# X-risk Optimization: A New Paradigm for Deep Learning

Tianbao Yang Texas A&M University

# Outline

- Overview & Background
- Three Use Cases

## My Research Focus







## **Optimization for Machine Learning**

$$\min_{\mathbf{w}} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}, \mathbf{z}_i)$$

Empirical Risk Minimization (ERM)

## SGD: Stochastic Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla \ell(\mathbf{w}_t, \mathbf{z}_t)$$





Modern: Stagewise



#### Modern: Adaptive

# Momentum and Adaptive Methods

| Imagenet classification with deep convolutional neural net<br>A Krizhevsky, I Sutskever, GE Hinton<br>Advances in neural information processing systems 25, 1097-1105 | works                                                                       | 99188       | 2012 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|------|
| Stochastic Heavy-ball Method (SHB)                                                                                                                                    |                                                                             |             |      |
| On the importance of initialization and momentum in deep<br>I Sutskever, J Martens, G Dahl, G Hinton<br>International conference on machine learning, 1139-1147       | learning                                                                    | 4069        | 2013 |
| Stochastic Nesterov's Accelerated Gradient (SNAG)                                                                                                                     |                                                                             |             |      |
| Adam: A method for stochastic optimization<br>D Kingma, J Ba<br>International Conference on Learning Representations                                                  |                                                                             | 92479       | 2015 |
| Adam                                                                                                                                                                  | Mome                                                                        | entum term  |      |
| $\mathbf{w}_{t+1} = \mathbf{w}_{t+1}$                                                                                                                                 | $t - \eta_t  abla \ell(\mathbf{w}_t, \mathbf{z}_t) +$ Adaptive or Stagewise | $-\delta_t$ |      |

6

# A Standard Learning Paradigm



## Some Undesirable Consequences





R@1 vs. minibatch size



"

As provided in Figure 4a, R@1 monotonically improves with larger batch size on all three datasets. This observation resonates with the fact that large batches reduce the variance of the stochastic gradients, which has been shown to be beneficial [32]. On the other hand, from the learn-

11

## Some Undesirable Consequences

Patel et al. Recall@k Surrogate Loss with Large Batches and Similarity Mixup. In CVPR, 2022.



varying batch size



#### "

**Batch size.** The effect of the varying batch size is shown in Figure 4 (right). <u>It demonstrates that large batch size</u> leads to better results. A significant performance boost is

## Some Undesirable Consequences

Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. In ICML, 2020.

ť~

 $\boldsymbol{x}$ 



70.0

67.5

65.0

62.5

57.5

55.0

52.5

50.0

100

#### 5.2. Contrastive learning benefits (more) from larger batch sizes and longer training

 $g(\cdot)$ 

 $f(\cdot)$ 

 $\boldsymbol{h}_i$ 

 $ilde{m{x}}_j$ 

Figure 9 shows the impact of batch size when models are trained for different numbers of epochs. We find that, when the number of training epochs is small (e.g. 100 epochs), larger batch sizes have a significant advantage over the smaller ones. With more training steps/epochs, the gaps

//

## Conventionally Small Batch is Fine

$$\min_{\mathbf{w}} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}, \mathbf{z}_i)$$

"

The stochastic gradient descent (SGD) method and its variants are algorithms of choice for many Deep Learning tasks. These methods operate in a small-batch regime wherein a fraction of the training data, say 32–512 data points, is sampled to compute an approximation to the gradient. It has been observed in practice that when using a larger batch there is a degradation in the quality of the model, as

11

Keskar et al. ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GENERALIZATION GAP AND SHARP MINIMA. ICLR 2017.

# A Standard Learning Paradigm



## **Beyond ERM: Deep X-risk Optimization**





## Definition

A family of **Compositional** measures in which the loss function of each data point is defined in a way that **Contrasts** the data point with a **Large number of items**.

