SMT-based Model Checking

Cesare Tinelli

The University of Iowa

STRESS School 2014
Modeling Computational Systems

Software or hardware systems can be often represented as a state transition system $\mathcal{M} = (S, I, T, \mathcal{L})$ where

- S is a set of states, the state space
- $I \subseteq S$ is a set of initial states
- $T \subseteq S \times S$ is a (right-total) transition relation
- $\mathcal{L} : S \rightarrow 2^\mathcal{P}$ is a labeling function where \mathcal{P} is a set of state predicates

Typically, the state predicates denote variable-value pairs $x = v$
Model Checking

Software or hardware systems can be often represented as a state transition system \(\mathcal{M} = (S, I, T, L) \)

\(\mathcal{M} \) can be seen as a model both

1. in an engineering sense:

 an abstraction of the real system

 and

2. in a mathematical logic sense:

 a Kripke structure in some modal logic
Model Checking

The functional properties of a computational system can be expressed as \textit{temporal} properties

- for a suitable model $\mathcal{M} = (S, I, T, L)$ of the system
- in a suitable temporal logic
Model Checking

The functional properties of a computational system can be expressed as *temporal* properties

- for a suitable model $\mathcal{M} = (S, I, T, L)$ of the system
- in a suitable temporal logic

Two main classes of properties:

- *Safety properties*: nothing bad ever happens
- *Liveness properties*: something good eventually happens
The functional properties of a computational system can be expressed as *temporal* properties

- for a suitable model \(M = (S, I, \mathcal{T}, \mathcal{L}) \) of the system
- in a suitable temporal logic

Two main classes of properties:

- *Safety properties*: nothing bad ever happens
- *Liveness properties*: something good eventually happens

I will focus on checking safety in this talk
Talk Roadmap

- Checking safety properties
- Logic-based model checking
- Satisfiability Modulo Theories
 - theories
 - solvers
- SMT-based model checking
 - main approaches
 - k-induction
 - basic method
 - enhancements
 - interpolation
Basic Terminology

Let $\mathcal{M} = (\mathcal{S}, \mathcal{I}, \mathcal{T}, \mathcal{L})$ be a transition system.

The set \mathcal{R} of \textit{reachable states (of \mathcal{M})} is the smallest subset of \mathcal{S} such that

1. $\mathcal{I} \subseteq \mathcal{R}$ \hspace{1cm} (initial states are reachable)
2. $(\mathcal{R} \bowtie \mathcal{T}) \subseteq \mathcal{R}$ \hspace{1cm} (\mathcal{T}-successors of reachable states are reachable)
Basic Terminology

Let $\mathcal{M} = (S, \mathcal{I}, T, L)$ be a transition system

The set \mathcal{R} of \textit{reachable states (of \mathcal{M})} is the smallest subset of S such that

1. $\mathcal{I} \subseteq \mathcal{R}$ (initial states are reachable)
2. $(\mathcal{R} \uplus T) \subseteq \mathcal{R}$ (T-successors of reachable states are reachable)

Let $\mathcal{E} \subseteq S$ (an \textit{error property})

The set $\mathcal{B}_\mathcal{E}$ of \textit{bad states wrt \mathcal{E}} is the smallest subset of S such that

1. $\mathcal{E} \subseteq \mathcal{B}_\mathcal{E}$ (error states are bad)
2. $(T \otimes \mathcal{B}_\mathcal{E}) \subseteq \mathcal{B}_\mathcal{E}$ (T-predecessors of bad states are bad)
\(\mathcal{M} \) is safe wrt an error property \(\mathcal{E} \) if \(\mathcal{R} \cap \mathcal{E} = \emptyset \) iff \(\mathcal{I} \cap \mathcal{B}_\mathcal{E} = \emptyset \)

\[\begin{align*}
\text{safe} & \quad \text{unsafe} \\
\mathcal{R} & \quad \mathcal{E} \\
\mathcal{I} & \quad \mathcal{B}_\mathcal{E}
\end{align*} \]
A state property $\mathcal{P} \subseteq S$ is \textit{invariant (for \mathcal{M})} iff $\mathcal{R} \subseteq \mathcal{P}$

\begin{itemize}
 \item \textbf{Invariant:} $\mathcal{P} \subset \mathcal{R} \\ S$
 \item \textbf{Not Invariant:} \mathcal{P} overlaps $\mathcal{R} \\ S$
\end{itemize}

\textbf{Note:} \mathcal{P} is invariant for \mathcal{M} iff \mathcal{M} is safe wrt $S \setminus \mathcal{P}$
Checking Safety

In principle, to check that \mathcal{M} is safe wrt \mathcal{E} it suffices to

1. compute \mathcal{R} and (Forward reachability)
2. check that $\mathcal{R} \cap \mathcal{E} = \emptyset$
Checking Safety

In principle, to check that \mathcal{M} is safe wrt \mathcal{E} it suffices to

1. compute \mathcal{R} and
2. check that $\mathcal{R} \cap \mathcal{E} = \emptyset$ \hspace{1cm} (Forward reachability)

or

1. compute $\mathcal{B}_\mathcal{E}$ and
2. check that $\mathcal{I} \cap \mathcal{B}_\mathcal{E} = \emptyset$ \hspace{1cm} (Backward reachability)
Checking Safety

In principle, to check that \mathcal{M} is safe wrt \mathcal{E} it suffices to

1. compute \mathcal{R} and
2. check that $\mathcal{R} \cap \mathcal{E} = \emptyset$ (Forward reachability)

or

1. compute $\mathcal{B}_\mathcal{E}$ and
2. check that $\mathcal{I} \cap \mathcal{B}_\mathcal{E} = \emptyset$ (Backward reachability)

