Designing a Fast and Trustworthy String Solver

Andrew Reynolds & Cesare Tinelli

MOSCA 2023

Satisfiability Modulo Theories (SMT) Solvers

Many applications:

- Software verification
- Symbolic execution
- Security analysis
- Theorem proving

Traditionally:

- Efficient solvers for quantifier-free constraints over (combinations of) theories
 - Arithmetic, Arrays, Bit vectors

In this talk:

• SMT techniques for string and RE constraints

Strings and RE: Theoretical Challenges

Many applications require *extended string functions* and *RE memberships* Ex.: toInt(x) \neq 44, toLower(x) = **abc**, $x \in$ range(**A**, **Z**)

The CVC4 and cvc5 SMT Solvers

Support for many theories and features

- UF, (non)linear arithmetic, arrays
- Bit-vectors, floating points
- (Multi)sets, relations, datatypes
- Strings and regular expressions

THE UNIVERSITY OF IOWA

Co-developed at Stanford and Iowa **Project Leaders:** Clark Barrett, Cesare Tinelli **String solver developers:** Andrew Reynolds, Andres Noetzli

SMT Solvers for Strings: Timeline

String Reasoning in cvc5 in a Nutshell

A Theory Solver for Strings [Liang et al., CAV'14]

Designed a string solver for concat + length + RE constraints that is:

- refutation and model sound ("unsat" and "sat" can be trusted)
- **n**ot terminating in general
- efficient in practice

Perfecting support for REs [Liang et al., FroCoS'15]

Symbolic approach to RE constraint solving

- Yields a decision procedure over a reasonable fragment
- Gives rise to an incremental RE subsolver

Extended Theory of Strings [Reynolds et al., CAV'17]

Support for *extended* string functions commonly used in applications

- substr(x, n, m)
- contains(x, y)
- indexof(x, y, n)
- replace(x, y, z)

substring of x at position n of length at most m
true if string x contains substring y
position of string y in string x, starting from position n
result of replacing first occurrence of y in x by z

Extended Theory of Strings [Reynolds et al., CAV'17]

Extended Theory of Strings [Reynolds et al., CAV'17]

Context-dependent simplification crucial for performance

•
$$x = \mathbf{ab} \cdot y, \ y = \mathbf{c} \models x = \mathbf{abc}$$

• $\neg contains(x, \mathbf{b}) \rightarrow \neg contains(\mathbf{abc}, \mathbf{b}) \rightarrow \neg \top \rightarrow \bot$

Proof Certificates for Unsat String Constraints

- Part of general effort to make cvc5 fully proof producing [Barbosa et al., CACM'23]
- Covers great majority of the system
- Several proof granularity levels
- Evaluated on many SMT-LIB theories, including strings [Barbosa et al., IJCAR'22]
- Fine-grained proofs for rewrites, for strings [Noetzli et al., FMCAD'22]

Recent Developments for Theory of Strings

- Context-dependent simplifications
 - Use aggressive rewriting [Reynolds et al., CAV 2019]
 - Applied eagerly [Noetzli et al., CAV 2022]
- Reduction lemmas
 - Leverage string-to-code point (code) conversion [Reynolds et al., IJCAR 2020]
 - Improved encodings [Reynolds et al., FMCAD 2020]
 - Applied lazily based on model [Noetzli et al., CAV 2022]

SMT Solvers Architecture

Architecture of most SMT solvers

Architecture of cvc5

Centralized methods (Nelson-Oppen, polite) for combining theories

Architecture of cvc5

Focus of this talk: theory of strings and regular expressions

Theory of Strings + Linear Arithmetic (T_{SLIA})

Sorts:

- Integers Int
- Strings String, interpreted as Σ^* for finite alphabet Σ

Terms:

String variables: x, y, z, u, wInteger variables: i, j, kString constants: ε , **abc**, **AcBAA**, **http** String concatenation: $x \cdot abc$, $x \cdot y \cdot z \cdot w$ String length: |x|

Formulas:

- Equalities and disequalities between string terms
- Linear arithmetic constraints: |x| + 4 > |y|

Example:

$$x \cdot \mathbf{a} = y, \quad y \neq \mathbf{b} \cdot z, \quad |y| > |x| + 2$$

Although decidability is unknown, many problems can be solved efficiently in practice

CDCL(T) String Solvers

Cooperation between:

SAT Solver

Arithmetic Solver String Solver CDCL(T) String Solvers

CDCL(T) String Solvers

Either determines no satisfying assignments for input exist ...

