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Satisfiability Modulo Theories (SMT) Solvers

Many applications:
• Software verification
• Symbolic execution
• Security analysis
• Theorem proving

Traditionally: 
• Efficient solvers for quantifier-free constraints over (combinations of) theories

• Arithmetic, Arrays, Bit vectors

In this talk:
• SMT techniques for string and RE constraints



Strings and RE: Theoretical Challenges

Many applications require extended string functions and RE memberships
Ex.: toInt(𝑥)	¹	44, 	toLower(𝑥) = 𝐚𝐛𝐜, 	 𝑥 ∈ range(𝐀, 𝐙)
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The CVC4 and cvc5 SMT Solvers

Support for many theories and features
• UF, (non)linear arithmetic, arrays
• Bit-vectors, floating points
• (Multi)sets, relations, datatypes
• Strings and regular expressions

Co-developed at Stanford and Iowa
Project Leaders: Clark Barrett, Cesare Tinelli
String solver developers: Andrew Reynolds, Andres Noetzli



SMT Solvers for Strings: Timeline
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String Reasoning in cvc5
in a Nutshell



A Theory Solver for Strings [Liang et al., CAV’14]

Designed a string solver for concat + length + RE constraints that is:
•  refutation and model sound (“unsat” and “sat” can be trusted)
•  not terminating in general
•  efficient in practice

𝑥 = 𝐚𝐛𝐜 · 𝑦
|𝑦| = 4
𝑥 = 𝐛 · 𝑧

String Solver 𝑥 ≠ 𝐚𝐛𝐜 · 𝑦	 ∨ 	𝑥 ≠ 𝐛 · 𝑧

Conflict Clause



Perfecting support for REs [Liang et al., FroCoS’15]

Symbolic approach to RE constraint solving
• Yields a decision procedure over a reasonable fragment
• Gives rise to an incremental RE subsolver

𝑥 = 𝐚𝐛𝐜 · 𝑦
|𝑦| = 4
𝑥 ∈ 𝐛 · Σ∗

String Solver 𝑥 ≠ 𝐚𝐛𝐜 · 𝑦	 ∨ 	𝑥 ∉ 𝐛 · Σ∗

Conflict Clause



Extended Theory of Strings [Reynolds et al., CAV’17] 

Support for extended string functions commonly used in applications
• substr(𝑥, 𝑛,𝑚) substring of 𝑥 at position 𝑛 of length at most 𝑚
• contains(𝑥, 𝑦)  true if string 𝑥 contains substring 𝑦 
• indexof(𝑥, 𝑦, 𝑛) position of string 𝑦 in string 𝑥, starting from position 𝑛
• replace(𝑥, 𝑦, 𝑧) result of replacing first occurrence of 𝑦 in 𝑥 by 𝑧

𝑥 = 𝐚𝐛 · 𝑦
𝑦 = 𝐜

¬contains(𝑥, 𝐛)
String Solver



Extended Theory of Strings [Reynolds et al., CAV’17] 

• Use reduction lemmas
• Expensive:

Introduces 3 ∗ |𝑥| string vars

"	0	£	𝑛 < 𝑥 . substr 𝑥, 𝑛, 1 ≠ 𝐜

substr 𝑥, 0,1 ≠ 𝐜	 Ù	 ⋯ 	Ù	substr(𝑥, 2,1) ≠ 𝐜

𝑥 = 𝑧0 · 𝑘0 · 𝑤0	Ù
|𝑧𝑜| = 0	Ù
𝑘0 ≠ 𝐜	Ù

𝑥 = 𝑧2 · 𝑘2 · 𝑤2	Ù
|𝑧2| = 2	Ù
𝑘2 ≠ 𝐜

...

bound length of	𝑥	

Reduction Lemma

𝑥 = 𝐚𝐛 · 𝑦
𝑦 = 𝐜

¬contains(𝑥, 𝐛)
String Solver



Extended Theory of Strings [Reynolds et al., CAV’17] 

Context-dependent simplification crucial for performance

• 𝑥 = 𝐚𝐛 · 𝑦, 𝑦 = 𝐜	 ⊨ 	 𝑥 = 𝐚𝐛𝐜
• ¬contains 𝑥, 𝐛 	 → 	 ¬contains 𝐚𝐛𝐜, 𝐛 	 → 	 ¬ ⊺	 →	 ⊥	

𝑥 = 𝐚𝐛 · 𝑦
𝑦 = 𝐜

¬contains(𝑥, 𝐛)
String Solver



Proof Certificates for Unsat String Constraints

• Part of general effort to make cvc5 fully proof producing
[Barbosa et al., CACM’23]
• Covers great majority of the system 
• Several proof granularity levels
• Evaluated on many SMT-LIB theories, including strings  

[Barbosa et al., IJCAR’22]
• Fine-grained proofs for rewrites, for strings

[Noetzli et al., FMCAD’22]



Recent Developments for Theory of Strings

• Context-dependent simplifications
• Use aggressive rewriting [Reynolds et al., CAV 2019]
• Applied eagerly [Noetzli et al., CAV 2022]

• Reduction lemmas
• Leverage string-to-code point (code) conversion [Reynolds et al., IJCAR 2020]
• Improved encodings [Reynolds et al., FMCAD 2020]
• Applied lazily based on model [Noetzli et al., CAV 2022]



SMT Solvers Architecture



Architecture of most SMT solvers

SAT Solver

*.smt2, …

Theory 
Solver(s)

CDCL(T)

Satisfying Assignments

UNSAT SAT

Conflicts, Lemmas

Preprocessor

[Nieuwenhius et al., JACM 2006]



Architecture of cvc5

cvc5

SAT Solver

*.smt2, …

CDCL(T)

Satisfying Assignments

Conflicts, Lemmas

Arithmetic

Arrays

Datatypes

Bit vectors

StringsT-Combination

Centralized methods (Nelson-Oppen, polite) for combining theories

(Multi-)Sets

Sequences

Preprocessor



Architecture of cvc5

cvc5

SAT Solver

*.smt2, …

CDCL(T)

