From Counter-Model-based Quantifier Instantiation to Quantifier Elimination in SMT

CADE 27

Andrew Reynolds Cesare Tinelli

August 29, 2019

The University of Iowa

Collaborators:

Kshitij Bansal*, Haniel Barbosa*, Clark Barrett*, François Bobot*, Martin Brain*, Morgan Deters*, Pascal Fontaine, Amit Goel, Liana Hadarean*, Dejan Jovanovič*, Guy Katz*, Tim King*, Sava Krstič, Viktor Kunčak, Tianyi Liang*, Paul Meng*, Mudathir Mohammed*, Leonardo de Moura, Aina Niemetz*, Andres Noetzli*, Mathias Preiner*, Arjun Viswanathan, Yoni Zohar*

Outline

Introduction

- Quantifier Instantiation
 - E-matching
 - Conflict-Based Quantifier Instantiation
 - Model-based Quantifier Instantiation
- Counter-Example-Guided Quantifier Instantiation
 - Quantifier Instantiation for Bit Vectors
 - Quantifier Instantiation for Floating Point Arithmetic

Conclusion

Introduction

Satisfiability Modulo Theories (SMT)

- Subfield of automated deduction focussing on specialized reasoning in certain logical theories
- Used in large and diverse number of applications
- Traditionally, strong on quantifier-free reasoning
- However, many applications require a mix of built-in **and** axiomatically defined symbols

Automated Theorem Proving

Background axioms:

 $\forall x. g(e, x) = g(x, e) = x, \ \forall x. g(x, i(x)) = e$ $\forall x. g(x, g(y, z)) = g(g(x, y), x)$

Software Verification

Unfolding: $\forall x. foo(x) = bar(x + 1)$ Code contracts: $\forall x. pre(x) \Rightarrow post(f(x))$ Frame axioms: $\forall x. x \neq t \Rightarrow A'(x) = A(x)$

Function Synthesis

Synthesis conjectures: ∀*i*:*input*. ∃*o*:*output*. *R*[*o*,*i*]

Planning

Specifications: $\exists p: plan \forall t: time F[p, t]$

Reasoning efficiently about theory symbols and quantifiers

Reasoning with Theories and Quantifiers in FOL — ATP case

First-order theorem provers focus mostly on reasoning with quantifiers but some have been extended to theory reasoning:

Vampire, E, SPASS, Beagle

- First-order resolution/superposition [Nieuwenhuis&Rubio 1999, Prevosto&Waldman 2006, Althaus et al. 2009, Baumgartner&Waldman 2013]
- AVATAR [Voronkov 2014, Reger et al. 2015]

iProver

InstGen calculus [Ganzinger&Korovin 2003]

Princess

• Sequent calculus [Rümmer 2008]

First-order theorem provers focus mostly on reasoning with quantifiers but some have been extended to theory reasoning:

Vampire, E, SPASS, Beagle

- First-order resolution/superposition [Nieuwenhuis&Rubio 1999, Prevosto&Waldman 2006, Althaus et al. 2009, Baumgartner&Waldman 2013]
- AVATAR [Voronkov 2014, Reger et al. 2015]

iProver

• InstGen calculus [Ganzinger&Korovin 2003]

Princess

• Sequent calculus [Rümmer 2008]

SMT solvers focus mostly on quantifier-free theory reasoning but some have been extended to reasoning with quantifiers:

Alt-Ergo, CVC3, CVC4, veriT, Z3

- Some superposition-based [deMoura et al. 2009]
- Most instantiation-based [Detlefs et al. 2005, deMoura et al. 2007, Ge et al. 2007, ...]

SMT solvers focus mostly on quantifier-free theory reasoning but some have been extended to reasoning with quantifiers:

Alt-Ergo, CVC3, CVC4, veriT, Z3

- Some superposition-based [deMoura et al. 2009]
- Most instantiation-based [Detlefs et al. 2005, deMoura et al. 2007, Ge et al. 2007, ...]