... or returns a propositionally satisfying assignment

CDCL(T) String Solvers

 \Rightarrow Constraints distributed to arithmetic and string solvers

CDCL(T) String Solvers

CDCL(T) String Solvers

CDCL(T) String Solvers

... and repeat

A Theory Solver for Strings

[Liang, Reynolds, Deters, Tinelli and Barrett, CAV 14]

where
$$\mathcal{M} \vDash_{p} F$$

$$\mathcal{M}_{S} - \begin{cases} x = z \cdot aab \\ y = x \\ w = u \cdot b \\ x \cdot v = v \cdot w \\ x \cdot v \neq w \end{cases}$$
String Solver

$$\mathcal{M}_{\text{LIA}}$$
 $|x| \ge 6$ Arith Solver

$$\mathcal{M}_{S} - \begin{cases} x = z \cdot aab \\ y = x \\ w = u \cdot b \\ x \cdot v = v \cdot w \\ x \cdot v \neq w \end{cases}$$
String Solver

Theory Solver for Linear Integer Arithmetic (Simplex)

Theory Solver for Strings

String Theory Solver Inference Strategy

- 1. Elaborate length constraints
- 2. Check for equality conflicts (compute congruence closure)
- 3. Normalize string equalities
- 4. Normalize string disequalities
- 5. Check cardinality constraints
- Each step may add lemma or a conflict
- If no step adds a lemma or conflict, the current constraint set $(\mathcal{M}_S \cup \mathcal{M}_S)$ is sat

1. Elaborate Length Constraints

$$\mathcal{M}_{S} - \begin{cases} x = z \cdot aab \\ y = x \\ w = u \cdot b \\ x \cdot v = v \cdot w \\ x \cdot v \neq w \end{cases}$$

1. Elaborate Length Constraints

$$\mathcal{M}_{s} - \begin{cases} x = z \cdot aab \\ y = x \\ w = u \cdot b \\ x \cdot v = v \cdot w \\ x \cdot v \neq w \end{cases}$$

- For each term of type string in \mathcal{M}_s , add lemma providing the definition of its length: $|\mathbf{b}| = 1$ $|\mathbf{aab}| = 3$ $|x \cdot v| = |x| + |v|$ $|z \cdot \mathbf{aab}| = |z| + 3$ $|u \cdot \mathbf{b}| = |u| + 3$ $|v \cdot w| = |v| + |w|$
- For each variable of type string in \mathcal{M}_s , add an emptiness splitting lemma: $x = \epsilon \lor |x| \ge 1$ $y = \epsilon \lor |y| \ge 1$

1. Elaborate Length Constraints

$$M_{\text{LIA}} - \begin{bmatrix} |x| \ge 6 \end{bmatrix}$$

1. Elaborate Length Constraints

2. Compute Congruence Closure

$$\mathcal{M}_{s} \qquad \begin{array}{c} x = z \cdot \mathbf{aab} \\ y = x \\ w = u \cdot \mathbf{b} \\ x \cdot v = v \cdot w \\ x \cdot v \neq w \end{array}$$

$$\mathcal{M}_{s} \quad \begin{array}{c} x = z \cdot \mathbf{aab} \\ y = x \\ w = u \cdot \mathbf{b} \\ x \cdot v = v \cdot w \\ x \cdot v = v \cdot w \end{array}$$

Group terms by equivalence classes:

3. Normalize Equalities

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v = v \cdot w$$

$$x \cdot v \neq w$$

Compute *normal forms* for equivalence classes

- A normal form is a concatenation of string terms $r_1 \cdot \cdots \cdot r_n$ where each r_i is the <u>representative</u> of its equivalence class **Restriction:** string constants must be chosen as representatives
- An equivalence class can be assigned a normal form $r_1 \cdot \cdots \cdot r_n$ if: Each non-variable term in it can be expanded (modulo equality and rewriting) to $r_1 \cdot \cdots \cdot r_n$

