Designing a Fast and Trustworthy String Solver

Andrew Reynolds \& Cesare Tinelli

MOSCA 2023

(ilili
The University
OF lowa

Satisfiability Modulo Theories (SMT) Solvers

Many applications:

- Software verification
- Symbolic execution
- Security analysis
- Theorem proving

Traditionally:

- Efficient solvers for quantifier-free constraints over (combinations of) theories
- Arithmetic, Arrays, Bit vectors

In this talk:

- SMT techniques for string and RE constraints

Strings and RE: Theoretical Challenges

Many applications require extended string functions and RE memberships Ex.: toInt $(x) \neq 44$, toLower $(x)=\operatorname{abc}, \quad x \in \operatorname{range}(A, Z)$

The CVC4 and cvc5 SMT Solvers

Support for many theories and features

- UF, (non)linear arithmetic, arrays
- Bit-vectors, floating points
- (Multi)sets, relations, datatypes
- Strings and regular expressions

Co-developed at Stanford and Iowa

Stanford
University
年
The University
of lowa

Project Leaders: Clark Barrett, Cesare Tinelli
String solver developers: Andrew Reynolds, Andres Noetzli

SMT Solvers for Strings: Timeline

String Reasoning in cvc5 in a Nutshell

A Theory Solver for Strings [Liang et al., CAV'14]

$$
\begin{gathered}
x=\mathbf{a b c} \cdot y \\
|y|=4 \\
x=\mathbf{b} \cdot z
\end{gathered}
$$

$$
\text { String Solver } \longrightarrow \quad x \neq \mathbf{a b c} \cdot y \vee x \neq \mathbf{b} \cdot z
$$

Conflict Clause
Designed a string solver for concat + length + RE constraints that is:

- refutation and model sound ("unsat" and "sat" can be trusted)
- not terminating in general
- efficient in practice

Perfecting support for REs [Liang et al., FroCoS'15]

Symbolic approach to RE constraint solving

- Yields a decision procedure over a reasonable fragment
- Gives rise to an incremental RE subsolver

Extended Theory of Strings [Reynolds et al., CAV'17]

Support for extended string functions commonly used in applications

- $\operatorname{substr}(x, n, m)$
- contains (x, y)
- indexof (x, y, n)
- replace (x, y, z)
substring of x at position n of length at most m true if string x contains substring y position of string y in string x, starting from position n result of replacing first occurrence of y in x by z

Extended Theory of Strings [Reynolds et al., CAV'17]

Extended Theory of Strings [Reynolds et al., CAV'17]

Context-dependent simplification crucial for performance

- $x=\mathbf{a b} \cdot y, y=\mathbf{c} \vDash x=\mathbf{a b c}$
- \neg contains $(x, \mathbf{b}) \rightarrow \neg$ contains $(\mathbf{a b c}, \mathbf{b}) \rightarrow \neg \top \rightarrow \perp$

Proof Certificates for Unsat String Constraints

- Part of general effort to make cvc5 fully proof producing [Barbosa et al., CACM'23]
- Covers great majority of the system
- Several proof granularity levels
- Evaluated on many SMT-LIB theories, including strings [Barbosa et al., IJCAR'22]
- Fine-grained proofs for rewrites, for strings [Noetzli et al., FMCAD'22]

Recent Developments for Theory of Strings

- Context-dependent simplifications
- Use aggressive rewriting [Reynolds et al., CAV 2019]
- Applied eagerly [Noetzli et al., CAV 2022]
- Reduction lemmas
- Leverage string-to-code point (code) conversion [Reynolds et al., IJCAR 2020]
- Improved encodings [Reynolds et al., FMCAD 2020]
- Applied lazily based on model [Noetzli et al., CAV 2022]

SMT Solvers Architecture

Architecture of most SMT solvers

Architecture of cvc5

Centralized methods (Nelson-Oppen, polite) for combining theories

Architecture of cvc5

Focus of this talk: theory of strings and regular expressions

Theory of Strings + Linear Arithmetic $\left(T_{S L I A}\right)$

Sorts:

- Integers Int
- Strings String, interpreted as Σ^{*} for finite alphabet Σ

Terms:

String variables: x, y, z, u, w
Integer variables: i, j, k
String constants: ε, abc, AcBAA, http
String concatenation: $x \cdot \mathbf{a b c}, x \cdot y \cdot z \cdot w$
String length: $|x|$

Formulas:

- Equalities and disequalities between string terms
- Linear arithmetic constraints: $|x|+4>|y|$

Example: $\quad x \cdot \mathbf{a}=y, \quad y \neq \mathbf{b} \cdot z, \quad|y|>|x|+2$
Although decidability is unknown, many problems can be solved efficiently in practice

CDCL(T) String Solvers

Cooperation between:

String
Solver

CDCL(T) String Solvers

CDCL(T) String Solvers

String Solver

Either determines no satisfying assignments for input exist ...

CDCL(T) String Solvers

CDCL(T) String Solvers

\Rightarrow Constraints distributed to arithmetic and string solvers

CDCL(T) String Solvers

CDCL(T) String Solvers

(valid $T_{\mathrm{LIA}} / T_{\mathrm{S}}$-formulas) to SAT solver ...

CDCL(T) String Solvers

... and repeat

A Theory Solver for Strings

[Liang, Reynolds, Deters, Tinelli and Barrett, CAV 14]

Solving String Constraints

$$
\begin{aligned}
& F \longrightarrow \text { SAT Solver } \\
& \left\{\begin{array}{c}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w \\
|x| \geq 6
\end{array}\right.
\end{aligned}
$$

Solving String Constraints

Solving String Constraints

$$
\mathcal{M}_{\mathrm{S}}\left\{\begin{array}{c}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{array}\right.
$$

Solving String Constraints

$$
\mathcal{M}_{\mathrm{S}}\left\{\begin{array}{c}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{array}\right.
$$

Theory Solver for Linear Integer Arithmetic (Simplex)

Theory Solver for Strings

String Theory Solver Inference Strategy

1. Elaborate length constraints
2. Check for equality conflicts (compute congruence closure)
3. Normalize string equalities
4. Normalize string disequalities
5. Check cardinality constraints

- Each step may add lemma or a conflict
- If no step adds a lemma or conflict, the current constraint set $\left(\mathcal{M}_{\mathrm{S}} \cup \mathcal{M}_{\mathrm{S}}\right)$ is sat

1. Elaborate Length Constraints

1. Elaborate Length Constraints

$\mathcal{M}_{\mathrm{S}}-$| $x=z \cdot \mathbf{a a b}$ |
| :---: |
| $y=x$ |
| $w=u \cdot \mathbf{b}$ |
| $x \cdot v=v \cdot w$ |
| $x \cdot v \neq w$ |

- For each term of type string in \mathcal{M}_{s}, add lemma providing the definition of its length:

$$
\begin{array}{ll}
|\mathbf{b}|=1 & |\mathbf{a a b}|=3 \\
|z \cdot \mathbf{a a b}|=|z|+3 & |u \cdot \mathbf{b}|=|u|+3
\end{array}
$$

$$
\begin{aligned}
& |x \cdot v|=|x|+|v| \\
& |v \cdot w|=|v|+|w|
\end{aligned}
$$

- For each variable of type string in \mathcal{M}_{s}, add an emptiness splitting lemma:

$$
x=\epsilon \vee|x| \geq 1 \quad y=\epsilon \vee|y| \geq 1
$$

1. Elaborate Length Constraints

		$x=z \cdot \mathbf{a b}$
SAT	$M_{\text {s }}$	$y=x$ $w=u \cdot \mathbf{b}$
Solver		$x \cdot v=v \cdot w$

$M_{L A}-\{|x| \geq 6$

1. Elaborate Length Constraints

will trigger new constraints in arithmetic solver

$$
\begin{gathered}
|x| \geq 6 \\
|\mathbf{b}|=1 \\
|\mathbf{a a b}|=3 \\
|x \cdot v|=|x|+|v| \\
|z \cdot \mathbf{a a b}|=|z|+3 \\
|u \cdot \mathbf{b}|=|u|+3 \\
|v \cdot w|=|v|+|w| \\
|x| \geq 1
\end{gathered}
$$

