Iteration complexity

		$\ell(z) \equiv \ell(z, y)$		
		Non-smooth	Smooth	
<i>R</i> (w)	Non-strongly convex	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(\frac{1}{\epsilon^2}\right)$	
	λ -strongly convex	$O\left(\frac{1}{\lambda\epsilon}\right)$	$O\left(\frac{1}{\lambda\epsilon}\right)$	

- For SGD, only strongly convexity helps but the smoothness does not make any difference!
- The reason: the step size has to be decreasing due to stochastic gradient does not approach 0

Nov. 20, 2015 62 / 210

Image: A matrix and a matrix

Variance Reduction

- Stochastic Variance Reduced Gradient (SVRG)
- Stochastic Average Gradient Algorithm (SAGA)
- Stochastic Dual Coordinate Ascent (SDCA)

3

イロト イヨト イヨト

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

• Applicable when $\ell(z)$ is smooth and $R(\mathbf{w})$ is λ -strongly convex

• Stochastic gradient:

$$g_{i_t}(\mathbf{w}) = \nabla \ell(\mathbf{w}^T \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}$$

• $\operatorname{E}_{i_t}[g_{i_t}(\mathbf{w})] = \nabla F(\mathbf{w})$ but...

• Var $[g_{i_t}(\mathbf{w})] \neq 0$ even if $\mathbf{w} = \mathbf{w}^*$

Nov. 20, 2015 64 / 210

イロト (四) (三) (三) (二) (つ)

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- Applicable when $\ell(z)$ is smooth and $R(\mathbf{w})$ is λ -strongly convex
- Stochastic gradient:

$$g_{i_t}(\mathbf{w}) = \nabla \ell(\mathbf{w}^T \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}$$

- $E_{i_t}[g_{i_t}(\mathbf{w})] = \nabla F(\mathbf{w})$ but...
- Var $[g_{i_t}(\mathbf{w})] \neq 0$ even if $\mathbf{w} = \mathbf{w}^*$

Nov. 20, 2015 64 / 210

イロト (四) (三) (三) (二) (つ)

 \bullet Compute the full gradient at a reference point $\tilde{\boldsymbol{w}}$

$$abla F(ilde{\mathbf{w}}) = rac{1}{n} \sum_{i=1}^{n} g_i(ilde{\mathbf{w}})$$

• Stochastic variance reduced gradient:

$$ilde{g}_{i_t}(\mathbf{w}) = g_{i_t}(\mathbf{w}) - g_{i_t}(ilde{\mathbf{w}}) +
abla F(ilde{\mathbf{w}})$$

•
$$\operatorname{E}_{i_t} \left[\tilde{g}_{i_t}(\mathbf{w}) \right] = \nabla F(\mathbf{w})$$

• Var
$$[ilde{g}_{i_t}(\mathbf{w})] \longrightarrow 0$$
 as $ilde{\mathbf{w}}, \mathbf{w} o \mathbf{w}^{\star}$

Image: A match a ma

Variance Reduction (Johnson & Zhang, 2013; Zhang et al., 2013; Xiao & Zhang, 2014)

- At optimal solution \mathbf{w}^* : $\nabla F(\mathbf{w}^*) = \mathbf{0}$
- It does not mean

$$g_{i_t}(\mathbf{w}) \longrightarrow \mathbf{0}$$

as $\mathbf{w}
ightarrow \mathbf{w}^{\star}$

However, we have

$$\widetilde{g}_{i_t}(\mathbf{w}) = g_{i_t}(\mathbf{w}) - g_{i_t}(\widetilde{\mathbf{w}}) +
abla F(\widetilde{\mathbf{w}}) \longrightarrow \mathbf{0}$$

as $\tilde{\mathbf{w}}, \mathbf{w} \to \mathbf{w}^{\star}$

3

イロト 不得下 イヨト イヨト

Iterate
$$s = 1, ..., T - 1$$

Let $\mathbf{w}_0 = \tilde{\mathbf{w}}_s$ and compute $\nabla F(\tilde{\mathbf{w}}_s)$
Iterate $t = 1, ..., m$
 $\tilde{g}_{i_t}(\mathbf{w}_{t-1}) = \nabla F(\tilde{\mathbf{w}}_s) - g_{i_t}(\tilde{\mathbf{w}}_s) + g_{i_t}(\mathbf{w}_{t-1})$
 $\mathbf{w}_t = \mathbf{w}_{t-1} - \gamma_t \tilde{g}_{i_t}(\mathbf{w}_{t-1})$
 $\tilde{\mathbf{w}}_{s+1} = \frac{1}{m} \sum_{t=1}^m \mathbf{w}_t$
output: $\tilde{\mathbf{w}}_T$

•
$$m = O\left(\frac{1}{\lambda}\right)$$

• $\gamma_t = \text{ constant}$

1

イロト イボト イヨト イヨト

200

- Per-iteration cost: O(d)
- Iteration complexity

		$\ell(z) \equiv \ell(z,y)$	
		Non-smooth	Smooth
<i>R</i> (w)	Non-strongly convex	N.A.	N.A. ¹
	λ -strongly convex	N.A.	$O\left(\left(n+\frac{1}{\lambda}\right)\log\left(\frac{1}{\epsilon}\right)\right)$

- Total Runtime: $O\left(d\left(n+\frac{1}{\lambda}\right)\log\left(\frac{1}{\epsilon}\right)\right)$ Better than AFG $O\left(\frac{nd}{\sqrt{\lambda}}\log\left(\frac{1}{\epsilon}\right)\right)$
- Use proximal mapping for elastic net regularizer

¹A small trick can fix this

Nov. 20, 2015

68 / 210

- Per-iteration cost: O(d)
- Iteration complexity

		$\ell(z) \equiv \ell(z,y)$	
		Non-smooth	Smooth
<i>R</i> (w)	Non-strongly convex	N.A.	N.A. ¹
	λ -strongly convex	N.A.	$O\left(\left(n+rac{1}{\lambda} ight)\log\left(rac{1}{\epsilon} ight) ight)$

- Total Runtime: $O\left(d\left(n+\frac{1}{\lambda}\right)\log\left(\frac{1}{\epsilon}\right)\right)$ Better than AFG $O\left(\frac{nd}{\sqrt{\lambda}}\log\left(\frac{1}{\epsilon}\right)\right)$
- Use proximal mapping for elastic net regularizer

¹A small trick can fix this

イロト イヨト イヨト -

$$\min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- A new version of SAG (Roux et al. (2012))
- Applicable when $\ell(z)$ is smooth
- Strong convexity is not necessary.

イロト イボト イヨト イヨト

- SAGA also reduces the variance of stochastic gradient but with a different technique
- \bullet SVRG uses gradients at the same point \tilde{w}

$$\begin{split} \tilde{g}_{i_t}(\mathbf{w}) &= g_{i_t}(\mathbf{w}) - g_{i_t}(\tilde{\mathbf{w}}) + \nabla F(\tilde{\mathbf{w}}) \\ \nabla F(\tilde{\mathbf{w}}) &= \frac{1}{n} \sum_{i=1}^n g_i(\tilde{\mathbf{w}}) \end{split}$$

• SAGA uses gradients at different point $\{\tilde{w}_1, \tilde{w}_2, \cdots, \tilde{w}_n\}$

$$\widetilde{g}_{it}(\mathbf{w}) = g_{it}(\mathbf{w}) - g_{it}(\widetilde{\mathbf{w}}_{it}) + G$$

$$G = \frac{1}{n} \sum_{i=1}^{n} g_i(\widetilde{\mathbf{w}}_i)$$

イロト イヨト イヨト -

• Initialize average gradient G₀:

$$G_0 = \frac{1}{n} \sum_{i=1}^n g_i, \quad g_i = \nabla \ell(\mathbf{w}_0^\top \mathbf{x}_i, y_i) + \lambda \mathbf{w}_0$$

• average gradient $G_{t-1} = \frac{1}{n} \sum_{i=1}^{n} g_i$

• stochastic variance reduced gradient:

$$\begin{split} \tilde{g}_{i_t}(\mathbf{w}_{t-1}) &= \left(\nabla \ell(\mathbf{w}_{t-1}^\top \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}_{t-1} - g_{i_t} + G_{t-1} \right) \\ \mathbf{w}_t &= \mathbf{w}_{t-1} - \gamma_t \tilde{g}_{i_t}(\mathbf{w}_{t-1}) \end{split}$$

• Update the selected component of the average gradient

$$G_t = rac{1}{n} \sum_{i=1}^n g_i, \quad g_{i_t} =
abla \ell(\mathbf{w}_{t-1}^\top \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}_{t-1}$$

3

イロト 不得下 イヨト イヨト

• Initialize average gradient G_0 :

$$G_0 = rac{1}{n}\sum_{i=1}^n g_i, \quad g_i =
abla \ell(\mathbf{w}_0^\top \mathbf{x}_i, y_i) + \lambda \mathbf{w}_0$$

• average gradient
$$G_{t-1} = \frac{1}{n} \sum_{i=1}^{n} g_i$$

• stochastic variance reduced gradient:

$$\begin{split} \tilde{g}_{i_t}(\mathbf{w}_{t-1}) &= \left(\nabla \ell(\mathbf{w}_{t-1}^{\top} \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}_{t-1} - g_{i_t} + G_{t-1} \right) \\ \mathbf{w}_t &= \mathbf{w}_{t-1} - \gamma_t \tilde{g}_{i_t}(\mathbf{w}_{t-1}) \end{split}$$

• Update the selected component of the average gradient

$$G_t = rac{1}{n} \sum_{i=1}^n g_i, \quad g_{i_t} =
abla \ell(\mathbf{w}_{t-1}^\top \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}_{t-1}$$

э

イロト イヨト イヨト

Yang

• Initialize average gradient G_0 :

$$G_0 = \frac{1}{n} \sum_{i=1}^n g_i, \quad g_i = \nabla \ell(\mathbf{w}_0^\top \mathbf{x}_i, y_i) + \lambda \mathbf{w}_0$$

• average gradient
$$G_{t-1} = \frac{1}{n} \sum_{i=1}^{n} g_i$$

• stochastic variance reduced gradient:

$$\begin{split} \tilde{g}_{i_t}(\mathbf{w}_{t-1}) &= \left(\nabla \ell(\mathbf{w}_{t-1}^\top \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}_{t-1} - g_{i_t} + G_{t-1} \right) \\ \mathbf{w}_t &= \mathbf{w}_{t-1} - \gamma_t \tilde{g}_{i_t}(\mathbf{w}_{t-1}) \end{split}$$

• Update the selected component of the average gradient

$$G_t = rac{1}{n} \sum_{i=1}^n g_i, \quad g_{i_t} = \nabla \ell(\mathbf{w}_{t-1}^\top \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}_{t-1}$$

3

イロト イボト イヨト イヨト

• Initialize average gradient G₀:

$$G_0 = \frac{1}{n} \sum_{i=1}^n g_i, \quad g_i = \nabla \ell(\mathbf{w}_0^\top \mathbf{x}_i, y_i) + \lambda \mathbf{w}_0$$

• average gradient $G_{t-1} = \frac{1}{n} \sum_{i=1}^{n} g_i$

• stochastic variance reduced gradient:

$$\begin{split} \tilde{g}_{i_t}(\mathbf{w}_{t-1}) &= \left(\nabla \ell(\mathbf{w}_{t-1}^{\top} \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}_{t-1} - g_{i_t} + G_{t-1} \right) \\ \mathbf{w}_t &= \mathbf{w}_{t-1} - \gamma_t \tilde{g}_{i_t}(\mathbf{w}_{t-1}) \end{split}$$

• Update the selected component of the average gradient

$$G_t = rac{1}{n} \sum_{i=1}^n g_i, \quad g_{i_t} =
abla \ell(\mathbf{w}_{t-1}^\top \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}_{t-1}$$

SAGA: efficient update of averaged gradient

- G_t and G_{t-1} only differs in g_i for $i = i_t$
- Before we update g_i , we update

$$G_t = \frac{1}{n} \sum_{i=1}^n g_i = G_{t-1} - \frac{1}{n} g_{i_t} + \frac{1}{n} \left(\nabla \ell (\mathbf{w}_{t-1}^\top \mathbf{x}_{i_t}, y_{i_t}) + \lambda \mathbf{w}_{t-1} \right)$$

• computation cost: O(d)

→ ∃ → ∃

(日) (同) (三)

- Per-iteration cost: O(d)
- Iteration complexity

		$\ell(z) \equiv \ell(z,y)$	
		Non-smooth	Smooth
<i>R</i> (w)	Non-strongly convex	N.A.	$O\left(\frac{n}{\epsilon}\right)$
	λ -strongly convex	N.A.	$O\left(\left(n+rac{1}{\lambda} ight)\log\left(rac{1}{\epsilon} ight) ight)$

- Total Runtime (strongly convex): $O\left(d\left(n+\frac{1}{\lambda}\right)\log\left(\frac{1}{\epsilon}\right)\right)$. Same as SVRG!
- Use proximal mapping for ℓ_1 regularizer

3

イロト 不得 トイヨト イヨト

- Per-iteration cost: O(d)
- Iteration complexity

		$\ell(z) \equiv \ell(z,y)$	
		Non-smooth	Smooth
<i>R</i> (w)	Non-strongly convex	N.A.	$O\left(\frac{n}{\epsilon}\right)$
	λ -strongly convex	N.A.	$O\left(\left(n+rac{1}{\lambda} ight)\log\left(rac{1}{\epsilon} ight) ight)$

- Total Runtime (strongly convex): $O\left(d\left(n+\frac{1}{\lambda}\right)\log\left(\frac{1}{\epsilon}\right)\right)$. Same as SVRG!
- Use proximal mapping for ℓ_1 regularizer

イロト 人間ト イヨト イヨト

Compare the Runtime of SGD and SVRG/SAGA

- Smooth but non-strongly convex:
 - SGD: $O\left(\frac{d}{\epsilon^2}\right)$ • SAGA: $O\left(\frac{dn}{\epsilon}\right)$
- Smooth and strongly convex:
 - SGD: $O\left(\frac{d}{\lambda\epsilon}\right)$
 - SVRG/SAGA: $O\left(d\left(n+\frac{1}{\lambda}\right)\log\left(\frac{1}{\epsilon}\right)\right)$
- For small ϵ , use SVRG/SAGA
- Satisfied with large ϵ , use SGD

э

イロト イ理ト イヨト イヨト

Conjugate Duality

- Define $\ell_i(z) \equiv \ell(z, y_i)$
- Conjugate function: $\ell_i^*(\alpha) \Longleftrightarrow \ell_i(z)$

$$\ell_i(z) = \max_{\alpha \in \mathbb{R}} \left[\alpha z - \ell^*(\alpha) \right], \quad \ell_i^*(\alpha) = \max_{z \in \mathbb{R}} \left[\alpha z - \ell(z) \right]$$

• E.g. hinge loss: $\ell_i(z) = \max(0, 1 - y_i z)$

$$\ell_i^*(lpha) = \left\{egin{array}{cc} lpha y_i & ext{if} \ -1 \leq lpha y_i \leq 0 \ +\infty & ext{otherwise} \end{array}
ight.$$

• E.g. square hinge loss: $\ell_i(z) = \max(0, 1 - y_i z)^2$

$$\ell_i^*(\alpha) = \begin{cases} \frac{\alpha^2}{4} + \alpha y_i & \text{if } \alpha y_i \leq 0 \\ +\infty & \text{otherwise} \end{cases}$$

イロト (四) (三) (三) (二) (つ)

Conjugate Duality

- Define $\ell_i(z) \equiv \ell(z, y_i)$
- Conjugate function: $\ell_i^*(\alpha) \Longleftrightarrow \ell_i(z)$

$$\ell_i(z) = \max_{\alpha \in \mathbb{R}} \left[\alpha z - \ell^*(\alpha) \right], \quad \ell_i^*(\alpha) = \max_{z \in \mathbb{R}} \left[\alpha z - \ell(z) \right]$$

• E.g. hinge loss:
$$\ell_i(z) = \max(0, 1 - y_i z)$$

$$\ell_i^*(lpha) = \left\{ egin{array}{ll} lpha y_i & ext{if} \ -1 \leq lpha y_i \leq 0 \ +\infty & ext{otherwise} \end{array}
ight.$$

• E.g. square hinge loss: $\ell_i(z) = \max(0, 1 - y_i z)^2$

$$\ell_i^*(\alpha) = \begin{cases} \frac{\alpha^2}{4} + \alpha y_i & \text{if } \alpha y_i \leq 0 \\ +\infty & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

The Dual Problem

• From Primal problem to Dual problem:

$$\begin{split} \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\underbrace{\mathbf{w}^{\top} \mathbf{x}_{i}}_{z}, y_{i}) + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} \\ &= \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max_{\alpha_{i} \in \mathbb{R}} \left[-\alpha_{i} (\mathbf{w}^{\top} \mathbf{x}_{i}) - \ell_{i}^{*} (-\alpha_{i}) \right] + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} \\ &= \max_{\alpha \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n} -\ell_{i}^{*} (-\alpha_{i}) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i} \right\|_{2}^{2} \end{split}$$