This can be done explicitly only if \mathcal{S} is finite, and relatively small ($< 10^M$ states)
Checking Safety

In principle, to check that \mathcal{M} is safe wrt \mathcal{E} it suffices to

1. compute \mathcal{R} and
2. check that $\mathcal{R} \cap \mathcal{E} = \emptyset$ \hspace{1cm} (Forward reachability)

or

1. compute $\mathcal{B}_\mathcal{E}$ and
2. check that $\mathcal{I} \cap \mathcal{B}_\mathcal{E} = \emptyset$ \hspace{1cm} (Backward reachability)

Alternatively, we can represent \mathcal{M} symbolically and use

- BDD-based methods, if \mathcal{S} is finite,
- automata-based methods,
- logic-based methods, or
- abstract interpretation methods
Checking Safety

In principle, to check that \mathcal{M} is safe wrt \mathcal{E} it suffices to

1. compute \mathcal{R} and
2. check that $\mathcal{R} \cap \mathcal{E} = \emptyset$ (Forward reachability)

or

1. compute $\mathcal{B}_\mathcal{E}$ and
2. check that $\mathcal{I} \cap \mathcal{B}_\mathcal{E} = \emptyset$ (Backward reachability)

Alternatively, we can represent \mathcal{M} symbolically and use

- BDD-based methods, if \mathcal{S} is finite,
- automata-based methods,
- logic-based methods, or
- abstract interpretation methods
Logic-based Symbolic Model Checking

Applicable if we can encode $\mathcal{M} = (S, I, T, L)$ in some (classical) logic \mathcal{L} with decidable entailment $\models_\mathcal{L}$

($\varphi \models_\mathcal{L} \psi$ iff $\varphi \land \neg \psi$ is unsatisfiable in \mathcal{L})
Logic-based Symbolic Model Checking

Applicable if we can encode $\mathcal{M} = (S, I, T, L)$ in some (classical) logic \mathcal{L} with decidable entailment $\models_{\mathcal{L}}$

$(\varphi \models_{\mathcal{L}} \psi \iff \varphi \land \neg \psi$ is unsatisfiable in $\mathcal{L})$

Examples of \mathcal{L}:

- Propositional logic
- Quantified Boolean Formulas
- Bernay-Schönfinkel logic
- Quantifier-free real (or linear integer) arithmetic with arrays and uninterpreted functions
- ...
Logical encodings of transitions systems

\[\mathcal{M} = (S, \mathcal{I}, \mathcal{T}, \mathcal{L}) \quad X: \text{set of variables} \quad V: \text{set of values in } \mathbb{L} \]

Not.:: if \(x = (x_1, \ldots, x_n) \) and \(s = (v_1, \ldots, v_n) \), \(\phi[s] := \phi[v_1/x_1, \ldots, v_n/x_n] \)
Logical encodings of transitions systems

\[\mathcal{M} = (S, \mathcal{I}, \mathcal{T}, \mathcal{L}) \quad X: \text{set of variables} \quad V: \text{set of values in } \mathbb{L} \]

Not.: if \(x = (x_1, \ldots, x_n) \) and \(s = (v_1, \ldots, v_n) \), \(\phi[s] := \phi[v_1/x_1, \ldots, v_n/x_n] \)

- states \(s \in S \) encoded as \(n \)-tuples of \(V^n \)
Logical encodings of transitions systems

\[M = (S, I, T, \mathcal{L}) \quad X: \text{set of } \textit{variables} \quad V: \text{set of } \textit{values} \text{ in } \mathbb{L} \]

\textit{Not.:} if \(x = (x_1, \ldots, x_n) \) and \(s = (v_1, \ldots, v_n) \), \(\phi[s] := \phi[v_1/x_1, \ldots, v_n/x_n] \)

- states \(s \in S \) encoded as \(n \)-tuples of \(V^n \)
- \(I \) encoded as a formula \(I[x] \) with free variables \(x \) such that

\[s \in I \text{ iff } \models I[s] \]
Logical encodings of transitions systems

\[\mathcal{M} = (S, I, T, \mathcal{L}) \quad X: \text{set of variables} \quad V: \text{set of values in } \mathbb{L} \]

Not.: if \(x = (x_1, \ldots, x_n) \) and \(s = (v_1, \ldots, v_n) \), \(\phi[s] := \phi[v_1/x_1, \ldots, v_n/x_n] \)

- states \(s \in S \) encoded as \(n \)-tuples of \(V^n \)
- \(I \) encoded as a formula \(I[x] \) with free variables \(x \) such that
 \[s \in I \text{ iff } \models_{\mathbb{L}} I[s] \]
- \(T \) encoded as a formula \(T[x, x'] \) such that
 \[\models_{\mathbb{L}} T[s, s'] \text{ for all } (s, s') \in T \]
Logical encodings of transitions systems

\(\mathcal{M} = (S, \mathcal{I}, \mathcal{T}, \mathcal{L}) \quad X: \text{set of variables} \quad V: \text{set of values} \) in \(\mathbb{L} \)

Not.: if \(x = (x_1, \ldots, x_n) \) and \(s = (v_1, \ldots, v_n) \), \(\phi[s] := \phi[v_1/x_1, \ldots, v_n/x_n] \)

- states \(s \in S \) encoded as \(n \)-tuples of \(V^n \)
- \(\mathcal{I} \) encoded as a formula \(I[x] \) with free variables \(x \) such that
 \[
 s \in \mathcal{I} \iff \models \mathbb{L} I[s]
 \]
- \(\mathcal{T} \) encoded as a formula \(T[x, x'] \) such that
 \[
 \models \mathbb{L} T[s, s'] \text{ for all } (s, s') \in \mathcal{T}
 \]
- State properties encoded as formulas \(P[x] \)
Strongest Inductive Invariant

The *strongest inductive invariant (for M in \mathbb{L})* is a formula $R[x]$ such that $\models_{\mathbb{L}} R[s]$ iff $s \in R$
Strongest Inductive Invariant

The *strongest inductive invariant (for \mathcal{M} in \mathbb{L})* is a formula $R[x]$ such that $\models_{\mathbb{L}} R[s]$ iff $s \in \mathcal{R}$.