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v = v \cdot w$$

$$x \cdot v \neq w$$

Normal forms computed **bottom-up**

$$x = z \cdot \mathbf{aab}$$
$$y = x$$
$$w = u \cdot \mathbf{b}$$
$$x \cdot y = y \cdot w$$

$$x \cdot v \neq w$$

Normal forms computed bottom-up

First, compute containment relation induced by concatenation terms
 This relation is guaranteed to be acyclic due to length elaboration step (cycle ⇒ LIA-conflict)

$$x = z \cdot \mathbf{aab}$$
$$y = x$$
$$w = u \cdot \mathbf{b}$$

$$x \cdot v = v \cdot w$$

$$x \cdot v \neq w$$

- First, compute containment relation induced by concatenation terms This relation is guaranteed to be acyclic due to length elaboration step (cycle ⇒ LIA-conflict)
- Base case: eq classes with just variables can be assigned representative as a normal form
- Inductive case: compare the *expanded* forms t_1, \dots, t_n of each non-variable
 - If $t_1 \cong ... \cong t_n$, assign one. If there exists distinct t_i , t_j , then try to equate them

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v = v \cdot w$$

$$x \cdot v \neq w$$

Single non-variable string term \Rightarrow assign

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v = v \cdot w$$

$$x \cdot v \neq w$$

Single non-variable string term \Rightarrow assign

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v = v \cdot w$$

$$x \cdot v \neq w$$

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v = v \cdot w$$

$$x \cdot v \neq w$$

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v = v \cdot w$$

$$x \cdot v \neq w$$

• Equivalence class with two non-variable terms with distinct expanded forms:

•
$$x \cdot v = (z \cdot aab) \cdot v = z \cdot aab \cdot v$$

•
$$v \cdot w = v \cdot (u \cdot \mathbf{b}) = v \cdot u \cdot \mathbf{b}$$

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v = v \cdot w$$

$$x \cdot v \neq w$$

Goal: split strings so that all aligning components are equal

,		
V	u	b

Consider three cases for making these two terms equal:

Z	aab	V
II	Case: $ z = v $	
V	u	b

Consider three cases for making these two terms equal:

Consider three cases for making these two terms equal:

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v = v \cdot w$$

$$x \cdot v \neq w$$

$$z = v$$
Cardinality

Equal case:

Z	aab	V
П		
V	u	b

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v = v \cdot w$$

$$x \cdot v \neq w$$

$$z = v$$

Equal case:

Recompute congruence closure

Recompute congruence closure and normal forms

Recompute congruence closure and normal forms

$$v$$
 aab u b $x: v \cdot aab$ $w: u \cdot b$ $y = x$ $v \cdot aab \cdot v \stackrel{?}{=} v \cdot u \cdot b$ $x \cdot v = v \cdot w$ $x \cdot v = v \cdot w$ $z = v$ v aab v v aab v

77	11	h
V	u	

Repeat the process on these components

v u b

Splitting on String Equalities

Choice of equalities is quite **sophisticated** and **critical** to performance:

- 1. Prefers propagations over splits E.g., $x \cdot w = y \cdot w \Rightarrow x = y$ over $x \cdot w = z \cdot v \Rightarrow (x = z \cdot x' \lor z = x \cdot z')$
- 2. Considers both the prefix and suffix of strings E.g., $w \cdot x = w \cdot y \Rightarrow x = y$
- 3. Exploits length entailment [Zheng et al., 2015] If |x| > |y| according to the arithmetic solver, then $x \cdot w = y \cdot v \land |x| > |y| \Rightarrow x = y \cdot x'$

Splitting on String Equalities

Choice of equalities is quite **sophisticated** and **critical** to performance:

- 4. Propagates constraints based on adjacent constants E.g., $x \cdot \mathbf{b} = \mathbf{aab} \cdot y \Rightarrow x = \mathbf{aa} \cdot x'$, since **b** cannot overlap with prefix **aa**
- 5. Treats looping word equations specially [Liang et al., 2014] Splitting leads to non-termination; instead, reduce to RE membership E.g., $x \cdot \mathbf{ba} = \mathbf{ab} \cdot x \Rightarrow x \in (\mathbf{ab})^*\mathbf{a}$