• Primal solution $\mathbf{w} = \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_i \mathbf{x}_i$

1

イロト 不得下 イヨト イヨト

SDCA (Shalev-Shwartz & Zhang (2013))

- Stochastic Dual Coordinate Ascent (liblinear (Hsieh et al., 2008))
- Applicable when $R(\mathbf{w})$ is λ -strongly convex
- Smoothness is not required
- Solve Dual Problem:

$$\max_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n -\ell_i^*(-\alpha_i) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i \mathbf{x}_i \right\|_2^2$$

• Sample $i_t \in \{1, \ldots, n\}$. Optimize α_{i_t} while fixing others

イロト イ理ト イヨト イヨト

SDCA (Shalev-Shwartz & Zhang (2013))

- Maintain a primal solution: $\mathbf{w}_t = \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i^t \mathbf{x}_i$
- Optimize the increment $\Delta \alpha_{i_t}$

$$\max_{\Delta \alpha \in \mathbb{R}} \frac{1}{n} - \ell_{i_t}^* \left(-(\alpha_{i_t}^t + \Delta \alpha_{i_t}) \right) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \left(\sum_{i=1}^n \alpha_i^t \mathbf{x}_i + \Delta \alpha_{i_t} \mathbf{x}_{i_t} \right) \right\|_2^2$$
$$\iff \max_{\Delta \alpha \in \mathbb{R}} \frac{1}{n} - \ell_{i_t}^* \left(-(\alpha_{i_t}^t + \Delta \alpha_{i_t}) \right) - \frac{\lambda}{2} \left\| \mathbf{w}_t + \frac{1}{\lambda n} \Delta \alpha_{i_t} \mathbf{x}_{i_t} \right\|_2^2$$

イロト 人間ト イヨト イヨト

0

SDCA (Shalev-Shwartz & Zhang (2013))

Dual Coordinate Updates

$$\Delta \alpha_{i_t} = \max_{\Delta \alpha_{i_t} \in \mathbb{R}} -\frac{1}{n} \ell_{i_t}^* (-(\alpha_{i_t}^t + \Delta \alpha_{i_t})) - \frac{\lambda}{2} \left\| \mathbf{w}_t + \frac{1}{\lambda n} \Delta \alpha_{i_t} \mathbf{x}_{i_t} \right\|_2^2$$

$$\alpha_{i_t}^{t+1} = \alpha_{i_t}^t + \Delta \alpha_{i_t}$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \frac{1}{\lambda n} \Delta \alpha_{i_t} \mathbf{x}_i$$

イロト イボト イヨト イヨト

E

DQC

SDCA updates

- Close-form solution for Δα_i: hinge loss, squared hinge loss, absolute loss and square loss (Shalev-Shwartz & Zhang (2013))
- e.g. square loss

$$\Delta \alpha_i = \frac{y_i - \mathbf{w}_t^\top \mathbf{x}_i - \alpha_i^t}{1 + \|\mathbf{x}_i\|_2^2 / (\lambda n)}$$

- Per-iteration cost: O(d)
- Approximate solution: logistic loss (Shalev-Shwartz & Zhang (2013))

イロト イポト イヨト イヨト 二日

SDCA

• Iteration complexity

		$\ell(z) \equiv \ell(z,y)$	
		Non-smooth	Smooth
<i>R</i> (w)	Non-strongly convex	N.A. ²	N.A. ²
	λ -strongly convex	$O\left(n+\frac{1}{\lambda\epsilon}\right)$	$O\left(\left(n+rac{1}{\lambda} ight)\log\left(rac{1}{\epsilon} ight) ight)$

• Total Runtime (smooth loss): $O\left(d\left(n+\frac{1}{\lambda}\right)\log\left(\frac{1}{\epsilon}\right)\right)$. The same as SVRG and SAGA!

Tutorial for ACML'15

- also equivalent to some kind of variance reduction
- Proximal variant for elastic net regularizer
- Wang & Lin (2014) shows linear convergence is achievable for non-smooth loss

$^{2}\mathsf{A}$ small trick can fix this

Yang

э

SDCA

• Iteration complexity

		$\ell(z) \equiv \ell(z,y)$	
		Non-smooth	Smooth
<i>R</i> (w)	Non-strongly convex	N.A. ²	N.A. ²
	λ -strongly convex	$O\left(n+\frac{1}{\lambda\epsilon}\right)$	$O\left(\left(n+rac{1}{\lambda} ight)\log\left(rac{1}{\epsilon} ight) ight)$

- Total Runtime (smooth loss): $O\left(d\left(n+\frac{1}{\lambda}\right)\log\left(\frac{1}{\epsilon}\right)\right)$. The same as SVRG and SAGA!
- also equivalent to some kind of variance reduction
- Proximal variant for elastic net regularizer
- Wang & Lin (2014) shows linear convergence is achievable for non-smooth loss

イロト 不得下 イヨト イヨト

²A small trick can fix this

SDCA vs SVRG/SAGA

Advantages of SDCA

- Can handle non-smooth loss functions
- Can explore the data sparsity for efficient update
- Parameter free

3

イロト 不得 トイヨト イヨト
Randomized Coordinate Updates

- Randomized Coordinate Descent
- Accelerated Proximal Coordinate Gradient

3

イロト イボト イヨト イヨト

Randomized Coordinate Updates

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + R(\mathbf{w})$$

- Suppose d >> n. Per-iteration cost O(d) is too high
- Sample over features instead of data
- Per-iteration cost becomes O(n)
- Applicable when $\ell(z, y)$ is smooth and $R(\mathbf{w})$ is decomposable
- Strong convexity is not necessary

3

イロト 人間ト イヨト イヨト

Randomized Coordinate Descent (Nesterov (2012))

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w}) = \frac{1}{2} \|X\mathbf{w} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$
$$X = [\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2, \cdots, \bar{\mathbf{x}}_d] \in \mathbb{R}^{n \times d}$$

• Partial gradient:
$$abla_i F(\mathbf{w}) = ar{x}_i^{\mathcal{T}}(X\mathbf{w} - \mathbf{y}) + \lambda w_i$$

• Randomly sample $i_t \in \{1, \ldots, d\}$

Randomized Coordinate Descent (RCD)

$$w_i^t = \begin{cases} w_i^{t-1} - \gamma_t \nabla_i F(\mathbf{w}^{t-1}) & \text{if } i = i_t \\ w_i^{t-1} & \text{otherwise} \end{cases}$$

- step size γ_t : constant
- $\nabla_i F(\mathbf{w}^t)$ can be updated in O(n)

Nov. 20, 2015 85 / 210

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Randomized Coordinate Descent (Nesterov (2012))

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w}) = \frac{1}{2} \|X\mathbf{w} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$
$$X = [\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2, \cdots, \bar{\mathbf{x}}_d] \in \mathbb{R}^{n \times d}$$

• Partial gradient:
$$\nabla_i F(\mathbf{w}) = \bar{x}_i^T (X\mathbf{w} - \mathbf{y}) + \lambda w_i$$

• Randomly sample
$$i_t \in \{1,\ldots,d\}$$

Randomized Coordinate Descent (RCD)

$$w_i^t = \begin{cases} w_i^{t-1} - \gamma_t \nabla_i F(\mathbf{w}^{t-1}) & \text{if } i = i_t \\ w_i^{t-1} & \text{otherwise} \end{cases}$$

- step size γ_t : constant
- $\nabla_i F(\mathbf{w}^t)$ can be updated in O(n)

Nov. 20, 2015 85 / 210

3

Randomized Coordinate Descent (Nesterov (2012))

- Partial gradient: $\nabla_i F(\mathbf{w}) = \bar{x}_i^T (X\mathbf{w} \mathbf{y}) + \lambda w_i$
- Randomly sample $i_t \in \{1, \ldots, d\}$

Randomized Coordinate Descent (RCD)

$$w_i^t = \begin{cases} w_i^{t-1} - \gamma_t \nabla_i F(\mathbf{w}^{t-1}) & \text{if } i = i_t \\ w_i^{t-1} & \text{otherwise} \end{cases}$$

• maintain and update $\mathbf{u} = X\mathbf{w} - \mathbf{y} \in \mathbb{R}^n$ in O(n)

$$\mathbf{u}^{t} = \mathbf{u}^{t-1} + \bar{\mathbf{x}}_{i_{t}}(w_{i_{t}}^{t} - w_{i_{t}}^{t-1}) = \mathbf{u}^{t-1} + \bar{\mathbf{x}}_{i_{t}}\Delta w$$

• partial gradient can be computed in O(n)

$$abla_i F(\mathbf{w}^t) = \bar{\mathbf{x}}_i^\top \mathbf{u}^t$$

イロト イポト イヨト イヨト 二日

- Per-iteration Cost O(n)
- Iteration complexity

		$\ell(z) \equiv \ell(z,y)$			
		Non-smooth	Smooth		
$R(\mathbf{w})$	Non-strongly convex	N.A.	$O\left(\frac{d}{\epsilon}\right)$		
	λ -strongly convex	N.A	$O\left(rac{d}{\lambda}\log\left(rac{1}{\epsilon} ight) ight)$		

• Total Runtime (strongly convex): $O\left(\frac{nd}{\lambda}\log\left(\frac{1}{\epsilon}\right)\right)$. The same as Gradient Descent Method! In practice, could be much faster

イロト イポト イヨト イヨト

3

- Per-iteration Cost O(n)
- Iteration complexity

		$\ell(z) \equiv \ell(z,y)$			
		Non-smooth	Smooth		
$R(\mathbf{w})$	Non-strongly convex	N.A.	$O\left(\frac{d}{\epsilon}\right)$		
	λ -strongly convex	N.A	$O\left(rac{d}{\lambda}\log\left(rac{1}{\epsilon} ight) ight)$		

• Total Runtime (strongly convex): $O\left(\frac{nd}{\lambda}\log\left(\frac{1}{\epsilon}\right)\right)$. The same as Gradient Descent Method! In practice, could be much faster

э

イロト イポト イヨト イヨト

Accelerated Proximal Coordinate Gradient (APCG)

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w}) = \frac{1}{2} \|X\mathbf{w} - \mathbf{y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \tau \|\mathbf{w}\|_1$$

- Using Acceleration
- Using Proximal Mapping

APCG (Lin et al., 2014)

$$\mathbf{w}_{i}^{t} = \begin{cases} \arg\min_{w_{i} \in \mathbb{R}} \nabla_{i} F(\mathbf{v}^{t-1}) w_{i} + \frac{1}{2\gamma_{t}} (w_{i} - \mathbf{v}_{i}^{t-1})^{2} + \tau |w_{i}| & \text{if } i = i_{t} \\ \mathbf{w}_{i}^{t-1} & \text{otherwise} \end{cases}$$
$$\mathbf{v}^{t} = \mathbf{w}^{t} + \eta_{t} (\mathbf{w}^{t} - \mathbf{w}^{t-1})$$

イロト イヨト イヨト

- Per-iteration cost: O(n)
- Iteration complexity

		$\ell(z) \equiv \ell(z,y)$		
		Non-smooth	Smooth	
$R(\mathbf{w})$	Non-strongly convex	N.A.	$O\left(\frac{d}{\sqrt{\epsilon}}\right)$	
	λ -strongly convex	N.A.	$O\left(\frac{d}{\sqrt{\lambda}}\log\left(\frac{1}{\epsilon}\right)\right)$	

• Total Runtime (strongly convex): $O\left(\frac{nd}{\sqrt{\lambda}}\log\left(\frac{1}{\epsilon}\right)\right)$. The same as APG!, in practice, could be much faster

3

イロト 不得下 イヨト イヨト

APCG applied to the Dual

• Recall the acceleration scheme for full gradient method

- Auxiliary sequence (β^t)
- Momentum step
- Maintain a primal solution: $\mathbf{w}_t = \frac{1}{\lambda n} \sum_{i=1}^n \beta_i^t \mathbf{x}_i$

Dual Coordinate Updates

Sample $i_t \in \{1, \ldots, n\}$

$$\Delta \beta_{i_t} = \max_{\Delta \beta_{i_t} \in \mathbb{R}^n} -\frac{1}{n} \ell_{i_t}^* (-\beta_{i_t}^t - \Delta \beta_{i_t}) - \frac{\lambda}{2} \left\| \mathbf{w}_t + \frac{1}{\lambda n} \Delta \beta_{i_t} \mathbf{x}_{i_t} \right\|_2^2$$

$$\alpha_{i_t}^{t+1} = \beta_{i_t}^t + \Delta \beta_{i_t}$$

$$\beta^{t+1} = \alpha^{t+1} + \eta_t (\alpha^{t+1} - \alpha^t)$$

3

イロト 不得下 イヨト イヨト

APCG applied to the Dual

• Recall the acceleration scheme for full gradient method

- Auxiliary sequence (β^t)
- Momentum step
- Maintain a primal solution: $\mathbf{w}_t = \frac{1}{\lambda n} \sum_{i=1}^n \beta_i^t \mathbf{x}_i$

Dual Coordinate Updates

Sample $i_t \in \{1, \ldots, n\}$

$$\Delta \beta_{i_t} = \max_{\substack{\Delta \beta_{i_t} \in \mathbb{R}^n \\ h_t}} - \frac{1}{n} \ell_{i_t}^* (-\beta_i^t - \Delta \beta_{i_t}) - \frac{\lambda}{2} \| \mathbf{w}_t + \frac{1}{\lambda n} \Delta \beta_{i_t} \mathbf{x}_{i_t} \|_2^2$$

$$\alpha_{i_t}^{t+1} = \beta_{i_t}^t + \Delta \beta_{i_t}$$

$$\beta^{t+1} = \alpha^{t+1} + \eta_t (\alpha^{t+1} - \alpha^t)$$

3

イロト イヨト イヨト -

APCG applied to the Dual

- Per-iteration cost: O(d)
- Iteration complexity

		$\ell(z) \equiv \ell(z,y)$			
		Non-smooth	Smooth		
P(m)	Non-strongly convex	N.A. ³	N.A. ⁴		
<i>π</i> (w)	λ -strongly convex	$O\left(n+\sqrt{\frac{n}{\lambda\epsilon}}\right)$	$O\left(\left(n+\sqrt{\frac{n}{\lambda}}\right)\log\left(\frac{1}{\epsilon}\right)\right)$		

• Total Runtime (smooth): $O\left(d(n + \sqrt{\frac{n}{\lambda}})\log\left(\frac{1}{\epsilon}\right)\right)$. could be faster than SDCA $O\left(d(n + \frac{1}{\lambda})\log\left(\frac{1}{\epsilon}\right)\right)$ when $\lambda \leq \frac{1}{n}$

- ³A small trick can fix this
- ⁴A small trick can fix this

Yang

イロト 不得下 イヨト イヨト

DQC

APCG V.S. SDCA Lin et al. (2014)

Summary

		$\ell(z)$	$) \equiv \ell(z,y)$
		Non-smooth	Smooth
D(m)	Non str-cvx	SGD	RCD, APCG, SAGA
	str-cvx	SDCA, APCG	RCD, APCG, SDCA
			SVRG, SAGA

- Red: stochastic gradient, primal
- Blue: randomized coordinate, primal
- Green: stochastic coordinate, dual

3

イロト イヨト イヨト

	SGD	SVRG	SAGA	SDCA	APCG
Parameters	γ_t	γ_t , m	γ_t	None	η_t
non-smooth loss					
smooth loss					
strongly cvx					
Non-strongly cvx					
Primal					
Dual					

₹ 990

	SGD	SVRG	SAGA	SDCA	APCG
Parameters	γ_t	γ_t , m	γ_t	None	η_t
non-smooth loss	1	X	X	1	1
smooth loss	1	1	1	1	1
strongly cvx					
Non-strongly cvx					
Primal					
Dual					

3

590

◆□▶ ◆□▶ ◆三▶ ◆三▶

	SGD	SVRG	SAGA	SDCA	APCG
Parameters	γ_t	γ_t , m	γ_t	None	η_t
non-smooth loss	1	X	X	1	1
smooth loss	1	1	1	1	1
strongly cvx	1	1	1	1	1
Non-strongly cvx	1	X	1	X	X
Primal					
Dual					

₹ 990

	SGD	SVRG	SAGA	SDCA	APCG
Parameters	γ_t	γ_t , m	γ_t	None	η_t
non-smooth loss	1	X	X	1	1
smooth loss	1	1	1	1	1
strongly cvx	1	1	1	1	1
Non-strongly cvx	1	X	1	X	X
Primal	1	1	1	X	1
Dual	X	X	X	1	1

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

€ 900

Optimization Stochastic Optimization Algorithms for Big Data

Trick for generalizing to non-strongly convex regularizer (Shalev-Shwartz & Zhang, 2012)

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\ell(\mathbf{w}^\top\mathbf{x}_i,y_i)+\tau\|\mathbf{w}\|_1$$

Issue: Not Strongly Convex Solution: Add ℓ_2^2 regularization

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \tau \|\mathbf{w}\|_1 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

• If $\|\mathbf{w}_*\|_2 \leq B$, we can set $\lambda = \frac{\epsilon}{B^2}$.