Suppose we can compute R from I and T. Then
Strongest Inductive Invariant

The *strongest inductive invariant (for M in \mathbb{L})* is a formula $R[x]$ such that $\models_{\mathbb{L}} R[s]$ iff $s \in R$

Suppose we can compute R from I and T. Then checking that M is safe wrt a property $P[x]$ reduces to checking that $R[x] \models_{\mathbb{L}} \neg P[x]$
Strongest Inductive Invariant

The *strongest inductive invariant (for \mathcal{M} in \mathbb{L})* is a formula $R[x]$ such that $\models_{\mathbb{L}} R[s]$ iff $s \in \mathcal{R}$.

Suppose we can compute R from I and T. Then checking that a property $P[x]$ is invariant for \mathcal{M} reduces to checking that $R[x] \models_{\mathbb{L}} P[x]$.
Strongest Inductive Invariant

The *strongest inductive invariant (for M in L)* is a formula $R[x]$ such that $\models_L R[s]$ iff $s \in R$

Suppose we can compute R from I and T. Then

checking that a property $P[x]$ is invariant for M reduces to
checking that $R[x] \models_L P[x]$

Problem: R may be very expensive or impossible to compute, or not even representable in L
Strongest Inductive Invariant

The *strongest inductive invariant (for \mathcal{M} in \mathbb{L})* is a formula $R[x]$ such that $\models_{\mathbb{L}} R[s]$ iff $s \in R$

Suppose we can compute R from I and T. Then

checking that a property $P[x]$ is invariant for \mathcal{M} reduces to checking that $R[x] \models_{\mathbb{L}} P[x]$

Problem: R may be very expensive or impossible to compute, or not even representable in \mathbb{L}

Logic-based model checking is about approximating R as efficiently as possible and as precisely as needed
Main Logic-based Approaches

- Bounded model checking [CBRZ01, AMP06, BHvMW09]
- Interpolation-based model checking [McM03, McM05a]
- Property Directed Reachability [BM07, Bra10, EMB11]
- Temporal induction [SSS00, dMRS03, HT08]
- Backward reachability [ACJT96, GR10]
- ...

Past accomplishments: mostly based on propositional logic, with SAT solvers as reasoning engines

New frontier: based on logics decided by solvers for Satisfiability Modulo Theories [Seb07, BSST09]
Model Checking Modulo Theories

We invariably reason about transition systems in the context of some theory \mathcal{T} of their data types.

Examples

- Pipelined microprocessors: theory of equality, atoms like $f(g(a, b), c) = g(c, a)$
- Timed automata: theory of integers/reals, atoms like $x - y < 2$
- General software: combination of theories, atoms like $a[2 \times j + 1] + x \geq \text{car}(l) - f(x)$

Such reasoning can be reduced to checking the satisfiability of certain formulas in (or *modulo*) the theory \mathcal{T}.
Satisfiability Modulo Theories

Let \mathcal{T} be a first-order theory of signature Σ

The \mathcal{T}-satisfiability problem for a class \mathcal{C} of Σ-formulas: determine for $\varphi[x] \in \mathcal{C}$ if $\{\exists x \varphi\}$ holds in a model of \mathcal{T}
Satisfiability Modulo Theories

Fact: the \mathcal{T}-satisfiability of quantifier-free formulas is decidable for many theories \mathcal{T} of interest in model checking
Satisfiability Modulo Theories

Fact: the \mathcal{T}-satisfiability of quantifier-free formulas is decidable for many theories \mathcal{T} of interest in model checking

- Equality with “Uninterpreted Function Symbols”
- Linear Arithmetic (Real and Integer)
- Arrays (i.e., updatable maps)
- Finite sets and multisets
- Strings
- Inductive data types (enumerations, lists, trees, . . .)
- . . .
Satisfiability Modulo Theories

Fact: the \mathcal{T}-satisfiability of quantifier-free formulas is decidable for many theories \mathcal{T} of interest in model checking.

Thanks to advances in SAT and in decision procedures, this can be done very efficiently in practice by current SMT solvers.
Model Checking: SAT or SMT?

SMT encodings in model checking provide several advantages over SAT encodings

- more powerful language

 (unquantified) first-order formulas instead of Boolean formulas

- satisfiability still efficiently decidable

- similar high level of automation

- more natural and compact encodings

- greater scalability

- not limited to finite-state systems
Model Checking: SAT or SMT?

SMT encodings in model checking provide several advantages over SAT encodings.

SMT-based model checking techniques are blurring the line between traditional model checking and deductive verification.
Talk Roadmap

✓ Checking safety properties
✓ Logic-based model checking
✓ Satisfiability Modulo Theories
 ✓ theories
 ✓ solvers

• SMT-based model checking
 • main approaches
 • k-induction
 • basic method
 • enhancements
 • interpolation
SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking
• Bounded model checking
• Backward reachability
• Temporal induction (aka \(k\)-induction)
• Interpolation-based model checking
SMT-based Model Checking

A few approaches:

- Predicate abstraction + finite model checking
- Bounded model checking
- Backward reachability
- Temporal induction (aka κ-induction)
- Interpolation-based model checking

