Deep AUC Maximization (DAM)

Tianbao Yang

Department of Computer Science The University of Iowa

Yang (CS@Uiowa)

э

イロト 不得 トイヨト イヨト

Outline

- 2 Deep AUC Maximization
- 3 Use Cases in the Competitions
- 4 Conclusions

E

<ロト < 回ト < 回ト < 回ト < 回ト < 回ト < </p>

The Al Revolution

Deep Learning

- Al beats human on Image Recognition (2015)
- AlphaGo beats human champion (2017)
- Al beats radiologists on interpreting X-ray images (2019)
- AlphaFold solves Protein Folding (2020)

• . . .

3

イロト 不得下 イヨト イヨト

Three Pillars of Deep Learning

E

Challenges for Accelerating AI Democratization

Face Recognition

August 2018 Accuracy on Facial Analysis Pilot Parliaments Benchmark

98.7% <mark>68.6%</mark> 100% 92.9%

amazon

Amazon Rekognition Performance on Gender Classification

Yang (CS@Uiowa)

5/41

Challenges for Accelerating AI Democratization

э

AI for Medical Image Classification

Dermatologist-level classification of skin cancer

Esteva et al. (Nature, 2017), reported AUC>0.91

AI for Medical Image Classification

Radiologist-level Interpretation of X-ray images

Irvin, et al. (AAAI, 2019), reported AUC>0.90

AI for Medical Image Classification

Radiologist-level Screening of Breast Cancer

Wu, et al. (IEEE T. Medical Imaging, 2020), reported AUC=0.895

イロト イボト イヨト イヨト

Keys to "Success" for Medical AI

- Large-scale Datasets (100,000+ \sim 1,000,000 images)
- Domain-specific techniques (e.g., network structures)

But Performance for Under-represented Classes could be Much Worse

イロト 不得下 イヨト イヨト

Data Imbalance

is very common in real world

- Rare Disease Identification (e.g, Takotsubo)
- Terrorist Identification
- Credit Card Fraud Detection

• ...

ended and the second se

picture courtesy: Jamal et al. 2020.

< ロ ト < 同 ト < 三 ト < 三 ト

Training

would cause

- dramatic performance drop
- unfairness, ethical issues

DL with Imbalanced Data Faces New Challenges

1000

Yang (CS@Uiowa)

Performance Metrics of Imbalanced Data

Accuracy

not suitable for imbalanced data

- Area under the Curve (AUC)
 - area under ROC curve (AUROC)
 - area under Precision-Recall curve (AUPRC)
 - widely used for evaluating the performance

How to Optimize AUC for Deep Learning?

Performance Metrics of Imbalanced Data

Accuracy

not suitable for imbalanced data

- Area under the Curve (AUC)
 - area under ROC curve (AUROC)
 - area under Precision-Recall curve (AUPRC)
 - widely used for evaluating the performance

How to Optimize AUC for Deep Learning?

イロト 不得 トイヨト イヨト

Outline

- 3 Use Cases in the Competitions
- 4 Conclusions

э

◆□▶ ◆□▶ ◆三▶ ◆三▶

AUROC

E

<ロト < 回 > < 回 > < 回 > < 回 > .

AUC Max. is more Difficult Accuracy Max.

Exa	mple 1	Exa	mple 2	Exa	Example 3		
Prediction	Ground Truth	Prediction	Ground Truth	Prediction	Ground Truth		
0.9	1	0.9	1	0.9	1		
0.8	1	0.41 (↓)	1	0.41 (↓)	1		
0.7	1	0.7	1	0.40 (↓)	1		
0.6	0	0.6	0	0.49 (↓)	0		
0.6	0	0.49 (↓)	0	0.48 (↓)	0		
0.47	0	0.47	0	0.47	0		
0.47	0	0.47	0	0.47	0		
÷	÷	:	÷	÷	:		
0.1	0	0.1	0	0.1	0		
Acc=0.92		Acc=0.92 ()		Acc=0.92 (—)			
AUC=1.00		AUC= 0.89 (↓)		AUC= 0.78 (↓)			