Satisfying Assignments

Conflicts, Lemmas

Arithmetic

Arrays

Datatypes

Bit vectors

StringsT-Combination

Focus of this talk: theory of strings and regular expressions

(Multi-)Sets

Sequences

Preprocessor



Theory of Strings + Linear Arithmetic (𝑇𝑆𝐿𝐼𝐴)
Sorts:

• Integers Int
• Strings String, interpreted as Σ∗ for finite alphabet Σ

Terms:    
String variables: 𝑥	,𝑦	,𝑧, 𝑢, 𝑤
Integer variables: 𝑖, 𝑗, 𝑘
String constants: 𝜀, 	𝐚𝐛𝐜	,𝐀𝐜𝐁𝐀𝐀	, 𝐡𝐭𝐭𝐩 
String concatenation: 𝑥 · 𝐚𝐛𝐜	, 	𝑥 · 𝑦 · 𝑧 · 𝑤	
String length: |𝑥|

Formulas:
• Equalities and disequalities between string terms 
• Linear arithmetic constraints: |𝑥| + 4 > |𝑦|

Although decidability is unknown, many problems can be solved efficiently in practice

𝑥 · 𝐚 = 𝑦, 𝑦	 ≠ 𝐛 · 𝑧, 	 |𝑦| > |𝑥| + 2Example: 



CDCL(T) String Solvers

SAT
Solver

Arithmetic
Solver

String
Solver

Cooperation between:

21



CDCL(T) String Solvers

SAT
Solver

Arithmetic
Solver

String
Solver

𝑥 = 𝐚𝐛 · 𝑧	
|𝑥| + |𝑦| ≤ 5

𝐚𝐛𝐜𝐝 · 𝑥	 = 	𝑦	 Ú	 |𝑥| > 5
Set of 𝑇𝑆𝐿𝐼𝐴-formulas in clausal normal form (CNF)

22



Either determines no satisfying assignments for input exist …

CDCL(T) String Solvers

SAT
Solver

Arithmetic
Solver

String
Solver

23

𝑥 = 𝐚𝐛 · 𝑧	
|𝑥| + |𝑦| ≤ 5

𝐚𝐛𝐜𝐝 · 𝑥	 = 	𝑦	 Ú	 |𝑥| > 5

UNSAT



… or returns a propositionally satisfying assignment

CDCL(T) String Solvers

SAT
Solver

Arithmetic
Solver

String
Solver

24

𝑥 = 𝐚𝐛 · 𝑧	
|𝑥| + |𝑦| ≤ 5

𝐚𝐛𝐜𝐝 · 𝑥	 = 	𝑦	 Ú	 |𝑥| > 5



Þ Constraints distributed to arithmetic and string solvers

CDCL(T) String Solvers

SAT
Solver

Arithmetic
Solver

String
Solver

|𝑥| + |𝑦| ≤ 5
𝑥 = 𝐚𝐛 · 𝑧

𝐚𝐛𝐜𝐝 · 𝑥	 = 	𝑦	

25

𝑥 = 𝐚𝐛 · 𝑧	
|𝑥| + |𝑦| ≤ 5

𝐚𝐛𝐜𝐝 · 𝑥	 = 	𝑦	 Ú	 |𝑥| > 5



Either find constraints are TSLIA-satisfiable … 

CDCL(T) String Solvers

SAT
Solver

Arithmetic
Solver

String
Solver

|𝑥| + |𝑦| ≤ 5
𝑥 = 𝐚𝐛 · 𝑧

𝐚𝐛𝐜𝐝 · 𝑥	 = 	𝑦	

26

𝑥 = 𝐚𝐛 · 𝑧	
|𝑥| + |𝑦| ≤ 5

𝐚𝐛𝐜𝐝 · 𝑥	 = 	𝑦	 Ú	 |𝑥| > 5

SAT



CDCL(T) String Solvers

SAT
Solver

Arithmetic
Solver

String
Solver

|𝑥| + |𝑦| ≤ 5
𝑥 = 𝐚𝐛 · 𝑧

𝐚𝐛𝐜𝐝 · 𝑥	 = 	𝑦	

27

𝑥 = 𝐚𝐛 · 𝑧	
|𝑥| + |𝑦| ≤ 5

𝐚𝐛𝐜𝐝 · 𝑥	 = 	𝑦	 Ú	 |𝑥| > 5
𝑥 ≠ 𝐚𝐛 · 𝑧	 Ú	 |𝑥| = |𝑧| + 2

… or return theory lemmas
(valid 𝑇LIA/𝑇S-formulas) to SAT solver …

𝑥 = 𝐚𝐛 · 𝑧	 ⟹	 |𝑥| = |𝑧| + 2



CDCL(T) String Solvers

SAT
Solver

Arithmetic
Solver

String
Solver

𝑥 + 𝑦 ≤ 5
|𝑥| = |𝑧| + 2

𝑥 = 𝐚𝐛 · 𝑧
𝐚𝐛𝐜𝐝 · 𝑥	 = 	𝑦	

28

𝑥 = 𝐚𝐛 · 𝑧	
|𝑥| + |𝑦| ≤ 5

𝐚𝐛𝐜𝐝 · 𝑥	 = 	𝑦	 Ú	 |𝑥| > 5
𝑥 ≠ 𝐚𝐛 · 𝑧	 Ú	 |𝑥| = |𝑧| + 2

… and repeat



A Theory Solver for Strings
[Liang, Reynolds, Deters, Tinelli and Barrett, CAV 14]



Solving String Constraints

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤
|𝑥| 	≥ 	6

ℳ

SAT Solver𝐹 

where   ℳ ⊨G 𝐹



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

ℳS	

ℳLIA	 |𝑥| ≥ 6

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤
|𝑥| 	≥ 	6

Solving String Constraints



Arith Solver 

String 
Solver 

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

|𝑥| ≥ 6

ℳS	

ℳLIA	

Solving String Constraints



Arith Solver 

String 
Solver 

Theory Solver for Linear
Integer Arithmetic (Simplex)