Will focus more on temporal induction
Technical Preliminaries

Let’s fix

- \mathbb{L}, a logic decided by an SMT solver
 (e.g., quantifier-free linear arithmetic and EUF)
- $M = (I[x], T[x, x'])$, an encoding in \mathbb{L} of a system \mathcal{M}
- $P[x]$, a state property to be proven invariant for \mathcal{M}
Example: Parametric Resettable Counter

Model

Vars
input pos int n_0
input bool r
int c, n

Initialization
\[c := 1 \]
\[n := n_0 \]

Transitions
\[n' := n \]
\[c' := \begin{cases} 1 & \text{if } (r' \lor c = n) \\ c + 1 & \text{else} \end{cases} \]

The transition relation contains infinitely many instances of the schema above, one for each \(n_0 > 0 \)
Example: Parametric Resettable Counter

Model

Vars
- input pos int n_0
- input bool r
- int c, n

Initialization
- c := 1
- n := n_0

Transitions
- n' := n
- c' := if (r' or c = n) then 1 else c + 1

Encoding in $\mathbb{L} = \text{LIA}$

$x := (c, n, r, n_0)$

$I[x] := (c = 1) \land (n = n_0)$

$T[x, x'] := (n' = n) \land (r' \lor (c = n) \rightarrow (c' = 1)) \land (\neg r' \land (c \neq n) \rightarrow (c' = c + 1))$

Property

$P[x] := c \leq n$
Inductive Reasoning

Let $M = (I[x], T[x, x'])$
Inductive Reasoning

Let \(M = (I[x], T[x, x']) \)

To prove \(P[x] \) invariant for \(M \) it suffices to show that it is *inductive* for \(M \), i.e.,

1. \(I[x] \models L P[x] \) (base case)

and

2. \(P[x] \land T[x, x'] \models L P[x'] \) (inductive step)
Inductive Reasoning

Let \(M = (I[x], T[x, x']) \)

To prove \(P[x] \) invariant for \(M \) it suffices to show that it is \textit{inductive} for \(M \), i.e.,

1. \(I[x] \models _L P[x] \) (base case)

 and

2. \(P[x] \land T[x, x'] \models _L P[x'] \) (inductive step)

An SMT solver can check both entailments above
\((\varphi \models _L \psi \iff \varphi \land \neg \psi \text{ is unsatisfiable in } _L) \)
Inductive Reasoning

Let \(M = (I[x], T[x, x']) \)

To prove \(P[x] \) invariant for \(M \) it suffices to show that it is \textit{inductive} for \(M \), i.e.,

1. \(I[x] \models L P[x] \) (base case)
 and
2. \(P[x] \land T[x, x'] \models L P[x'] \) (inductive step)

\textbf{Problem:} Not all invariants are inductive

\textbf{Example:} In the parametric resettable counter, \(P := c \leq n + 1 \) is invariant but (2) above is falsifiable, e.g., by \((c, n, r) = (4, 3, false)\) and \((c, n, r)' = (5, 3, false)\)
Improving Induction’s Precision

1. $I[x] \models_L P[x]$

2. $P[x] \land T[x, x'] \models_L P[x']$

A few options:
Improving Induction’s Precision

1. \(I[x] \models_{L} P[x] \)

2. \(P[x] \land T[x, x'] \models_{L} P[x'] \)

A few options:

- **Strengthen** \(P \): find a property \(Q \) such that \(Q[x] \models_{L} P[x] \) and prove \(Q \) inductive
Improving Induction’s Precision

1. \[I[x] \models_L P[x] \]

2. \[P[x] \land T[x, x'] \models_L P[x'] \]

A few options:

- **Strengthen** \(P \): find a property \(Q \) such that \(Q[x] \models_L P[x] \) and prove \(Q \) inductive

 Difficult to automate (but lots of progress at prop. level)
Improving Induction’s Precision

1. \(I[x] \models P[x] \)

2. \(P[x] \land T[x, x'] \models P[x'] \)

A few options:

- **Strengthen** \(P \): find a property \(Q \) such that \(Q[x] \models P[x] \) and prove \(Q \) inductive

 Difficult to automate (but lots of progress at prop. level)

- **Strengthen** \(T \): find another invariant \(Q[x] \) and use \(Q[x] \land T[x, x'] \land Q[x'] \) instead of \(T[x, x'] \)

Improving Induction’s Precision

1. \(I[x] \models_{L} P[x] \)

2. \(P[x] \land T[x, x'] \models_{L} P[x'] \)

A few options:

- **Strengthen** \(P \): find a property \(Q \) such that \(Q[x] \models_{L} P[x] \) and prove \(Q \) inductive

 Difficult to automate (but lots of progress at prop. level)

- **Strengthen** \(T \): find another invariant \(Q[x] \) and use \(Q[x] \land T[x, x'] \land Q[x'] \) instead of \(T[x, x'] \)

 Difficult to automate (but lots of recent progress)
Improving Induction’s Precision

1. \(I[x] \models L P[x] \)

2. \(P[x] \land T[x, x'] \models L P[x'] \)

A few options:

- **Strengthen \(P \):** find a property \(Q \) such that \(Q[x] \models L P[x] \) and prove \(Q \) inductive

 Difficult to automate (but lots of progress at prop. level)

- **Strengthen \(T \):** find another invariant \(Q[x] \) and use \(Q[x] \land T[x, x'] \land Q[x'] \) instead of \(T[x, x'] \)

 Difficult to automate (but lots of recent progress)

- **Consider longer \(T \)-paths:** \(k \)-induction
Improving Induction’s Precision

1. \[I[x] \models P[x] \]

2. \[P[x] \land T[x, x'] \models P[x'] \]

A few options:

- **Strengthen** \(P \): find a property \(Q \) such that \[Q[x] \models P[x] \] and prove \(Q \) inductive

 Difficult to automate (but lots of progress at prop. level)