3

イロト イ団ト イヨト イヨト

AUC Surrogate Loss

$$\mathsf{True-AUC}(h) = \mathsf{Pr}(h(\mathbf{x}) \geq h(\mathbf{x}') | y = 1, y' = -1)$$

- h: prediction model (e.g., deep neural network)
- $\bullet~\textbf{x},\textbf{x}'$ random data

$$\mathsf{True-AUC}(h) = \mathrm{E}[\mathbb{I}(h(\mathbf{x}) - h(\mathbf{x}') \geq 0) | y = 1, y' = -1]$$

$$\min_{h} \mathsf{AUC-Surrogate}(h) = \frac{1}{n_{+}} \frac{1}{n_{-}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{+}} \sum_{\mathbf{x}_{j} \in \mathcal{D}_{-}} \ell(h(\mathbf{x}_{i}) - h(\mathbf{x}_{j}))$$

3

<ロト < 四ト < 巨ト < 巨ト -

AUC Surrogate Loss

$$\mathsf{True-AUC}(h) = \mathsf{Pr}(h(\mathbf{x}) \geq h(\mathbf{x}') | y = 1, y' = -1)$$

- h: prediction model (e.g., deep neural network)
- $\bullet~\textbf{x},\textbf{x}'$ random data

$$\mathsf{True-AUC}(h) = \mathrm{E}[\mathbb{I}(h(\mathbf{x}) - h(\mathbf{x}') \geq 0) | y = 1, y' = -1]$$

$$\min_{h} \mathsf{AUC}\text{-}\mathsf{Surrogate}(h) = \frac{1}{n_{+}} \frac{1}{n_{-}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{+}} \sum_{\mathbf{x}_{j} \in \mathcal{D}_{-}} \ell(h(\mathbf{x}_{i}) - h(\mathbf{x}_{j}))$$

3

<ロト < 四ト < 巨ト < 巨ト -

Challenges of Optimizing AUROC

- Scalability: scale up $> 10^6$ examples
- Robustness: robust to noise in the data
- Theoretical Guarantee: Yes, we are doing Science!

イロト イボト イヨト イヨト

We Proposed a More Robust Approach

DQC

AUC Maximization: Zero-Sum Game Problem

Consider

$$\min_{\mathbf{w}} \max_{\alpha} f(\mathbf{w}, \alpha) = \mathrm{E}_{\mathbf{z}}[f(\mathbf{w}, \alpha, \mathbf{z})]$$

Stochastic Gradient Descent Ascent (SGDA)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla_{\mathbf{w}} f(\mathbf{w}_t, \alpha_t, \mathbf{z}_t), \quad \alpha_{t+1} = \alpha_t + \eta_t \nabla_{\alpha} f(\mathbf{w}_t, \alpha_t, \mathbf{z}_t)$$

Our Contributions

- First Proof of Convergence for Deep Learning
- Optimal Complexity Results

19/41

- ロト - 何ト - ヨト - ヨト

Summary of Our Theoretical Results

Table: Blue are our results. Red indicate optimal results. SC: strongly concave, PL: Polyak-Łojasiewicz condition. OGDA: optimistic gradient descent ascent.

Work	Conditions	Batch Size	\mathcal{A}	Sample Complexity
Rafique et al.'18	Concave	O(1)	SGDA	$O(\frac{1}{\epsilon^6})$
Rafique et al.'18	SC	O(1)	SGDA	$O(\frac{1}{\epsilon^4} + \frac{n}{\epsilon^2})$
Yan et al.'20	SC	O(1)	SGDA	$O(\frac{1}{\epsilon^4})$
Livet al '20		O(1)	SGDA	O(1)
Liu et al. 20	JC, FL	O(1)	AdaGrad	$O(\frac{1}{\mu^2\epsilon})$
Cup at al '20		O(1)	OGDA	O(1)
Guo et al. 20	JC, FL	O(1)	STORM	$O(\frac{1}{\mu\epsilon})$
Lin et al.'19	Concave	<i>O</i> (1)	SGDA	$O(1/\epsilon^8)$
Lin et al.'19	SC	$O(1/\epsilon^2)$	SGDA	$O(1/\epsilon^4)$

where ϵ is the accuracy level

Yang (CS@Uiowa)