String Solver: Normalize Disequalities

$$x = z \cdot \mathbf{aab}$$
$$y = x$$
$$w = u \cdot \mathbf{b}$$
$$x \cdot v \neq v \cdot w$$

Disequalities are handled analogously to equalities

- If $|x \cdot v| \neq |v \cdot w|$, then trivially $x \cdot v \neq v \cdot w$
- Otherwise, consider the normal forms of $x \cdot v$ and $v \cdot w$ from previous step
- Goal: find any two aligning components that are disequal

5. Check Cardinality Constraints

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v \neq v \cdot w$$

$$v \neq z$$

5. Check Cardinality Constraints

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v \neq v \cdot w$$

$$v \neq z$$

 \mathcal{M}_{S} may be unsatisfiable because Σ is finite

Example:

- Σ consists of 256 characters, and
- \mathcal{M}_{S} entails that 257 distinct strings of length 1 exist

distinct($s_1, ..., s_{257}$), $|s_1| = 1, ..., |s_{257}| = 1 \models \bot$

Finally: Compute Model

If all steps finish with no new lemmas:

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v \neq v \cdot w$$

$$v \neq z$$

• \mathcal{M}_{s} is T_{s} -satisfiable

- Compute model based on normal forms
 - assign string constants to eq classes whose normal form is a variable
 - Length fixed by model from arithmetic solver
 - Interpret each var as the value of its eq class' normal form

Compute Model

$$x = z \cdot aab$$

$$y = x$$

$$w = u \cdot b$$

$$x \cdot v \neq v \cdot w$$

$$v \neq z$$

SAT

Example:

• $z \mapsto \mathbf{c}$

Compute Model |v| = 1 |u| = 3

d

aab

x: c·aab

x·v: c·aab· d

b

w: u·b

v·w: d·u·b

U

Example:

С

- $z \mapsto \mathbf{c}$
- $v \mapsto \mathbf{d}$

Compute Model

Example:

- $z \mapsto \mathbf{c}$
- $v \mapsto \mathbf{d}$

• $u \mapsto aaa$

Check-cardinality step ensures there are enough constants

Compute Model

Example:

- $z \mapsto \mathbf{c}$
- $v \mapsto \mathbf{d}$
- $u \mapsto aaa$

Saturation criterion for procedure ensures this model satisfies $\mathcal{M}_{\rm s}$

• Other vars assigned to value of the normal form of their eq classes $x \mapsto \mathbf{caab} \quad y \mapsto \mathbf{caab} \quad w \mapsto \mathbf{aaab}$

Techniques for Fast String Solving in cvc5

- Finite model finding
- Context-dependent simplification for extended constraints
- Witness sharing
- Regular expression elimination
- String to code point conversion

Finite Model Finding for Strings

Finite Model Finding for Strings

Idea: Incrementally bound the lengths of input string variables $x_1, ..., x_n$ \Rightarrow Improves solver's solving time for problems with small models

Search for models where sum of lengths is 0

> Search for models where sum of lengths is 1

Context-Dependent Simplification for Extended String Constraints

[Reynolds, Woo, Barrett, Brumley, Liang and Tinelli, CAV'17]

Extended String Constraint Language

Substring: substr(x, n, l)

- the substring of string x starting at position n of length at most l
- String contains: contains(x, y)
 - true iff string x contains y as a substring

Find index: indexof(*x*, *n*, *p*)

the position of the first occurrence of string y in x, starting from position n if any;
 -1 otherwise

String replace: replace(x, y, y')

• the result of replacing the first occurrence of string y in x (if any) with y'

Example: \neg contains(substr(x, 0,3), a) \land 0 \leq indexof(x, ab, 0) < 4

Naively, by reduction to basic constraints + bounded \forall

 \neg contains(x, a)

Naively, by reduction to basic constraints + bounded \forall

$$\neg \text{contains}(x, \mathbf{a})$$

$$\forall \ 0 \le n < |x|. \ \text{substr}(x, n, 1) \neq \mathbf{a}$$

Expand contains

Naively, by reduction to basic constraints + bounded \forall

$$\neg$$
contains (x, \mathbf{a}) $\forall \ 0 \le n < |x|$. substr $(x, n, 1) \ne \mathbf{a}$ Expand containssubstr $(x, 0, 1) \ne \mathbf{a} \land \dots \land$ substr $(x, 4, 1) \ne \mathbf{a}$ Assuming bound $|x| \le 5$