- **Strengthen** \(T \): find another invariant \(Q[x] \) and use
 \[Q[x] \land T[x, x'] \land Q[x'] \] instead of \(T[x, x'] \)

 Difficult to automate (but lots of recent progress)

- **Consider longer** \(T \)-paths: \(k \)-induction

 Easy to automate (but fairly weak in its basic form)
Basic k-Induction (Naive Algorithm)

Notation: $I_i := I[x_i]$, $P_i := P[x_i]$, $T_i := T[x_{i-1}, x_i]$

for $i = 0$ to ∞ do
 if not $(I_0 \land T_1 \land \cdots \land T_i \models P_i)$ then
 return fail
 if $(P_0 \land \cdots \land P_i \land T_1 \land \cdots \land T_{i+1} \models P_{i+1})$ then
 return success

P is k-inductive for some $k \geq 0$, if the first entailment holds for all $i = 0, \ldots, k$ and the second entailment holds for $i = k$

Example: In the parametric resettable counter, $P := c \leq n + 1$ is 1-inductive, but not 0-inductive
Basic k-Induction (Naive Algorithm)

Notation: $I_i := I[x_i]$, $P_i := P[x_i]$, $T_i := T[x_{i-1}, x_i]$

for $i = 0$ to ∞ do
 if not $(I_0 \land T_1 \land \cdots \land T_i \models_{\mathbb{L}} P_i)$ then
 return fail
 if $(P_0 \land \cdots \land P_i \land T_1 \land \cdots \land T_{i+1} \models_{\mathbb{L}} P_{i+1})$ then
 return success

P is k-inductive for some $k \geq 0$, if the first entailment holds for all $i = 0, \ldots, k$ and the second entailment holds for $i = k$

Note:

- inductive $= 0$-inductive
- k-inductive $\Rightarrow (k + 1)$-inductive \Rightarrow invariant
- some invariants are not k-inductive for any k
Enhancements to k-Induction

- Abstraction and refinement
- Path compression
- Termination checks
- Property strengthening
- Invariant generation
- Multiple property checking
Path Compression (simplified)

Let $F[x, y]$ be a formula s.t. $F[x, y] \models_{\mathbb{L}} \forall z (T[y, z] \Rightarrow T[x, z])$

(Ex: $F[x, y] := x = y$)
Path Compression (simplified)

Let $F[x, y]$ be a formula s.t. $F[x, y] \models \forall z (T[y, z] \Rightarrow T[x, z])$

(Ex: $F[x, y] := x = y$)

Can strengthen the premise of the inductive step as follows

2. $P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \land C_k \models P_{k+1}$

where $C_k := \bigwedge_{0 \leq i < j \leq k} \neg F[x_i, x_j]$
Path Compression (simplified)

Let $F[x, y]$ be a formula s.t. $F[x, y] \models_{L} \forall z (T[y, z] \Rightarrow T[x, z])$

(Ex: $F[x, y] := x = y$)

Can strengthen the premise of the inductive step as follows

2. $P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \land C_k \models_{L} P_{k+1}$

where $C_k := \bigwedge_{0 \leq i < j \leq k} \neg F[x_i, x_j]$

Rationale: Consider a path that breaks original (2)

$\pi := s_0, \ldots, s_i, s_{i+1}, \ldots, s_j, s_{j+1}, \ldots, s_{k+1}$

with $F[s_i, s_j]$ and $i < j$. If π is on an actual execution of M, so is the shorter path $s_0, \ldots, s_i, s_{j+1}, \ldots, s_{k+1}$
Path Compression (simplified)

Let $F[x, y]$ be a formula s.t. $F[x, y] \models \forall z (T[y, z] \Rightarrow T[x, z])$

(Ex: $F[x, y] := x = y$

Can further strengthen the premise of the inductive step with

2. $P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \land C_k \land N_k \models P_{k+1}$

where $N_k := \bigwedge_{1 \leq i \leq k+1} \neg I[x_i]$
Path Compression (simplified)

Let $F[x, y]$ be a formula s.t. $F[x, y] \models \forall z (T[y, z] \Rightarrow T[x, z])$
(Ex: $F[x, y] := x = y$)

Can further strengthen the premise of the inductive step with

2. $P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \land C_k \land N_k \models P_{k+1}$

where $N_k := \bigwedge_{1 \leq i \leq k+1} \neg I[x_i]$

Rationale: if $s_0, \ldots, s_i, \ldots, s_{k+1}$ breaks original (2) and $I[s_i]$, then
s_i, \ldots, s_{k+1} breaks the base case in the first place
Path Compression (simplified)

Let $F[x, y]$ be a formula s.t. $F[x, y] \models \forall z (T[y, z] \Rightarrow T[x, z])$
(Ex: $F[x, y] := x = y$)

Can further strengthen the premise of the inductive step with

2. $P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \land C_k \land N_k \models \models P_{k+1}$

where $N_k := \bigwedge_{1 \leq i \leq k+1} \neg I[x_i]$.