• An $\epsilon/2$ -suboptimal solution for the new problem is

• ϵ -suboptimal for the original problem

イロト 不得下 イヨト イヨト

Optimization Stochastic Optimization Algorithms for Big Data

Trick for generalizing to non-strongly convex regularizer (Shalev-Shwartz & Zhang, 2012)

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\ell(\mathbf{w}^\top\mathbf{x}_i,y_i)+\tau\|\mathbf{w}\|_1$$

Issue: Not Strongly Convex Solution: Add ℓ_2^2 regularization

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\ell(\mathbf{w}^{\top}\mathbf{x}_i,y_i)+\tau\|\mathbf{w}\|_1+\frac{\lambda}{2}\|\mathbf{w}\|_2^2$$

• If $\|\mathbf{w}_*\|_2 \leq B$, we can set $\lambda = \frac{\epsilon}{B^2}$.

- An $\epsilon/2$ -suboptimal solution for the new problem is
- ϵ -suboptimal for the original problem

イロト イポト イヨト イヨト 二日

Outline

Optimization

- (Sub)Gradient Methods
- Stochastic Optimization Algorithms for Big Data
 - Stochastic Optimization
 - Distributed Optimization

3

イロト イヨト イヨト

Big Data and Distributed Optimization

Distributed Optimization

- data distributed over a cluster of multiple machines
- moving to single machine suffers
 - low network bandwidth
 - limited disk or memory
- communication V.S. computation
 - RAM 100 nanoseconds
 - standard network connection 250,000 nanoseconds

(日)

Distributed Data

• N data points are partitioned and distributed to m machines

•
$$[\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] = S_1 \cup S_2 \cup \dots \cup S_K$$

• Machine j only has access to S_j .

• W.L.O.G:
$$|S_j| = n_k = \frac{n}{K}$$

Image: A match a ma

A simple solution: Average Solution

• Global problem

$$\mathbf{w}^{\star} = \operatorname*{arg\,min}_{\mathbf{w} \in \mathbb{R}^d} \left\{ F(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + R(\mathbf{w}) \right\}$$

• Machine *j* solves a local problem

$$\mathbf{w}_j = \operatorname*{arg\,min}_{\mathbf{w} \in \mathbb{R}^d} \left\{ f_j(\mathbf{w}) = \frac{1}{n_k} \sum_{i \in S_j} \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + R(\mathbf{w}) \right\}$$

ssue: Will not converge to **w***

Tutorial for ACML'15

Nov. 20, 2015 99 / 210

A simple solution: Average Solution

• Global problem

$$\mathbf{w}^{\star} = \operatorname*{arg\,min}_{\mathbf{w} \in \mathbb{R}^{d}} \left\{ F(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \ell(\mathbf{w}^{\top} \mathbf{x}_{i}, y_{i}) + R(\mathbf{w}) \right\}$$

• Machine *j* solves a local problem

$$\mathbf{w}_{j} = \operatorname*{arg\,min}_{\mathbf{w}\in\mathbb{R}^{d}} \left\{ f_{j}(\mathbf{w}) = \frac{1}{n_{k}} \sum_{i\in S_{j}} \ell(\mathbf{w}^{\top}\mathbf{x}_{i}, y_{i}) + R(\mathbf{w}) \right\}$$

$$\mathbf{w}_1 \quad \mathbf{w}_2 \quad \mathbf{w}_3 \quad \mathbf{w}_4 \quad \mathbf{w}_5 \quad \mathbf{w}_6$$

Center computes: $\widehat{\mathbf{w}} = \frac{1}{K} \sum_{j=1}^K \mathbf{w}_j$, Issue: Will not converge to \mathbf{w}^*

Nov. 20, 2015

99 / 210

Tutorial for ACML'15

Total Runtime

Single machine

- Total Runtime
 - = Per-iteration Cost×Iteration Complexity

Distributed optimization

• Total Runtime

= (Communication Time Per-round+Local Runtime Per-round) ×Rounds of Communication

Trading Computation for Communication: Increase Local Computation

- Balance between Communication
- Reduce the Rounds of Communication

3

イロト イヨト イヨト -

Distributed SDCA (DisDCA) (Yang, 2013), CoCoA+ (Ma et al., 2015)

- Applicable when $R(\mathbf{w})$ is strongly convex, e.g. $R(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|_2^2$
- Global dual problem

$$\max_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n -\ell_i^*(-\alpha_i) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i \mathbf{x}_i \right\|_2^2$$

• Incremental variable $\Delta \alpha_i$

$$\max_{\Delta \alpha} \frac{1}{n} - \ell_i^* (-(\alpha_i^t + \Delta \alpha_i)) - \frac{\lambda}{2} \left\| \mathbf{w}^t + \frac{1}{\lambda n} \sum_{i=1}^n \Delta \alpha_i \mathbf{x}_i \right\|_2^2$$

• Primal solution:
$$\mathbf{w}^t = \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i^t \mathbf{x}_i$$

Yang

Nov. 20, 2015 101 / 210

3

イロト 人間ト イヨト イヨト

Distributed SDCA (DisDCA) (Yang, 2013), CoCoA+ (Ma et al., 2015)

- Applicable when $R(\mathbf{w})$ is strongly convex, e.g. $R(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|_2^2$
- Global dual problem

$$\max_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n -\ell_i^*(-\alpha_i) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i \mathbf{x}_i \right\|_2^2$$

• Incremental variable $\Delta \alpha_i$

$$\max_{\Delta \alpha} \frac{1}{n} - \ell_i^* \left(-(\alpha_i^t + \Delta \alpha_i) \right) - \frac{\lambda}{2} \left\| \mathbf{w}^t + \frac{1}{\lambda n} \sum_{i=1}^n \Delta \alpha_i \mathbf{x}_i \right\|_2^2$$

• Primal solution:
$$\mathbf{w}^t = \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i^t \mathbf{x}_i$$

3

イロト 不得下 イヨト イヨト

0

DisDCA: Trading Computation for Communication

$$\Delta \alpha_{i_j} = \arg \max -\ell_{i_j}^* (-\alpha_{i_j}^t - \Delta \alpha_{i_j}) - \frac{\lambda n}{2K} \left\| \mathbf{u}_j^t + \frac{K}{\lambda n} \Delta \alpha_{i_j} \mathbf{x}_{i_j} \right\|_2^2$$
$$\mathbf{u}_{j+1}^t = \mathbf{u}_j^t + \frac{K}{\lambda n} \Delta \alpha_{i_j} \mathbf{x}_{i_j}$$

∃ ⊳

< □ > < 同 >

DisDCA: Trading Computation for Communication

э

DisDCA: Trading Computation for Communication

3

< □ > < □ > < □ > < □ >

DQC

CoCoA+ (Ma et al., 2015)

• Machine *j* approximately solves

$$\begin{split} \Delta \alpha_{S_j}^t \approx \\ \arg\max_{\Delta \alpha_{S_j} \in \mathbb{R}^n} \sum_{i \in S_j} -\ell_i^* (-(\alpha_i^t + \Delta \alpha_i)) - \langle \mathbf{w}^t, \sum_{i \in S_j} \Delta \alpha_i \mathbf{x}_i \rangle - \frac{\kappa}{2\lambda n} \left\| \sum_{i \in S_j} \Delta \alpha_i \mathbf{x}_i \right\|_2^2 \\ \alpha_{S_j}^{t+1} = \alpha_{S_j}^t + \Delta \alpha_{S_j}^t, \quad \Delta \mathbf{w}_j^t = \frac{1}{\lambda n} \sum_{i \in S_j} \Delta \alpha_{S_j}^t \mathbf{x}_i \end{split}$$

Center computes:
$$\mathbf{w}^{t+1} = \mathbf{w}^t + \sum_{j=1}^m \Delta \mathbf{w}_j^t$$

€ 990

<ロト <回ト < 回ト < 回ト < 回ト -

CoCoA+ (Ma et al., 2015)

• Local objective value

$$\mathcal{G}_{j}(\Delta \alpha_{S_{j}}, \mathbf{w}^{t}) = \frac{1}{n} \sum_{i \in S_{j}} -\ell_{i}^{*}(-(\alpha_{i}^{t} + \Delta \alpha_{i})) - \frac{1}{n} \langle \mathbf{w}^{t}, \sum_{i \in S_{j}} \Delta \alpha_{i} \mathbf{x}_{i} \rangle - \frac{\kappa}{2\lambda n^{2}} \left\| \sum_{i \in S_{j}} \Delta \alpha_{i} \mathbf{x}_{i} \right\|_{2}^{2}$$

• Solve $\Delta \alpha_{S_i}^t$ by any local solver as long as

$$\begin{pmatrix} \max_{\Delta \alpha_{S_j}} \mathcal{G}_j(\Delta \alpha_{S_j}, \mathbf{w}^t) - \mathcal{G}_j(\Delta \alpha_{S_j}^t, \mathbf{w}^t) \end{pmatrix} \leq \Theta \begin{pmatrix} \max_{\Delta \alpha_{S_j}} \mathcal{G}_j(\Delta \alpha_{S_j}, \mathbf{w}^t) - \mathcal{G}_j(\mathbf{0}, \mathbf{w}^t) \end{pmatrix} \\ 0 < \Theta < 1 \end{cases}$$

 CoCoA+ is equivalent to DisDCA when employing SDCA to solve local problems with *m* iterations

3

イロト 不得下 イヨト イヨト

Distributed SDCA in Practice

- Choice of *m* (i.e., the number of inner iterations)
 - the larger *m*, the higher local computation cost, the lower communication costs
- Choice of K (i.e., the number of machines)
 - the larger K, the lower local computation costs, the higher communication costs

= nar

イロト イポト イヨト イヨト

DisDCA is implemented

• http://cs.uiowa.edu/~tyng/software.html

- Classification and Regression
- Loss

- 2 Logistic loss (Logistic Regression)
- Square loss (Ridge Regression/LASSO)
- Regularizer

- to norm
- 2 mixture of ℓ_1 norm and ℓ_2 norm
- Multi-class : one-vs-all

= nar

イロト イ理ト イヨト イヨト

Alternating Direction Method of Multipliers (ADMM)

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w}) = \sum_{k=1}^{K} \underbrace{\frac{1}{n} \sum_{i \in S_k} \ell(\mathbf{w}^\top \mathbf{x}_i, y_i)}_{f_k(\mathbf{w})} + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

- each $f_k(\mathbf{w})$ on individual machines
- but w are coupled together

$$\min_{\mathbf{w}_1,\dots,\mathbf{w}_K,\mathbf{w}\in\mathbb{R}^d} \quad F(\mathbf{w}) = \sum_{k=1}^K f_k(\mathbf{w}_k) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$
s.t. $\mathbf{w}_k = \mathbf{w}, k = 1,\dots,K$

3

イロト 不得下 イヨト イヨト
The Augmented Lagrangian Function

$$\min_{\mathbf{w}_{1},...,\mathbf{w}_{K},\mathbf{w}\in\mathbb{R}^{d}} \quad \sum_{k=1}^{K} f_{k}(\mathbf{w}_{k}) + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$
s.t. $\mathbf{w}_{k} = \mathbf{w}, k = 1, \dots, K$

• The Augmented Lagrangian function

$$L(\{\mathbf{w}_k\}, \{\mathbf{z}_k\}, \mathbf{w})$$

= $\sum_{k=1}^{K} f_k(\mathbf{w}_k) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{k=1}^{K} \mathbf{z}_k^{\top}(\mathbf{w}_k - \mathbf{w}) + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_k - \mathbf{w}\|_2^2$

is the Lagrangian function of

Tutorial for ACML'15

The Augmented Lagrangian Function

$$\min_{\substack{\mathbf{w}_{1},\ldots,\mathbf{w}_{K},\mathbf{w}\in\mathbb{R}^{d}\\ \mathsf{Lagrangian}\\ \mathsf{Multiplies}^{\mathsf{St.}}}} \sum_{k=1}^{K} f_{k}(\mathbf{w}_{k}) + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$

• The Augmented Lagrangian function

$$L(\{\mathbf{w}_{k}\},\{\mathbf{z}_{k}\},\mathbf{w})$$

$$= \sum_{k=1}^{K} f_{k}(\mathbf{w}_{k}) + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{k=1}^{K} \mathbf{z}_{k}^{\mathsf{T}}(\mathbf{w}_{k} - \mathbf{w}) + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_{k} - \mathbf{w}\|_{2}^{2}$$

• is the Lagrangian function of

$$\min_{\mathbf{w}_1,\dots,\mathbf{w}_K,\mathbf{w}\in\mathbb{R}^d} \quad \sum_{k=1}^K f_k(\mathbf{w}_k) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \frac{\rho}{2} \sum_{k=1}^K \|\mathbf{w}_k - \mathbf{w}\|_2^2$$

s.t. $\mathbf{w}_k = \mathbf{w}, k = 1, \dots, K$

The Augmented Lagrangian Function

$$\min_{\mathbf{w}_1,\dots,\mathbf{w}_K,\mathbf{w}\in\mathbb{R}^d} \quad \sum_{k=1}^K f_k(\mathbf{w}_k) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$
s.t. $\mathbf{w}_k = \mathbf{w}, k = 1,\dots,K$

• The Augmented Lagrangian function

$$L(\lbrace \mathbf{w}_k \rbrace, \lbrace \mathbf{z}_k \rbrace, \mathbf{w}) = \sum_{k=1}^{K} f_k(\mathbf{w}_k) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{k=1}^{K} \mathbf{z}_k^{\top}(\mathbf{w}_k - \mathbf{w}) + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_k - \mathbf{w}\|_2^2$$

• is the Lagrangian function of

$$\min_{\mathbf{w}_{1},...,\mathbf{w}_{K},\mathbf{w}\in\mathbb{R}^{d}} \sum_{k=1}^{K} f_{k}(\mathbf{w}_{k}) + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_{k} - \mathbf{w}\|_{2}^{2}$$

s.t. $\mathbf{w}_{k} = \mathbf{w}, k = 1, \dots, K$

$$L(\{\mathbf{w}_k\},\{\mathbf{z}_k\},\mathbf{w})$$

= $\sum_{k=1}^{K} f_k(\mathbf{w}_k) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{k=1}^{K} \mathbf{z}_k^{\top}(\mathbf{w}_k - \mathbf{w}) + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_k - \mathbf{w}\|_2^2$

Update from $(\mathbf{w}_k^t, \mathbf{z}_k^t, \mathbf{w}^t)$ to $(\mathbf{w}_k^{t+1}, \mathbf{z}_k^{t+1}, \mathbf{w}^{t+1})$

$$\mathbf{w}_k^{t+1} = \arg\min_{\mathbf{w}_k} f_k(\mathbf{w}_k) + (\mathbf{z}_k^t)^\top (\mathbf{w}_k - \mathbf{w}^t) + \frac{\rho}{2} \|\mathbf{w}_k - \mathbf{w}^t\|_2^2, k = 1, \dots, K$$

$$\mathbf{w}^{t+1} = \operatorname*{arg\,min}_{\mathbf{w}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{k=1}^{K} (\mathbf{z}_{k}^{t})^{\top} \mathbf{w} + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_{k}^{t+1} - \mathbf{w}\|_{2}^{2}$$
$$\mathbf{z}_{k}^{t+1} = \mathbf{z}_{k} + \rho(\mathbf{w}_{k}^{t+1} - \mathbf{w}^{t+1})$$

$$L(\{\mathbf{w}_{k}\},\{\mathbf{z}_{k}\},\mathbf{w}) = \sum_{k=1}^{K} f_{k}(\mathbf{w}_{k}) + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{k=1}^{K} \mathbf{z}_{k}^{\top}(\mathbf{w}_{k} - \mathbf{w}) + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_{k} - \mathbf{w}\|_{2}^{2}$$
Optimize on
Individual
Machines
$$\mathbf{z}_{k}^{t},\mathbf{w}^{t}) \text{ to } (\mathbf{w}_{k}^{t+1},\mathbf{z}_{k}^{t+1},\mathbf{w}^{t+1})$$

$$\mathbf{w}_{k}^{t+1} = \arg\min_{\mathbf{w}_{k}} f_{k}(\mathbf{w}_{k}) + (\mathbf{z}_{k}^{t})^{\top}(\mathbf{w}_{k} - \mathbf{w}^{t}) + \frac{\rho}{2} \|\mathbf{w}_{k} - \mathbf{w}^{t}\|_{2}^{2}, k = 1, \dots, K$$

$$\mathbf{w}^{t+1} = \arg\min_{\mathbf{w}_{k}} \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{k=1}^{K} (\mathbf{z}_{k}^{t})^{\top}\mathbf{w} + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_{k}^{t+1} - \mathbf{w}\|_{2}^{2}$$

$$\mathbf{z}_{k}^{t+1} = \mathbf{z}_{k} + \rho(\mathbf{w}_{k}^{t+1} - \mathbf{w}^{t+1})$$

$$L(\{\mathbf{w}_k\},\{\mathbf{z}_k\},\mathbf{w})$$

= $\sum_{k=1}^{K} f_k(\mathbf{w}_k) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{k=1}^{K} \mathbf{z}_k^{\top}(\mathbf{w}_k - \mathbf{w}) + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_k - \mathbf{w}\|_2^2$