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(g(\mathbf{w}, \mathbf{z}_i, \mathcal{S}_i))$$
A Large Set

Challenges of Optimizing X-risk

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(g(\mathbf{w}, \mathbf{z}_i, \mathcal{S}_i))$$



# Outline

- Three Use Cases
  - AUPRC/AP Maximization

• Top-K NDCG Maximization

• Self-supervised Learning

## **Deep AUPRC/AP Maximization**





#### MIT AlCures Challenge

## Fighting Secondary Effects of Covid



8

9

10

RF + fingerprint

Graph Self-supervised Learning

Stokes et al. 2020. Cell.

|      |                                | (a) Test PRC-AUC   |             |              |
|------|--------------------------------|--------------------|-------------|--------------|
| Rank | Model                          | Author             | Submissions | Test PRC-AUC |
| 1    | MolecularG                     | AIDrug@PA          | 7           | 0.725        |
| 2    |                                | AGL Team           | 20          | 0.702        |
| 3    | MoleculeKit                    | DIVE@TAMU          | 7           | 0.677        |
| 4    | GB                             | BI                 | 6           | 0.67         |
| 5    | Chemprop ++                    | AICures@MIT        | 4           | 0.662        |
| 6    | -                              | Mingjun Liu        | 3           | 0.657        |
| 7    | Pre-trained OGB-GIN (ensemble) | Weihua Hu@Stanford | 2           | 0.651        |

**E**valuation **M**etric: **AUPRC** 

(b) Test ROC-AUC

Cyrus Maher@Vir Bio

SJTU\_NRC\_Mila

Congjie He

|      | (-)                            |                    |             |              |  |  |  |  |  |
|------|--------------------------------|--------------------|-------------|--------------|--|--|--|--|--|
| Rank | Model                          | Author             | Submissions | Test ROC-AUC |  |  |  |  |  |
| 1    | MoleculeKit                    | DIVE@TAMU          | 7           | 0.928        |  |  |  |  |  |
| 2    | Chemprop ++                    | AICures@MIT        | 4           | 0.877        |  |  |  |  |  |
| 3    | -                              | Gianluca Bontempi  | 7           | 0.848        |  |  |  |  |  |
| 4    | -                              | Apoorv Umang       | 1           | 0.84         |  |  |  |  |  |
| 5    | Pre-trained OGB-GIN (ensemble) | Weihua Hu@Stanford | 2           | 0.837        |  |  |  |  |  |
| 6    | -                              | Kexin Huang        | 1           | 0.824        |  |  |  |  |  |
| 7    | Chemprop                       | Rajat Gupta        | 7           | 0.818        |  |  |  |  |  |
| 8    | MLP                            | IITM               | 7           | 0.807        |  |  |  |  |  |
| 9    | Graph Self-supervised Learning | SJTU_NRC_Mila      | 3           | 0.8          |  |  |  |  |  |
| 10   | _                              | Congjie He         | 10          | 0.8          |  |  |  |  |  |
|      |                                |                    |             |              |  |  |  |  |  |

0.649

0.622

0.611

1

3

10

## Why AUROC Max. is NOT Enough?



#### Challenge: Highly Imbalanced Data

Non-Parametric Estimator: Average Precision

$$AP(h) = \underbrace{\frac{1}{n_{+}} \sum_{\mathbf{x}_{i} \in \mathcal{S}_{+}} Precision(h(\mathbf{x}_{i}))}_{\text{Positive Examples}}$$

$$Precision(h(\mathbf{x}_{i})) = \frac{\sum_{\mathbf{x}_{j} \in \mathcal{S}_{+}} \mathbb{I}(h(\mathbf{x}_{j}) \ge h(\mathbf{x}_{i}))}{\sum_{\mathbf{x}_{j} \in \mathcal{S}} \mathbb{I}(h(\mathbf{x}_{j}) \ge h(\mathbf{x}_{i}))}$$

$$All Examples$$

20

# Deep AUPRC Maximization

## **Limitations** of Literature on AUPRC Maximization

- (1) Not applicable to deep learning (e.g., SVM-AP, Yue et al.)
- (2) No Convergence, require large batch (e.g., FastAP, Cakir et al.)

## **Our Contributions:**

- (1) New Formulation based on Compositional Opt.
- (2) First Algorithms with Convergence Theory
- (3) Practical Algorithms and Improved Theory

## **Our Formulation**

(NeurIPS 2021)

Precision

$$\underbrace{\sum_{\mathbf{x}_j \in \mathcal{S}_+} \ell(h_{\mathbf{w}}(\mathbf{x}_j) - h_{\mathbf{w}}(\mathbf{x}_i))}_{\sum_{\mathbf{x}_j \in \mathcal{S}} \ell(h_{\mathbf{w}}(\mathbf{x}_j) - h_{\mathbf{w}}(\mathbf{x}_i))} \longrightarrow [g_i(\mathbf{w})]_1 }_{g_i(\mathbf{w})]_2$$