2. Compute Congruence Closure

$\mathcal{M}_{\mathrm{S}}-$| $x=z \cdot \mathbf{a a b}$ |
| :---: |
| $y=x$ |
| $w=u \cdot \mathbf{b}$ |
| $x \cdot v=v \cdot w$ |
| $x \cdot v \neq w$ |

$$
\mathcal{M}_{\mathrm{S}}\left\{\begin{array}{c}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{array}\right.
$$

Group terms by equivalence classes:

$$
\mathcal{M}_{\mathrm{S}}\left\{\begin{array}{c}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{array}\right.
$$

Group terms by equivalence classes:

3. Normalize Equalities

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

Compute normal forms for equivalence classes

- A normal form is a concatenation of string terms $r_{1} \cdots \cdots r_{n}$ where each r_{i} is the representative of its equivalence class

Restriction: string constants must be chosen as representatives

- An equivalence class can be assigned a normal form $r_{1} \cdots r_{n}$ if:

Each non-variable term in it can be expanded (modulo equality and rewriting) to $r_{1} \cdots \cdots r_{n}$

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

Normal forms computed bottom-up

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

Normal forms computed bottom-up

- First, compute containment relation induced by concatenation terms

This relation is guaranteed to be acyclic due to length elaboration step (cycle \Rightarrow LIA-conflict)

Normal forms computed bottom-up

- First, compute containment relation induced by concatenation terms

This relation is guaranteed to be acyclic due to length elaboration step (cycle \Rightarrow LIA-conflict)

- Base case: eq classes with just variables can be assigned representative as a normal form
- Inductive case: compare the expanded forms t_{1}, \ldots, t_{n} of each non-variable
- If $t_{1} \cong \ldots \cong t_{n}$, assign one. If there exists distinct t_{i}, t_{j}, then try to equate them

Single non-variable string term \Rightarrow assign

- Equivalence class with two non-variable terms with distinct expanded forms:
- $x \cdot v=(z \cdot \mathbf{a a b}) \cdot v=z \cdot \mathbf{a a b} \cdot v$
- $v \cdot w=v \cdot(u \cdot \mathbf{b})=v \cdot u \cdot \mathbf{b}$

Goal: split strings so that all aligning components are equal

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

Consider three cases for making these two terms equal:

z	aab	V

II Case: $|z|=|v|$
|| $\quad \mathrm{b}$

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

Consider three cases for making these two terms equal:

z	aab	V

Z	V^{\prime}	Case: $\|z\|<\|v\|$	
II_-----			
		u	b

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

Consider three cases for making these two terms equal:

----Z----1		a ab	v
11		Case: $\|z\|>\|v\|$	
V	z^{\prime}		
V		u	b

Equal case:

$$
\begin{gathered}
x=z \cdot \mathbf{a} \mathbf{a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w \\
z=v
\end{gathered}
$$

Z	aab	V

II

Recompute congruence closure

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w \\
z=v
\end{gathered}
$$

v	aab	v

Repeat the process on these components
\square

Splitting on String Equalities

Choice of equalities is quite sophisticated and critical to performance:

1. Prefers propagations over splits
E.g., $x \cdot w=y \cdot w \Rightarrow x=y$ over $x \cdot w=z \cdot v \Rightarrow\left(x=z \cdot x^{\prime} \vee z=x \cdot z^{\prime}\right)$
2. Considers both the prefix and suffix of strings
E.g., $w \cdot x=w \cdot y \Rightarrow x=y$
3. Exploits length entailment [Zheng et al., 2015]

If $|x|>|y|$ according to the arithmetic solver, then $x \cdot w=y \cdot v \wedge|x|>|y| \Rightarrow x=y \cdot x^{\prime}$