Better F’s than $x = y$ can be generated by an analysis of \mathcal{M}

More sophisticated notions of compressions, based on forward and backward simulation, have been proposed [dMRS03]
Termination check

\[C_k := \bigwedge_{0 \leq i < j \leq k} \neg F[x_i, x_j] \]

for \(k = 0 \) to \(\infty \) do
 if not \((I_0 \land T_1 \land \cdots \land T_k \models_L P_k) \) then
 return fail
 if \((P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \models_L P_{k+1}) \) then
 return success
 if \((I_0 \land T_1 \land \cdots \land T_{k+1} \models_L \neg C_{k+1}) \) then
 return success
Termination check

\[C_k := \bigwedge_{0 \leq i < j \leq k} \neg F[x_i, x_j] \]

for \(k = 0 \) to \(\infty \) do
 if not \((I_0 \land T_1 \land \cdots \land T_k \models_{\mathbb{L}} P_k) \) then
 return fail
 if \((P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \models_{\mathbb{L}} P_{k+1}) \) then
 return success
 if \((I_0 \land T_1 \land \cdots \land T_{k+1} \models_{\mathbb{L}} \neg C_{k+1}) \) then
 return success

Rationale: If the last test succeeds, every execution of length \(k + 1 \) is compressible to a shorter one. Hence, the whole reachable state space has been covered without finding counterexamples for \(P \)
Termination check

\[C_k := \bigwedge_{0 \leq i < j \leq k} \neg F[x_i, x_j] \]

for \(k = 0 \) to \(\infty \) do

if not \((I_0 \land T_1 \land \cdots \land T_k \models_{\mathbb{L}} P_k)\) then
 return fail
if \((P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \models_{\mathbb{L}} P_{k+1})\) then
 return success
if \((I_0 \land T_1 \land \cdots \land T_{k+1} \models_{\mathbb{L}} \neg C_{k+1})\) then
 return success

Note: The termination check may slow down the process but increases precision in some cases.
It even makes \(k \)-induction terminating, and so complete, whenever \(F \) is an equivalence and the quotient \(S/F \) is finite (e.g., timed automata)
(Undirected) Invariant Generation

1. Generate invariants for \mathcal{M} independently from P, either before or in parallel with k-induction

2. For each invariant $J[x]$, add $J_0 \land \cdots \land J_{k+1}$ to induction hypothesis in induction step

$$P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \models P_{k+1}$$
(Undirected) Invariant Generation

1. Generate invariants for \mathcal{M} independently from P, either before or in parallel with k-induction

2. For each invariant $J[x]$, add $J_0 \land \cdots \land J_{k+1}$ to induction hypothesis in induction step

$$P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \models L.P_{k+1}$$

Correctness: states not satisfying J are definitely unreachable and so can be pruned
(Undirected) Invariant Generation

1. Generate invariants for \mathcal{M} independently from P, either before or in parallel with k-induction

2. For each invariant $J[x]$, add $J_0 \land \cdots \land J_{k+1}$ to induction hypothesis in induction step

$$P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \models \ P_{k+1}$$

Correctness: states not satisfying J are definitely unreachable and so can be pruned

Viability: can use any property-independent method for invariant generation (template-based [KGT11], abstract interpretation-based, …)
(Undirected) Invariant Generation

1. Generate invariants for \mathcal{M} independently from P, either before or in parallel with k-induction

2. For each invariant $J[x]$, add $J_0 \land \cdots \land J_{k+1}$ to induction hypothesis in induction step

\[
P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \models P_{k+1}
\]

Effectiveness: when P is invariant, can substantially improve

- speed, by making P k-inductive for a smaller k, and
- precision, by turning P from k-inductive for no k to k-inductive for some k
(Undirected) Invariant Generation

1. Generate invariants for \mathcal{M} independently from P, either before or in parallel with k-induction

2. For each invariant $J[x]$, add $J_0 \land \cdots \land J_{k+1}$ to induction hypothesis in induction step

$$P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \models L P_{k+1}$$

Shortcomings:

- Computed invariants may not prune the right unreachable states
- Adding too many invariants may swamp the SMT solver
Property Strengthening

Suppose in the k-induction loop the SMT solver finds a counterexample s_0, \ldots, s_{k+1} for

$$2. \quad P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \models_{\mathbb{L}} P_{k+1}$$
Property Strengthening

Suppose in the k-induction loop the SMT solver finds a counterexample s_0, \ldots, s_{k+1} for

$$2. \quad P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \models L P_{k+1}$$

Then this property is satisfied by s_0:

$$F[x_0] := \exists x_1, \ldots, x_{k+1}(P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \land \neg P_{k+1})$$
Property Strengthening

Suppose in the k-induction loop the SMT solver finds a counterexample s_0, \ldots, s_{k+1} for

\[2. \quad P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \models \neg P_{k+1} \]

Then this property is satisfied by s_0:

\[F[x_0] := \exists x_1, \ldots, x_{k+1}(P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \land \neg P_{k+1}) \]

(Naive) Algorithm:

1. find a $G[x]$ in \mathbb{L} satisfied by s_0 and s.t. $G[x] \models F[x]$
2. restart the process with $P[x] \land \neg G[x]$ in place of $P[x]$
Correctness of Property Strengthening

\[F[x_0] := \exists x_1, \ldots, x_{k+1} \left(P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \land \neg P_{k+1} \right) \]

When \(F \) is satisfied by some \(s_0 \), we

1. find a \(G[x] \) in \(\mathbb{L} \) satisfied by \(s_0 \) and s.t. \(G[x] \models_{\mathbb{L}} F[x] \)
2. replace \(P[x] \) with \(Q[x] := P[x] \land \neg G[x] \)
3. “restart” the \(k \)-induction process

- If all states satisfying \(G \) are unreachable, we can remove them from consideration in the inductive step
- Otherwise, \(P \) is not invariant and the base case is guaranteed to fail with \(Q \)
Viability of Property Strengthening

\[F[x_0] := \exists x_1, \ldots, x_{k+1} \ (P_0 \land \cdots \land P_k \land T_1 \land \cdots \land T_{k+1} \land \neg P_{k+1}) \]

When \(F \) is satisfied by some \(s_0 \), we

1. find a \(G[x] \) in \(\mathbb{L} \) satisfied by \(s_0 \) and s.t. \(G[x] \models_{\mathbb{L}} F[x] \)
2. replace \(P[x] \) with \(Q[x] := P[x] \land \neg G[x] \)
3. “restart” the \(k \)-induction process