SMT Solvers using Quantifier Instantiation

Traditionally:

• E-matching [Detlefs et al. 2005, Bjørner et al. 2007, CADE 2007]

More recently:

- Model-Based Instantiation [Ge et al. 2009, CADE 2013]
- Conflict-Based Instantiation [FMCAD 2014, TACAS 2017]
- Theory-specific Approaches
 - Linear arithmetic [Bjørner 2012, CAV 2015, Janota et al. 2015]
 - Bit-Vectors [Wintersteiger et al. 2013, Dutertre 2015]

SMT Solvers using Quantifier Instantiation

Traditionally:

• E-matching [Detlefs et al. 2005]

More recently:

Implemented in

Alt-Ergo, CVC3-4, FX7, Simplify, veriT, Z3

2007]

- Model-Based Instantiation [Ge et al. 2009, CADE 2013]
- Conflict-Based Instantiation [FMCAD 2014, TACAS 2017]
- Theory-specific Approaches
 - Linear arithmetic [Bjørner 2012, CAV 2015, Janota et al. 2015]
 - Bit-Vectors [Wintersteiger et al. 2013, Dutertre 2015]

SMT Solvers using Quantifier Instantiation

Traditionally:

• E-matching [Detlefs et al. 2005]

More recently:

- Model-Based Instantiation [G C
- Conflict-Based Instantiation [
- Theory-specific Approaches
 - Linear arithmetic [Bjørner 2
 - Bit-Vectors [Wintersteiger e

Alt-Ergo, CVC3-4, FX7, Simplify, veriT, Z3

CVC4, Yices, veriT, Z3

2007]

CVC4, Z3

CVC4, veriT

2015]

Main Questions:

- Which instantiations likely lead to unsat?
- When can we answer sat?

Quantifier Instantiation

Outline

Introduction

Quantifier Instantiation

E-matching

Conflict-Based Quantifier Instantiation

Model-based Quantifier Instantiation

Counter-Example-Guided Quantifier Instantiation

Quantifier Instantiation for Bit Vectors

Quantifier Instantiation for Floating Point Arithmetic

Conclusion

Basic Idea: Choose instances based on pattern matching over *E-graph* of asserted ground (dis-)equalities [Nelson 80]

Most widely used technique for <mark>refuting</mark> quantified problems in SMT

Exploited in:

Software Verification
(Boogie, Dafny, Leon, SPARK, Why3, ...)

•

 Automated Theorem Proving (Sledgehammer) **Basic Idea:** Choose instances based on pattern matching over *E-graph* of asserted ground (dis-)equalities [Nelson 80]

Most widely used technique for **refuting** quantified problems in SMT

Exploited in:

Software Verification
(Boogie, Dafny, Leon, SPARK, Why3, ...)

•

 Automated Theorem Proving (Sledgehammer) **Basic Idea:** Choose instances based on pattern matching over *E-graph* of asserted ground (dis-)equalities [Nelson 80]

Most widely used technique for **refuting** quantified problems in SMT

Exploited in:

Software Verification
(Boogie, Dafny, Leon, SPARK, Why3, ...)

• ...

• Automated Theorem Proving (Sledgehammer)

Ground solver gets overloaded and times out
E-matching's Challenge #2 : Incompleteness

E-matching's Challenge #2 : Incompleteness

Unsatisfiability goes undetected

Too many instances?

▷ Try conflict-based instantiation first [FMCAD 2014]

Apply E-matching

No instances and input may be satisfiable?

Try model-based instantiation next [Ge&deMoura 2009]

Too many instances?

▷ Try conflict-based instantiation first [FMCAD 2014]

Apply E-matching

No instances and input may be satisfiable?

Too many instances?

▷ Try conflict-based instantiation first [FMCAD 2014]

Apply E-matching

No instances and input may be satisfiable?