Update from
$$(\mathbf{w}_k^t, \mathbf{z}_k^t, \mathbf{w}^t)$$
 to $(\mathbf{w}_k^{t+1}, \mathbf{z}_k^{t+1}, \mathbf{w}^{t+1})$

Aggregate and
w t+1 Update on
$$f_k(\mathbf{w}_k) + (\mathbf{z}_k^t)^\top (\mathbf{w}_k - \mathbf{w}^t) + \frac{\rho}{2} \|\mathbf{w}_k - \mathbf{w}^t\|_2^2, k = 1, \dots, K$$

One Machine
 $\mathbf{w}^{t+1} = \operatorname*{arg\,min}_{\mathbf{w}} \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{k=1}^{K} (\mathbf{z}_k^t)^\top \mathbf{w} + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_k^{t+1} - \mathbf{w}\|_2^2$
 $\mathbf{z}_k^{t+1} = \mathbf{z}_k + \rho(\mathbf{w}_k^{t+1} - \mathbf{w}^{t+1})$

$$L(\{\mathbf{w}_k\},\{\mathbf{z}_k\},\mathbf{w})$$

= $\sum_{k=1}^{K} f_k(\mathbf{w}_k) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{k=1}^{K} \mathbf{z}_k^{\top}(\mathbf{w}_k - \mathbf{w}) + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_k - \mathbf{w}\|_2^2$

Update from $(\mathbf{w}_k^t, \mathbf{z}_k^t, \mathbf{w}^t)$ to $(\mathbf{w}_k^{t+1}, \mathbf{z}_k^{t+1}, \mathbf{w}^{t+1})$

$$\mathbf{w}_{k}^{t+1} = \arg\min_{\mathbf{w}_{k}} f_{k}(\mathbf{w}_{k}) + (\mathbf{z}_{k}^{t})^{\top}(\mathbf{w}_{k} - \mathbf{w}^{t}) + \frac{\rho}{2} \|\mathbf{w}_{k} - \mathbf{w}^{t}\|_{2}^{2}, k = 1, \dots, K$$
Update on
Individual
Machines
$$\frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{k=1}^{K} (\mathbf{z}_{k}^{t})^{\top}\mathbf{w} + \frac{\rho}{2} \sum_{k=1}^{K} \|\mathbf{w}_{k}^{t+1} - \mathbf{w}\|_{2}^{2}$$

$$\mathbf{z}_{k}^{t+1} = \mathbf{z}_{k} + \rho(\mathbf{w}_{k}^{t+1} - \mathbf{w}^{t+1})$$

$$\mathbf{w}_k^{t+1} = \arg\min_{\mathbf{w}_k} f_k(\mathbf{w}_k) + (\mathbf{z}_k^t)^\top (\mathbf{w}_k - \mathbf{w}^t) + \frac{\rho}{2} \|\mathbf{w}_k - \mathbf{w}^t\|_2^2, k = 1, \dots, K$$

- Each local problem can be solved by a local solver (e.g., SDCA)
- Optimization can be inexact (trading computation for communication)

= nar

イロト イボト イヨト イヨト

Complexity of ADMM

Assume local problems are solved exactly.

• Communication Complexity: $O\left(\log\left(\frac{1}{\epsilon}\right)\right)$ due to the strong convexity of $R(\mathbf{w})$

Applicable to Non-strongly Convex Regularizer $R(\mathbf{w}) = \|\mathbf{w}\|_1$

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w}) = \sum_{k=1}^K \frac{1}{n} \sum_{i\in S_k} \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \tau \|\mathbf{w}\|_1$$

• Communication Complexity: $O\left(\frac{1}{\epsilon}\right)$

イロト (四) (三) (三) (二) (つ)

THANK YOU! QUESTIONS?

Yang

Tutorial for ACML'15

Nov. 20, 2015 114 / 210

E 990

ヘロト 人間 ト 人団 ト 人団 ト

Research Assistant Positions Available for PhD Candidates!

- Start Fall'16
- Optimization and Randomization
- Online Learning
- Deep Learning
- Machine Learning
- send email to tianbao-yang@uiowa.edu

= nar

イロト イボト イヨト イヨト

Big Data Analytics: Optimization and Randomization Part III: Randomization

3

イロト イヨト イヨト

Outline

- 2 Optimization
- 3 Randomized Dimension Reduction
- 4 Randomized Algorithms
- **5** Concluding Remarks

1

ヘロト 人間 ト 人団 ト 人団 ト

Random Sketch

Approximate a large data matrix

by a much smaller sketch

< □ > < □ > < □ > < □ > < □ >

Tutorial for ACML'15

Nov. 20, 2015 118 / 210

臣

DQC

The Framework of Randomized Algorithms

~ .			
· v	2	n	a
			2

Nov. 20, 2015 119 / 210

<ロト <回ト < 回ト < 回ト

2

The Framework of Randomized Algorithms

3

590

・ロト ・四ト ・ヨト・

The Framework of Randomized Algorithms

Nov. 20, 2015 121 / 210

€ 990

The Framework of Randomized Algorithms

Nov. 20, 2015 122 / 210

€ 990

Why randomized dimension reduction?

- Efficient
- Robust (e.g., dropout)
- Formal Guarantees
- Can explore parallel algorithms

3

イロト 不得下 イヨト イヨト

- Johnson-Lindenstauss (JL) transforms
- Subspace embeddings
- Column sampling

= nar

イロト イボト イヨト イヨト

JL Lemma

JL Lemma (Johnson & Lindenstrauss, 1984)

For any $0 < \epsilon, \delta < 1/2$, there exists a probability distribution on $m \times d$ real matrices A such that there exists a small universal constant c > 0 and for any fixed $\mathbf{x} \in \mathbb{R}^d$ with a probability at least $1 - \delta$, we have

$$\left|\|A\mathbf{x}\|_2^2 - \|\mathbf{x}\|_2^2\right| \leq c \sqrt{rac{\log(1/\delta)}{m}} \|\mathbf{x}\|_2^2$$

or for $m = \Theta(\epsilon^{-2} \log(1/\delta))$, then with a probability at least $1 - \delta$ $|||A\mathbf{x}||_2^2 - ||\mathbf{x}||_2^2| \le \epsilon ||\mathbf{x}||_2^2$

<ロト < 四ト < 三ト < 三ト - 三 -

Embedding a set of points into low dimensional space

Given a set of points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$, we can embed them into a low dimensional space $A\mathbf{x}_1, \ldots, A\mathbf{x}_n \in \mathbb{R}^m$ such that the pairwise distance between any two points are well preserved in the low

dimensional space

$$\begin{aligned} \|A\mathbf{x}_{i} - A\mathbf{x}_{j}\|_{2}^{2} &= \|A(\mathbf{x}_{i} - \mathbf{x}_{j})\|_{2}^{2} \leq (1 + \epsilon) \|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}^{2} \\ \|A\mathbf{x}_{i} - A\mathbf{x}_{j}\|_{2}^{2} &= \|A(\mathbf{x}_{i} - \mathbf{x}_{j})\|_{2}^{2} \geq (1 - \epsilon) \|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}^{2} \end{aligned}$$

In other words, in order to have all pairwise Euclidean distances preserved up to $1 \pm \epsilon$, only $m = \Theta(\epsilon^{-2} \log(n^2/\delta))$ dimensions are necessary

イロト イ押ト イヨト イヨト

JL transforms: Gaussian Random Projection

Gaussian Random Projection (Dasgupta & Gupta, 2003): $A \in \mathbb{R}^{m \times d}$

- $A_{ij} \sim \mathcal{N}(0, 1/m)$
- $m = \Theta(\epsilon^{-2}\log(1/\delta))$
- Computational cost of AX: where $X \in \mathbb{R}^{d \times n}$
 - mnd for dense matrices
 - nnz(X)m for sparse matrices

Computational Cost is very High (could be as high as solving many problems)

イロト 不得 トイヨト イヨト ニヨー

Accelerate JL transforms: using discrete distributions

Using Discrete Distributions (Achlioptas, 2003):

•
$$\Pr(A_{ij} = \pm \frac{1}{\sqrt{m}}) = 0.5$$

•
$$\Pr(A_{ij} = \pm \sqrt{\frac{3}{m}}) = \frac{1}{6}, \ \Pr(A_{ij} = 0) = \frac{2}{3}$$

- Database friendly
- Replace multiplications by additions and subtractions

(日) (同) (三)

Fast JL transform based on randomized Hadmard transform:

Motivation: Can we simply use random sampling matrix $P \in \mathbb{R}^{m \times d}$ that randomly selects *m* coordinates out of *d* coordinates (scaled by $\sqrt{d/m}$)?

Unfortunately: by Chernoff bound

$$|\|P\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \leq \frac{\sqrt{d}\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}} \sqrt{\frac{3\log(2/\delta)}{m}} \|\mathbf{x}\|_{2}^{2}$$

Unless $rac{\sqrt{d}\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_2} \leq c$, the random sampling doest not work

Remedy is given by randomized Hadmard transform

×				
- Y	<u>`</u>	n	σ	
	a		5	
			<u> </u>	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Fast JL transform based on randomized Hadmard transform:

Motivation: Can we simply use random sampling matrix $P \in \mathbb{R}^{m \times d}$ that randomly selects *m* coordinates out of *d* coordinates (scaled by $\sqrt{d/m}$)?

Unfortunately: by Chernoff bound

$$|\|P\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \leq \frac{\sqrt{d}\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}} \sqrt{\frac{3\log(2/\delta)}{m}} \|\mathbf{x}\|_{2}^{2}$$

Unless $\frac{\sqrt{d} \|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_2} \leq c$, the random sampling doest not work

Remedy is given by randomized Hadmard transform

Yang

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Fast JL transform based on randomized Hadmard transform:

Motivation: Can we simply use random sampling matrix $P \in \mathbb{R}^{m \times d}$ that randomly selects *m* coordinates out of *d* coordinates (scaled by $\sqrt{d/m}$)?

Unfortunately: by Chernoff bound

$$|\|P\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \leq \frac{\sqrt{d}\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}} \sqrt{\frac{3\log(2/\delta)}{m}} \|\mathbf{x}\|_{2}^{2}$$

Unless $\frac{\sqrt{d} \|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_2} \leq c$, the random sampling doest not work

Remedy is given by randomized Hadmard transform

Yang

Randomized Hadmard transform

Hadmard transform:

•
$$H \in \mathbb{R}^{d \times d}$$
: $H = \sqrt{\frac{1}{d}} H_{2^k}$

$$H_1 = \begin{bmatrix} 1 \end{bmatrix}, \quad H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad H_{2^k} = \begin{bmatrix} H_{2^{k-1}} & H_{2^{k-1}} \\ H_{2^{k-1}} & -H_{2^{k-1}} \end{bmatrix}$$

• $\|H\mathbf{x}\|_2 = \|\mathbf{x}\|_2$ and H is orthogonal

• Computational costs of Hx: $d \log(d)$

randomized Hadmard transform: HD

- $D \in \mathbb{R}^{d imes d}$: a diagonal matrix $\Pr(D_{ii} = \pm 1) = 0.5$
- *HD* is orthogonal and $\|HD\mathbf{x}\|_2 = \|\mathbf{x}\|_2$

$\text{Key property: } \frac{\sqrt{d} \| \textit{HD} \mathbf{x} \|_{\infty}}{\| \textit{HD} \mathbf{x} \|_2} \leq \sqrt{\log(d/\delta)} \text{ w.h.p } 1 - \delta$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Randomized Hadmard transform

Hadmard transform:

•
$$H \in \mathbb{R}^{d \times d}$$
: $H = \sqrt{\frac{1}{d}} H_{2^k}$

$$H_1 = \begin{bmatrix} 1 \end{bmatrix}, \quad H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad H_{2^k} = \begin{bmatrix} H_{2^{k-1}} & H_{2^{k-1}} \\ H_{2^{k-1}} & -H_{2^{k-1}} \end{bmatrix}$$

• $\|H\mathbf{x}\|_2 = \|\mathbf{x}\|_2$ and H is orthogonal

• Computational costs of Hx: $d \log(d)$

randomized Hadmard transform: HD

- $D \in \mathbb{R}^{d imes d}$: a diagonal matrix $\Pr(D_{ii} = \pm 1) = 0.5$
- *HD* is orthogonal and $\|HD\mathbf{x}\|_2 = \|\mathbf{x}\|_2$

Nov. 20, 2015 130 / 210

Randomized Hadmard transform

Hadmard transform:

•
$$H \in \mathbb{R}^{d \times d}$$
: $H = \sqrt{\frac{1}{d}} H_{2^k}$

$$H_1 = \begin{bmatrix} 1 \end{bmatrix}, \quad H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad H_{2^k} = \begin{bmatrix} H_{2^{k-1}} & H_{2^{k-1}} \\ H_{2^{k-1}} & -H_{2^{k-1}} \end{bmatrix}$$

• $\|H\mathbf{x}\|_2 = \|\mathbf{x}\|_2$ and H is orthogonal

• Computational costs of Hx: $d \log(d)$

randomized Hadmard transform: HD

- $D \in \mathbb{R}^{d imes d}$: a diagonal matrix $\Pr(D_{ii} = \pm 1) = 0.5$
- *HD* is orthogonal and $\|HD\mathbf{x}\|_2 = \|\mathbf{x}\|_2$

$$\mathsf{Key \ property:} \ \frac{\sqrt{d} \| \mathsf{HD} \mathsf{x} \|_{\infty}}{\| \mathsf{HD} \mathsf{x} \|_2} \leq \sqrt{\mathsf{log}(d/\delta)} \ \mathsf{w.h.p} \ 1 - \delta$$

Fast JL transform based on randomized Hadmard transform (Tropp, 2011):

$$A = \sqrt{\frac{d}{m}} PHD$$

yields

$$|\|\boldsymbol{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}| \leq \sqrt{\frac{3\log(2/\delta)\log(d/\delta)}{m}}\|\mathbf{x}\|_{2}^{2}$$

- $m = \Theta(\epsilon^{-2} \log(1/\delta) \log(d/\delta))$ suffice for $1 \pm \epsilon$
- additional factor $\log(d/\delta)$ can be removed
- Computational cost of AX: $O(nd \log(m))$

イロト イ理ト イヨト イヨト

Accelerate JL transforms: using a sparse matrix (I)

Random hashing (Dasgupta et al., 2010)

$$A = HD$$

where $D \in \mathbb{R}^{d \times d}$ and $H \in \mathbb{R}^{m \times d}$

- random hashing: $h(j): \{1, \ldots, d\} \rightarrow \{1, \ldots, m\}$
- $H_{ij} = 1$ if h(j) = i: sparse matrix (each column has only one non-zero entry)
- $D \in \mathbb{R}^{d imes d}$: a diagonal matrix $\Pr(D_{ii} = \pm 1) = 0.5$
- $[A\mathbf{x}]_j = \sum_{i:h(i)=j} x_i D_{ii}$

Technically speaking, random hashing does not satisfy JL lemma

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Accelerate JL transforms: using a sparse matrix (I)

Random hashing (Dasgupta et al., 2010)

$$A = HD$$

where $D \in \mathbb{R}^{d \times d}$ and $H \in \mathbb{R}^{m \times d}$

- random hashing: $h(j): \{1, \ldots, d\} \rightarrow \{1, \ldots, m\}$
- $H_{ij} = 1$ if h(j) = i: sparse matrix (each column has only one non-zero entry)
- $D \in \mathbb{R}^{d imes d}$: a diagonal matrix $\Pr(D_{ii} = \pm 1) = 0.5$
- $[A\mathbf{x}]_j = \sum_{i:h(i)=j} x_i D_{ii}$

Technically speaking, random hashing does not satisfy JL lemma

Accelerate JL transforms: using a sparse matrix (I)

- key properties:
 - $E[\langle HD\mathbf{x}_1, HD\mathbf{x}_2 \rangle] = \langle \mathbf{x}_1, \mathbf{x}_2 \rangle$
 - and norm perserving $|||HD\mathbf{x}||_2^2 ||\mathbf{x}||_2^2| \le \epsilon ||\mathbf{x}||_2^2$, only when

$$\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_2} \leq \frac{1}{\sqrt{c}}$$

Apply randomized Hadmard transform *P* first: $\Theta(c \log(c/\delta))$ blocks of randomized Hadmard transform

$$\frac{\|P\mathbf{x}\|_{\infty}}{\|P\mathbf{x}\|_2} \leq \frac{1}{\sqrt{c}}$$

Nov. 20, 2015 133 / 210

Accelerate JL transforms: using a sparse matrix (II)