Conflicts, lemmas SAT

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

|𝑥| ≥ 6

Solving String Constraints

ℳS	

ℳLIA



Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Conflicts,
Lemmas

back to the SAT solver
SAT

Theory Solver
for Strings ℳS	



String Theory Solver Inference Strategy 

1. Elaborate length constraints
2. Check for equality conflicts (compute congruence closure)
3. Normalize string equalities
4. Normalize string disequalities
5. Check cardinality constraints

• Each step may add lemma or a conflict
• If no step adds a lemma or conflict, the current constraint set 

(ℳS ∪ℳS) is sat 



1. Elaborate Length Constraints
Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

ℳS



• For each term of type string in ℳs	,
add lemma providing the definition of its length:

𝐛 = 1	 	 𝐚𝐚𝐛 = 3	 	 	|𝑥 · 𝑣| = |𝑥| + |𝑣|
𝑧 · 𝐚𝐚𝐛 = 𝑧 + 3	 𝑢 · 𝐛 = 𝑢 + 3	 	 |𝑣 · 𝑤| = |𝑣| + |𝑤|

• For each variable of type string in ℳs	,
add an emptiness splitting lemma:

𝑥 = 𝜖	 Ú	 |𝑥| ≥ 1   𝑦 = 𝜖	 Ú	 |𝑦| ≥ 1  ...

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

ℳS

1. Elaborate Length Constraints



Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

ℳS

MLIA |𝑥| ≥ 6

SAT
Solver

Lemmas

1. Elaborate Length Constraints



… will trigger new constraints 
in arithmetic solver

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

ℳS

ℳLIA 

|𝑥| ≥ 6
|𝐛| = 1
|𝐚𝐚𝐛| = 3

|𝑥 · 𝑣| = |𝑥| + |𝑣|
|𝑧 · 𝐚𝐚𝐛| = |𝑧| + 3
|𝑢 · 𝐛| = |𝑢| + 3
|𝑣 · 𝑤| = |𝑣| + |𝑤|

|𝑥| ≥ 1
…

UNSAT?

SAT
Solver

New assignment

1. Elaborate Length Constraints



Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

ℳS

2. Compute Congruence Closure



Group terms by equivalence classes:

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

ℳS

z aab u b v

x,y,z·aab w,u·b

x·v,v·w

≠



Group terms by equivalence classes:

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

ℳS

z aab u b v

x,y,z·aab w,u·b

x·v,v·w

≠
Return lemma corresponding to Ts-conflict 
if disequal terms end up in the same eq class



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

z aab u b v

x,y,z·aab w,u·b

x·v,v·w

≠

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

3. Normalize Equalities



Compute normal forms for equivalence classes
• A normal form is a concatenation of string terms 𝑟1 a ⋯ a 𝑟𝑛	

where each 𝑟𝑖	is the representative of its equivalence class
Restriction: string constants must be chosen as representatives

• An equivalence class can be assigned a normal form 𝑟1 a ⋯ a 𝑟𝑛 if:
Each non-variable term in it can be expanded (modulo equality and rewriting) to 𝑟1 N ⋯ N 𝑟𝑛 

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

z aab u b v

x,y,z·aab w,u·b

x·v,v·w

≠

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality



Normal forms computed bottom-up

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z aab u b v

x,y,z·aab w,u·b

x·v,v·w

≠



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z aab u b v

x,y,z·aab w,u·b

x·v,v·w

≠

Normal forms computed bottom-up
• First, compute containment relation induced by concatenation terms

This relation is guaranteed to be acyclic due to length elaboration step (cycle Þ LIA-conflict)



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z aab u b v

x,y,z·aab w,u·b

x·v,v·w

≠

Normal forms computed bottom-up
• First, compute containment relation induced by concatenation terms

This relation is guaranteed to be acyclic due to length elaboration step (cycle Þ LIA-conflict)
•  Base case: eq classes with just variables can be assigned representative as a normal form
•  Inductive case: compare the expanded forms 𝑡1, … , 𝑡𝑛	of each non-variable

• If 𝑡1 @	 … 	@	𝑡𝑛, assign one.  If there exists distinct 𝑡𝑖, 𝑡𝑗, then try to equate them

z u v



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z aab u b v

x,y,z·aab w,u·b

x·v,v·w

≠

z u v

Single non-variable string term Þ assign



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u b v

x,y,z·aab w,u·b

x·v,v·w

≠

z u vaab

Single non-variable string term Þ assign



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u b v

x,y,z·aab w,u·b

x·v,v·w

≠

z u vaab b



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u b v

x,y,z·aab w,u·b

x·v,v·w

≠

z u vaab

x: z·aab

b



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u b v

x,y,z·aab w,u·b

x·v,v·w

≠

z u vaab

x: z·aab

b

w: u·b



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u b v

x,y,z·aab w,u·b

x·v,v·w

≠

z u vaab

x: z·aab

b

w: u·b

• Equivalence class with two non-variable terms with distinct expanded forms:
• 𝑥 · 𝑣	 = 	 (𝑧 · 𝐚𝐚𝐛) · 𝑣	 = 	𝑧 · 𝐚𝐚𝐛 · 𝑣
• 𝑣 · 𝑤	 = 	𝑣 · (𝑢 · 𝐛) 	 = 	𝑣 · 𝑢 · 𝐛



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u b v

x,y,z·aab w,u·b

x·v,z·w

≠

z u vaab

x: z·aab

b

w: u·b

z·aab·v = v·u ·b
?



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u b v

x,y,z·aab w,u·b

x·v,z·w

≠

z u vaab

x: z·aab

b

w: u·b

z·aab·v = v·u ·b

z

v u b

=aab v

?

?

Goal: split strings so that all aligning components are equal



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u b v

x,y,z·aab w,u·b

x·v,z·w

≠

z u vaab

x: z·aab

b

w: u·b

Consider three cases for making these two terms equal:

z·aab·v = v·u ·b

z

v u b

=

aab v

?

Case: |𝑧| = |𝑣|



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u b v

x,y,z·aab w,u·b

x·v,z·w

≠

z u vaab

x: z·aab

b

w: u·b

Consider three cases for making these two terms equal:

z·aab·v = v·u ·b

z

v u b

=

aab v

?