Naively, by reduction to basic constraints + bounded \forall

Naively, by reduction to basic constraints + bounded \forall

Approach followed by many solvers [Bjorner et al. 2009, Zheng et al. 2013, Li et al. 2013, Trinh et al. 2014]

(Eager) Expansion of Extended Constraints

(Eager) Expansion of Extended Constraints

All SMT solvers implement simplification techniques

(also called normalization or rewrite rules)

 $\neg \text{contains}(x, \mathbf{a})$ $x = y \cdot \mathbf{d}$ $y = \mathbf{ab} \lor y = \mathbf{ac}$

All SMT solvers implement simplification techniques

$$\neg \text{contains}(x, \mathbf{a})$$

$$x = y \cdot \mathbf{d}$$

$$y = \mathbf{ab} \lor y = \mathbf{ac}$$

$$\neg \text{contains}(y \cdot \mathbf{d}, \mathbf{a})$$

$$y = \mathbf{ab} \lor y = \mathbf{ac}$$

(also called *normalization* or *rewrite* rules)

since $x = y \cdot \mathbf{d}$

All SMT solvers implement simplification techniques

All SMT solvers implement simplification techniques

• Leads to smaller inputs

Some problems can be solved by simplification alone

 $\neg \text{contains}(x, \mathbf{a})$ $x = y \cdot \mathbf{d}$ $y = \mathbf{ab} \lor y = \mathbf{ac}$

What if we simplify based on the context?

(Lazy) Expansion + Context-Dependent Simplification [Reynolds et al., CAV'17]

Since contains(y, a) is true when y = ab ...

contains(y, a) is true also when y = ac ...

Results on Symbolic Execution [Reynolds et al., CAV'17]

cvc4+fs (context-dependent simplification + finite model finding) solves 23,802 benchmarks in 5h8m

- Without finite model finding, solves 23,266 in 8h46m
- Without either finite model finding or cd-simplification, solves 22,607 in 6h38m

Aggressive Simplifications for Strings

[Reynolds, Noetzli, Tinelli and Barrett, CAV'19]

Many Simplification Rules for Strings

Unlike arithmetic:

$$x + x + 7y = y - 4 \longrightarrow 2x + 6y + 4 = 0$$

... simplification rules for strings can be quite complex:

Abstraction-based Rewriting

Considering the string containment lattice

$$contains(x \cdot y, substr(x, i, j)) \rightarrow \top$$

(since $x \cdot y$ contains x, which contains substr(x, ...))

Abstraction-based Propagators

1. Abstracting strings by their length

$$y = \text{substr}(x, i, j)$$

$$z = x \cdot \mathbf{a}$$

$$contains(y, z)$$

$$|y| \leq |x|$$

$$|z| = |x| + 1$$

$$|y| \geq |z|$$

 $|y| \ge |z| = |x| + 1 \ge |y| + 1 > |y|$

Abstraction-based Propagators

2. Abstracting strings by their multiset of characters

$$\begin{array}{c|c} z = x \cdot x \cdot y \cdot \mathbf{ab} \\ u = x \cdot \mathbf{bbbb} \cdot y \\ z = u \end{array} \xrightarrow{\hspace{1cm}} - - - \xrightarrow{\hspace{1cm}} \\ s_z = s_x \cup s_y \cup \{\mathbf{b}, \mathbf{b}, \mathbf{b}, \mathbf{b}\} \\ s_z = s_u \end{array} \xrightarrow{\hspace{1cm}} - - - \xrightarrow{\hspace{1cm}} \\ \begin{array}{c} z = s_x \cup s_y \cup \{\mathbf{b}, \mathbf{b}, \mathbf{b}, \mathbf{b}\} \\ s_z = s_u \end{array} \xrightarrow{\hspace{1cm}} \\ \end{array}$$