## Limitations of Existing Methods

- Not Convergent (e.g., SGD/Adam)
- Not-scalable (e.g., NASA, Ghadimi et al.)
- Require Large batch size (e.g., BSGD, Hu et al.)

$$f(g) = -\frac{[g]_1}{[g]_2}$$

$$\min_{\mathbf{w}} F(\mathbf{w}) = \frac{1}{n_+} \sum_{\mathbf{x}_i \in \mathcal{S}_+} f(g_i(\mathbf{w}))$$

Finite-sum Coupled Compositional Optimization

## Key Idea of SOAP

Full Gradient

$$abla f(g_i(\mathbf{w}_t))$$
 at t<sup>th</sup> iteration



$$u_i^t = (1 - eta) u_i^{t-1} + eta \hat{g}_i(\mathbf{w}_t)$$
  $\mathbf{x}_i \in \mathcal{B}_+$   
Sampled Positive



Goal

 $\|\nabla F(\mathbf{w})\| \le \epsilon$ 

#### NeurIPS'21

First Algorithm with Convergence Guarantee SGD-style Update



ICML'22, AISTATS'22

Improved Convergence

Momentum or Adam-style Update



24

#### 3.5% Positive 2~3% Improvement

| Dataset | Method   | GINE                  | MPNN                    | ML-MPNN                 |
|---------|----------|-----------------------|-------------------------|-------------------------|
|         | CE       | $0.2774~(\pm 0.0101)$ | $0.3197~(\pm 0.0050)$   | $0.2988~(\pm~0.0076)$   |
|         | CB-CE    | $0.3082~(\pm 0.0101)$ | $0.3056 (\pm 0.0018)$   | $0.3291~(\pm 0.0189)$   |
|         | Focal    | $0.3236~(\pm 0.0078)$ | $0.3136 (\pm 0.0197)$   | $0.3279 (\pm 0.0173)$   |
| HIV     | LDAM     | $0.2904~(\pm 0.0008)$ | $0.2994~(\pm 0.0128)$   | 0.3044 (± 0.0116)       |
|         | AUC-M    | $0.2998~(\pm 0.0010)$ | $0.2786 (\pm 0.0456)$   | $0.3305 (\pm 0.0165)$   |
|         | SmothAP  | $0.2686 (\pm 0.0007)$ | $0.3276 (\pm 0.0063)$   | $0.3235 (\pm 0.0092)$   |
|         | FastAP   | $0.0169 (\pm 0.0031)$ | $0.0826~(\pm 0.0112)$   | $0.0202~(\pm 0.0002)$   |
|         | MinMax   | $0.2874~(\pm 0.0073)$ | $0.3119 (\pm 0.0075)$   | $0.3098~(\pm 0.0167)$   |
|         | SOAP     | $0.3485~(\pm 0.0083)$ | $0.3401~(\pm~0.0045)$   | $0.3547~(\pm 0.0077)$   |
|         | CE       | 0.0017 (±0.0001)      | 0.0021 (±0.0002)        | 0.0025 (±0.0004)        |
|         | CB-CE    | 0.0055 (±0.0011)      | 0.0483 (±0.0083)        | 0.0121 (±0.0016)        |
|         | Focal    | $0.0041 (\pm 0.0007)$ | $0.0281 (\pm 0.0141)$   | $0.0122 (\pm 0.0001)$   |
| MUV     | LDAM     | $0.0044 (\pm 0.0022)$ | 0.0118 (±0.0098)        | $0.0059 (\pm 0.0021)$   |
|         | AUC-M    | $0.0026 (\pm 0.0001)$ | 0.0040 (±0.0012)        | 0.0028 (±0.0012)        |
|         | SmoothAP | 0.0073 (±0.0012)      | 0.0068 (±0.0038)        | 0.0029 (±0.0005)        |
|         | FastAP   | 0.0016 (±0.0000)      | 0.0023 (±0.0021)        | 0.0022 (±0.0012)        |
|         | MinMax   | 0.0028 (±0.0008)      | 0.0027 (±0.0005)        | 0.0043 (±0.0015)        |
|         | SOAP     | 0.0493 (±0.0261)      | <b>0.3352</b> (±0.0008) | <b>0.0236</b> (±0.0038) |