Case: |𝑧| < |𝑣|z v’



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u b v

x,y,z·aab w,u·b

x·v,z·w

≠

z u vaab

x: z·aab

b

w: u·b

Consider three cases for making these two terms equal:

z·aab·v = v·u ·b

z

v u b

= aab v

?

Case: |𝑧| > |𝑣|v z’



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤
𝑧 = 𝑣

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z

v u b

=

aab v

Equal case:



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤
𝑧 = 𝑣

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

v,z “abb” u b

x,y,z·aab w,u·b

x·v,z·w

≠

Recompute congruence closure

Equal case:



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤
𝑧 = 𝑣

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

v,z “abb” u b

x,y,z·aab w,u·b

x·v,z·w

≠

Recompute congruence closure and normal forms



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤
𝑧 = 𝑣

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

“abb” u b

x,y,z·aab w,u·b
≠

uaab

x: v·aab

b

w: u·b

v,zv

x·v,z·w

Recompute congruence closure and normal forms



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤
𝑧 = 𝑣

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

“abb” u b

x,y,z·aab w,u·b

x·v,z·w

≠

uaab

x: v·aab

b

w: u·b

v·aab·v = v·u ·b
?

v,zv

v

v u b

aab v =
?



𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 = 𝑣 · 𝑤
𝑥 · 𝑣 ≠ 𝑤
𝑧 = 𝑣

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

“abb” u b

x,y,z·aab w,u·b

x·v,z·w

≠

uaab

x: v·aab

b

w: u·b

v·aab·v = v·u ·b
?

v,zv

v

v u b

aab v

Repeat the process on these components



Splitting on String Equalities

Choice of equalities is quite sophisticated and critical to performance:

1. Prefers propagations over splits
E.g., 𝑥 · 𝑤 = 𝑦 · 𝑤	 ⇒ 	𝑥 = 𝑦	 over  𝑥 · 𝑤 = 𝑧 · 𝑣	 ⇒ 	 (𝑥 = 𝑧 · 𝑥’	 Ú	 𝑧 = 𝑥 · 𝑧’)

2. Considers both the prefix and suffix of strings
E.g., 𝑤 · 𝑥 = 𝑤 · 𝑦	 ⇒ 	𝑥 = 𝑦

3. Exploits length entailment [Zheng et al., 2015]
If |𝑥| > |𝑦| according to the arithmetic solver, 
then 𝑥 · 𝑤 = 𝑦 · 𝑣	 Ù	 𝑥 > 𝑦 	⇒ 	𝑥 = 𝑦 · 𝑥’	



Splitting on String Equalities

Choice of equalities is quite sophisticated and critical to performance:

4. Propagates constraints based on adjacent constants
E.g., 𝑥 · 𝐛 = 𝐚𝐚𝐛 · 𝑦	 ⇒ 	𝑥 = 𝐚𝐚 · 𝑥’,  since 𝐛 cannot overlap with prefix 𝐚𝐚

5. Treats looping word equations specially [Liang et al., 2014]
Splitting leads to non-termination; instead, reduce to RE membership
E.g., 𝑥 · 𝐛𝐚 = 𝐚𝐛 · 𝑥	 ⇒ 	𝑥 ∈ 𝐚𝐛 ∗𝐚



String Solver: Normalize Disequalities

Disequalities are handled analogously to equalities
• If |𝑥 · 𝑣| ≠ |𝑣 · 𝑤|, then trivially 𝑥 · 𝑣 ≠ 𝑣 · 𝑤
• Otherwise, consider the normal forms of 𝑥 · 𝑣 and 𝑣 · 𝑤 from previous step
• Goal: find any two aligning components that are disequal

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 ≠ 𝑣 · 𝑤



Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 ≠ 𝑣 · 𝑤

𝑣 ≠ 𝑧

5. Check Cardinality Constraints



Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

ℳS may be unsatisfiable 
because S is finite 

Example:
• S consists of 256 characters, and
• ℳS entails that 257 distinct strings of length 1 exist

distinct 𝑠1, … , 𝑠257 , 𝑠1 = 1,… , 𝑠257 = 1	 ⊨	 ⊥

𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 ≠ 𝑣 · 𝑤

𝑣 ≠ 𝑧

5. Check Cardinality Constraints



If all steps finish with 
no new lemmas:

•ℳs is 𝑇s-satisfiable
• Compute model based on normal forms
• assign string constants to eq classes 

whose normal form is a variable
• Length fixed by model from arithmetic solver

• Interpret each var as the value of its eq class’ normal form

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

Finally: Compute Model
𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 ≠ 𝑣 · 𝑤

𝑣 ≠ 𝑧



Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

Compute Model
𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 ≠ 𝑣 · 𝑤

𝑣 ≠ 𝑧

“abb” u b

x,y,z·aab w,u·b

uaab

x: z·aab

b

w: u·b

v,zz

x·v: z·aab· v

v

v·w: v·u·b



Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

Compute Model
𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 ≠ 𝑣 · 𝑤

𝑣 ≠ 𝑧

“abb” u b

x,y,z·aab w,u·b

uaab

x: z·aab

b

w: u·b

v,zz

x·v: z·aab· v

v

v·w: v·u·b

Example:

Simplex

|𝑧| = 1 |𝑣| = 1 |𝑢| = 3

arith model



Example:
• 𝑧 ⟼ 𝐜

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

Compute Model
𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 ≠ 𝑣 · 𝑤

𝑣 ≠ 𝑧

“abb” u b

x,y,z·aab w,u·b

uaab

x: c·aab

b

w: u·b

v,zc

x·v: c·aab· v

v

v·w: v·u·b

|𝑧| = 1 |𝑣| = 1 |𝑢| = 3



Example:
• 𝑧 ⟼ 𝐜
• 𝑣 ⟼ 𝐝

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

Compute Model
𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 ≠ 𝑣 · 𝑤

𝑣 ≠ 𝑧

“abb” u b

x,y,z·aab w,u·b

uaab

x: c·aab

b

w: u·b

v,zc

x·v: c·aab· d

d

v·w: d·u·b

|𝑣| = 1 |𝑢| = 3



Example:
• 𝑧 ⟼ 𝐜
• 𝑣 ⟼ 𝐝
• 𝑢 ⟼ 𝐚𝐚𝐚

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

Compute Model
𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 ≠ 𝑣 · 𝑤

𝑣 ≠ 𝑧

“abb” u b

x,y,z·aab w,u·b

aaaaab

x: c·aab

b

w: aaa·b

v,zc

x·v: c·aab· d

d

v·w: d·aaa·b

Check-cardinality step ensures 
there are enough constants

|𝑢| = 3



Example:
• 𝑧 ⟼ 𝐜
• 𝑣 ⟼ 𝐝
• 𝑢 ⟼ 𝐚𝐚𝐚
• Other vars assigned to value of the normal form of their eq classes 