イロト イボト イヨト イヨト

AUPRC Maximization

(picture courtesy: Davis&Goadrich, ICML'04) Highly Imbalanced Data

Yang (CS@Uiowa)

Deep AUC Maximization

21/41

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

AUROC vs AUPRC

Kaggle Melanoma Classification:

#	∆pub	Team Name	Notebook	Team Members	Score 🚱	Entries	Last
1	* 880	All Data Are Ext			0.9490	116	1y
2	▲ 55	aloe			0.9485	61	1y
3	▲ 262	Deloitte Analytics Spain			0.9484	118	1y
4	~ 210	Atagi Yuya		۲	0.9476	23	1y
5	▲ 723	Wenlu		١	0.9475	19	1y
6	<mark>▲</mark> 155	<^^>		\odot	0.9468	168	1y
7	▲ 502	James Sebastian		۲	0.9466	75	1y
8	▲ 218	Charlie		۱	0.9463	58	1y
9	▲ 243	Rai		۲	0.9462	90	1y
10	▲ 263	thakurudit		۲	0.9461	67	1y
11	▲ 21	DSRGN	۱) 🌑 🔬 🕥	0.9459	387	1y

Our AUROC Maximization: 0.9438 (33/3314), But AUPRC is 0.19

3

<ロト < 四ト < 巨ト < 巨ト -

Deep AUC Maximization

AUPRC Maximization is even more Challenging

Mathematically Complex

$$\mathsf{AUPRC} = \int_{-\infty}^{\infty} \mathsf{Pr}(Y = 1 | f(X) \ge c) d \, \mathsf{Pr}(f(X) \le c | Y = 1),$$

3

<ロト < 回ト < 回ト < 回ト < 回ト < 回ト < </p>

Challenges of Optimizing AUPRC

- Much more Complex mathematical form
- Scalability: scale up $> 10^6$ examples.
- Theoretical Guarantee: Yes, we are doing Science!

イロト 不得下 イヨト イヨト

Our Method: SOAP

$$\max_{h} \frac{1}{n_{+}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{+}} \frac{\operatorname{rank}(\mathbf{x}_{i}, \mathcal{D}_{+}; h)}{\operatorname{rank}(\mathbf{x}_{i}, \mathcal{D}; h)},$$

- $h(\mathbf{x})$: prediction network
- $\mathcal{D} = \{(\mathbf{x}_i, y_i), i = 1, \dots, n\}$, \mathcal{D}_+ is the positive set
- Our Contributions: First Practical and Provable Algorithm

3

イロト 人間ト イヨト イヨト

Outline

3 Use Cases in the Competitions

4 Conclusions

臣

イロト イヨト イヨト イヨト

Use Cases in the Competitions

CheXpert Competition: Classifying X-ray Images

The 1st Place

Stanford ML Group (Andrew Ng) 150+ teams worldwide

Leaderboard

Will your model perform as well as radiologists in detecting different pathologies in chest X-rays?