Sparse JL transform based on block random hashing (Kane & Nelson, 2014)

$$A = \begin{bmatrix} \frac{1}{\sqrt{s}}Q_1\\ \dots\\ \frac{1}{\sqrt{s}}Q_s \end{bmatrix}$$

• Each $Q_s \in \mathbb{R}^{v imes d}$ is an independent random hashing (HD) matrix

- Set $v = \Theta(\epsilon^{-1})$ and $s = \Theta(\epsilon^{-1}\log(1/\delta))$
- Computational Cost of AX: $O\left(\frac{nnz(X)}{\epsilon}\log\left[\frac{1}{\delta}\right]\right)$

- Johnson-Lindenstauss (JL) transforms
- Subspace embeddings
- Column sampling

= nar

イロト イボト イヨト イヨト
Definition: a subspace embedding given some parameters $0 < \epsilon, \delta < 1, k \leq d$ is a distribution \mathcal{D} over matrices $A \in \mathbb{R}^{m \times d}$ such that for any fixed linear subspace $W \in \mathbb{R}^d$ with dim(W) = k it holds that

$$\Pr_{\mathcal{A}\sim\mathcal{D}}(\forall \mathbf{x}\in W, \|\mathcal{A}\mathbf{x}\|_2 \in (1\pm\epsilon)\|\mathbf{x}\|_2) \geq 1-\delta$$

It implies

- If $U \in \mathbb{R}^{d \times k}$ is orthogonal matrix (contains the orthonormal bases)
 - $AU \in \mathbb{R}^{m \times k}$ is of full column rank
 - $\|AU\|_2 \in (1 \pm \epsilon)$
 - $(1-\epsilon)^2 \le \|U^\top A^\top A U\|_2 \le (1+\epsilon)^2$
- These are key properties in the theoretical analysis of many algorithms (e.g., low-rank matrix approximation, randomized least-squares regression, randomized classification)

3

Definition: a subspace embedding given some parameters $0 < \epsilon, \delta < 1, k \leq d$ is a distribution \mathcal{D} over matrices $A \in \mathbb{R}^{m \times d}$ such that for any fixed linear subspace $W \in \mathbb{R}^d$ with dim(W) = k it holds that

$$\Pr_{\mathcal{A}\sim\mathcal{D}}(\forall \mathbf{x}\in W, \|\mathcal{A}\mathbf{x}\|_2 \in (1\pm\epsilon)\|\mathbf{x}\|_2) \geq 1-\delta$$

It implies

- If $U \in \mathbb{R}^{d \times k}$ is orthogonal matrix (contains the orthonormal bases)
 - $AU \in \mathbb{R}^{m \times k}$ is of full column rank
 - $\|AU\|_2 \in (1 \pm \epsilon)$
 - $(1-\epsilon)^2 \leq \|U^{\top} A^{\top} A U\|_2 \leq (1+\epsilon)^2$
- These are key properties in the theoretical analysis of many algorithms (e.g., low-rank matrix approximation, randomized least-squares regression, randomized classification)

イロト イボト イヨト イヨト ニヨー

Definition: a subspace embedding given some parameters $0 < \epsilon, \delta < 1, k \leq d$ is a distribution \mathcal{D} over matrices $A \in \mathbb{R}^{m \times d}$ such that for any fixed linear subspace $W \in \mathbb{R}^d$ with dim(W) = k it holds that

$$\Pr_{\mathcal{A}\sim\mathcal{D}}(\forall \mathbf{x}\in W, \|\mathcal{A}\mathbf{x}\|_2 \in (1\pm\epsilon)\|\mathbf{x}\|_2) \geq 1-\delta$$

It implies

- If $U \in \mathbb{R}^{d \times k}$ is orthogonal matrix (contains the orthonormal bases)
 - $AU \in \mathbb{R}^{m \times k}$ is of full column rank

•
$$\|AU\|_2 \in (1 \pm \epsilon)$$

•
$$(1-\epsilon)^2 \le \|U^{\top} A^{\top} A U\|_2 \le (1+\epsilon)^2$$

• These are key properties in the theoretical analysis of many algorithms (e.g., low-rank matrix approximation, randomized least-squares regression, randomized classification)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

From a JL transform to a Subspace Embedding (Sarlós, 2006). Let $A \in \mathbb{R}^{m \times d}$ be a JL transform. If

$$m = O\left(\frac{k \log\left[\frac{k}{\delta\epsilon}\right]}{\epsilon^2}\right)$$

Then w.h.p $1 - \delta^k$, $A \in \mathbb{R}^{m \times d}$ is a subspace embedding w.r.t a k-dimensional space in \mathbb{R}^d

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Making block random hashing a Subspace Embedding (Nelson & Nguyen, 2013).

$$\mathbf{A} = \begin{bmatrix} \frac{1}{\sqrt{s}} Q_1 \\ \dots \\ \frac{1}{\sqrt{s}} Q_s \end{bmatrix}$$

- Each $Q_s \in \mathbb{R}^{v imes d}$ is an independent random hashing (HD) matrix
- Set $v = \Theta(k\epsilon^{-1}\log^5(k/\delta))$ and $s = \Theta(\epsilon^{-1}\log^3(k/\delta))$

A

- w.h.p 1δ , $A \in \mathbb{R}^{m \times d}$ with $m = \Theta\left(\frac{k \log^{8}(k/\delta)}{\epsilon^{2}}\right)$ is a subspace embedding w.r.t a k-dimensional space in \mathbb{R}^{d}
- Computational Cost of AX: $O\left(\frac{nnz(X)}{\epsilon}\log^3\left[\frac{k}{\delta}\right]\right)$

= nar

Sparse Subspace Embedding (SSE)

Random hashing is SSE with a Constant Probability (Nelson & Nguyen, 2013)

$$A = HD$$

where $D \in \mathbb{R}^{d \times d}$ and $H \in \mathbb{R}^{m \times d}$

- $m = \Omega(k^2/\epsilon^2)$ suffice for a subspace embedding with a probability 2/3
- Computational Cost AX: O(nnz(X))

イロト (四) (三) (三) (二) (つ)

Randomized Dimensionality Reduction

- Johnson-Lindenstauss (JL) transforms
- Subspace embeddings
- Column (Row) sampling

3

Column sampling

- Column subset selection (feature selection)
- More interpretable
- Uniform sampling usually does not work (not a JL transform)
- Non-oblivious sampling (data-dependent sampling)
 - leverage-score sampling

3

Column sampling

- Column subset selection (feature selection)
- More interpretable
- Uniform sampling usually does not work (not a JL transform)
- Non-oblivious sampling (data-dependent sampling)
 - leverage-score sampling

3

イロト 不得下 イヨト イヨト

Column sampling

- Column subset selection (feature selection)
- More interpretable
- Uniform sampling usually does not work (not a JL transform)
- Non-oblivious sampling (data-dependent sampling)
 - leverage-score sampling

3

イロト 不得下 イヨト イヨト

Let $X \in \mathbb{R}^{d \times n}$ be a rank-k matrix

•
$$X = U \Sigma V^{\top}$$
: $U \in \mathbb{R}^{d \times k}$, $\Sigma \in \mathbb{R}^{k \times k}$

• Leverage scores $||U_{i*}||_2^2$, $i = 1, \dots, d$

• Let
$$p_i = \frac{\|U_{i*}\|_2^2}{\sum_{i=1}^d \|U_{i*}\|_2^2}, i = 1, \dots, d$$

• Let $i_1, \ldots, i_m \in \{1, \ldots, d\}$ denote *m* indices selected by following p_i

• Let $A \in \mathbb{R}^{m \times d}$ be sampling-and-rescaling matrix:

$$A_{ij} = \begin{cases} \frac{1}{\sqrt{mp_j}} & \text{if } j = i_j \\ 0 & \text{otherwise} \end{cases}$$

• $AX \in \mathbb{R}^{m \times n}$ is a small sketch of X

Nov. 20, 2015 142 / 210

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Let $X \in \mathbb{R}^{d \times n}$ be a rank-k matrix

- $X = U \Sigma V^{\top}$: $U \in \mathbb{R}^{d \times k}$, $\Sigma \in \mathbb{R}^{k \times k}$
- Leverage scores $\|U_{i*}\|_2^2$, $i = 1, \dots, d$
- Let $p_i = \frac{\|U_{i*}\|_2^2}{\sum_{i=1}^d \|U_{i*}\|_2^2}$, $i = 1, \dots, d$
- Let $i_1, \ldots, i_m \in \{1, \ldots, d\}$ denote *m* indices selected by following p_i
- Let $A \in \mathbb{R}^{m \times d}$ be sampling-and-rescaling matrix:

$$A_{ij} = \left\{ egin{array}{cc} rac{1}{\sqrt{mp_j}} & ext{if } j = i_j \ & & \ 0 & ext{otherwise} \end{array}
ight.$$

• $AX \in \mathbb{R}^{m \times n}$ is a small sketch of X

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $X \in \mathbb{R}^{d \times n}$ be a rank-k matrix

- $X = U \Sigma V^{\top}$: $U \in \mathbb{R}^{d \times k}$, $\Sigma \in \mathbb{R}^{k \times k}$
- Leverage scores $\|U_{i*}\|_2^2$, $i=1,\ldots,d$

• Let
$$p_i = \frac{\|U_{i*}\|_2^2}{\sum_{i=1}^d \|U_{i*}\|_2^2}, i = 1, \dots, d$$

• Let $i_1, \ldots, i_m \in \{1, \ldots, d\}$ denote *m* indices selected by following p_i

• Let $A \in \mathbb{R}^{m \times d}$ be sampling-and-rescaling matrix:

$$A_{ij} = \begin{cases} \frac{1}{\sqrt{mp_j}} & \text{if } j = i_j \\ 0 & \text{otherwise} \end{cases}$$

• $AX \in \mathbb{R}^{m \times n}$ is a small sketch of X

Nov. 20, 2015 142 / 210

▲日▼▲□▼▲目▼▲目▼ ヨー ショマ

Let $X \in \mathbb{R}^{d \times n}$ be a rank-k matrix

- $X = U \Sigma V^{\top}$: $U \in \mathbb{R}^{d \times k}$, $\Sigma \in \mathbb{R}^{k \times k}$
- Leverage scores $\|U_{i*}\|_2^2$, $i = 1, \dots, d$

• Let
$$p_i = \frac{\|U_{i*}\|_2^2}{\sum_{i=1}^d \|U_{i*}\|_2^2}$$
, $i = 1, \dots, d$

- Let $i_1, \ldots, i_m \in \{1, \ldots, d\}$ denote *m* indices selected by following p_i
- Let $A \in \mathbb{R}^{m \times d}$ be sampling-and-rescaling matrix:

$$A_{ij} = \begin{cases} \frac{1}{\sqrt{mp_j}} & \text{if } j = i_j \\ 0 & \text{otherwise} \end{cases}$$

• $AX \in \mathbb{R}^{m \times n}$ is a small sketch of X

Nov. 20, 2015 142 / 210

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $X \in \mathbb{R}^{d \times n}$ be a rank-k matrix

- $X = U \Sigma V^{\top}$: $U \in \mathbb{R}^{d \times k}$, $\Sigma \in \mathbb{R}^{k \times k}$
- Leverage scores $\|U_{i*}\|_2^2$, $i = 1, \dots, d$

• Let
$$p_i = \frac{\|U_{i*}\|_2^2}{\sum_{i=1}^d \|U_{i*}\|_2^2}$$
, $i = 1, \dots, d$

- Let $i_1, \ldots, i_m \in \{1, \ldots, d\}$ denote *m* indices selected by following p_i
- Let $A \in \mathbb{R}^{m \times d}$ be sampling-and-rescaling matrix:

$$A_{ij} = \left\{ egin{array}{cc} rac{1}{\sqrt{mp_j}} & ext{if } j = i_j \ & \ 0 & ext{otherwise} \end{array}
ight.$$

• $AX \in \mathbb{R}^{m \times n}$ is a small sketch of X

▲日▼▲□▼▲目▼▲目▼ ヨー ショマ

Properties of Leverage-score sampling

When
$$m = \Theta\left(rac{k}{\epsilon^2}\log\left[rac{2k}{\delta}
ight]
ight)$$
, w.h.p $1-\delta$,

• $AU \in \mathbb{R}^{m \times k}$ is full column rank

•
$$\sigma_i^2(AU) \ge (1-\epsilon) \ge (1-\epsilon)^2$$

- $\sigma_i^2(AU) \le 1 + \epsilon \le (1 + \epsilon)^2$
- Leverage-score sampling performs like a subspace embedding (only for *U*, the top singular vector matrix of *X*)
- Computational cost: compute top-k SVD of X, expensive
- Randomized algoritms to compute approximate leverage scores

イロト 不得下 イヨト イヨト

Properties of Leverage-score sampling

When
$$m = \Theta\left(rac{k}{\epsilon^2}\log\left[rac{2k}{\delta}
ight]
ight)$$
, w.h.p $1-\delta$,

• $AU \in \mathbb{R}^{m \times k}$ is full column rank

•
$$\sigma_i^2(AU) \ge (1-\epsilon) \ge (1-\epsilon)^2$$

•
$$\sigma_i^2(AU) \leq 1 + \epsilon \leq (1 + \epsilon)^2$$

- Leverage-score sampling performs like a subspace embedding (only for U, the top singular vector matrix of X)
- Computational cost: compute top-k SVD of X, expensive
- Randomized algoritms to compute approximate leverage scores

< ロト < 同ト < 三ト

When uniform sampling makes sense?

Coherence measure

$$\mu_k = \frac{d}{k} \max_{1 \le i \le d} \|U_{i*}\|_2^2$$

- Valid when the coherence measure is small (some real data mining datasets have small coherence measures)
- The Nyström method usually uses uniform sampling (Gittens, 2011)

Image: A matrix of the second seco

Outline

Randomized Algorithms

• Randomized Classification (Regression)

- Randomized Least-Squares Regression
- Randomized K-means Clustering
- Randomized Kernel methods
- Randomized Low-rank Matrix Approximation

э

- 4 ⊒ →

Image: A math a math

Classification

Classification problems:

$$\min_{\mathbf{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\ell(y_i\mathbf{w}^{\top}\mathbf{x}_i)+\frac{\lambda}{2}\|\mathbf{w}\|_2^2$$

- $y_i \in \{+1, -1\}$: label
- Loss function $\ell(z)$: $z = y \mathbf{w}^\top \mathbf{x}$
 - 1. SVMs: (squared) hinge loss $\ell(z) = \max(0, 1-z)^p$, where p = 1, 2
 - 2. Logistic Regression: $\ell(z) = \log(1 + \exp(-z))$

3

イロト 人間ト イヨト イヨト

For large-scale high-dimensional problems, the computational cost of optimization is $O((nd + d\kappa) \log(1/\epsilon))$.

Use random reduction $A \in \mathbb{R}^{d \times m}$ $(m \ll d)$, we reduce $X \in \mathbb{R}^{n \times d}$ to $\hat{X} = XA \in \mathbb{R}^{n \times m}$. Then solve

$$\min_{\mathbf{u}\in\mathbb{R}^m}\frac{1}{n}\sum_{i=1}^n\ell(y_i\mathbf{u}^\top\widehat{\mathbf{x}}_i)+\frac{\lambda}{2}\|\mathbf{u}\|_2^2$$

• JL transforms

• Sparse subspace embeddings

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Two questions:

- Is there any performance guarantee?
 - margin is preserved: if data is linearly separable (Balcan et al., 2006) as long as $m \geq \frac{12}{\epsilon^2} \log(\frac{6m}{\delta})$
 - generalization performance is preserved: if the data matrix if of low rank and $m = \Omega(\frac{kploy(\log(k/\delta\epsilon))}{\epsilon^2})$ (Paul et al., 2013)
- How to recover an accurate model in the original high-dimensional space?

Dual Recovery (Zhang et al., 2014) and Dual Sparse Recovery (Yang et al., 2015)

3

イロト イヨト イヨト -

Two questions:

- Is there any performance guarantee?
 - margin is preserved: if data is linearly separable (Balcan et al., 2006) as long as $m \geq \frac{12}{\epsilon^2} \log(\frac{6m}{\delta})$
 - generalization performance is preserved: if the data matrix if of low rank and $m = \Omega(\frac{kploy(\log(k/\delta\epsilon))}{\epsilon^2})$ (Paul et al., 2013)
- How to recover an accurate model in the original high-dimensional space?

Dual Recovery (Zhang et al., 2014) and Dual Sparse Recovery (Yang et al., 2015)

3

Two questions:

- Is there any performance guarantee?
 - margin is preserved: if data is linearly separable (Balcan et al., 2006) as long as $m \geq \frac{12}{\epsilon^2} \log(\frac{6m}{\delta})$
 - generalization performance is preserved: if the data matrix if of low rank and $m = \Omega(\frac{kploy(\log(k/\delta\epsilon))}{\epsilon^2})$ (Paul et al., 2013)
- How to recover an accurate model in the original high-dimensional space?