0.2% Positive 33% Improvement

| Data     | MIT AICURES           |                       |  |  |  |  |
|----------|-----------------------|-----------------------|--|--|--|--|
| Networks | GINE                  | MPNN                  |  |  |  |  |
| CE       | $0.5037~(\pm 0.0718)$ | 0.6282 (± 0.0634)     |  |  |  |  |
| CB-CE    | $0.5655~(\pm 0.0453)$ | $0.6308 (\pm 0.0263)$ |  |  |  |  |
| Focal    | $0.5143 (\pm 0.1062)$ | $0.5875 (\pm 0.0774)$ |  |  |  |  |
| LDAM     | $0.5236 (\pm 0.0551)$ | $0.6489 (\pm 0.0556)$ |  |  |  |  |
| AUC-M    | $0.5149 (\pm 0.0748)$ | $0.5542 (\pm 0.0474)$ |  |  |  |  |
| SmothAP  | $0.2899 (\pm 0.0220)$ | $0.4081 (\pm 0.0352)$ |  |  |  |  |
| FastAP   | $0.4777 (\pm 0.0896)$ | $0.4518 (\pm 0.1495)$ |  |  |  |  |
| MinMax   | $0.5292 (\pm 0.0330)$ | $0.5774 (\pm 0.0468)$ |  |  |  |  |
| SOAP     | $0.6639 (\pm 0.0515)$ | 0.6547 (± 0.0616)     |  |  |  |  |

2.2% Positive 3% Improvement

**Molecular Properties Prediction** 

**Graph Neural Networks** 





# MIT AICures Challenge Evaluation Metric: AUPRC

# Fighting Secondary Effects of Covid

1<sup>st</sup> Place



Stokes et al. 2020. Cell.

Collaborating with Prof. Shuiwang Ji's group at TAMU

| Rank | Rank Model Author                 |                       | Submissions | 10-fold CV<br>ROC-AUC | 10-fold CV PRC-<br>AUC | Test ROC-<br>AUC | Test PRC-<br>AUC |
|------|-----------------------------------|-----------------------|-------------|-----------------------|------------------------|------------------|------------------|
| 1    |                                   | DIVE@TAMU             | 11          |                       |                        | 0.957            | 0.729            |
| 2    | MolecularG                        | AlDrug@PA             | 9           |                       |                        | 0.7              | 0.725            |
| 3    |                                   | AGL Team              | 20          |                       |                        | 0.675            | 0.702            |
| 4    |                                   | phucdoitoan@Fujitsu   | 14          | 0.898 +/- 0.113       | 0.508 +/- 0.253        | 0.867            | 0.694            |
| 5    | GB                                | BI                    | 6           |                       |                        | 0.698            | 0.67             |
| 6    | Chemprop ++                       | AICures@MIT           | 4           |                       |                        | 0.877            | 0.662            |
| 7    |                                   | Mingjun Liu           | 3           |                       |                        | 0.72             | 0.657            |
| 8    | Pre-trained OGB-GIN<br>(ensemble) | Weihua<br>Hu@Stanford | 2           | 0.905 +/- 0.133       | 0.494 +/- 0.333        | 0.837            | 0.651            |
| 9    | RF + fingerprint                  | Cyrus Maher@Vir Bio   | 1           | 0.896 +/- 0.074       | 0.481 +/- 0.338        | 0.799            | 0.649            |
| 10   | Graph Self-supervised<br>Learning | SJTU_NRC_Mila         | 3           | 0.825 +/- 0.210       | 0.530 +/- 0.342        | 0.800            | 0.622            |

## Comparison with w/o DAM



## 5% Improvement in AUPRC, 3% Improvement in AUROC

## **Deep top-K NDCG Maximization**



#### Most Relevant Items on the ${\bf T}{\rm op}$

#### Search Engines



Social Media

NDCG



## NDCG Surrogate is X-risk

$$NDCG_q = \frac{1}{Z_q} \sum_{i=1}^n \underbrace{\frac{2^{y_i} - 1}{\log_2(1 + r(i))}}_{f(g(\mathbf{w}; \mathbf{x}_i, \mathcal{S}_q))}$$

32

## **Top-K NDCG**



## Deep top-K NDCG Maximization

## Limitations of Literature on Top-K NDCG Maximization

- (1) Small Data or No Convergence (e.g., ApproxNDCG, Qin et al.)
- (2) Not Applicable to Deep Learning (e.g., SVM-NDCG, Chakrabarti et al.)