▷ Try model-based instantiation next [Ge&deMoura 2009]

Outline

Introduction

Quantifier Instantiation

E-matching

Conflict-Based Quantifier Instantiation

Model-based Quantifier Instantiation

Counter-Example-Guided Quantifier Instantiation

Quantifier Instantiation for Bit Vectors

Quantifier Instantiation for Floating Point Arithmetic

Conclusion

Basic idea: Given $E \cup \{ \forall \mathbf{x}. \varphi[\mathbf{x}], \ldots \}$,

- Try to find one conflict instance $\forall \mathbf{x}. \varphi[\mathbf{x}] \Rightarrow \varphi[\mathbf{t}]$ such that $E, \varphi[\mathbf{t}] \models_T \bot$
- If this is possible, E-matching is not needed

Leads to fewer instances, improving ability to answer **unsat**

Basic idea: Given $E \cup \{ \forall \mathbf{x}. \varphi[\mathbf{x}], \ldots \}$,

- Try to find one conflict instance $\forall \mathbf{x}. \varphi[\mathbf{x}] \Rightarrow \varphi[\mathbf{t}]$ such that $E, \varphi[\mathbf{t}] \models_T \bot$
- If this is possible, E-matching is not needed

Leads to fewer instances, improving ability to answer **unsat**

CBQI (cvc4+ci) needs 10⁻¹x instances to show **unsat** vs. E-matching alone

(evaluation on SMT-LIB, TPTP, and Isabelle benchmarks [FMCAD 2014])

Our solution: Construct instances via a stronger version of matching [FMCAD 2014]

Intuition: with $\forall x. P[x] \lor Q[x]$ only match on P[t] where

 $\mathit{P[t]} \equiv_{\rm EUF} \bot$

Formalized as calculus based on ground E-(dis)unification [TACAS 2017]

$$E = \{f(1) \approx 5, \ldots\} \quad Q = \{\underbrace{\forall x, y. f(x+y) > x+2 \cdot y}_{q}, \ldots\}$$

$$E = \{f(1) \approx 5, \ldots\} \quad Q = \{\underbrace{\forall x, y, f(x+y) > x + 2 \cdot y}_{q}, \ldots\}$$

$$\downarrow$$

$$q \Rightarrow f(1) > 5$$

$$E = \{f(1) \approx 5, \ldots\} \quad Q = \{\underbrace{\forall x, y, f(x+y) > x + 2 \cdot y}_{q}, \ldots\}$$

$$\downarrow$$

$$q \Rightarrow f(-3+4) > -3 + 2 \cdot 4$$

$$E = \{f(1) \approx 5, \ldots\} \quad Q = \{\underbrace{\forall x, y, f(x+y) > x + 2 \cdot y}_{q}, \ldots\}$$

$$\downarrow$$

$$q \Rightarrow f(-3+4) > -3 + 2 \cdot 4$$

Outline

Introduction

Quantifier Instantiation

Model-based Quantifier Instantiation

$E = \{ ground literals \}$ $Q = \{ quantified formulas \}$

Basic idea:

If E-matching saturates, build a *candidate model I* satisfying E

- Check if *I* also satisfies Q (using a ground satisfiability query)
- 2. If not, add instance of formula in Q falsified by ${\mathcal I}$

3. Repeat

Gives ability to answer **sat**

 $E = \{$ ground literals $\}$ $Q = \{$ quantified formulas $\}$

Basic idea:

If E-matching saturates, build a *candidate model* \mathcal{I} satisfying E

- Check if *I* also satisfies *Q* (using a ground satisfiability query)
- 2. If not, add instance of formula in ${\it Q}$ falsified by ${\cal I}$

3. Repeat

Gives ability to answer **sat**

 $E = \{ \text{ground literals} \}$ $Q = \{ \text{quantified formulas} \}$

Basic idea:

If E-matching saturates, build a *candidate model* \mathcal{I} satisfying E

- Check if *I* also satisfies *Q* (using a ground satisfiability query)
- 2. If not, add instance of formula in ${\it Q}$ falsified by ${\cal I}$