Dual Recovery (Zhang et al., 2014) and Dual Sparse Recovery (Yang et al., 2015)

= nar

Two questions:

- Is there any performance guarantee?
 - margin is preserved: if data is linearly separable (Balcan et al., 2006) as long as $m \geq \frac{12}{\epsilon^2} \log(\frac{6m}{\delta})$
 - generalization performance is preserved: if the data matrix if of low rank and $m = \Omega(\frac{kploy(\log(k/\delta\epsilon))}{\epsilon^2})$ (Paul et al., 2013)
- How to recover an accurate model in the original high-dimensional space?

Dual Recovery (Zhang et al., 2014) and Dual Sparse Recovery (Yang et al., 2015)

= nar

Two questions:

- Is there any performance guarantee?
 - margin is preserved: if data is linearly separable (Balcan et al., 2006) as long as $m \geq \frac{12}{\epsilon^2} \log(\frac{6m}{\delta})$
 - generalization performance is preserved: if the data matrix if of low rank and $m = \Omega(\frac{kploy(\log(k/\delta\epsilon))}{\epsilon^2})$ (Paul et al., 2013)
- How to recover an accurate model in the original high-dimensional space?

Dual Recovery (Zhang et al., 2014) and Dual Sparse Recovery (Yang et al., 2015)

The Dual probelm

Using Fenchel conjugate

$$\ell_i^*(\alpha_i) = \max_{\alpha_i} \alpha_i z - \ell(z, y_i)$$

Primal:

$$\mathbf{w}_* = \arg\min_{\mathbf{w}\in\mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

Dual:

$$\alpha_* = \arg \max_{\alpha \in \mathbb{R}^n} -\frac{1}{n} \sum_{i=1}^n \ell_i^*(\alpha_i) - \frac{1}{2\lambda n^2} \alpha^\top X X^\top \alpha$$

From dual to primal:

$$\mathbf{w}_* = -\frac{1}{\lambda n} X^\top \alpha_*$$

3

DQC

Dual Recovery for Randomized Reduction

From dual formulation: \mathbf{w}_* lies in the row space of the data matrix $X \in \mathbb{R}^{n imes d}$

• Dual Recovery: $\widetilde{\mathbf{w}}_* = -\frac{1}{\lambda n} X^\top \widehat{\alpha}_*$, where

$$\widehat{\alpha}_* = \arg \max_{\alpha \in \mathbb{R}^n} -\frac{1}{n} \sum_{i=1}^n \ell_i^*(\alpha_i) - \frac{1}{2\lambda n^2} \alpha^\top \widehat{X} \widehat{X}^\top \alpha$$

and $\widehat{X} = XA \in \mathbb{R}^{n \times m}$

- Subspace Embedding A with $m = \Theta(r \log(r/\delta)\epsilon^{-2})$
- Guarantee: under low-rank assumption of the data matrix X (e.g., rank(X) = r), with a high probability 1δ ,

$$\|\widetilde{\mathbf{w}}_* - \mathbf{w}_*\|_2 \le \frac{\epsilon}{1-\epsilon} \|\mathbf{w}_*\|_2$$

Dual Recovery for Randomized Reduction

From dual formulation: \mathbf{w}_* lies in the row space of the data matrix $X \in \mathbb{R}^{n imes d}$

• Dual Recovery: $\widetilde{\mathbf{w}}_* = -\frac{1}{\lambda n} X^\top \widehat{\alpha}_*$, where

$$\widehat{\alpha}_* = \arg \max_{\alpha \in \mathbb{R}^n} -\frac{1}{n} \sum_{i=1}^n \ell_i^*(\alpha_i) - \frac{1}{2\lambda n^2} \alpha^\top \widehat{X} \widehat{X}^\top \alpha$$

and $\widehat{X} = XA \in \mathbb{R}^{n \times m}$

- Subspace Embedding A with $m = \Theta(r \log(r/\delta)\epsilon^{-2})$
- Guarantee: under low-rank assumption of the data matrix X (e.g., rank(X) = r), with a high probability 1δ ,

$$\|\widetilde{\mathbf{w}}_* - \mathbf{w}_*\|_2 \le \frac{\epsilon}{1-\epsilon} \|\mathbf{w}_*\|_2$$

Dual Recovery for Randomized Reduction

From dual formulation: \mathbf{w}_* lies in the row space of the data matrix $X \in \mathbb{R}^{n imes d}$

• Dual Recovery: $\widetilde{\mathbf{w}}_* = -\frac{1}{\lambda n} X^\top \widehat{\alpha}_*$, where

$$\widehat{\alpha}_* = \arg \max_{\alpha \in \mathbb{R}^n} -\frac{1}{n} \sum_{i=1}^n \ell_i^*(\alpha_i) - \frac{1}{2\lambda n^2} \alpha^\top \widehat{X} \widehat{X}^\top \alpha$$

and $\widehat{X} = XA \in \mathbb{R}^{n \times m}$

- Subspace Embedding A with $m = \Theta(r \log(r/\delta)\epsilon^{-2})$
- Guarantee: under low-rank assumption of the data matrix X (e.g., rank(X) = r), with a high probability 1δ ,

$$\|\widetilde{\mathbf{w}}_* - \mathbf{w}_*\|_2 \le \frac{\epsilon}{1-\epsilon} \|\mathbf{w}_*\|_2$$

Dual Sparse Recovery for Randomized Reduction

Assume the optimal dual solution α_* is sparse (i.e., the number of support vectors is small)

• Dual Sparse Recovery: $\widetilde{\mathbf{w}}_* = -\frac{1}{\lambda n} X^\top \widehat{\alpha}_*$, where

$$\widehat{\alpha}_* = \arg \max_{\alpha \in \mathbb{R}^n} -\frac{1}{n} \sum_{i=1}^n \ell_i^*(\alpha_i) - \frac{1}{2\lambda n^2} \alpha^\top \widehat{X} \widehat{X}^\top \alpha - \frac{\tau}{n} \|\alpha\|_1$$

where $\widehat{X} = XA \in \mathbb{R}^{n imes m}$

- JL transform A with $m = \Theta(s \log(n/\delta)\epsilon^{-2})$
- Guarantee: if α_* is *s*-sparse, with a high probability 1δ ,

$$\|\widetilde{\mathbf{w}}_* - \mathbf{w}_*\|_2 \le \epsilon \|\mathbf{w}_*\|_2$$

3

イロト 人間ト イヨト イヨト

Dual Sparse Recovery for Randomized Reduction

Assume the optimal dual solution α_* is sparse (i.e., the number of support vectors is small)

• Dual Sparse Recovery: $\widetilde{\mathbf{w}}_* = -\frac{1}{\lambda n} X^\top \widehat{\alpha}_*$, where

$$\widehat{\alpha}_* = \arg \max_{\alpha \in \mathbb{R}^n} -\frac{1}{n} \sum_{i=1}^n \ell_i^*(\alpha_i) - \frac{1}{2\lambda n^2} \alpha^\top \widehat{X} \widehat{X}^\top \alpha - \frac{\tau}{n} \|\alpha\|_1$$

where $\widehat{X} = XA \in \mathbb{R}^{n \times m}$

- JL transform A with $m = \Theta(s \log(n/\delta)\epsilon^{-2})$
- Guarantee: if α_* is *s*-sparse, with a high probability 1δ ,

$$\|\widetilde{\mathbf{w}}_* - \mathbf{w}_*\|_2 \le \epsilon \|\mathbf{w}_*\|_2$$

3

イロト 人間ト イヨト イヨト

Dual Sparse Recovery for Randomized Reduction

Assume the optimal dual solution α_* is sparse (i.e., the number of support vectors is small)

• Dual Sparse Recovery: $\widetilde{\mathbf{w}}_* = -\frac{1}{\lambda n} X^\top \widehat{\alpha}_*$, where

$$\widehat{\alpha}_* = \arg \max_{\alpha \in \mathbb{R}^n} -\frac{1}{n} \sum_{i=1}^n \ell_i^*(\alpha_i) - \frac{1}{2\lambda n^2} \alpha^\top \widehat{X} \widehat{X}^\top \alpha - \frac{\tau}{n} \|\alpha\|_1$$

where $\widehat{X} = XA \in \mathbb{R}^{n \times m}$

- JL transform A with $m = \Theta(s \log(n/\delta)\epsilon^{-2})$
- Guarantee: if α_* is *s*-sparse, with a high probability 1δ ,

$$\|\widetilde{\mathbf{w}}_* - \mathbf{w}_*\|_2 \le \epsilon \|\mathbf{w}_*\|_2$$

Dual Sparse Recovery

RCV1 text data, n = 677, 399, and d = 47, 236

3

- 4 ⊒ →

DQC

Outline

Randomized Algorithms

- Randomized Classification (Regression)
- Randomized Least-Squares Regression
- Randomized K-means Clustering
- Randomized Kernel methods
- Randomized Low-rank Matrix Approximation

э

Least-squares regression

Let $X \in \mathbb{R}^{n \times d}$ with $d \ll n$ and $b \in \mathbb{R}^n$. The least-squares regression problem is to find \mathbf{w}_* such that

$$\mathbf{w}_* = rg\min_{\mathbf{w}\in\mathbb{R}^d} \|X\mathbf{w} - b\|_2$$

- Computational Cost: $O(nd^2)$
- Goal of RA: $o(nd^2)$

= nar

イロト 人間ト イヨト イヨト
Randomized Least-squares regression

Let $A \in \mathbb{R}^{m \times n}$ be a random reduction matrix. Solve

$$\widehat{\mathbf{w}}_* = \arg\min_{\mathbf{w}\in\mathbb{R}^d} \|A(X\mathbf{w}-b)\|_2 = \|AX\mathbf{w}-Ab\|_2$$

• Computational Cost: $O(md^2)$ + reduction time

Randomized Least-squares regression

Theoretical Guarantees (Sarlós, 2006; Drineas et al., 2011; Nelson & Nguyen, 2012):

$$\|X\widehat{\mathbf{w}}_* - b\|_2 \leq (1+\epsilon)\|X\mathbf{w}_* - b\|_2$$

Total Time $O(nnz(X) + d^3 \log(d/\epsilon)\epsilon^{-2})$

3

▶ < ∃ ▶</p>

Image: A math a math

Outline

Randomized Algorithms

- Randomized Classification (Regression)
- Randomized Least-Squares Regression
- Randomized K-means Clustering
- Randomized Kernel methods
- Randomized Low-rank Matrix Approximation

э

イロト イボト イヨト イヨト

K-means Clustering

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$ be a set of data points.

K-means clustering aims to solve

$$\min_{C_1,\ldots,C_k} \sum_{j=1}^k \sum_{\mathbf{x}_i \in C_j} \|\mathbf{x}_i - \mu_j\|_2^2$$

Computational Cost: O(ndkt), where t is number of iterations.

= nar

イロト イポト イヨト イヨト

Randomized Algorithms for K-means Clustering

Let $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)^\top \in \mathbb{R}^{n \times d}$ be the data matrix. High-dimensional data: Random Sketch: $\hat{X} = XA \in \mathbb{R}^{n \times m}$, $\ell \ll d$

Approximate K-means:

$$\min_{C_1,\ldots,C_k} \sum_{j=1}^k \sum_{\widehat{\mathbf{x}}_i \in C_j} \|\widehat{\mathbf{x}}_i - \widehat{\mu}_j\|_2^2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Randomized Algorithms for K-means Clustering

Let $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)^\top \in \mathbb{R}^{n \times d}$ be the data matrix. High-dimensional data: Random Sketch: $\hat{X} = XA \in \mathbb{R}^{n \times m}$, $\ell \ll d$

Approximate K-means:

$$\min_{C_1,\ldots,C_k} \sum_{j=1}^k \sum_{\widehat{\mathbf{x}}_i \in C_j} \|\widehat{\mathbf{x}}_i - \widehat{\mu}_j\|_2^2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Randomized Algorithms for K-means Clustering

For random sketch: JL transforms, sparse subspace embedding all work

- JL transform: $m = O(\frac{k \log(k/(\epsilon \delta))}{\epsilon^2})$
- Sparse subspace embedding: $m = O(\frac{k^2}{\epsilon^2 \delta})$
- $\bullet~\epsilon$ relates to the approximation accuracy
- Analysis of approximation error for K-means can be formulates as Constrained Low-rank Approximation (Cohen et al., 2015)

$$\min_{Q^\top Q=I} \|X - QQ^\top X\|_F^2$$

where Q is orthonormal.

= nar

イロト イ理ト イヨト イヨト

Outline

Randomized Algorithms

- Randomized Classification (Regression)
- Randomized Least-Squares Regression
- Randomized K-means Clustering
- Randomized Kernel methods
- Randomized Low-rank Matrix Approximation

3

イロト イヨト イヨト

Kernel methods

- Kernel function: $\kappa(\cdot, \cdot)$
- a set of examples $\mathbf{x}_1, \ldots, \mathbf{x}_n$
- Kernel matrix: $K \in \mathbb{R}^{n \times n}$ with $K_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$
- K is a PSD matrix
- Computational and memory costs: $\Omega(n^2)$
- Approximation methods
 - The Nyström method
 - Random Fourier features

= nar

イロト 人間ト イヨト イヨト

Kernel methods

- Kernel function: $\kappa(\cdot, \cdot)$
- a set of examples $\mathbf{x}_1, \ldots, \mathbf{x}_n$
- Kernel matrix: $K \in \mathbb{R}^{n \times n}$ with $K_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$
- K is a PSD matrix
- Computational and memory costs: $\Omega(n^2)$
- Approximation methods
 - The Nyström method
 - Random Fourier features

= nar

イロト イ理ト イヨト イヨト

The Nyström method

Let $A \in \mathbb{R}^{n \times \ell}$ be uniform sampling matrix.

 $B = KA \in \mathbb{R}^{n \times \ell}$ $C = A^{\top}B = A^{\top}KA$

The Nyström approximation (Drineas & Mahoney, 2005) $\widehat{K} = BC^{\dagger}B^{\top}$

Computational Cost: $O(\ell^3 + n\ell^2)$

э

イロト イヨト イヨト

The Nyström method

Let $A \in \mathbb{R}^{n \times \ell}$ be uniform sampling matrix.

$$B = KA \in \mathbb{R}^{n \times \ell}$$
$$C = A^{\top}B = A^{\top}KA$$

The Nyström approximation (Drineas & Mahoney, 2005)

$$\widehat{K} = BC^{\dagger}B^{\top}$$

Computational Cost: $O(\ell^3 + n\ell^2)$

Image: A matrix and a matrix

The Nyström based kernel machine

The dual problem:

$$\arg \max_{\alpha \in \mathbb{R}^n} -\frac{1}{n} \sum_{i=1}^n \ell_i^*(\alpha_i) - \frac{1}{2\lambda n^2} \alpha^\top B C^{\dagger} B^\top \alpha$$

Solve it like solving a linear method: $\widehat{X} = BC^{-1/2} \in \mathbb{R}^{n imes \ell}$

$$\arg \max_{\alpha \in \mathbb{R}^n} -\frac{1}{n} \sum_{i=1}^n \ell_i^*(\alpha_i) - \frac{1}{2\lambda n^2} \alpha^\top \widehat{X} \widehat{X}^\top \alpha$$

= nar

・ロト ・回ト ・ヨト ・ ヨト

The Nyström based kernel machine

э

< □ > < 同 >

590

Random Fourier Features (RFF)

Bochner's theorem

A shift-invariant kernel $\kappa(\mathbf{x}, \mathbf{y}) = \kappa(\mathbf{x} - \mathbf{y})$ is a valid kernel if only if $\kappa(\delta)$ is the Fourier transform of a non-negative measure, i.e.,

$$\kappa(\mathbf{x}-\mathbf{y}) = \int p(\omega) e^{-j\omega^{ op}(\mathbf{x}-\mathbf{y})} d\omega$$

RFF (Rahimi & Recht, 2008): generate a set of $\omega_1, \ldots, \omega_m \in \mathbb{R}^d$ following $p(\omega)$. For an example $\mathbf{x} \in \mathbb{R}^d$, construct

$$\widehat{\mathbf{x}} = (\cos(\omega_1^{\top}\mathbf{x}), \sin(\omega_1^{\top}\mathbf{x}), \dots, \cos(\omega_m^{\top}\mathbf{x}), \sin(\omega_m^{\top}\mathbf{x}))^{\top} \in \mathbb{R}^{2m}$$

= kernel exp $(-\frac{\|\mathbf{x}-\mathbf{y}\|_2^2}{2\gamma^2})$: $p(\omega) = \mathcal{N}(0, \gamma^2)$

3

イロト 人間ト イヨト イヨト

Random Fourier Features (RFF)

Bochner's theorem

A shift-invariant kernel $\kappa(\mathbf{x}, \mathbf{y}) = \kappa(\mathbf{x} - \mathbf{y})$ is a valid kernel if only if $\kappa(\delta)$ is the Fourier transform of a non-negative measure, i.e.,

$$\kappa(\mathbf{x}-\mathbf{y}) = \int p(\omega) e^{-j\omega^{ op}(\mathbf{x}-\mathbf{y})} d\omega$$