## **Our Contributions:** (ICML'22)

- (1) New Formulation based on Bilevel Optimization
- (2) First Algorithms with Convergence Theory
- (3) Practical Algorithms

Transforming Top-K Selector

(ICML 2022)

# Prediction score The **(K+1)-th** largest score $\mathbb{I}(h_{\mathbf{w}}(\mathbf{x}_i;q) > \lambda_q(\mathbf{w}))$

$$\lambda_q(\mathbf{w}) = \arg\min_{\lambda} \frac{K+\varepsilon}{n} \lambda + \frac{1}{n} \sum_{i=1}^n (h_{\mathbf{w}}(\mathbf{x}_i; q) - \lambda)_+$$

## New Formulation

(ICML 2022)

## **Multi-block Bilevel Optimization**

$$\min \frac{1}{\mathcal{S}} \sum_{\substack{(q, \mathbf{x}_i^q) \in \mathcal{S} \\ s.t. \\ \lambda_q(\mathbf{w}) = \arg \min_{\lambda} L_q(\lambda, \mathbf{w}, \mathcal{S}_q), \forall q \in \mathcal{Q}} \int f(g_i(\mathbf{w}))$$



(ICML 2022)

$$\nabla \sigma(h_{\mathbf{w}}(\mathbf{x}_{i}^{q};q) - \lambda_{q}(\mathbf{w})) (\nabla h_{\mathbf{w}}(\mathbf{x}_{i}^{q};q) - \nabla \lambda_{q}(\mathbf{w}))$$

$$\textbf{Depends on } \mathcal{S}_{q} \qquad \textbf{Implicit Gradient}$$

## Tackle Challenges (K-SONG)

(ICML 2022)





Goal

 $\|\nabla F(\mathbf{w})\| \le \epsilon$ 





Table 2: The test NDCG on two Learning to Rank datasets. We report the average NDCG@k ( $k \in [10, 30, 60]$ ) and standard deviation (within brackets) over 5 runs with different random seeds.

|             | Method     | MSLR WEB30K           |                       |                       | YAHOO! LTR DATASET    |                       |                       |
|-------------|------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|             |            | NDCG@10               | NDCG@30               | NDCG@60               | NDCG@10               | NDCG@30               | NDCG@60               |
| Learning to | RANKNET    | $0.5227 {\pm} 0.0012$ | $0.5837 {\pm} 0.0006$ | $0.6481 {\pm} 0.0007$ | $0.7668 {\pm} 0.0007$ | $0.8319{\pm}0.0008$   | $0.8491 {\pm} 0.0008$ |
| -           | LISTNET    | $0.5337{\pm}0.0022$   | $0.5910{\pm}0.0019$   | $0.6535 {\pm} 0.0014$ | $0.7805{\pm}0.0010$   | $0.8441 {\pm} 0.0006$ | $0.8613 {\pm} 0.0005$ |
| rank        | LISTMLE    | $0.5210{\pm}0.0017$   | $0.5800{\pm}0.0015$   | $0.6450{\pm}0.0012$   | $0.7796{\pm}0.0007$   | $0.8436{\pm}0.0006$   | $0.8606{\pm}0.0006$   |
|             | LAMBDARANK | $0.5324{\pm}0.0037$   | $0.5885{\pm}0.0032$   | $0.6529{\pm}0.0026$   | $0.7794{\pm}0.0009$   | $0.8442{\pm}0.0008$   | $0.8619{\pm}0.0007$   |
|             | ApproxNDCG | $0.5339{\pm}0.0008$   | $0.5906{\pm}0.0005$   | $0.6530{\pm}0.0003$   | $0.7688{\pm}0.0004$   | $0.8367{\pm}0.0004$   | $0.8556{\pm}0.0004$   |
|             | NEURALNDCG | $0.5329{\pm}0.0027$   | $0.5881{\pm}0.0013$   | $0.6510{\pm}0.0012$   | $0.7812{\pm}0.0002$   | $0.8443{\pm}0.0002$   | $0.8622{\pm}0.0003$   |
|             | SONG       | $0.5382{\pm}0.0007$   | $0.5953{\pm}0.0006$   | <b>0.6573</b> ±0.0005 | $0.7842{\pm}0.0004$   | 0.8477±0.0003         | 0.8644±0.0003         |
|             | K-SONG     | <b>0.5397</b> ±0.0009 | <b>0.5955</b> ±0.0004 | $0.6571{\pm}0.0003$   | <b>0.7859</b> ±0.0003 | $0.8464{\pm}0.0002$   | $0.8642{\pm}0.0003$   |
|             |            |                       |                       |                       |                       |                       |                       |