𝑥 ⟼ 𝐜𝐚𝐚𝐛	 𝑦 ⟼ 𝐜𝐚𝐚𝐛	 𝑤 ⟼ 𝐚𝐚𝐚𝐛

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

Compute Model
𝑥 = 𝑧 · 𝐚𝐚𝐛
𝑦 = 𝑥

𝑤 = 𝑢 · 𝐛
𝑥 · 𝑣 ≠ 𝑣 · 𝑤

𝑣 ≠ 𝑧

“abb” u b

x,y,z·aab w,u·b

aaaaab

x: c·aab

b

w: aaa·b

v,zc

x·v: c·aab· d

d

v·w: d·aaa·b

Saturation criterion for procedure 
ensures this model satisfies ℳs



Techniques for Fast String Solving in cvc5

• Finite model finding 

• Context-dependent simplification for extended constraints

•Witness sharing

• Regular expression elimination

• String to code point conversion



Finite Model Finding for Strings



Finite Model Finding for Strings

Idea: Incrementally bound the lengths of input string variables 𝑥1, … , 𝑥𝑛
Þ Improves solver’s solving time for problems with small models

Σ5|𝑥𝑖| ≤ 0 Σ5|𝑥𝑖| > 0Search for models 
where sum of 

lengths is 0

Search for models 
where sum of 

lengths is 1

etc.

…..
Σ5|𝑥𝑖| ≤ 1 Σ5|𝑥𝑖| > 1

Σ5|𝑥𝑖| ≤ 2 Σ5|𝑥𝑖| > 2



Context-Dependent Simplification 
for Extended String Constraints

[Reynolds, Woo, Barrett, Brumley, Liang and Tinelli, CAV’17]



Extended String Constraint Language
Substring: substr(𝑥, 𝑛, 𝑙) 
• the substring of string 𝑥 starting at position	𝑛 of length at most 𝑙

String contains: contains(𝑥, 𝑦)
• true iff string 𝑥 contains 𝑦 as a substring

Find index: indexof(𝑥, 𝑛, 𝑝)
• the position of the first occurrence of string 𝑦 in 𝑥, starting from position 𝑛 if any; 
−1 otherwise

String replace: replace(𝑥, 𝑦, 𝑦′)
• the result of replacing the first occurrence of string 𝑦 in 𝑥 (if any) with 𝑦′

¬contains substr 𝑥, 0,3 , 𝐚 	 Ù	 0 ≤ indexof(𝑥, 𝐚𝐛, 0) < 4Example: 
85



How do we handle Extended String Constraints?

¬contains(𝑥, 𝐚)

86



Naively, by reduction to basic constraints + bounded "

How do we handle Extended String Constraints?

¬contains(𝑥, 𝐚)

87



Naively, by reduction to basic constraints + bounded "

How do we handle Extended String Constraints?

¬contains(𝑥, 𝐚)

"	0	£	𝑛 < 𝑥 . 	substr 𝑥, 𝑛, 1 	¹	𝐚 Expand contains

88



Naively, by reduction to basic constraints + bounded "

How do we handle Extended String Constraints?

¬contains(𝑥, 𝐚)

"	0	£	𝑛 < 𝑥 . 	substr 𝑥, 𝑛, 1 	¹	𝐚

substr 𝑥, 0,1 	¹	𝐚	 Ù	 … 	Ù	 substr 𝑥, 4,1 	¹	𝐚

Expand contains

89

Assuming bound 𝑥 	£	5



Naively, by reduction to basic constraints + bounded "

How do we handle Extended String Constraints?

¬contains(𝑥, 𝐚)

"	0	£	𝑛 < 𝑥 . 	substr 𝑥, 𝑛, 1 	¹	𝐚

substr 𝑥, 0,1 	¹	𝐚	 Ù	 … 	Ù	 substr 𝑥, 4,1 	¹	𝐚

Expand substr

Expand contains

90

𝑥 = 𝑧11	×	𝑘1	×	𝑧21	 Ù
|𝑧11| = 0	 Ù
𝑘1	¹	𝐚	 Ù

𝑥 = 𝑧14×	 𝑘4	×	𝑧24	 Ù
|𝑧14| = 4	 Ù
𝑘4	¹	𝐚

...

Assuming bound 𝑥 	£	5



Naively, by reduction to basic constraints + bounded "

Approach followed by many solvers [Bjorner et al. 2009, Zheng et al. 2013, Li et al. 
2013, Trinh et al. 2014]

How do we handle Extended String Constraints?

¬contains(𝑥, 𝐚)

"	0	£	𝑛 < 𝑥 . 	substr 𝑥, 𝑛, 1 	¹	𝐚

substr 𝑥, 0,1 	¹	𝐚	 Ù	 … 	Ù	 substr 𝑥, 4,1 	¹	𝐚

Expand substr

Expand contains

91

𝑥 = 𝑧11	×	𝑘1	×	𝑧21	 Ù
|𝑧11| = 0	 Ù
𝑘1	¹	𝐚	 Ù

𝑥 = 𝑧14×	 𝑘4	×	𝑧24	 Ù
|𝑧14| = 4	 Ù
𝑘4	¹	𝐚

...