Splitting on String Equalities

Choice of equalities is quite sophisticated and critical to performance:
4. Propagates constraints based on adjacent constants
E.g., $x \cdot \mathbf{b}=\mathbf{a a b} \cdot y \Rightarrow x=\mathbf{a a} \cdot x^{\prime}$, since \mathbf{b} cannot overlap with prefix aa
5. Treats looping word equations specially [Liang et al., 2014]

Splitting leads to non-termination; instead, reduce to RE membership E.g., $x \cdot \mathbf{b a}=\mathbf{a b} \cdot x \Rightarrow x \in(\mathbf{a b})^{*} \mathbf{a}$

String Solver: Normalize Disequalities

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v \neq v \cdot w
\end{gathered}
$$

Disequalities are handled analogously to equalities

- If $|x \cdot v| \neq|v \cdot w|$, then trivially $x \cdot v \neq v \cdot w$
- Otherwise, consider the normal forms of $x \cdot v$ and $v \cdot w$ from previous step
- Goal: find any two aligning components that are disequal

5. Check Cardinality Constraints

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v \neq v \cdot w \\
v \neq z
\end{gathered}
$$

5. Check Cardinality Constraints

\mathcal{M}_{S} may be unsatisfiable because Σ is finite

Example:

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v \neq v \cdot w \\
v \neq z
\end{gathered}
$$

- Σ consists of 256 characters, and
- \mathcal{M}_{S} entails that 257 distinct strings of length 1 exist

$$
\operatorname{distinct}\left(s_{1}, \ldots, s_{257}\right),\left|s_{1}\right|=1, \ldots,\left|s_{257}\right|=1 \vDash \perp
$$

Finally: Compute Model

If all steps finish with no new lemmas:

- \mathcal{M}_{s} is T_{s}-satisfiable

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v \neq v \cdot w \\
v \neq z
\end{gathered}
$$

- Compute model based on normal forms

- assign string constants to eq classes whose normal form is a variable
- Length fixed by model from arithmetic solver
- Interpret each var as the value of its eq class' normal form

Compute Model

$$
\begin{gathered}
x=z \cdot \mathbf{a a b} \\
y=x \\
w=u \cdot \mathbf{b} \\
x \cdot v \neq v \cdot w \\
v \neq z
\end{gathered}
$$

SAT

Compute Model

Compute Model

Example:

- $Z \longmapsto \mathbf{C}$

Compute Model

Example:

- $Z \longmapsto \mathbf{c}$

Compute Model

Example:

- $Z \longmapsto \mathbf{c}$
- $v \longmapsto \mathbf{d}$

Check-cardinality step ensures there are enough constants

- $u \longmapsto \mathbf{a a a}$

Compute Model

Example:

- $Z \longmapsto \mathbf{C}$
- $v \longmapsto \mathbf{d}$

Saturation criterion for procedure ensures this model satisfies $\mathcal{M}_{\text {s }}$

- $u \longmapsto \mathbf{a a a}$
- Other vars assigned to value of the normal form of their eq classes $x \mapsto \mathbf{c a a b} \quad y \mapsto \mathbf{c a a b} \quad w \mapsto$ aaab

Techniques for Fast String Solving in cvc5

- Finite model finding
- Context-dependent simplification for extended constraints
- Witness sharing
- Regular expression elimination
- String to code point conversion

Finite Model Finding for Strings

Finite Model Finding for Strings

Idea: Incrementally bound the lengths of input string variables x_{1}, \ldots, x_{n}
\Rightarrow Improves solver's solving time for problems with small models

Search for models where sum of lengths is 0

Search for models where sum of lengths is 1

Context-Dependent Simplification for Extended String Constraints

[Reynolds, Woo, Barrett, Brumley, Liang and Tinelli, CAV'17]

Extended String Constraint Language

Substring: substr (x, n, l)

- the substring of string x starting at position n of length at most l

String contains: contains (x, y)

- true iff string x contains y as a substring

Find index: indexof (x, n, p)

- the position of the first occurrence of string y in x, starting from position n if any; -1 otherwise
String replace: replace $\left(x, y, y^{\prime}\right)$
- the result of replacing the first occurrence of string y in x (if any) with y^{\prime}

Example: $\neg \operatorname{contains}(\operatorname{substr}(x, 0,3), \mathbf{a}) \wedge 0 \leq \operatorname{indexof}(x, \mathbf{a b}, 0)<4$

How do we handle Extended String Constraints?

$$
\neg \text { contains }(x, \mathbf{a})
$$

How do we handle Extended String Constraints?