 $(s_z \text{ contains one extra occurrence of } a \text{ than } s_u)$

Impact of Aggressive Simplification

Set		all	-arith	-contain	-msets	Z3	OSTRICH
	sat	7947	7746	7948	7946	4585	
CMU	unsat	66	31	66	66	52	
	×	173	409	172	174	3549	
TermEq	sat	10	10	10	10	1	
	unsat	49	36	27	49	36	
	×	22	35	44	22	44	
Slog	sat	1302	1302	1302	1302	1100	1289
	unsat	2082	2082	2082	2082	2075	2082
	×	7	7	7	7	216	20
Aplas	sat	132	132	132	132	10	
	unsat	292	291	171	171	94	
	×	159	160	280	280	479	
Total	sat	9391	9190	9392	9390	5696	1289
	unsat	2489	2440	2346	2368	2257	2082
	×	361	611	503	483	4288	8870

[Reynolds et al., CAV'19]

-arith: w/o arithmetic simplifications
-contain: w/o contain-based simplifications
-mset: w/o multiset-based simplifications

- > 3,000 lines of C++ (and growing) for simplification rules in cvc5
- important aspect of modern string solving

Even Faster Conflicts and Lazier Reductions

[Noetzli, Reynolds, Barbosa, Barrett and Tinelli, CAV'22]

Even Faster Conflicts and Lazier Reductions

Idea: apply simplifications **eagerly** during CDCL(T) search

- Instrument congruence closure to detect conflicts via:
 - evaluation of concrete terms
 - inferred properties of equivalence classes
 - Upper/lower bounds for integer equivalence classes
 - Prefix and suffix approximations for string equivalence classes
- Report conflicts as soon as they arise
 - Avoids unnecessary expansion of extended functions

Even Faster Conflicts and Lazier Reductions

- Avoid reasoning about unnecessary reduction lemmas
- Regular expression inclusion tests
 - 8 E.g., do not reduce $x \in \Sigma^* a \Sigma^*$ if already reduced $x \in \Sigma^* a \Sigma^* b \Sigma^*$ to T
 - Since $\mathcal{L}(\Sigma^* \mathbf{a} \Sigma^* \mathbf{b} \Sigma^*) \subseteq \mathcal{L}(\Sigma^* \mathbf{a} \Sigma^*)$
 - Fast incomplete procedure for language inclusion
 - Can also be used for finding conflicts
- Model-based reductions
 - Construct candidate model ${\mathcal M}$
 - \otimes Do not reduce, e.g., string predicates already satisfied by \mathcal{M}
 - Often, negative RE membership predicates are satisfied by current model

Even Faster Conflicts and Lazier Reductions

Results on 10,857 SMT-LIB string benchmarks; 1,200s timeout

• cvc5 solves 10,347; z3 solves 8,863

Witness Sharing + RE Elim

[Reynolds, Noetzli, Tinelli and Barrett, FMCAD'20]

Witness Sharing

Observation:

- There are often equivalent ways of expressing the same thing
 - E.g., string y is the result of removing the first character from string x:

 $\exists z. \ x = z \cdot y \land |z| = 1$ substr(x, 1, |x| - 1) = y $x \in \Sigma \cdot y$

 Solving word equations, extended functions, and REs introduces many fresh variables

Idea:

- Formalize the definition for each introduced variable's *witness form*
- Reuse variables whose witness forms are semantically equivalent

Witness Sharing (Example)

$$x \cdot w = \mathbf{a} \cdot u \qquad |x| \neq 0 \qquad \qquad x \in \Sigma \cdot R$$
$$x = \mathbf{a} \cdot k_1 \qquad \qquad x = k_2 \cdot k_3 \wedge k_2 \in \Sigma \wedge k_3 \in R$$

Witness Sharing (Example)

witness forms

Witness Sharing (Example)

Reuse variables whose witness form are (semantically) equivalent \Rightarrow Can use aggressive simplification to detect equivalent witness forms

Regular Expression Elimination

Idea: reduce REs to extended string constraints

• Possible for many RE memberships occurring in practice

$$x \in \Sigma\Sigma^*\Sigma$$
 \Leftrightarrow $|x| \ge 2$ $x \in \Sigma^* abc\Sigma^*$ \Leftrightarrow contains (x, abc) $x \in \Sigma^* a\Sigma^* bcd\Sigma^*$ \Leftrightarrow contains $(x, a) \land$
contains $(x, indexof(x, a, 1) + 1, |x|), bcd)$