Rank	Date	Model	AUC	Num Rads Below Curve
1	Aug 31, 2020	DeepAUC-v1 ensemble	0.930	2.8

イロト イボト イヨト イヨト

Use Cases in the Competitions

CheXpert Competition: Classifying X-ray Images

Yang (CS@Uiowa)

CheXpert Competition: Classifying X-ray Images

Data Set

- 224,316 chest X-rays images of 65,240 patients
- Only 5 selected diseases for evaluation: Atelectasis, Cardiomegaly, Consolidation, Edema, Pleural Effusion
- optimize CNNs

Results:

AUC improvement of DAM over standard DL

Model	AUROC	NRBC	Rank
Stanford Baseline (Irvin et al, AAAI'19)	0.9065	1.8	85
Hierarchical Learning (Pham et al. 2020)	0.9299	2.6	2
Ours (Yuan et al, 2020)	0.9305	2.8	1

・ロト ・四ト ・ヨト ・ヨト

CheXpert Competition: Classifying X-ray Images

Data Set

- 224,316 chest X-rays images of 65,240 patients
- Only 5 selected diseases for evaluation: Atelectasis, Cardiomegaly, Consolidation, Edema, Pleural Effusion
- optimize CNNs

sults:	2%+ AUC improvement of DAM	∕l over sta	ndard D	L
M	odel	AUROC	NRBC	Rank
Sta	anford Baseline (Irvin et al, AAAI'19)		1.8	
Hi	erarchical Learning (Pham et al. 2020)	0.9299	2.6	2
	ırs (Yuan et al, 2020)	0.9305	2.8	1

イロト イボト イヨト イヨト

Kaggle Melanoma Classification Competition

Kaggle Competition

- May 27, 2020 August 10, 2020
- 33,126 training images, with only 584 malignant melanoma samples

>2% AUC improvement of DAM over standard DL

Results in AUROC:

- Top 1% rank (ranked 33 out of 3314 teams)
- Ensemble: our (0.9438, 10 models) vs winner (0.9490, 18 models)
- Single Model: our (0.9423) vs winner (0.9167)
- Post-competition: DAM + standard DL gives 0.9503.

D MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED.

Kaggle Melanoma Classification Competition

Kaggle Competition

- May 27, 2020 August 10, 2020
- 33,126 training images, with only 584 malignant melanoma samples

>2% AUC improvement of DAM over standard DL

Results in AUROC:

- Top 1% rank (ranked 33 out of 3314 teams)
- Ensemble: our (0.9438, 10 models) vs winner (0.9490, 18 models)
- Single Model: our (0.9423) vs winner (0.9167)
- Post-competition: DAM + standard DL gives 0.9503.

MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL INSHITS RESERVED.

Molecules Property Prediction for Drug Discovery

Drug Discovery by predicting Antibacterial properties of molecules

Yang (CS	@Uiowa)
----------	---------

イロト イボト イヨト イヨト

Molecules Property Prediction for Drug Discovery

Traditional Approach for Drug Discovery

• Expensive + Long Cycle

Machine Learning Approach for Drug Discovery

- Data-based for Molecules Properties Prediction
- Efficient & Fast (millions of molecules)

Stokes et al. 2020. Cell.

(日) (同) (三) (三)

MIT AlCures Challenge: 1st Place

Fighting Secondary Effects of Covid by predicting antibacterial properties With DAM, > 5% AUPRC improvement and >2% AUROC improvement

- Collaboration with TAMU
- Optimize GNN
- The Original Result (without using DAM): AUPRC: 0.677

Rank ¢	Model \$	Author 🗢	Submissions ¢	10-fold CV ROC-AUC ᅌ	10-fold CV PRC-AUC ᅌ	Test ROC- AUC 🗢	Test PRC- AUC \$
1		DIVE@TAMU	11			0.957	0.729
2	MolecularG	AIDrug@PA	9			0.7	0.725
3		AGL Team	20			0.675	0.702
4		phucdoitoan@Fujitsu	14	0.898 +/- 0.113	0.508 +/- 0.253	0.867	0.694
5	GB	BI	6			0.698	0.67
6	Chemprop ++	AICures@MIT	4			0.877	0.662
7		Mingjun Liu	3			0.72	0.657
8	Pre-trained OGB-GIN (ensemble)	Weihua Hu@Stanford	2	0.905 +/- 0.133	0.494 +/- 0.333	0.837	0.651