Naively, by reduction to basic constraints + bounded \forall

$$
\neg \operatorname{contains}(x, \mathbf{a})
$$

How do we handle Extended String Constraints?

Naively, by reduction to basic constraints + bounded \forall

How do we handle Extended String Constraints?

Naively, by reduction to basic constraints + bounded \forall

How do we handle Extended String Constraints?

Naively, by reduction to basic constraints + bounded \forall

How do we handle Extended String Constraints?

Naively, by reduction to basic constraints + bounded \forall

Expand contains

Assuming bound $|x| \leq 5$

Expand substr

Approach followed by many solvers [Bjorner et al. 2009, Zheng et al. 2013, Li et al.

(Eager) Expansion of Extended Constraints

(Eager) Expansion of Extended Constraints

SMT Solvers + Simplification

All SMT solvers implement simplification techniques

$$
\begin{gathered}
\neg \text { contains }(x, \mathbf{a}) \\
x=y \cdot \mathbf{d} \\
y=\mathbf{a b} \vee y=\mathbf{a c}
\end{gathered}
$$

(also called normalization or rewrite rules)

SMT Solvers + Simplification

All SMT solvers implement simplification techniques

(also called normalization or rewrite rules)

$$
\text { since } x=y \cdot \mathbf{d}
$$

SMT Solvers + Simplification

All SMT solvers implement simplification techniques
 (also called normalization or rewrite rules)

$$
\text { since } x=y \cdot d
$$

since $\operatorname{contains}(y \cdot \mathbf{d}, \mathbf{a}) \Leftrightarrow \operatorname{contains}(y, \mathbf{a})$

SMT Solvers + Simplification

All SMT solvers implement simplification techniques (also called normalization or rewrite rules)

since $x=y \cdot d$
since contains $(y \cdot \mathbf{d}, \mathbf{a}) \Leftrightarrow \operatorname{contains}(y, \mathbf{a})$

- Leads to smaller inputs

Some problems can be solved by simplification alone

(Lazy) Expansion + Simplification

$$
\begin{gathered}
\neg \operatorname{contains}(x, \mathbf{a}) \\
x=y \cdot \mathbf{d} \\
y=\mathbf{a b} \vee y=\mathbf{a c}
\end{gathered}
$$

Arithmetic
 Solver

String Solver

(Lazy) Expansion + Simplification

$$
\begin{aligned}
& \neg \text { contains }(x, \mathbf{a}) \\
& x=y \cdot \mathbf{d} \\
& y=\mathbf{a b} \vee y=\mathbf{a c} \\
& \neg \text { contains }(y, \mathbf{a}) \\
& y=\mathbf{a b} \vee y=\mathbf{a c}
\end{aligned}
$$

Simplify the input

Arithmetic
Solver

String Solver

(Lazy) Expansion + Simplification

(Lazy) Expansion + Simplification

Still have a large constraint!

(Lazy) Expansion + Simplification

What if we simplify based on the context?

(Lazy) Expansion + Context-Dependent Simplification [Reynolds et al., CAV'17]

Since contains (y, \mathbf{a}) is true when $y=\mathbf{a b} . .$.