RFF (Rahimi & Recht, 2008): generate a set of $\omega_1, \ldots, \omega_m \in \mathbb{R}^d$ following $p(\omega)$. For an example $\mathbf{x} \in \mathbb{R}^d$, construct

$$\widehat{\mathbf{x}} = (cos(\omega_1^{ op}\mathbf{x}), sin(\omega_1^{ op}\mathbf{x}), \dots, cos(\omega_m^{ op}\mathbf{x}), sin(\omega_m^{ op}\mathbf{x}))^{ op} \in \mathbb{R}^{2m}$$

RBF kernel exp $\left(-\frac{\|\mathbf{x}-\mathbf{y}\|_{2}^{2}}{2\gamma^{2}}\right)$: $p(\omega) = \mathcal{N}(0, \gamma^{2})$

イロト (四) (三) (三) (二) (つ)

Random Fourier Features (RFF)

Bochner's theorem

A shift-invariant kernel $\kappa(\mathbf{x}, \mathbf{y}) = \kappa(\mathbf{x} - \mathbf{y})$ is a valid kernel if only if $\kappa(\delta)$ is the Fourier transform of a non-negative measure, i.e.,

$$\kappa(\mathbf{x}-\mathbf{y}) = \int p(\omega) e^{-j\omega^{ op}(\mathbf{x}-\mathbf{y})} d\omega$$

RFF (Rahimi & Recht, 2008): generate a set of $\omega_1, \ldots, \omega_m \in \mathbb{R}^d$ following $p(\omega)$. For an example $\mathbf{x} \in \mathbb{R}^d$, construct

$$\widehat{\mathbf{x}} = (\cos(\omega_1^{\top} \mathbf{x}), \sin(\omega_1^{\top} \mathbf{x}), \dots, \cos(\omega_m^{\top} \mathbf{x}), \sin(\omega_m^{\top} \mathbf{x}))^{\top} \in \mathbb{R}^{2m}$$

RBF kernel exp $(-\frac{\|\mathbf{x}-\mathbf{y}\|_2^2}{2\gamma^2})$: $p(\omega) = \mathcal{N}(0, \gamma^2)$

= nar

イロト イポト イヨト イヨト

The Nyström method vs RFF (Yang et al., 2012)

- functional approximation framework
- The Nyström method: data-dependent bases
- RFF: data independent bases
- In certain cases (e.g., large eigen-gap, skewed eigen-value distribution): the generalization performance of the Nyström method is better than RFF

イロト イ理ト イヨト イヨト

The Nyström method vs RFF

Nov. 20, 2015 168 / 210

э

Sac

<ロト <回ト < 回ト < 回ト < 回ト -

Outline

Randomized Algorithms

- Randomized Classification (Regression)
- Randomized Least-Squares Regression
- Randomized K-means Clustering
- Randomized Kernel methods
- Randomized Low-rank Matrix Approximation

3

イロト イボト イヨト イヨト

Randomized low-rank matrix approximation

Let $X \in \mathbb{R}^{n \times d}$. The goal is to obtain

$$\widehat{U}\widehat{\Sigma}\widehat{V}^{\top}\approx X$$

where $\widehat{U} \in \mathbb{R}^{n \times k}$, $\widehat{V} \in \mathbb{R}^{d \times k}$ have orthonormal columns, $\widehat{\Sigma} \in \mathbb{R}^{k \times k}$ is a diagonal matrix with nonegative entries

- k is target rank
- The best rank-k approximation $X_k = U_k \Sigma_k V_k^ op$
- Approximation error

$$\|\widehat{U}\widehat{\Sigma}\widehat{V}^{ op} - X\|_{\xi} \leq (1+\epsilon)\|U_k\Sigma_kV_k^{ op} - X\|_{\xi}$$

where $\xi = F$ or $\xi = 2$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Why low-rank approximation?

Applications in Data mining and Machine learning

- PCA
- Spectral clustering
- o . . .

3

イロト 不得 トイヨト イヨト

Why randomized algorithms?

Deterministic Algorithms

- Truncated SVD O(nd min(n, d))
- Rank-Revealing QR factorization O(ndk)
- Krylov subspace method (e.g. Lanczos algorithm): $O(ndk + (n + d)k^2)$

Randomized Algorithms

- Speed can be faster (e.g., $O(nd \log(k))$)
- Output more robust (e.g. Lanczos requires sophisticated modifications)
- Can be pass efficient
- Can exploit parallel algorithms

3

イロト イヨト イヨト -

Why randomized algorithms?

Deterministic Algorithms

- Truncated SVD O(nd min(n, d))
- Rank-Revealing QR factorization O(ndk)
- Krylov subspace method (e.g. Lanczos algorithm): $O(ndk + (n + d)k^2)$

Randomized Algorithms

- Speed can be faster (e.g., $O(nd \log(k)))$
- Output more robust (e.g. Lanczos requires sophisticated modifications)
- Can be pass efficient
- Can exploit parallel algorithms

= nar

イロト イ理ト イヨト イヨト

The Basic Randomized Algorithms for Approximating $X \in \mathbb{R}^{n \times d}$ (Halko et al., 2011)

- **①** Obtain a small sketch by $Y = XA \in \mathbb{R}^{n \times m}$
- **2** Compute $Q \in \mathbb{R}^{n \times m}$ that contains the orthonormal basis of col(Y)
- Compute SVD of $Q^T X = U \Sigma V^T$
- Approximation $X \approx \widetilde{U} \Sigma V^{\top}$, where $\widetilde{U} = QU$

Explanation: If col(XA) captures the top-k column space of X well, i.e.,

$$\|X - QQ^\top X\| \le \varepsilon$$

then

$$\|\boldsymbol{X} - \widetilde{\boldsymbol{U}}\boldsymbol{\Sigma}\boldsymbol{V}^{\top}\| \leq \varepsilon$$

3

イロト 人間ト イヨト イヨト

Three questions:

- What is the value of m?
 - m = k + p, p is the oversampling parameter. In practice p = 5 or 10

What is the computational cost?

Subsampled Randomized Hadmard Transform: can be as fast as

What is the quality?

- Theoretical Guarantee:
- Practically, very accurate

イロト イヨト イヨト

Three questions:

- What is the value of *m*?
 - m = k + p, p is the oversampling parameter. In practice p = 5 or 10 gives superb results
- What is the computational cost?
 - Subsampled Randomized Hadmard Transform: can be as fast as $O(nd \log(k) + k^2(n+d))$
- What is the quality?
 - Theoretical Guarantee:
 - Practically, very accurate

イロト イボト イヨト イヨト

Three questions:

- What is the value of *m*?
 - m = k + p, p is the oversampling parameter. In practice p = 5 or 10 gives superb results
- What is the computational cost?
 - Subsampled Randomized Hadmard Transform: can be as fast as $O(nd \log(k) + k^2(n+d))$
- What is the quality?
 - Theoretical Guarantee:
 - Practically, very accurate

イロト イヨト イヨト -

Three questions:

- What is the value of *m*?
 - m = k + p, p is the oversampling parameter. In practice p = 5 or 10 gives superb results
- What is the computational cost?
 - Subsampled Randomized Hadmard Transform: can be as fast as $O(nd \log(k) + k^2(n+d))$
- What is the quality?
 - Theoretical Guarantee:
 - Practically, very accurate

 $\exists \rightarrow$ 175 / 210 Nov. 20, 2015

臣

Image: A matched black

Sac

Other things

- Use power iteration to reduce the error: use $(XX^{\top})^q X$
- Can use sparse JL transform/subspace embedding matrices (Frobenius norm guarantee only)

イロト 不得 トイヨト イヨト

Outline

- 2 Optimization
- 3 Randomized Dimension Reduction
- 4 Randomized Algorithms
- **5** Concluding Remarks

Ð.

DQC

イロト イボト イヨト イヨト

How to address big data challenge?

- Optimization perspective: improve convergence rates, exploring properties of functions
 - stochastic optimization (e.g., SDCA, SVRG, SAGA)
 - distributed optimization (e.g., DisDCA)
- Randomization perspective: reduce data size, exploring properties of data
 - randomized feature reduction (e.g., reduce the number of features)
 - randomized instance reduction (e.g., reduce the number of instances)

イロト (四) (三) (三) (二) (つ)

How can we address big data challenge?

- Optimization perspective: improve convergence rates, exploring properties of functions
 - Pro: can obtain the optimal solution
 - Con: high computational/communication costs
- Randomization perspective: reduce data size, exploring properties of data
 - Pro: fast
 - Con: still exists recovery error

Can we combine the benefits of two techniques?

イロト イヨト イヨト -

Research Assistant Positions Available for PhD Candidates!

- Start Fall'16
- Optimization and Randomization
- Online Learning
- Deep Learning
- Machine Learning
- send email to tianbao-yang@uiowa.edu

3

Image: A math a math

THANK YOU! QUESTIONS?

Yang

Tutorial for ACML'15

Nov. 20, 2015 181 / 210

€ 990

イロト イボト イヨト イヨト
References I

Achlioptas, Dimitris. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. *Journal of Computer and System Sciences*, 66(4):671 – 687, 2003.

- Balcan, Maria-Florina, Blum, Avrim, and Vempala, Santosh. Kernels as features: on kernels, margins, and low-dimensional mappings. *Machine Learning*, 65(1):79–94, 2006.
- Cohen, Michael B., Elder, Sam, Musco, Cameron, Musco, Christopher, and Persu, Madalina. Dimensionality reduction for k-means clustering and low rank approximation. In *Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC)*, pp. 163–172, 2015.

Dasgupta, Anirban, Kumar, Ravi, and Sarlos, Tamás. A sparse johnson: Lindenstrauss transform. In *Proceedings of the 42nd ACM symposium on Theory of computing*, STOC '10, pp. 341–350, 2010.

= nar

References II

- Dasgupta, Sanjoy and Gupta, Anupam. An elementary proof of a theorem of Johnson and Lindenstrauss. *Random Structures & Algorithms*, 22(1): 60–65, 2003.
- Defazio, Aaron, Bach, Francis, and Lacoste-Julien, Simon. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In *NIPS*, 2014.
- Drineas, Petros and Mahoney, Michael W. On the nystrom method for approximating a gram matrix for improved kernel-based learning. *Journal of Machine Learning Research*, 6:2005, 2005.
- Drineas, Petros, Mahoney, Michael W., and Muthukrishnan, S. Sampling algorithms for I2 regression and applications. In *ACM-SIAM Symposium* on *Discrete Algorithms (SODA)*, pp. 1127–1136, 2006.

= nar

References III

- Drineas, Petros, Mahoney, Michael W., Muthukrishnan, S., and Sarlós, Tamàs. Faster least squares approximation. *Numerische Mathematik*, 117(2):219–249, February 2011.
- Gittens, Alex. The spectral norm error of the naive nystrom extension. *CoRR*, 2011.
- Halko, Nathan, Martinsson, Per Gunnar., and Tropp, Joel A. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. *SIAM Review*, 53(2):217–288, May 2011.
- Hsieh, Cho-Jui, Chang, Kai-Wei, Lin, Chih-Jen, Keerthi, S. Sathiya, and Sundararajan, S. A dual coordinate descent method for large-scale linear svm. In *ICML*, pp. 408–415, 2008.
- Johnson, Rie and Zhang, Tong. Accelerating stochastic gradient descent using predictive variance reduction. In *NIPS*, pp. 315–323, 2013.

= nar

References IV

- Johnson, William and Lindenstrauss, Joram. Extensions of Lipschitz mappings into a Hilbert space. In *Conference in modern analysis and probability (New Haven, Conn., 1982)*, volume 26, pp. 189–206. 1984.
- Kane, Daniel M. and Nelson, Jelani. Sparser johnson-lindenstrauss transforms. *Journal of the ACM*, 61:4:1–4:23, 2014.
- Lin, Qihang, Lu, Zhaosong, and Xiao, Lin. An accelerated proximal coordinate gradient method and its application to regularized empirical risk minimization. In *NIPS*, 2014.
- Ma, Chenxin, Smith, Virginia, Jaggi, Martin, Jordan, Michael I., Richtárik, Peter, and Takác, Martin. Adding vs. averaging in distributed primal-dual optimization. In *ICML*, 2015.
- Nelson, Jelani and Nguyen, Huy L. OSNAP: faster numerical linear algebra algorithms via sparser subspace embeddings. *CoRR*, abs/1211.1002, 2012.

= nar

References V

- Nelson, Jelani and Nguyen, Huy L. OSNAP: faster numerical linear algebra algorithms via sparser subspace embeddings. In *54th Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pp. 117–126, 2013.
- Nemirovski, A. and Yudin, D. On cezari's convergence of the steepest descent method for approximating saddle point of convex-concave functons. *Soviet Math Dkl.*, 19:341–362, 1978.
- Nesterov, Yurii. Efficiency of coordinate descent methods on huge-scale optimization problems. *SIAM Journal on Optimization*, 22:341–362, 2012.
- Paul, Saurabh, Boutsidis, Christos, Magdon-Ismail, Malik, and Drineas, Petros. Random projections for support vector machines. In *Proceedings* of the International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 498–506, 2013.

= nar

References VI

- Rahimi, Ali and Recht, Benjamin. Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems 20, pp. 1177–1184, 2008.
- Recht, Benjamin. A simpler approach to matrix completion. *Journal Machine Learning Research (JMLR)*, pp. 3413–3430, 2011.
- Roux, Nicolas Le, Schmidt, Mark, and Bach, Francis. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. *CoRR*, 2012.
- Sarlós, Tamás. Improved approximation algorithms for large matrices via random projections. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 143–152, 2006.
- Shalev-Shwartz, Shai and Zhang, Tong. Proximal stochastic dual coordinate ascent. *CoRR*, abs/1211.2717, 2012.

3

イロト 不得下 イヨト イヨト

References VII

- Shalev-Shwartz, Shai and Zhang, Tong. Stochastic dual coordinate ascent methods for regularized loss. *Journal of Machine Learning Research*, 14: 567–599, 2013.
- Tropp, Joel A. Improved analysis of the subsampled randomized hadamard transform. *Advances in Adaptive Data Analysis*, 3(1-2):115–126, 2011.
- Tropp, Joel A. User-friendly tail bounds for sums of random matrices. Found. Comput. Math., 12(4):389–434, August 2012. ISSN 1615-3375.
- Wang, Po-Wei and Lin, Chih-Jen. Iteration complexity of feasible descent methods for convex optimization. *Journal of Machine Learning Research*, 15(1):1523–1548, 2014.
- Xiao, L. and Zhang, T. A proximal stochastic gradient method with progressive variance reduction. *SIAM Journal on Optimization*, 24(4): 2057–2075, 2014.

3

References VIII

- Yang, Tianbao. Trading computation for communication: Distributed stochastic dual coordinate ascent. *NIPS'13*, pp. –, 2013.
- Yang, Tianbao, Li, Yu-Feng, Mahdavi, Mehrdad, Jin, Rong, and Zhou, Zhi-Hua. Nyström method vs random fourier features: A theoretical and empirical comparison". In *Advances in Neural Information Processing Systems (NIPS)*, pp. 485–493, 2012.
- Yang, Tianbao, Zhang, Lijun, Jin, Rong, and Zhu, Shenghuo. Theory of dual-sparse regularized randomized reduction. In *Proceedings of the* 32nd International Conference on Machine Learning, (ICML), pp. 305–314, 2015.
- Zhang, Lijun, Mahdavi, Mehrdad, and Jin, Rong. Linear convergence with condition number independent access of full gradients. In *NIPS*, pp. 980–988. 2013.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

References IX

Zhang, Lijun, Mahdavi, Mehrdad, Jin, Rong, Yang, Tianbao, and Zhu, Shenghuo. Random projections for classification: A recovery approach. *IEEE Transactions on Information Theory (IEEE TIT)*, 60(11): 7300–7316, 2014.