3. Repeat

Gives ability to answer **sat**

Impact of Model-Based QI in CVC4

x = 1,203 satisfiable TPTP benchmarks

y = # of instances potentially generated by exhaustive instantiation E.g. $4^3 = 64$ instances for $\forall x, y, z : \mathbf{A}$. P(x, y, z) when |A| = 4

Impact of Model-Based QI in CVC4

CVC4 Finite Model Finding + Model-Based instantiation [CADE 2013]

Scales only up to ~150K instances with a 30s timeout

Impact of Model-Based QI in CVC4

CVC4 Finite Model Finding + Model-Based instantiation [CADE 2013]

Scales to >2B instances with a 30s timeout, generates only a fraction of possible instances

Typically, build $\mathcal I$ where every function is *almost constant*:

 $f^{\mathcal{I}} := \lambda x. \operatorname{ite}(x = t_1, v_1, \operatorname{ite}(x = t_2, v_2, \dots, \operatorname{ite}(x = t_n, v_n, v_{\operatorname{def}}) \dots))$

This works well in EUF

However, more sophisticated models are needed when other theories are involved:

 $\forall x, y : \mathsf{Int.} (f(x, y) \ge x \land f(x, y) \ge y)$ $f^{\mathcal{I}} := \lambda x, y : \mathsf{Int.} \mathsf{ite}(x \ge y, x, y)$

However, more sophisticated models are needed when other theories are involved:

 $\forall x, y : \text{Int.} (f(x, y) \ge x \land f(x, y) \ge y)$ $\forall x : \text{Int.} \exists \cdot g(x) + 5 \cdot h(x) = x$

 $f^{\mathcal{I}} := \lambda x, y : \text{Int. ite}(x \ge y, x, y)$ $g^{\mathcal{I}} := \lambda x, x - 3 \cdot x$ $h^{\mathcal{I}} := \lambda x, 2 \cdot x$

However, more sophisticated models are needed when other theories are involved:

 $\forall x, y : \text{Int.} (f(x, y) \ge x \land f(x, y) \ge y)$ $\forall x : \text{Int.} \exists \cdot g(x) + 5 \cdot h(x) = x$

$$f^{\mathcal{I}} := \lambda x, y : \text{Int. ite}(x \ge y, x, y)$$
$$g^{\mathcal{I}} := \lambda x, x - 3 \cdot x$$
$$h^{\mathcal{I}} := \lambda x, 2 \cdot x$$

 $\forall x, y : \text{Int. } u(x+y) + 11 \cdot v(w(x)) = x \qquad ??$

However, more sophisticated models are needed when other theories are involved:

 $\forall x, y : \text{Int.} (f(x, y) \ge x \land f(x, y) \ge y)$ $\forall x : \text{Int.} \exists \cdot g(x) + 5 \cdot h(x) = x$

$$f^{\mathcal{I}} := \lambda x, y : \text{Int. ite}(x \ge y, x, y)$$
$$g^{\mathcal{I}} := \lambda x, x - 3 \cdot x$$
$$h^{\mathcal{I}} := \lambda x, 2 \cdot x$$

 $\forall x, y : \text{Int. } u(x+y) + 11 \cdot v(w(x)) = x \qquad ??$

More research is needed!

(may leverage recent advantages in syntax-guided synthesis?)

Putting It All Together in CVC4

Reasoning efficiently about quantifiers + EUF + other theories is still hard!

E-matching: Pattern selection, matching modulo theories

- **Conflict-based:** Matching is incomplete, entailment tests are expensive
- **Model-based:** Models are complex, interpreted domains may be infinite

Reasoning efficiently about quantifiers + EUF + other theories is still hard!

E-matching: Pattern selection, matching modulo theories

Conflict-based: Matching is incomplete, entailment tests are expensive

Model-based: Models are complex, interpreted domains may be infinite

Reasoning efficiently about quantifiers + EUF + other theories is not as bad

- Classic QE algorithms are decision procedures for LRA [Ferrante&Rackoff 79, Loos&Wiespfenning 93], LIA [Cooper 72], datatypes [Maher 1988], ...
- Some have been leveraged successfully in SMT applications [Monniaux 2010, Bjorner 2012, Reynolds et al. 2015, Bjorner&Janota 2016, ...]