Table 4: The test NDCG on two movie recommendation datasets. We report the average NDCG@k ( $k \in [10, 20, 50]$ ) and standard deviation (within brackets) over 5 runs with different random seeds.

|                | Method     | MOVIELENS20M          |                       |                       | NETFLIX PRIZE DATASET |                       |                       |
|----------------|------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                |            | NDCG@10               | NDCG@20               | NDCG@50               | NDCG@10               | NDCG@20               | NDCG@50               |
| Movio          | RankNet    | $0.0109 {\pm} 0.0011$ | $0.0190 {\pm} 0.0010$ | $0.0450{\pm}0.0016$   | $0.0090 {\pm} 0.0007$ | $0.0146{\pm}0.0008$   | $0.0261 {\pm} 0.0010$ |
| IVIOVIE        | LISTNET    | $0.0182{\pm}0.0004$   | $0.0305{\pm}0.0002$   | $0.0587{\pm}0.0004$   | $0.0115 {\pm} 0.0018$ | $0.0191{\pm}0.0013$   | $0.0347{\pm}0.0014$   |
| Recommendation | LISTMLE    | $0.0117{\pm}0.0005$   | $0.0210{\pm}0.0011$   | $0.0493{\pm}0.0010$   | $0.0081{\pm}0.0005$   | $0.0134{\pm}0.0009$   | $0.0253{\pm}0.0005$   |
| Recommendation | LAMBDARANK | $0.0178{\pm}0.0010$   | $0.0310{\pm}0.0008$   | $0.0595{\pm}0.0006$   | $0.0103{\pm}0.0003$   | $0.0175 {\pm} 0.0003$ | $0.0332{\pm}0.0004$   |
|                | ApproxNDCG | $0.0202{\pm}0.0004$   | $0.0338{\pm}0.0004$   | $0.0629{\pm}0.0004$   | $0.0121{\pm}0.0015$   | $0.0198{\pm}0.0005$   | $0.0360{\pm}0.0006$   |
|                | NEURALNDCG | $0.0194{\pm}0.0013$   | $0.0322{\pm}0.0011$   | $0.0609{\pm}0.0012$   | $0.0113{\pm}0.0011$   | $0.0186{\pm}0.0008$   | $0.0342{\pm}0.0007$   |
|                | SONG       | $0.0232{\pm}0.0003$   | $0.0369{\pm}0.0004$   | $0.0646{\pm}0.0003$   | $0.0141{\pm}0.0004$   | $0.0222{\pm}0.0005$   | 0.0384±0.0003         |
|                | K-SONG     | <b>0.0248</b> ±0.0003 | $0.0381 \pm 0.0003$   | <b>0.0662</b> ±0.0004 | $0.0154 {\pm} 0.0003$ | <b>0.0234</b> ±0.0006 | $0.0377 {\pm} 0.0005$ |

## Movielens: 20 Millions User-Movie Pairs



## **Self-supervised Learning**



# Self-supervised learning



## SimCLR: Simple Contrastive Learning

#### A Simple Framework for Contrastive Learning of Visual ... - arXiv

by T Chen · 2020 · Cited by 3849 — Abstract: This paper presents **SimCLR**: a simple framework for contrastive learning of visual representations. We simplify recently proposed ...



## Mini-batch Contrastive Loss



# Issue of SimCLR

#### Huge Difference between large batch and small batch



*Figure 9.* Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch.<sup>10</sup> Chen et al. 2020

## **Our Contributions:**

(1) Explanation of Large Batch of SimCLR

(2) New Method SogCLR without Large Batch Size

## How do we understand the issue of SimCLR?

**Global Contrastive Loss is the Key** 

Global

$$L(\mathbf{w}; \mathbf{x}_{i}, \mathcal{A}, \mathcal{A}') = -\ln \frac{\exp(E(\mathcal{A}(\mathbf{x}_{i}))^{\top} E(\mathcal{A}'(\mathbf{x}_{i}))/\tau)}{\sum_{\mathbf{z} \in S_{i}} (\exp(E(\mathcal{A}(\mathbf{x}_{i}))^{\top} E(\mathbf{z})/\tau)},$$
  