Assuming bound 𝑥 	£	5



(Eager) Expansion of Extended Constraints

SAT
Solver

Arithmetic
Solver

String
Solver

𝑥 = 𝑦 4 𝐝
𝑦 = 𝐚𝐛	Ú	𝑦 = 𝐚𝐜

𝑥 = 𝑧11 4 𝑘1 4 𝑧21	Ù
|𝑧11| = 0	Ù
𝑘1 ≠ 𝐚	Ù

𝑥 = 𝑧14 4 𝑘4 4 𝑧24	Ù
|𝑧14| = 4	Ù
𝑘4 ≠ 𝐚	Ù

...

95

¬contains 𝑥, 𝐚
𝑥 = 𝑦 4 𝐝

𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

SATUNSAT or

Must deal with a large constraint



(Eager) Expansion of Extended Constraints

𝑥 = 𝑦 4 𝐝
𝑦 = 𝐚𝐛	Ú	𝑦 = 𝐚𝐜

...

96

¬contains 𝑥, 𝐚
𝑥 = 𝑦 4 𝐝

𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

or

what if we simplify the input?

𝑥 = 𝑧11 4 𝑘1 4 𝑧21	Ù
|𝑧11| = 0	Ù
𝑘1 ≠ 𝐚	Ù

𝑥 = 𝑧14 4 𝑘4 4 𝑧24	Ù
|𝑧14| = 4	Ù
𝑘4 ≠ 𝐚	Ù

SAT
Solver

Arithmetic
Solver

String
Solver

SATUNSAT



SMT Solvers + Simplification

All SMT solvers implement simplification techniques
     (also called normalization or rewrite rules)

s to smaller inputs, simpler procedures 

¬contains 𝑥, 𝐚
𝑥 = 𝑦 N 𝐝

𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜
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SMT Solvers + Simplification

All SMT solvers implement simplification techniques
     (also called normalization or rewrite rules)

¬contains 𝑥, 𝐚
𝑥 = 𝑦 N 𝐝

𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

since 𝑥 = 𝑦 a 𝐝
¬contains 𝑦 N 𝐝, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜
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SMT Solvers + Simplification

All SMT solvers implement simplification techniques
     (also called normalization or rewrite rules)

¬contains 𝑥, 𝐚
𝑥 = 𝑦 N 𝐝

𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

since 𝑥 = 𝑦 a 𝐝
¬contains 𝑦 N 𝐝, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜
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since   contains 𝑦 a 𝐝, 𝐚 	Û	contains(𝑦, 𝐚)
¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜



SMT Solvers + Simplification

All SMT solvers implement simplification techniques
     (also called normalization or rewrite rules)

• Leads to smaller inputs
Some problems can be solved by simplification alone

¬contains 𝑥, 𝐚
𝑥 = 𝑦 N 𝐝

𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

since 𝑥 = 𝑦 a 𝐝
¬contains 𝑦 N 𝐝, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜
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¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜 since   contains 𝑦 a 𝐝, 𝐚 	Û	contains(𝑦, 𝐚)



¬contains 𝑥, 𝐚
𝑥 = 𝑦 4 𝐝

𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

(Lazy) Expansion + Simplification

SAT
Solver

Arithmetic
Solver

String
Solver
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(Lazy) Expansion + Simplification

¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

Simplify the input

102

¬contains 𝑥, 𝐚
𝑥 = 𝑦 4 𝐝

𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

SAT
Solver

Arithmetic
Solver

String
Solver



¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜 ¬contains 𝑦, 𝐚

𝑦 = 𝐚𝐛

(Lazy) Expansion + Simplification
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SAT
Solver

Arithmetic
Solver

String
Solver



¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛

¬contains(y,“a”)Ù
y=“ab” Ú y=“ac”
¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

(Lazy) Expansion + Simplification

contains 𝑦, 𝐚 	 Û
(𝑦 = 𝑧11×𝑘1×𝑧21	Ù
|𝑧11| = 0	Ù
𝑘1¹	𝐚	Ù

𝑦 = 𝑧14×𝑘4×𝑧24	Ù
|𝑧14| = 4	Ù
𝑘4¹	𝐚)

...
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Still have a large constraint!

SAT
Solver

Arithmetic
Solver

String
Solver



¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛

¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

(Lazy) Expansion + Simplification

contains 𝑦, 𝐚 	 Û
(𝑦 = 𝑧11×𝑘1×𝑧21	Ù
|𝑧11| = 0	Ù
𝑘1¹	𝐚	Ù

𝑦 = 𝑧14×𝑘4×𝑧24	Ù
|𝑧14| = 4	Ù
𝑘4¹	𝐚)

...
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SAT
Solver

Arithmetic
Solver

String
Solver

What if we simplify based 
on the context?



¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛

¬contains(y,“a”)Ù
y=“ab” Ú y=“ac”
¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

(Lazy) Expansion + Context-Dependent 
Simplification [Reynolds et al., CAV’17]
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SAT
Solver

Arithmetic
Solver

String
Solver

Since contains(𝑦, 𝐚)	is true when 𝑦 = 𝐚𝐛 … 



¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛

𝑦 ≠ 𝐚𝐛	 Ú	 contains 𝑦, 𝐚
¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

(Lazy) Expansion + Context-Dependent 
Simplification
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SAT
Solver

Arithmetic
Solver

String
Solver

𝑦 = 𝐚𝐛	 ⇒ 	contains 𝑦, 𝐚



𝑦 ≠ 𝐚𝐛
¬contains 𝑦, 𝐚

𝑦 = 𝐚𝐜

𝑦 ≠ 𝐚𝐛	 Ú	 contains 𝑦, 𝐚
¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

(Lazy) Expansion + Context-Dependent 
Simplification
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SAT
Solver

Arithmetic
Solver

String
Solver



𝑦 ≠ 𝐚𝐛
¬contains 𝑦, 𝐚

𝑦 = 𝐚𝐜

𝑦 ≠ 𝐚𝐛	 Ú	 contains 𝑦, 𝐚
¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

(Lazy) Expansion + Context-Dependent 
Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

contains(𝑦, 𝐚)	is true also when 𝑦 = 𝐚𝐜 … 



𝑦 ≠ 𝐚𝐛
¬contains 𝑦, 𝐚

𝑦 = 𝐚𝐜

𝑦 ≠ 𝐚𝐜	 Ú	 contains 𝑦, 𝐚
𝑦 ≠ 𝐚𝐛	 Ú	 contains 𝑦, 𝐚

¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

(Lazy) Expansion + Context-Dependent 
Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

𝑦 = 𝐚𝐜	 ⇒ contains(𝑦, 𝐚)



𝑦 ≠ 𝐚𝐛
¬contains 𝑦, 𝐚

𝑦 = 𝐚𝐜

𝑦 ≠ 𝐚𝐜	 Ú	 contains 𝑦, 𝐚
𝑦 ≠ 𝐚𝐛	 Ú	 contains 𝑦, 𝐚

¬contains 𝑦, 𝐚
𝑦 = 𝐚𝐛	 Ú	 𝑦 = 𝐚𝐜

(Lazy) Expansion + Context-Dependent 
Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

UNSAT

Did not need to expand 
contains	at	all!