Impact of Witness Sharing + RE elim

String to Code Point Conversion

[Reynolds, Noetzli, Tinelli and Barrett, IJCAR'20]

Adding string-to-code operator code

Assume ordering on characters of alphabet Σ of size n:

- $c_1 < \cdots < c_n$
- For each character c_i , we call i its code point
- **code** : String \rightarrow Int is defined as follows:
 - 1. $\operatorname{code}(c_i) = i$ for all $c_i \in \Sigma$
 - 2. $\operatorname{code}(w) = -1$ for all $w \in \Sigma^+$

Fragment with string length + code points (w/o concatenation):

• Devised a solving procedure that is sound, complete, and terminating

Reductions: Conversion Functions

Using code leads to efficient reductions, including:

- Conversion between strings and integers toInt:
 - \otimes ... ite(x[i] = 9, 9, ite(x[i] = 8, 8, ... ite(x[i] = 0, 0, -1) ...)
 - \Rightarrow ... ite(48 \leq code(x[i]) \leq 57, code(x[i]) 48, -1)
- Conversion between lowercase and uppercase strings toLower:
 - \otimes ... ite($x[i] = \mathbf{A}, \mathbf{a}, \text{ite}(x[i] = \mathbf{B}, \mathbf{b}, \dots \text{ite}(x[i] = \mathbf{Z}, \mathbf{Z}, x[i]) \dots$)
 - $\Rightarrow \dots \operatorname{code}(x[i]) + \operatorname{ite}(65 \le \operatorname{code}(x[i]) \le 90, 32, 0)$

Reductions: Conversion Functions

Using code leads to efficient reductions, including:

• Lexicographic ordering:

 $\bigotimes x \le y \Leftrightarrow \exists i \dots (x[i] = y[i] \lor (x[i] = \mathbf{a} \land y[i] = \mathbf{b}) \lor (x[i] = \mathbf{a} \land y[i] = \mathbf{c}) \dots)$ $\Rightarrow x \le y \Leftrightarrow \exists i \dots \operatorname{code}(x[i]) \le \operatorname{code}(y[i])$

- Regular expression ranges:
 - $\bigotimes x \in \operatorname{range}(c_1, c_2) \Leftrightarrow |x| = 1 \land (x = c_1 \lor \cdots \lor x = c_2)$
 - $\Rightarrow x \in \operatorname{range}(c_1, c_2) \Leftrightarrow \operatorname{code}(c_1) \leq \operatorname{code}(x) \leq \operatorname{code}(c_2)$

Experimental Results

Benchmark Set		cvc4+c	cvc4	Z3
	sat	1344	1104	1187
py-conbyte_cvc4	unsat	8576	8547	8482
	×	13	282	264
	sat	1009	929	697
py-conbyte_trauc	unsat	1424	1407	1428
	×	13	110	321
	sat	1354	1126	1343
py-conbyte_z3seq	unsat	5864	5797	5719
	×	35	330	191
	sat	711	652	692
py-conbyte_z3str	unsat	1227	1223	1223
	×	3	66	26
	sat	4418	3811	3919
Total	unsat	17091	16974	16852
	×	64	788	802

- 10x t/o reduction
- Faster runtimes
- Improvement wrt state of the art

String Theory Solver (Extended)

- Preprocess based on reg-exp elimination
- Then, run inference strategy:
 - 1. Split on sum of lengths bound (FMF)
 - 2. Elaborate length constraints
 - 3. Congruence closure
 - 4. Context-dependent simplification for extended functions
 - 5. Normalize string equalities
 - 6. Normalize string disequalities
 - 7. Subprocedure for code points
 - 8. Regular expression unfolding
 - 9. Check cardinality constraints
 - 10. Reduce extended functions

Lemmas

to the SAT solver

Conclusions

SMT solvers can provide:

- Efficient (incomplete) procedure for word equations with length
- FMF, context-dependent simplification, RE elimination, witness sharing, ...

Ongoing work in cvc5:

- Proofs and proof certificates
- Array-like reasoning (update + slices)

- cvc5 is open-source, available at https://cvc5.github.io/
 - Also supports theory of sequences, further extensions

Thanks for listening!