All Images Except x\_i  
**Global Contrastive Objective is X-risk**  
$$F(\mathbf{w}) = \mathbb{E}_{\mathbf{x}_{i} \sim \mathcal{D}, \mathcal{A}, \mathcal{A}' \sim \mathcal{P}}(E(\mathcal{A}(\mathbf{x}_{i}))^{\top} E(\mathcal{A}'(\mathbf{x}_{i}))) + \frac{\tau}{n} \sum_{\mathbf{x}_{i} \in \mathcal{D}} \mathbb{E}_{\mathcal{A}} \ln \left(\frac{1}{|S_{i}|}g(\mathbf{w}; \mathbf{x}_{i}, \mathcal{A}, S_{i})\right),$$
$$f(g(\mathbf{w}; \mathbf{x}_{i}, \mathcal{A}, S_{i}))$$

## SimCLR Suffers from Small Batch Size

 $\frac{1}{n} \sum_{\mathbf{x}_i \in \mathcal{D}} \mathbb{E}_{\mathcal{A}} f(g(\mathbf{w}; \mathbf{x}_i, \mathcal{A}, \mathcal{S}_i))$ 

$$\nabla f(g(\mathbf{w}; \mathbf{x}_{i}, \mathcal{A}, \mathcal{S}_{i})) \nabla g(\mathbf{w}; \mathbf{x}_{i}, \mathcal{A}, \mathcal{S}_{i})$$
SimCLR uses the Standard  
learning Paradigm
$$\sum \mathbb{E}[\|\nabla F(\mathbf{w})\|] \leq O\left(\frac{1}{\sqrt{B}}\right)$$

$$\nabla f(g(\mathbf{w}; \mathbf{x}_{i}, \mathcal{A}, \mathcal{B}_{i})) \nabla g(\mathbf{w}; \mathbf{x}_{i}, \mathcal{A}, \mathcal{B}_{i})$$
Mini-batch
$$49$$

Better way to Optimize GCL: SogCLR

**Estimating inner g** 

$$\nabla f(g(\mathbf{w}; \mathbf{x}_i, \mathcal{A}, \mathcal{S}_i)) \nabla g(\mathbf{w}; \mathbf{x}_i, \mathcal{A}, \mathcal{S}_i)$$
Maintain and update  $u(\mathbf{x}_i, \mathcal{A})$ ? **Too Much Memory**  $u(\mathbf{x}_i)$ 



Update *u* 

$$\begin{aligned} \mathbf{u}_{i,t} &= (1 - \gamma) \mathbf{u}_{i,t-1} & \text{Mini-batch} \\ &+ \gamma \frac{1}{2|\mathcal{B}_i|} (g(\mathbf{w}_t; \mathbf{x}_i, \mathcal{A}, \mathcal{B}_i) + g(\mathbf{w}_t; \mathbf{x}_i, \mathcal{A}', \mathcal{B}_i)), \end{aligned}$$

## Theory of SogCLR

#### Theorem 1

Quantify difference of different augmented copies

$$\mathbb{E}[\|\nabla F(\mathbf{w}_{t'})\|^2] \le O\left(\frac{1}{\sqrt{BT}} + \frac{\sqrt{n}}{B\sqrt{T}} + \epsilon^2\right)$$

Theorem 2

$$L_2(\mathbf{w}; \mathbf{x}_i, \mathcal{A}, \mathcal{A}') = -\ln \frac{\exp(E(\mathcal{A}(\mathbf{x}_i)) + E(\mathcal{A}'(\mathbf{x}_i))/\tau)}{\mathbb{E}_{\mathcal{A}}g(\mathbf{w}; \mathbf{x}_i, \mathcal{A}, \mathcal{S}_i)}.$$

$$\mathbb{E}[\|\nabla F_{v2}(\mathbf{w}_{t'})\|^2] \le O(\frac{1}{\sqrt{BT}} + \frac{\sqrt{n}}{B\sqrt{T}}) \xrightarrow{T \to \infty} 0$$

52

Experiments



Table 6: Comparison of small-batch training approaches.

| Method  | Batch Size\Epochs | 100  | 200  | 400         | 800         |
|---------|-------------------|------|------|-------------|-------------|
| SimCLR  | 256               | 69.7 | 73.6 | 76.1        | 77.4        |
| FlatNCE | 256               | 71.5 | 75.5 | 76.7        | 77.8        |
| SiMo    | 256               | 71.5 | 75.0 | 76.8        | 78.2        |
| SogCLR  | 256               | 71.9 | 76.3 | <b>78.7</b> | <b>79.4</b> |