Reasoning efficiently about quantifiers + EUF + other theories is not as bad

- Classic QE algorithms are decision procedures for LRA [Ferrante&Rackoff 79, Loos&Wiespfenning 93], LIA [Cooper 72], datatypes [Maher 1988], ...
- Some have been leveraged successfully in SMT applications [Monniaux 2010, Bjorner 2012, Reynolds et al. 2015, Bjorner&Janota 2016, ...]

Reasoning efficiently about quantifiers + EUF + other theories is not as bad

- Classic QE algorithms are decision procedures for LRA [Ferrante&Rackoff 79, Loos&Wiespfenning 93], LIA [Cooper 72], datatypes [Maher 1988], ...
- Some have been leveraged successfully in SMT applications [Monniaux 2010, Bjorner 2012, Reynolds et al. 2015, Bjorner&Janota 2016, ...]

Counter-Example-Guided Quantifier Instantiation

Counterexample-Guided QI

Variants implemented in number of tools:

- Z3 [Bjorner 2012, Bjorner&Janota 2016]
- SPACER [Komuravelli et al. 2014]¹
- Yices [Dutertre 2015]
- CVC4 [CAV 2015, CAV 2018]
- UFO [Fedyukovich et al. 2016]²
- Boolector [Preiner et al. 2017]

¹Originally using Z3 as backend, now integrated in Z3 ²Using Z3 as backend

Basic idea: Derived from quantifier elimination (e.g., for LIA):

 $\exists x. \psi[x, y] \equiv_T \psi[t_1, y] \lor \cdots \lor \psi[t_n, y] \text{ for some } t_1, \dots, t_n$

Basic idea: Derived from quantifier elimination (e.g., for LIA):

 $\forall x. \neg \psi[x, y] \equiv_T \neg \psi[t_1, y] \land \cdots \land \neg \psi[t_n, y]$ for some t_1, \ldots, t_n
Basic idea: Derived from quantifier elimination (e.g., for LIA):

 $\forall x. \neg \psi[x, y] \equiv_T \neg \psi[t_1, y] \land \cdots \land \neg \psi[t_n, y]$ for some t_1, \ldots, t_n