(Lazy) Expansion + Context-Dependent Simplification

(Lazy) Expansion + Context-Dependent Simplification

$$
\begin{gathered}
y \neq \mathbf{a b} \vee \operatorname{contains}(y, \mathbf{a}) \\
\neg \operatorname{contains}(y, \mathbf{a}) \\
y=\mathbf{a b} \vee y=\mathbf{a c} \\
\hline
\end{gathered}
$$

SAT
Solver

(Lazy) Expansion + Context-Dependent Simplification

contains (y, a) is true also when $y=a c \ldots$

(Lazy) Expansion + Context-Dependent Simplification

(Lazy) Expansion + Context-Dependent Simplification

$$
\begin{gathered}
y \neq \mathbf{a c} \vee \operatorname{contains}(y, \mathbf{a}) \\
y \neq \mathbf{a b} \vee \operatorname{contains}(y, \mathbf{a}) \\
\neg \operatorname{contains}(y, \mathbf{a}) \\
y=\mathbf{a b} \vee y=\mathbf{a c} \\
\hline
\end{gathered}
$$

Did not need to expand contains at all!

Arithmetic Solver

String Solver

Results on Symbolic Execution [Reynolds et al., CAV'17]

cvc4+fs (context-dependent simplification + finite model finding) solves 23,802 benchmarks in 5 h 8 m

- Without finite model finding, solves 23,266 in 8h46m
- Without either finite model finding or cd-simplification, solves 22,607 in 6 h 38 m

Aggressive Simplifications for Strings

[Reynolds, Noetzli, Tinelli and Barrett, CAV'19]

Many Simplification Rules for Strings

Unlike arithmetic:

... simplification rules for strings can be quite complex:

Abstraction-based Rewriting

Considering the string containment lattice

(since $x \cdot y$ contains x, which contains $\operatorname{substr}(x, \ldots)$)

Abstraction-based Propagators

1. Abstracting strings by their length

$$
\begin{gathered}
y=\operatorname{substr}(x, i, j) \\
z=x \cdot \mathbf{a} \\
\operatorname{contains}(y, z)
\end{gathered} \rightarrow \cdots \begin{array}{|c|}
|y| \leq|x| \\
|z|=|x|+1 \\
|y| \geq|z|
\end{array} \rightarrow \cdots \rightarrow \text {, }
$$

$$
|y| \geq|z|=|x|+1 \geq|y|+1>|y|
$$

Abstraction-based Propagators

2. Abstracting strings by their multiset of characters

$$
\begin{gathered}
z=x \cdot x \cdot y \cdot \mathbf{a b} \\
u=x \cdot \mathbf{b b b b} \cdot y \\
z=u
\end{gathered}---\rightarrow \begin{gathered}
s_{z}=s_{x} \cup s_{x} \cup s_{y} \cup\{\mathbf{a}, \mathbf{b}\} \\
s_{u}=s_{x} \cup s_{y} \cup\{\mathbf{b}, \mathbf{b}, \mathbf{b}, \mathbf{b}\} \\
s_{z}=s_{u}
\end{gathered}
$$

(s_{Z} contains one extra occurrence of a than s_{u})

Impact of Aggressive Simplification

Set		all	-arith	-contain	-msets	Z3	OSTRICH
	sat	7947	7746	$\mathbf{7 9 4 8}$	7946	4585	
CMU	unsat	$\mathbf{6 6}$	31	$\mathbf{6 6}$	$\mathbf{6 6}$	52	
	\times	173	409	172	174	3549	
	sat	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	1	
TERMEQ	unsat	$\mathbf{4 9}$	36	27	$\mathbf{4 9}$	36	
	\times	22	35	44	22	44	
	sat	$\mathbf{1 3 0 2}$	1100	1289			
SLOG	unsat	$\mathbf{2 0 8 2}$	2075	$\mathbf{2 0 8 2}$			
	\times	7	7	7	7	216	20
	sat	$\mathbf{1 3 2}$	$\mathbf{1 3 2}$	$\mathbf{1 3 2}$	$\mathbf{1 3 2}$	10	
APLAS	unsat	$\mathbf{2 9 2}$	291	171	171	94	
	\times	159	160	280	280	479	
	sat	9391	9190	$\mathbf{9 3 9 2}$	9390	5696	1289
Total	unsat	$\mathbf{2 4 8 9}$	2440	2346	2368	2257	2082
	\times	361	611	503	483	4288	8870

[Reynolds et al., CAV'19]

-arith: w/o arithmetic simplifications -contain: w/o contain-based simplifications -mset: w/o multiset-based simplifications