Table 1: Comparison of different InfoNCE-loss based contrastive learning methods and their top-1 linear evaluation accuracy by using 800 epochs, a batch size of 256, and ResNet-50 on ImageNet-1K. Momentum encoder is introduced by MoCo [20]. We expect the performance of SogCLR can be further improved by incorporating other techniques, e.g., InfoMin augmentation.

|        | <b>I</b>         | <b>7</b> 1  | 0      | 1 /      | 0, 0              |             |           |  |
|--------|------------------|-------------|--------|----------|-------------------|-------------|-----------|--|
| Mathad |                  | Datah Sira  | Memory | Momentum | Other             | Convorgance | Top1 Acc  |  |
|        | Method           | Datch Size  | Bank   | Encoder  | Tricks            | Convergence | Topi Acc. |  |
|        | SimCLR [4]       | Large-batch | No     | No       | Strong Aug.       | No          | 66.5      |  |
|        | NNCLR [15]       | Large-batch | No     | No       | Nearest Neighbors | No          | 68.7      |  |
|        | <b>SiMo</b> [44] | Small-batch | No     | Yes      | Margin Trick      | No          | 72.1      |  |
|        | MoCov2 [6]       | Small-batch | Yes    | Yes      | Strong Aug.       | No          | 71.1      |  |
|        | InfoMin [36]     | Small-batch | Yes    | Yes      | InfoMin Aug.      | No          | 73.0      |  |
|        | SogCLR (Ours)    | Small-batch | No     | No       | GC Optimization   | Yes         | 72.5      |  |
| -      |                  |             |        |          |                   |             |           |  |

# Summary: X-risk as a New Learning Paradigm

Sample Mini-batch Samples • Any Batch Size • **B**road Applications Define **Dynamic** Mini-batch (MB) Losses • **C**onvergence Guarantee Back-propagation on **Dynamic** MB Losses • **E**asy Implementation **Update Model Parameters** 

## More X-risks







LibAUC Installation Examples Research Talks Team Github

#### **A DEEP LEARNING LIBRARY FOR X-RISK OPTIMIZATION**

An open-source library that translates theories to real-world applications

 Latest News
 Install

 Image: Comparison of the state of t

#### **KEY FEATURES & CAPABILITIES**

#### **Easy Installation**

Easy to install and insert LibAUC code into existing training pipeline with Deep Learning frameworks like PyTorch.

#### **Broad Applications**

Users can learn any neural network structures (e.g., linear, MLP, CNN, GNN, transformer, etc) that support their data types.

#### **O**<sup>o</sup>

#### Efficient Algorithms

Stochastic algorithms with provable theoretical convergence that support learning with millions of data points.



#### Hands-on Tutorials

Hands-on tutorials are provided for optimizing a variety of measures and objectives belonging to the family of X-risks.



# Impact of LibAUC Library

## **QUICK FACTS**

The achievements we made so far.

#### 3+

Challenges winning solution (e.g., Stanford CheXpert, MIT AlCures, OGB Graph Property Prediction).

#### 4+

Collaborations and Deployments at multiple industrial units, e.g., Google, Uber, Tencent, etc.

## 17+

Scientific publications on top-tier AI Conferences (such as ICML, NeurIPS, ICLR).

## 13000+

Downloaded by more than 13K+ times from over 11 countries.

## Acknowledgements: Students

#### Main Development



**Zhuoning Yuan** PhD Student University of Iowa



**Zi-Hao Qiu** PhD Student Nanjing University



**Dixian Zhu** PhD Student University of Iowa



Gang Li PhD Student University of Iowa

## Acknowledgements: Students

#### **Other Contributors**



**Zhishuai Guo** PhD Student University of Iowa



**Quanqi Hu** PhD Student University of Iowa



**Bokun Wang** PhD Student University of Iowa



**Qi Qi** PhD Student University of Iowa



Yongjian Zhong PhD Student University of Iowa



Mingrui Liu Assistant Professor George Mason University



Yan Yan Assistant Professor Washington State University



Yi Xu Associate Professor Dalian University of Technology

## Acknowledgements: Collaborators



Milan Sonka (Ulowa)



Nitesh Chawla (ND)



Hassan Rafique (UIndy)



Qihang Lin (Ulowa)



Yiming Ying (UAlbany)



Shuiwang Ji (TAMU)

## Acknowledgements



Big Data, Career, III, RI, Engineering, Smart Health, Fair AI





## **Tencent**腾讯