Results on Symbolic Execution [Reynolds et al., CAV’17]

cvc4+fs (context-dependent simplification + finite model finding) solves 23,802 benchmarks in 5h8m 
• Without finite model finding, solves 23,266 in 8h46m
• Without either finite model finding or cd-simplification, solves 22,607 in 6h38m



Aggressive Simplifications 
for Strings

 [Reynolds, Noetzli, Tinelli and Barrett, CAV’19]



Many Simplification Rules for Strings
Unlike arithmetic:
  
 

… simplification rules for strings can be quite complex:

𝑥 + 𝑥 + 7𝑦 = 𝑦 − 4 2𝑥 + 6𝑦 + 4 = 0

contains(𝐚𝐛𝐜𝐝𝐞, 𝐛 N 𝑥 N 𝐚)

substr(𝑥 N 𝐚𝐛𝐜𝐝, 1 + |𝑥|, 2)

indexof(𝐚𝐛𝐜 N 𝑥, 𝐚 N 𝑥, 1)

replace(𝐚 N 𝑥, 𝐛, 𝑦)

𝐛𝐜

^

-1

𝐚 N replace(𝑥, 𝐛, 𝑦)

contains(𝑥 N 𝐚𝐜 N 𝑦, 𝐛) contains 𝑥, 𝐛 ∨ contains(𝑦, 𝐛)

114



Considering the string containment lattice

(since 𝑥 a 𝑦 contains 𝑥, which contains substr(𝑥, … ))

Abstraction-based Rewriting

contains(𝑥 a 𝑦, substr(𝑥, 𝑖, 𝑗)) T



1. Abstracting strings by their length

𝑦 ≥ 𝑧 = 𝑥 + 1 ≥ 𝑦 + 1 > 𝑦

Abstraction-based Propagators

𝑦	 = substr 𝑥, 𝑖, 𝑗
𝑧 = 𝑥 a 𝐚

contains(𝑦, 𝑧)

|𝑦| 	≤ |x|
𝑧 = 𝑥 + 1
𝑦 ≥ |𝑧|

^



2. Abstracting strings by their multiset of characters

(𝑠6 contains one extra occurrence of 𝐚 than 𝑠7)

Abstraction-based Propagators

𝑧 = 	𝑥 a 𝑥 a 𝑦 a 𝐚𝐛
𝑢 = 	𝑥 a 𝐛𝐛𝐛𝐛 a 𝑦

𝑧 = 𝑢

𝑠6 = 𝑠8 ∪ 𝑠8 ∪ 𝑠9 ∪ {𝐚, 𝐛}
𝑠7 = 𝑠8 ∪ 𝑠9 ∪ {𝐛, 𝐛, 𝐛, 𝐛}

𝑠6 = 𝑠7
^



Impact of Aggressive Simplification

-arith: w/o arithmetic simplifications 
-contain: w/o contain-based simplifications
-mset: w/o multiset-based simplifications

• > 3,000 lines of C++ (and growing) 
for simplification rules in cvc5

• important aspect of modern string 
solving

[Reynolds et al., CAV’19]



Even Faster Conflicts and Lazier 
Reductions

 [Noetzli, Reynolds, Barbosa, Barrett and Tinelli, CAV’22]



Even Faster Conflicts and Lazier Reductions
Idea: apply simplifications eagerly during CDCL(T) 
search

• Instrument congruence closure to detect 
conflicts via:
• evaluation of concrete terms
• inferred properties of equivalence classes

• Upper/lower bounds for integer equivalence classes
• Prefix and suffix approximations for string equivalence classes

• Report conflicts as soon as they arise
• Avoids unnecessary expansion of extended functions

𝑥 = 𝐚𝐛 · 𝑦

𝑦 = 𝐜

¬contains(𝑥, 𝐜)

…

…

…

Ä

Conflict

¬contains 𝑥, 𝐜 	Û	^



Even Faster Conflicts and Lazier Reductions

• Avoid reasoning about unnecessary reduction lemmas

• Regular expression inclusion tests
Ä E.g., do not reduce 𝑥 ∈ Σ∗𝐚Σ∗	if already reduced 𝑥 ∈ Σ∗𝐚Σ∗𝐛Σ∗	to T

• Since  ℒ Σ∗𝐚Σ∗𝐛Σ∗  ⊆ ℒ Σ∗𝐚Σ∗

• Fast incomplete procedure for language inclusion
• Can also be used for finding conflicts

• Model-based reductions
• Construct candidate model ℳ
Ä Do not reduce, e.g., string predicates already satisfied by ℳ
• Often, negative RE membership predicates are satisfied by current model



Even Faster Conflicts and Lazier Reductions

Results on 10,857 SMT-LIB string benchmarks; 1,200s timeout
• cvc5 solves 10,347; z3 solves 8,863



Witness Sharing + RE Elim
[Reynolds, Noetzli, Tinelli and Barrett, FMCAD’20]



Witness Sharing

Observation:
• There are often equivalent ways of expressing the same thing 

• E.g., string 𝑦 is the result of removing the first character from string 𝑥:

	$𝑧. 	𝑥 = 𝑧 a 𝑦	 ∧ 𝑧 = 1	 substr(𝑥, 1, |𝑥| − 1) = 𝑦 𝑥	Î	Σ a 𝑦

• Solving word equations, extended functions, and REs introduces many 
fresh variables