- >3,000 lines of C++ (and growing) for simplification rules in cvc5
- important aspect of modern string solving

Even Faster Conflicts and Lazier Reductions

[Noetzli, Reynolds, Barbosa, Barrett and Tinelli, CAV'22]

Even Faster Conflicts and Lazier Reductions

Idea: apply simplifications eagerly during CDCL(T) search

```
~contains( }x,\mathbf{c}\mathrm{ )
```

- Instrument congruence closure to detect conflicts via:
- evaluation of concrete terms
- inferred properties of equivalence classes
- Upper/lower bounds for integer equivalence classes
- Prefix and suffix approximations for string equivalence classes

- Report conflicts as soon as they arise
- Avoids unnecessary expansion of extended functions

Even Faster Conflicts and Lazier Reductions

- Avoid reasoning about unnecessary reduction lemmas
- Regular expression inclusion tests
\otimes E.g., do not reduce $x \in \Sigma^{*} \mathbf{a} \Sigma^{*}$ if already reduced $x \in \Sigma^{*} \mathbf{a} \Sigma^{*} \mathbf{b} \Sigma^{*}$ to T
- Since $\mathcal{L}\left(\Sigma^{*} a \Sigma^{*} b \Sigma^{*}\right) \subseteq \mathcal{L}\left(\Sigma^{*} a \Sigma^{*}\right)$
- Fast incomplete procedure for language inclusion
- Can also be used for finding conflicts
- Model-based reductions
- Construct candidate model \mathcal{M}
\otimes Do not reduce, e.g., string predicates already satisfied by \mathcal{N}
- Often, negative RE membership predicates are satisfied by current model

Even Faster Conflicts and Lazier Reductions

Results on 10,857 SMT-LIB string benchmarks; 1,200s timeout

- cvc5 solves 10,347; z3 solves 8,863

Witness Sharing + RE Elim

[Reynolds, Noetzli, Tinelli and Barrett, FMCAD’20]

Witness Sharing

Observation:

- There are often equivalent ways of expressing the same thing
- E.g., string y is the result of removing the first character from string x :

$$
\exists z . x=z \cdot y \wedge|z|=1 \quad \operatorname{substr}(x, 1,|x|-1)=y \quad x \in \Sigma \cdot y
$$

- Solving word equations, extended functions, and REs introduces many fresh variables

Idea:

- Formalize the definition for each introduced variable's witness form
- Reuse variables whose witness forms are semantically equivalent

Witness Sharing (Example)

$$
\begin{gathered}
x \cdot w=\mathbf{a} \cdot u \quad|x| \neq 0 \\
x=\mathbf{a} \cdot k_{1}
\end{gathered}
$$

$$
\frac{x \in \Sigma \cdot R}{x=k_{2} \cdot k_{3} \wedge k_{2} \in \Sigma \wedge k_{3} \in R}
$$

Witness Sharing (Example)

witness forms

Witness Sharing (Example)

Reuse variables whose witness form are (semantically) equivalent \Rightarrow Can use aggressive simplification to detect equivalent witness forms

Regular Expression Elimination

Idea: reduce REs to extended string constraints

- Possible for many RE memberships occurring in practice

Impact of Witness Sharing + RE elim

String to Code Point Conversion

[Reynolds, Noetzli, Tinelli and Barrett, IJCAR'20]

Adding string-to-code operator code

Assume ordering on characters of alphabet \sum of size n :

- $c_{1}<\cdots<c_{n}$
- For each character c_{i}, we call i its code point
code : String \rightarrow Int is defined as follows:

1. \quad code $\left(c_{i}\right)=i \quad$ for all $c_{i} \in \Sigma$
2. $\operatorname{code}(w)=-1 \quad$ for all $w \in \Sigma^{+}$

Fragment with string length + code points (w/o concatenation):

- Devised a solving procedure that is sound, complete, and terminating

Reductions: Conversion Functions

Using code leads to efficient reductions, including:

- Conversion between strings and integers toInt:

$$
\begin{aligned}
& \otimes \ldots \text { ite }(x[i]=9,9, \operatorname{ite}(x[i]=8,8, \ldots \text { ite }(x[i]=0,0,-1) \ldots) \\
& \Rightarrow \quad \ldots \text { ite }(48 \leq \operatorname{code}(x[i]) \leq 57, \operatorname{code}(x[i])-48,-1)
\end{aligned}
$$

- Conversion between lowercase and uppercase strings toLower:

$$
\begin{aligned}
& \otimes \ldots \text { ite }(x[i]=\mathbf{A}, \mathbf{a}, \operatorname{ite}(x[i]=\mathbf{B}, \mathbf{b}, \ldots \operatorname{ite}(x[i]=\mathbf{Z}, \mathbf{z}, x[i]) \ldots) \\
& \Rightarrow \ldots \operatorname{code}(x[i])+\operatorname{ite}(65 \leq \operatorname{code}(x[i]) \leq 90,32,0)
\end{aligned}
$$

Reductions: Conversion Functions

Using code leads to efficient reductions, including:

- Lexicographic ordering:

$$
\begin{aligned}
& \otimes x \leq y \Leftrightarrow \exists i \ldots(x[i]=y[i] \vee(x[i]=\mathbf{a} \wedge y[i]=\mathbf{b}) \vee(x[i]=\mathbf{a} \wedge y[i]=\mathbf{c}) \ldots) \\
& \Rightarrow x \leq y \Leftrightarrow \exists i \ldots \operatorname{code}(x[i]) \leq \operatorname{code}(y[i])
\end{aligned}
$$

- Regular expression ranges:

$$
\begin{aligned}
& \otimes x \in \operatorname{range}\left(c_{1}, c_{2}\right) \Leftrightarrow|x|=1 \wedge\left(x=c_{1} \vee \cdots \vee x=c_{2}\right) \\
& \Rightarrow x \in \operatorname{range}\left(c_{1}, c_{2}\right) \Leftrightarrow \operatorname{code}\left(c_{1}\right) \leq \operatorname{code}(x) \leq \operatorname{code}\left(c_{2}\right)
\end{aligned}
$$

Experimental Results

Benchmark Set		cvc4+c	cvc4	Z3
	sat	$\mathbf{1 3 4 4}$	1104	1187
py-conbyte_cvc4	unsat	$\mathbf{8 5 7 6}$	8547	8482
	\times	13	282	264
	sat	$\mathbf{1 0 0 9}$	929	697
py-conbyte_trauc	unsat	1424	1407	$\mathbf{1 4 2 8}$
	\times	13	110	321
	sat	$\mathbf{1 3 5 4}$	1126	1343
py-conbyte_z3seq	unsat	$\mathbf{5 8 6 4}$	5797	5719
	\times	35	330	191
	sat	$\mathbf{7 1 1}$	652	692
py-conbyte_z3str	unsat	$\mathbf{1 2 2 7}$	1223	1223
	\times	3	66	26
	sat	$\mathbf{4 4 1 8}$	3811	3919
Total	unsat	$\mathbf{1 7 0 9 1}$	16974	16852
	\times	64	788	802

- 10x t/o reduction
- Faster runtimes
- Improvement wrt state of the art

String Theory Solver (Extended)

- Preprocess based on reg-exp elimination
- Then, run inference strategy:

1. Split on sum of lengths bound (FMF)
2. Elaborate length constraints
3. Congruence closure
4. Context-dependent simplification for extended functions
5. Normalize string equalities
6. Normalize string disequalities

Beq
Code Points
RE Unfolding
Cardinality
9. Check cardinality constraints
10. Reduce extended functions

Conclusions

SMT solvers can provide:

- Efficient (incomplete) procedure for word equations with length
- FMF, context-dependent simplification, RE elimination, witness sharing, ...

Ongoing work in cvc5:

- Proofs and proof certificates
- Array-like reasoning (update + slices)
filiII
The University of lowa

Stanford
University

- cvc5 is open-source, available at https://cvc5.github.io/
- Also supports theory of sequences, further extensions

Thanks for listening!