イロト 不得 トイヨト イヨト

MIT AlCures Challenge: 1st Place

Fighting Secondary Effects of Covid by predicting antibacterial properties With DAM, > 5% AUPRC improvement and >2% AUROC improvement

- Collaboration with TAMU
- Optimize GNN
- The Original Result (without using DAM): AUPRC: 0.677

Rank ¢	Model \$	Author 🗢	Submissions ¢	10-fold CV ROC-AUC ᅌ	10-fold CV PRC-AUC ᅌ	Test ROC- AUC 🗢	Test PRC- AUC \$
1		DIVE@TAMU	11			0.957	0.729
2	MolecularG	AIDrug@PA	9			0.7	0.725
3		AGL Team	20			0.675	0.702
4		phucdoitoan@Fujitsu	14	0.898 +/- 0.113	0.508 +/- 0.253	0.867	0.694
5	GB	BI	6			0.698	0.67
6	Chemprop ++	AICures@MIT	4			0.877	0.662
7		Mingjun Liu	3			0.72	0.657
8	Pre-trained OGB-GIN (ensemble)	Weihua Hu@Stanford	2	0.905 +/- 0.133	0.494 +/- 0.333	0.837	0.651

イロト イボト イヨト イヨト

Outline

2 Deep AUC Maximization

3 Use Cases in the Competitions

э

◆□▶ ◆□▶ ◆三▶ ◆三▶

Conclusions

Our Achivements

- A new learning paradigm for DL with imbalanced data
- Provable and Practical Stochastic Algorithms
- For AUROC and AUPRC Maximization
- The 1st Place at Stanford CheXpert Competition
- The 1st Place at MIT AlCures Challenge

イロト イポト イヨト イヨト

Conclusions

LibAUC: www.libauc.org

KEY FEATURES & CAPABILITIES

Easy Installation

AUROC, AUPRC training pipeline with popular deep learning frameworks like PyTorch and TensorFlow.

Large-scale Learning

Robust strategies to handle large-scale optimization on various types of data and make the optimization smoothly.

Distributed Training

Support for various distributed learning methods that accelerate training efficiency and secure data privacy.

ML Benchmarks

LibAUC provides a collection of imbalanced classification benchmarks on various applications with easy-to-use data pipeline.

イロト 不得下 イヨト イヨト

Yang (CS@Uiowa)

36 / 41

3

Acknowledgements: Students

Current and Former PhD Students and Postdoc:

Zhuoning Yuan

Mingrui Liu (AP, GMU)

Zhishuai Guo

Yi Xu (Alibaba)

Yan Yan (AP, WSU)

Yang (CS@Uiowa)

3

Conclusions

Acknowledgements: Collaborators

Milan Sonka (Ulowa)

Nitesh Chawla (ND)

Hassan Rafique (UIndy)

Qihang Lin (Ulowa)

Yiming Ying (UAlbany)

Shuiwang Ji (TAMU)

◆□▶ ◆□▶ ◆三▶ ◆三▶

э

Conclusions

Acknowledgements: Funding Support

Funding Support from NSF Career Award

э

イロト イボト イヨト イヨト

References

This talk include some results from the following Papers:

- Non-Convex Min-Max Optimization: Provable Algorithms and Applications in Machine Learning. Optimization Methods and Software, 2020 (2018).
- **2** Stochastic AUC Maximization with Deep Neural Networks. ICLR'20.
- Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks. ICML'20.
- Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-Max Optimization. NeurIPS'20.
- Federated Deep AUC Maximization for Heterogeneous Data with a Constant Communication Complexity. ICML'21.
- Fast Objective and Duality Gap Convergence for Non-convex Strongly-concave Min-max Problems. arXiv, 2020.
- Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification. arXiv, 2020.
- Stochastic Optimization of Areas Under Precision-Recall Curves with Provable Convergence. arXiv, 2021.

3

イロト 不得下 イヨト イヨト

THANK YOU!

QUESTIONS?

Collaborations are more than Welcome!

э

イロト 不得下 イヨト イヨト