- Normally, computing a \(G \) equivalent to \(F \) requires QE, which may be impossible or very expensive
- Under-approximating \(F \) might be cheaper but less effective in pruning unreachable states.
Multiple Property Checking

Often one wants to prove several properties P^1, \ldots, P^n
Multiple Property Checking

Often one wants to prove several properties P^1, \ldots, P^n

Proving them separately is time consuming and ineffective
Multiple Property Checking

Often one wants to prove several properties P^1, \ldots, P^n

Proving them separately is time consuming and ineffective

Proving them together as $P := P^1 \land \cdots \land P^n$ is inadequate if
Multiple Property Checking

Often one wants to prove several properties P^1, \ldots, P^n

Proving them separately is time consuming and ineffective

Proving them together as $P := P^1 \land \cdots \land P^n$ is inadequate if

• some are invariants and some are not:
 then the whole P is not invariant
Multiple Property Checking

Often one wants to prove several properties P^1, \ldots, P^n

Proving them separately is time consuming and ineffective

Proving them together as $P := P^1 \land \cdots \land P^n$ is inadequate if

- some are invariants and some are not: then the whole P is not invariant
- they are k-inductive for different k’s: then P is k-inductive only for the largest k
Multiple Property Checking

Often one wants to prove several properties P^1, \ldots, P^n

Proving them separately is time consuming and ineffective

Proving them together as $P := P^1 \land \cdots \land P^n$ is inadequate if

- some are invariants and some are not: then the whole P is not invariant
- they are k-inductive for different k’s: then P is k-inductive only for the largest k

Solution: Incremental multi-property k-induction
Incremental Multi-Property k-Induction

Main idea:
Incremental Multi-Property k-Induction

Main idea:

• Use $P^1 \land \cdots \land P^n$ but be aware of its components

• When basic case fails,
 1. identify falsified properties
 2. remove them from the problem
 3. repeat the step
Incremental Multi-Property \(k \)-Induction

Main idea:

- Use \(P^1 \land \cdots \land P^n \) but be aware of its components

- When basic case fails,
 1. identify falsified properties
 2. remove them from the problem
 3. repeat the step

- When inductive step fails,
 1. set falsified properties aside for next iteration (with increased \(k \))
 2. repeat step and (1) until success or no more properties
 3. add proven properties as invariants for next iteration
Incremental Multi-Property k-Induction

Pros:

• Much better from an HCI point of view
• Proving multiple invariants in conjunction is easier than proving them separately
• adding proven properties as invariants often obviates the need for externally provided invariants
Incremental Multi-Property k-Induction

Pros:

• Much better from an HCI point of view
• Proving multiple invariants in conjunction is easier than proving them separately
• Adding proven properties as invariants often obviates the need for externally provided invariants

Cons:

• More complex implementation
• Having several unrelated properties can diminish the effectiveness of simplifications based on the cone of influence
Talk Roadmap

✓ Checking safety properties

✓ Logic-based model checking

✓ Satisfiability Modulo Theories
 ✓ theories
 ✓ solvers

• SMT-based model checking
 ✓ main approaches
 ✓ k-induction
 ✓ basic method
 ✓ enhancements

• interpolation
Approximating R with Interpolation

Recall: If $R[x]$ is the strongest inductive invariant for \mathcal{M} in \mathbb{L}, \mathcal{M} is safe wrt some $E[x]$ iff $R[x] \land E[x] \models \perp$ ($\perp = \text{false}$)

Problem: Such invariant may be very expensive or impossible to compute, or not even representable in \mathbb{L}
Approximating R with Interpolation

Recall: If $R[x]$ is the strongest inductive invariant for \mathcal{M} in \mathbb{L}, \mathcal{M} is safe wrt some $E[x]$ iff $R[x] \land E[x] \models_\mathbb{L} \bot$ ($\bot = \text{false}$)

Problem: Such invariant may be very expensive or impossible to compute, or not even representable in \mathbb{L}

Observation: It suffices to compute an $\hat{R}[x]$ such that

- $R[x] \models_\mathbb{L} \hat{R}[x]$ (\(\hat{R}\) over-approximates R)
- $\hat{R}[x] \land E[x] \models_\mathbb{L} \bot$ (\(\hat{R}\) is disjoint with E)
Approximating R with Interpolation

Recall: If $R[x]$ is the strongest inductive invariant for \mathcal{M} in \mathbb{L}, \mathcal{M} is safe wrt some $E[x]$ iff $R[x] \land E[x] \models_{\mathbb{L}} \perp$ ($\perp = \text{false}$)

Problem: Such invariant may be very expensive or impossible to compute, or not even representable in \mathbb{L}

Observation: It suffices to compute an $\hat{R}[x]$ such that

- $R[x] \models_{\mathbb{L}} \hat{R}[x]$ (\hat{R} over-approximates R)
- $\hat{R}[x] \land E[x] \models_{\mathbb{L}} \perp$ (\hat{R} is disjoint with E)

A solution: Use theory interpolants to compute $\hat{R}[x]$
Logical Interpolation (simplified)

A logic \mathcal{L} has interpolation if

for all $A[y, x]$ and $B[x, z]$ in \mathcal{L} with $A[y, x] \land B[x, z] \models_{\mathcal{L}} \bot$

there is a $P[x]$ in \mathcal{L} such that

$$A[y, x] \models_{\mathcal{L}} P[x] \quad \text{and} \quad P[x] \land B[x, z] \models_{\mathcal{L}} \bot$$

P is an interpolant of A and B
Logical Interpolation (simplified)

A logic \mathbb{L} has interpolation if

for all $A[y, x]$ and $B[x, z]$ in \mathbb{L} with $A[y, x] \land B[x, z] \models_{\mathbb{L}} \bot$

there is a $P[x]$ in \mathbb{L} such that

$$A[y, x] \models_{\mathbb{L}} P[x] \quad \text{and} \quad P[x] \land B[x, z] \models_{\mathbb{L}} \bot$$