Idea: 
•  Formalize the definition for each introduced variable’s witness form
•  Reuse variables whose witness forms are semantically equivalent



Witness Sharing (Example)

𝑥 S 𝑤 = 𝐚 S 𝑢	 	 |𝑥| ≠ 0         𝑥	Î	Σ S 𝑅
 𝑥 = 𝐚 S 𝑘1    𝑥 = 𝑘2 S 𝑘3	 Ù	 𝑘2 ∈ Σ	 Ù	 𝑘3 ∈ 𝑅
 



Witness Sharing (Example)

𝑥 S 𝑤 = 𝐚 S 𝑢	 	 |𝑥| ≠ 0         𝑥	Î	Σ S 𝑅
 𝑥 = 𝐚 S 𝑘1    𝑥 = 𝑘2 S 𝑘3	 Ù	 𝑘2 ∈ Σ	 Ù	 𝑘3 ∈ 𝑅
 

substr(𝑥, 0,1)substr(𝑥, 1, |𝑥| − 1) substr(𝑥, 1, |𝑥| − 1)

witness forms



Witness Sharing (Example)

𝑥 S 𝑤 = 𝐚 S 𝑢	 	 |𝑥| ≠ 0         𝑥	Î	Σ S 𝑅
 𝑥 = 𝐚 S 𝑘1    𝑥 = 𝑘2 S 𝑘3	 Ù	 𝑘2 ∈ Σ	 Ù	 𝑘3 ∈ 𝑅
 

substr(𝑥, 0,1)substr(𝑥, 1, |𝑥| − 1) substr(𝑥, 1, |𝑥| − 1)

Reuse variables whose witness form are (semantically) equivalent
Þ Can use aggressive simplification to detect equivalent witness forms



Regular Expression Elimination

Idea: reduce REs to extended string constraints
• Possible for many RE memberships occurring in practice

𝑥 ∈ Σ∗𝐚𝐛𝐜Σ∗ contains(𝑥, 𝐚𝐛𝐜)

⟺𝑥 ∈ ΣΣ∗Σ |𝑥| ≥ 2

𝑥 ∈ Σ∗𝐚Σ∗𝐛𝐜𝐝Σ∗ contains 𝑥, 𝐚 	 Ù
contains(substr 𝑥, indexof 𝑥, 𝐚, 1 + 1, 𝑥 , 𝐛𝐜𝐝)

⟺

⟺



Impact of Witness Sharing + RE elim



String to Code Point Conversion
 [Reynolds, Noetzli, Tinelli and Barrett, IJCAR’20]



Adding string-to-code operator code
Assume ordering on characters of alphabet Σ of size 𝑛:
• 𝑐1	 <	⋯ 	< 	𝑐𝑛
• For each character 𝑐𝑖, we call 𝑖 its code point

code ∶ 	String	®	Int	is defined as follows:
1.  code 𝑐h = 𝑖 for all 𝑐h ∈ Σ
2.  code 𝑤 = −1 for all w ∈ Σi

Fragment with string length + code points (w/o concatenation):
• Devised a solving procedure that is sound, complete, and terminating



Using code	leads to efficient reductions, including:

• Conversion between strings and integers toInt:
Ä … ite(𝑥[𝑖] = 𝟗, 9, ite(𝑥[𝑖] = 𝟖, 8, … 	ite(𝑥[𝑖] = 𝟎, 0, −1)… )
Þ … 	ite(48 ≤ code(𝑥[𝑖]) ≤ 57, code(𝑥[𝑖]) − 48,−1)

• Conversion between lowercase and uppercase strings toLower:
Ä … ite(𝑥[𝑖] = 𝐀, 𝐚, ite(𝑥[𝑖] = 𝐁, 𝐛,… ite(𝑥[𝑖] = 𝐙, 𝐳, 𝑥[𝑖])… )
Þ … code(𝑥[𝑖]) + ite(65 ≤ code(𝑥[𝑖]) ≤ 90, 32, 0)

Reductions: Conversion Functions



Using code	leads to efficient reductions, including:

• Lexicographic ordering:
Ä 𝑥 ≤ 𝑦	Û	 $𝑖	 …	(𝑥[𝑖] = 𝑦[𝑖]	Ú	(𝑥[𝑖] = 𝐚	Ù	𝑦[𝑖] = 𝐛)	Ú	(𝑥[𝑖] = 𝐚	Ù	𝑦[𝑖] = 𝐜)	… )
Þ 𝑥 ≤ 𝑦	Û	$𝑖	 … code(𝑥[𝑖]) ≤ code(𝑦[𝑖])

• Regular expression ranges:
Ä 𝑥 ∈ range 𝑐1, 𝑐2 	Û	 𝑥 = 1	Ù	 (𝑥 = 𝑐1	Ú	 ⋯ 	Ú	𝑥 = 𝑐B)
Þ 𝑥 ∈ range 𝑐1, 𝑐2 	Û	code(𝑐1) ≤ code(𝑥) ≤ code(𝑐2)

Reductions: Conversion Functions



Experimental Results

• 10x t/o reduction
• Faster runtimes
• Improvement wrt 

state of the art



String Theory Solver (Extended)
• Preprocess based on reg-exp elimination
• Then, run inference strategy:

1. Split on sum of lengths bound (FMF)
2. Elaborate length constraints
3. Congruence closure
4. Context-dependent simplification for extended functions
5. Normalize string equalities
6. Normalize string disequalities
7. Subprocedure for code points
8. Regular expression unfolding
9. Check cardinality constraints
10. Reduce extended functions

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

Lemmas

ℳ%

to the SAT solver

FMF

Reduce EXTF

Simplify EXTF

Code Points

RE Unfolding



Conclusions
SMT solvers can provide:
• Efficient (incomplete) procedure for word equations with length
• FMF, context-dependent simplification, RE elimination, witness sharing, …

Ongoing work in cvc5:
• Proofs and proof certificates
• Array-like reasoning (update + slices)

• cvc5 is open-source, available at https://cvc5.github.io/
• Also supports theory of sequences, further extensions

Thanks for listening!

https://cvc5.github.io/