3

イロト 不得下 イヨト イヨト

Examples of Convex functions

- ax + b, $A\mathbf{x} + b$
- x^2 , $\|\mathbf{x}\|_2^2$
- $\exp(ax)$, $\exp(\mathbf{w}^{\top}\mathbf{x})$
- $\log(1 + \exp(ax))$, $\log(1 + \exp(\mathbf{w}^{\top}\mathbf{x}))$
- $x \log(x)$, $\sum_i x_i \log(x_i)$
- $\|\mathbf{x}\|_p, p \geq 1$, $\|\mathbf{x}\|_p^2$
- $\max_i(x_i)$

イロト 不得下 イヨト イヨト ニヨー

Operations that preserve convexity

- Nonnegative scale: $a \cdot f(\mathbf{x})$ where $a \ge 0$
- Sum: $f(\mathbf{x}) + g(\mathbf{x})$
- Composition with affine function $f(A\mathbf{x} + b)$
- Point-wise maximum: $\max_i f_i(\mathbf{x})$

Examples:

- Least-squares regression: $||A\mathbf{x} b||_2$
- SVM: $\frac{1}{n}\sum_{i=1}^{n} \max(0, 1 y_i \mathbf{w}^\top \mathbf{x}_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$

Nov. 20, 2015 192 / 210

Smooth Convex function

• smooth: e.g. logistic loss $f(x) = \log(1 + \exp(-x))$

$$\|
abla f(x) -
abla f(y)\|_2 \leq L \|x - y\|_2$$

where $L > 0$

Second Order Derivative is upper bounded $\|\nabla^2 f(x)\|_2 \le L$

э

▶ < ∃ ▶</p>

Smooth Convex function

3

イロト イヨト イヨト -

Strongly Convex function

• strongly convex: e.g. Euclidean norm $f(x) = \frac{1}{2} ||x||_2^2$

$$\|
abla f(x) -
abla f(y)\|_2 \geq \lambda \|x - y\|_2$$

where $\lambda > 0$

Second Order Derivative is lower bounded $\|\nabla^2 f(x)\|_2 \ge \lambda$

イロト 不得下 イヨト イヨト

Strongly Convex function

Nov. 20, 2015 194 / 210

э

▶ < ∃ ▶</p>

Image: A matrix and a matrix

Smooth and Strongly Convex function

• smooth and strongly convex: e.g. quadratic function: $f(z) = \frac{1}{2}(z-1)^2$

$$\lambda \|x - y\|_2 \le \|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2, \quad L \ge \lambda > 0$$

= nar

<ロト < 回ト < 回ト < 回ト < 回ト -

Chernoff bound

Let X_1, \ldots, X_n be independent random variables. Assume $0 \le X_i \le 1$. Let $X = X_1 + \ldots + X_n$. $\mu = E[X]$. Then

$$\mathsf{Pr}(X \ge (1 + \epsilon)\mu) \le \exp\left(-rac{\epsilon^2}{2 + \epsilon}\mu
ight)$$

 $\mathsf{Pr}(X \le (1 - \epsilon)\mu) \le \exp\left(-rac{\epsilon^2}{2}\mu
ight)$

or

$$\Pr(|X - \mu| \ge \epsilon \mu) \le 2 \exp\left(-\frac{\epsilon^2}{2 + \epsilon}\mu\right) \le 2 \exp\left(-\frac{\epsilon^2}{3}\mu\right)$$

the last inequality holds when 0 $<\epsilon\leq 1$

Theoretical Guarantee of RA for low-rank approximation

$$X = U \left[\begin{array}{c} \Sigma_1 \\ \Sigma_2 \end{array} \right] \left[\begin{array}{c} V_1^\top \\ V_2^\top \end{array} \right]$$

- $X \in \mathbb{R}^{m \times n}$: the target matrix
- $\Sigma_1 \in \mathbb{R}^{k imes k}$, $V_1 \in \mathbb{R}^{n imes k}$
- $A \in \mathbb{R}^{n \times \ell}$: random reduction matrix
- $Y = XA \in \mathbb{R}^{m \times \ell}$: the small sketch

Key inequality:

$$\|(I - P_Y)X\|^2 \le \|\Sigma_2\|^2 + \|\Sigma_2\Omega_2\Omega_1^{\dagger}\|^2$$

= nar

Gaussian Matrices

- G is a standard Gaussian matrix
- U and V are orthonormal matrices
- $U^T GV$ follows the standard Gaussian distribution
- $E[\|SGT\|_{F}^{2}] = \|S\|_{F}^{2}\|T\|_{F}^{2}$
- $E[||SGT||] \le ||S||||T||_F + ||S||_F||T||$
- Concentration for function of a Gaussian matrix. Suppose *h* is a Lipschitz function on matrices

$$h(X) - h(Y) \leq L \|X - Y\|_F$$

Then

$$\Pr(h(G) \ge \operatorname{E}[h(G)] + Lt) \le e^{-t^2/2}$$

= nar

Analysis for Randomized Least-square regression

Let $X = U\Sigma V^{\top}$ $\mathbf{w}_* = \arg\min_{\mathbf{w}\in\mathbb{R}^d} ||X\mathbf{w} - b||_2$ Let $Z = ||X\mathbf{w}_* - b||_2$, $\omega = b - X\mathbf{w}_*$, and $X\mathbf{w}_* = U\alpha$ $\widehat{\mathbf{w}}_* = \arg\min_{\mathbf{w}\in\mathbb{R}^d} ||A(X\mathbf{w} - b)||_2$ Since $b - X\mathbf{w}_* = b - X(X^{\top}X)^{\dagger}X^{\top}b = (I - UU^{\top})b$, $X\widehat{\mathbf{w}}_* - X\mathbf{w}_* = U\beta$.

Then

$$\|X\widehat{\mathbf{w}}_* - b\|_2 = \|X\mathbf{w}_* - b\|_2 + \|X\widehat{\mathbf{w}}_* - X\mathbf{w}\|_2 = Z + \|\beta\|_2$$

Analysis for Randomized Least-square regression

$$AU(\alpha + \beta) = AX\widehat{\mathbf{w}}_* = AX(AX)^{\dagger}Ab = P_{AX}(Ab) = P_{AU}(Ab)$$
$$P_{AU}(Ab) = P_{AU}(A(\omega + U\alpha)) = AU\alpha + P_{AU}(A\omega)$$

Hence

$$U^{\top}A^{\top}AU\beta = (AU)^{\top}(AU)(AU)^{\dagger}A\omega = (AU)^{\top}(AU)((AU)^{\top}AU)^{-1}(AU)^{\top}A\omega$$

where we use AU is full column matrix. Then

$$U^{\top}A^{\top}AU\beta = U^{\top}A^{\top}A\omega$$

 $\|\beta\|_{2}^{2}/2 \leq \|U^{\top}A^{\top}AU\beta\|_{2}^{2} = \|U^{\top}A^{\top}A\omega\|_{2}^{2} \leq \epsilon'^{2}\|U\|_{F}^{2}\|\omega\|_{2}^{2}$

where the last inequality uses the matrix products approximation shown in next slide. Since $||U||_F^2 \leq d$, setting $\epsilon' = \sqrt{\frac{\epsilon}{d}}$ suffices.

Approximate Matrix Products

Given $X \in \mathbb{R}^{n \times d}$ and $Y \in \mathbb{R}^{d \times p}$, let $A \in \mathbb{R}^{m \times d}$ one of the following matrices

- a JL transform matrix with $m = \Theta(\epsilon^{-2} \log((n+p)/\delta))$
- the sparse subspace embedding with $m = \Theta(\epsilon^{-2})$

• leverage-score sampling matrix based on $p_i \ge \frac{\|X_{i*}\|_2^2}{2\|X\|_F^2}$ and $m = \Theta(\epsilon^{-2})$ Then w.h.p $1 - \delta$

$$\|XA^{\top}AY - XY\|_{F} \le \epsilon \|X\|_{F} \|Y\|_{F}$$

Analysis for Randomized Least-square regression

 $A \in \mathbb{R}^{m \times n}$

- 1. Subspace embedding: AU full column rank
- 2. Matrix product approximation: $\sqrt{\epsilon/d}$

Order of m

- JL transforms: 1. $O(d \log(d))$, 2. $O(d \log(d)\epsilon^{-1}) \Rightarrow O(d \log(d)\epsilon^{-1})$
- Sparse subspace embedding: 1. $O(d^2)$, 2. $O(d\epsilon^{-1}) \Rightarrow O(d^2\epsilon^{-1})$

If we use SSE $(A_1 \in \mathbb{R}^{m_1 imes n})$ and JL transform $A_2 \in \mathbb{R}^{m_2 imes m_1}$

$$egin{aligned} \|A_2A_1(Xoldsymbol{w}_*^2-b)\|_2 &\leq (1+\epsilon)\|A_1(Xoldsymbol{w}_*^1-b)\|_2 \ &\leq (1+\epsilon)\|A_1(Xoldsymbol{w}_*-b)\|_2 \leq (1+\epsilon)^2\|Xoldsymbol{w}_*-b\| \end{aligned}$$

with $m_1 = O(d^2 \epsilon^{-2})$ and $m_2 = d \log(d) \epsilon^{-1}$, \mathbf{w}_*^2 is the optimal solution using $A_2 A_1$ and \mathbf{w}_*^1 is the optimal using A_1 and \mathbf{w}_* is the original optimal solution.

Yang

Nov. 20, 2015 202 / 210

Randomized Least-squares regression

Theoretical Guarantees (Sarlós, 2006; Drineas et al., 2011; Nelson & Nguyen, 2012):

$$\|X\widehat{\mathbf{w}}_* - b\|_2 \leq (1+\epsilon)\|X\mathbf{w}_* - b\|_2$$

- If A is a fast JL transform with $m = \Theta(\epsilon^{-1}d\log(d))$: Total Time $O(nd\log(m) + d^3\log(d)\epsilon^{-1})$
- If A is a Sparse Subspace Embedding with $m = \Theta(d^2 \epsilon^{-1})$: Total Time $O(nnz(X) + d^4 \epsilon^{-1})$
- If $A = A_1A_2$ combine fast JL $(m_1 = \Theta(\epsilon^{-1}d\log(d)))$ and SSE $(m_2 = \Theta(d^2\epsilon^{-2}))$: Total Time $O(nnz(X) + d^3\log(d/\epsilon)\epsilon^{-2})$

Matrix Chernoff bound

Lemma (Matrix Chernoff (Tropp, 2012))

Let \mathcal{X} be a finite set of PSD matrices with dimension k, and suppose that $\max_{X \in \mathcal{X}} \lambda_{\max}(X) \leq B$. Sample $\{X_1, \ldots, X_\ell\}$ independently from \mathcal{X} . Compute

$$\mu_{\max} = \ell \lambda_{\max}(\mathbf{E}[X_1]), \quad \mu_{\min} = \ell \lambda_{\min}(\mathbf{E}[X_1])$$

Then

$$\Pr\left\{\lambda_{\max}\left(\sum_{i=1}^{\ell} X_i\right) \ge (1+\delta)\mu_{\max}\right\} \le k \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\frac{\mu_{\max}}{B}}$$
$$\Pr\left\{\lambda_{\min}\left(\sum_{i=1}^{\ell} X_i\right) \le (1-\delta)\mu_{\min}\right\} \le k \left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\frac{\mu_{\min}}{B}}$$

Э

イロト 不得 トイヨト イヨト

To simplify the usage of Matrix Chernoff bound, we note that

$$egin{split} &\left[rac{e^{-\delta}}{[1-\delta]^{1-\delta}}
ight]^{\mu} \leq \exp\left(-rac{\delta^2}{2}
ight) \ &\left[rac{e^{\delta}}{(1+\delta)^{1+\delta}}
ight]^{\mu} \leq \exp\left(-\mu\delta^2/3
ight), \delta \leq 1 \ &\left[rac{e^{\delta}}{(1+\delta)^{1+\delta}}
ight]^{\mu} \leq \exp\left(-\mu\delta\log(\delta)/2
ight), \delta > 1 \end{split}$$

E

DQC

<ロト <回ト < 回ト < 回ト

Noncommutative Bernstein Inequality

Lemma (Noncommutative Bernstein Inequality (Recht, 2011))

Let Z_1, \ldots, Z_L be independent zero-mean random matrices of dimension $d_1 \times d_2$. Suppose $\tau_j^2 = \max \left\{ \| \mathbb{E}[Z_j Z_j^\top] \|_2, \| \mathbb{E}[Z_j^\top Z_j] \|_2 \right\}$ and $\| Z_j \|_2 \leq M$ almost surely for all k. Then, for any $\epsilon > 0$,

$$\Pr\left[\left\|\sum_{j=1}^{L} Z_{j}\right\|_{2} > \epsilon\right] \leq (d_{1} + d_{2}) \exp\left[\frac{-\epsilon^{2}/2}{\sum_{j=1}^{L} \tau_{j}^{2} + M\epsilon/3}\right]$$

Randomized Algorithms for K-means Clustering

K-means:

$$\sum_{j=1}^{k} \sum_{\mathbf{x}_i \in C_j} \|\mathbf{x}_i - \mu_j\|_2^2 = \|X - \mathbf{C}\mathbf{C}^{\mathsf{T}}X\|_F^2$$

where $C \in \mathbb{R}^{n \times k}$ is the scaled cluster indicator matrix such that $C^{\top}C = I$.

Constrained Low-rank Approximation (Cohen et al., 2015)

$$\min_{P\in\mathcal{S}} \|X - PX\|_F^2$$

where $S = QQ^{\top}$ is any set of rank k orthogonal projection matrix with orthonormal $Q \in \mathbb{R}^{n \times k}$ Low-rank Approximation: S is the set of all rank k orthogonal projection matrix. $P^* = U_k U_k^{\top}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Randomized Algorithms for K-means Clustering

K-means:

$$\sum_{j=1}^{k} \sum_{\mathbf{x}_i \in C_j} \|\mathbf{x}_i - \mu_j\|_2^2 = \|X - \mathbf{C}\mathbf{C}^{\mathsf{T}}X\|_F^2$$

where $C \in \mathbb{R}^{n \times k}$ is the scaled cluster indicator matrix such that $C^{\top}C = I$.

Constrained Low-rank Approximation (Cohen et al., 2015)

$$\min_{P\in\mathcal{S}} \|X - PX\|_F^2$$

where $S = QQ^{\top}$ is any set of rank k orthogonal projection matrix with orthonormal $Q \in \mathbb{R}^{n \times k}$

Low-rank Approximation: S is the set of all rank k orthogonal projection matrix. $P^* = U_k U_k^\top$

▲ロト ▲ 同 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Randomized Algorithms for K-means Clustering

K-means:

$$\sum_{j=1}^{k} \sum_{\mathbf{x}_i \in C_j} \|\mathbf{x}_i - \mu_j\|_2^2 = \|X - \mathbf{C}\mathbf{C}^{\mathsf{T}}X\|_F^2$$

where $C \in \mathbb{R}^{n \times k}$ is the scaled cluster indicator matrix such that $C^{\top}C = I$.

Constrained Low-rank Approximation (Cohen et al., 2015)

$$\min_{P\in\mathcal{S}} \|X - PX\|_F^2$$

where $S = QQ^{\top}$ is any set of rank k orthogonal projection matrix with orthonormal $Q \in \mathbb{R}^{n \times k}$ Low-rank Approximation: S is the set of all rank k orthogonal projection matrix. $P^* = U_k U_k^{\top}$

Randomized Algorithms for K-means Clustering

Define

$$\widehat{P}^* = \min_{P \in S} \|\widehat{X} - P\widehat{X}\|_F^2$$
$$P^* = \min_{P \in S} \|X - PX\|_F^2$$

Guarantees on Approximation

$$\|X - \widehat{P}^* X\|_F^2 \le \frac{1+\epsilon}{1-\epsilon} \|X - P^* X\|_F^2$$

э

590

Properties of Leverage-score sampling

We prove the properties using Matrix Chernoff bound. Let $\Omega = AU$.

$$\Omega^{ op} \Omega = (\mathcal{A}\mathcal{U})^{ op} (\mathcal{A}\mathcal{U}) = \sum_{j=1}^m \frac{1}{m p_{i_j}} \mathbf{u}_{i_j} \mathbf{u}_{i_j}^{ op}$$

Let $X_i = \frac{1}{mp_i} \mathbf{u}_i \mathbf{u}_i^{\top}$. $E[X_i] = \frac{1}{m} I_k$. Therefore $\lambda_{\max}(X_i) = \lambda_{\min}(X_i) = \frac{1}{m}$. And $\lambda_{\max}(X_i) \leq \max_i \frac{\|\mathbf{u}_i\|_2^2}{mp_i} = \frac{k}{m}$. Applying the Matrix Chernoff bound for the minimum and maximum eigen-value, we have

$$\Pr(\lambda_{\min}(\Omega^{\top}\Omega) \le (1-\epsilon)) \le k \exp\left(-\frac{m\epsilon^2}{2k}\right) \le k \exp\left(-\frac{m\epsilon^2}{3k}\right)$$

 $\Pr(\lambda_{\max}(\Omega^{\top}\Omega) \ge (1+\epsilon)) \le k \exp\left(-\frac{m\epsilon^2}{3k}\right)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

When uniform sampling makes sense?

Coherence measure

$$\mu_k = \frac{d}{k} \max_{1 \le i \le d} \|U_{i*}\|_2^2$$

When $\mu_k \leq \tau$ and $m = \Theta\left(\frac{k\tau}{\epsilon^2}\log\left[\frac{2k}{\delta}\right]\right)$ w.h.p $1 - \delta$,

- A formed by uniform sampling (and scaling)
- $AU \in \mathbb{R}^{m \times k}$ is full column rank

•
$$\sigma_i^2(AU) \ge (1-\epsilon) \ge (1-\epsilon)^2$$

- $\sigma_i^2(AU) \le (1+\epsilon) \le (1+\epsilon)^2$
- Valid when the coherence measure is small (some real data mining datasets have small coherence measures)
- The Nyström method usually uses uniform sampling (Gittens, 2011)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