P is an interpolant of A and B

Intuitively, P

• is an abstraction of A from the viewpoint of B
• summarizes and explains in terms of the shared variables x why A is inconsistent with B
Logical Interpolation (simplified)

A logic \mathcal{L} has interpolation if

for all $A[y, x]$ and $B[x, z]$ in \mathcal{L} with $A[y, x] \land B[x, z] \models \bot$

there is a $P[x]$ in \mathcal{L} such that

$$A[y, x] \models P[x] \quad \text{and} \quad P[x] \land B[x, z] \models \bot$$

P is an interpolant of A and B

Note: If \mathcal{L} has quantifier elimination, the strongest interpolant (wrt \models) is equivalent to $\exists y. A[y, x]$
Logical Interpolation (simplified)

A logic L has interpolation if

for all $A[y, x]$ and $B[x, z]$ in L with $A[y, x] \land B[x, z] \models_L \bot$

there is a $P[x]$ in L such that

$$A[y, x] \models_L P[x] \quad \text{and} \quad P[x] \land B[x, z] \models_L \bot$$

P is an interpolant of A and B

Note: If L has quantifier elimination, the strongest interpolant (wrt \models_L) is equivalent to $\exists y. A[y, x]$

Interpolation is an over-approximation of quantifier elimination
Logics with Interpolation

The quantifier-free fragment of several theories used in SMT has the interpolation properties and computable interpolants:

- EUF [McM05b, FGG+09]
- linear integer arithmetic with div_n [JCG09]
- real arithmetic [McM05b]
- arrays with diff [BGR11]
- combinations of any of the above [YM05, GKT09]
- ...
Interpolation-based Model Checking

Let \((I[x], T[x, x'])\) be an encoding in \(\mathbb{L}\) of a system \(\mathcal{M}\)

Consider the *bounded reachability* formulas \((R^i[x])_i\) where

- \(R^0[x] := I[x]\)
- \(R^{i+1}[x] := R^i[x] \lor \exists y (R^i[y] \land T[y, x])\)
Interpolation-based Model Checking

Let \((I[x], T[x, x'])\) be an encoding in \(\mathbb{L}\) of a system \(\mathcal{M}\)

Consider the \textit{bounded reachability} formulas \((R^i[x])_i\) where

- \(R^0[x] := I[x]\)
- \(R^{i+1}[x] := R^i[x] \lor \exists y (R^i[y] \land T[y, x])\)

We prove safety \textit{wrt} an error property \(E\) by using interpolation [McM05a] to compute a sequence \((\hat{R}^i)_{i \geq 0}\) such that

- each \(\hat{R}^i\) overapproximates \(R^i\) and is disjoint with \(E\)
- the sequence is increasing \textit{wrt} \(\models_{\mathbb{L}}\)
- the sequence has a fixpoint \(\hat{R}\) (modulo equivalence in \(\mathbb{L}\))
Constructing \((\widehat{R}^i)_{i \geq 0} \)

Fix some \(k > 0 \), \(\widehat{R}^0 := I[x] \)

Base Case.

\[
A := \widehat{R}^0[x_0] \land T[x_0, x_1] \\
B := T[x_1, x_2] \land \cdots \land T[x_{k-1}, x_k] \land (E[x_1] \lor \cdots \lor E[x_k])
\]

if \(A \land B \) **is satisfiable in** \(L \) **then**

fail \((M \text{ is not safe wrt } E)\)

else

compute an interpolant \(P[x_1] \) of \(A \) and \(B \)

\[
\widehat{R}^1 := \widehat{R}^0[x] \lor P[x]
\]
Constructing $(\hat{R}^i)_{i \geq 0}$

Step Case.

for $i = 1$ to ∞

$A := \hat{R}^i[x_0] \land T[x_0, x_1]$

$B := T[x_1, x_2] \land \cdots \land T[x_{k-1}, x_k] \land (E[x_1] \lor \cdots \lor E[x_k])$

if $A \land B$ is satisfiable in \mathbb{L} then

restart the whole process with a larger k

else

compute an interpolant $P[x_1]$ of A and B

$\hat{R}^{i+1} := \hat{R}^i[x] \lor P[x]$

if $\hat{R}^{i+1} \models_{\mathbb{L}} \hat{R}^i[x]$ then succeed (fixpoint found)
Notes on the Interpolation Method

• It needs an interpolating SMT solver

• It is not incremental: a counter-example in the step case requires a real restart

• Like k-induction, it can be made terminating when \mathcal{M} has finite bisimulation quotient

• In the terminating cases, it converges more quickly than basic k-induction
 (k is bounded by \mathcal{M}’s radius, not just the reoccurrence radius as in k-induction)
Conclusions

• SMT-based Model Checking is the new frontier in safety checking thanks to powerful and versatile SMT solvers

• Several SAT-based methods can be lifted to the SMT case

• SMT encodings of transitions systems are basically 1-to-1

• Reasoning is at the same level of abstraction as in the original system

• Scalability and scope are higher than approaches based on propositional logic

• Several approaches and enhancements are being tried, capitalizing on different features of SMT solvers

• Lots of anecdotal evidence of successful applications
Future Directions

• Quantifiers are often needed to encode
 • parametrized model checking problems
 (coming, e.g., from multi-process systems)
 • problems with arrays

• New SMT techniques are needed to generate/work with quantified transition relations, interpolants, invariants, . . .

• Synergistic combinations with traditional abstract interpretation tools seem possible

• We are starting to see some promising work in these directions, but much is left to do
References

References

References

References

References