Enumerate instances via a counterexample-guided loop that is

- 1. terminating: generate a finite set $S \supseteq \{t_1, \ldots, t_n\}$
- efficient in practice: typically terminates after << n instances

```
basic-CEGQI(\forall \mathbf{x}. \psi[\mathbf{x}, \mathbf{y}])
   G := \emptyset
    repeat
       if G is T-unsatisfiable
            return unsat
       else
           let G' = G \cup \{\neg\psi\}
           if is G' is T-unsatisfiable
                return sat
           else
                let \mathcal{T} be a T-model of G'
                let \mathbf{t}[\mathbf{y}] = \operatorname{Sel}(\mathbf{x}, \psi, \mathcal{I}, G)
                G := G \cup \{\psi[\mathbf{t}, \mathbf{y}]\}
```

```
basic-CEGQI(\forall x. \psi[x, y])
                                                                     (instances of \forall \mathbf{x}, \psi)
   G := \emptyset
    repeat
       if G is T-unsatisfiable
           return unsat
       else
           let G' = G \cup \{\neg\psi\}
           if is G' is T-unsatisfiable
               return sat
           else
               let \mathcal{T} be a T-model of G'
               let \mathbf{t}[\mathbf{y}] = \operatorname{Sel}(\mathbf{x}, \psi, \mathcal{I}, G)
               G := G \cup \{\psi[\mathbf{t}, \mathbf{y}]\}
```

```
basic-CEGQI(\forall x. \psi[x, y])
                                                                         (instances of \forall \mathbf{x}, \psi)
   G := \emptyset
    repeat
       if G is T-unsatisfiable
                                                                        (because \forall \mathbf{x}. \psi \models_T \mathbf{G})
            return unsat
       else
           let G' = G \cup \{\neg\psi\}
           if is G' is T-unsatisfiable
                return sat
           else
                let \mathcal{T} be a T-model of G'
                let \mathbf{t}[\mathbf{y}] = \operatorname{Sel}(\mathbf{x}, \psi, \mathcal{I}, G)
               G := G \cup \{\psi[\mathbf{t}, \mathbf{y}]\}
```

```
basic-CEGQI(\forall x. \psi[x, y])
                                                                          (instances of \forall \mathbf{x}, \psi)
   G := \emptyset
    repeat
        if G is T-unsatisfiable
                                                                          (because \forall \mathbf{x}. \psi \models_T \mathbf{G})
            return unsat
        else
            let G' = G \cup \{\neg\psi\}
            if is G' is T-unsatisfiable
                                                                          (because G \models_T \forall \mathbf{x}. \psi)
                return sat
            else
                let \mathcal{T} be a T-model of G'
                let \mathbf{t}[\mathbf{y}] = \operatorname{Sel}(\mathbf{x}, \psi, \mathcal{I}, G)
                G := G \cup \{\psi[\mathbf{t}, \mathbf{y}]\}
```

```
basic-CEGQI(\forall x. \psi[x, y])
                                                                       (instances of \forall \mathbf{x}, \psi)
   G := \emptyset
    repeat
       if G is T-unsatisfiable
                                                                      (because \forall \mathbf{x}. \psi \models_T \mathbf{G})
           return unsat
       else
           let G' = G \cup \{\neg\psi\}
           if is G' is T-unsatisfiable
                                                                      (because G \models_T \forall \mathbf{x}. \psi)
               return sat
           else
               let \mathcal{T} be a T-model of G'
                                                                          Relies on selection
               let \mathbf{t}[\mathbf{y}] = \operatorname{Sel}(\mathbf{x}, \psi, \mathcal{I}, G)
                                                                                function Sel
               G := G \cup \{\psi[\mathbf{t}, \mathbf{y}]\}
```

Termination Requirements:

- 1. Quantifier-free fragment of T is decidable
- 2. For all qffs $\psi[\mathbf{x}, \mathbf{y}]$, selection function Sel is
 - 2.1 finite:

there is a finite set $S_{\psi,x}$ s.t. $Sel(x, \psi, \mathcal{I}, G) \in S_{\psi,x}$ for all legal \mathcal{I}, G

2.2 monotonic:

if $G \models_T \psi[t, y]$ then $\operatorname{Sel}(\mathbf{x}, \psi, \mathcal{I}, G) \neq \mathbf{t}$ for all legal \mathcal{I}, G

Termination Requirements:

- 1. Quantifier-free fragment of *T* is decidable
- 2. For all qffs $\psi[\mathbf{x}, \mathbf{y}]$, selection function Sel is
 - 2.1 finite:

there is a finite set $S_{\psi,x}$ s.t. $Sel(x, \psi, \mathcal{I}, G) \in S_{\psi,x}$ for all legal \mathcal{I}, G

2.2 monotonic:

if $G \models_T \psi[t, y]$ then $\operatorname{Sel}(x, \psi, \mathcal{I}, G) \neq t$ for all legal \mathcal{I}, G

Termination Requirements:

- 1. Quantifier-free fragment of T is decidable
- 2. For all qffs $\psi[\mathbf{x}, \mathbf{y}]$, selection function Sel is
 - 2.1 finite: there is a finite set $S_{\psi,x}$ s.t. $Sel(x, \psi, \mathcal{I}, G) \in S_{\psi,x}$ for all legal \mathcal{I}, G
 - 2.2 monotonic: if $G \models_{\mathcal{T}} \psi[t, y]$ then Sel $(x, \psi, \mathcal{I}, G) \neq t$ for all legal \mathcal{I}, G

Termination Requirements:

- 1. Quantifier-free fragment of T is decidable
- 2. For all qffs $\psi[\mathbf{x}, \mathbf{y}]$, selection function Sel is
 - 2.1 finite: there is a finite set $S_{\psi,x}$ s.t. $Sel(x, \psi, \mathcal{I}, G) \in S_{\psi,x}$ for all legal \mathcal{I}, G
 - 2.2 monotonic: if $G \models_{\mathcal{T}} \psi[t, y]$ then $Sel(x, \psi, \mathcal{I}, G) \neq t$ for all legal \mathcal{I}, G

Termination Requirements:

- 1. Quantifier-free fragment of T is decidable
- 2. For all qffs $\psi[\mathbf{x}, \mathbf{y}]$, selection function Sel is

2.1 *finite*: there is *I*, *G*2.2 *monoto*Theorem. Under (1), procedure basic-CEGQI always terminates if *sel* is finite and monotonic

if $G \models_T \psi[t, y]$ then $Sel(x, \psi, \mathcal{I}, G) \neq t$ for all legal \mathcal{I}, G

From CEGQI ...

```
basic-CEGQI(\forall x. \psi[x, y])
   G := \emptyset
   repeat
      if G is T-unsatisfiable
          return unsat
      else
          let G' = G \cup \{\neg\psi\}
          if is G' is T-unsatisfiable
              return sat
          else
              let \mathcal{T} be a T-model of G'
             let t[y] = \operatorname{Sel}(x, \psi, \mathcal{I}, G)
             G := G \cup \{\psi[\mathbf{t}, \mathbf{y}]\}
```

```
project(\mathbf{x}, \psi[\mathbf{x}, \mathbf{y}])
   G := \emptyset
    repeat
       if G is T-unsatisfiable
           return
       else
           let G' = G \cup \{\neg\psi\}
           if is G' is T-unsatisfiable
               return \bigwedge G
           else
               let \mathcal{T} be a T-model of G'
               let t[y] = \operatorname{Sel}(x, \psi, \mathcal{I}, G)
               G := G \cup \{\psi[\mathbf{t}, \mathbf{y}]\}
```

```
project(\mathbf{x}, \psi[\mathbf{x}, \mathbf{y}])
   G := \emptyset
    repeat
        if G is T-unsatisfiable
            return |
        else
            let G' = G \cup \{\neg\psi\}
            if is G' is T-unsatisfiable
                return 🖊 G
            else
                let \mathcal{T} be a T-model of G'
                let \mathbf{t}[\mathbf{y}] = \operatorname{Sel}(\mathbf{x}, \psi, \mathcal{I}, G)
                G := G \cup \{\psi[\mathbf{t}, \mathbf{y}]\}
```

```
Note:
```

```
Let \varphi[y] = project(x, \psi[x, y])
```

```
Then \varphi \equiv_T \forall \mathbf{x}. \psi
```

Assumption: Consider only NNF formulas φ containing a subformula $\forall \mathbf{x}. \varphi_1 \lor \varphi_2$ (resp. $\exists \mathbf{x}. \varphi_1 \land \varphi_2$) only if $\varphi_1 \lor \varphi_2$ (resp. $\varphi_1 \land \varphi_2$) is quantifier-free³

³For simplicity and wlog by (lazy) PNF transformation

 $nnf(\varphi)$:= negation normal form of φ

```
qe(\mathbf{x}, \varphi) := if \varphi is quantifier-free then

project(\mathbf{x}, \varphi)

else

match \varphi with
```

Note:

- 1. Avoiding full prenex normal form transformation increases scalability in practice
- Implementation of general CEBQI in CVC4 is similar in spirit to qe but is fully integrated into SMT loop [FMSD 2017]

Linear real arithmetic (LRA) [FMSD 2017]

 Maximal lower (minimal upper) bounds [Loos+Wiespfenning 1993]

$$l_1 < k, \dots, l_n < k \implies \{x \mapsto l_{\max} + d\}$$

(may involve virtual terms δ , ∞)

Interior point method [Ferrante&Rackoff 1979]

 $l_{\max} < k < u_{\min} \implies \{x \mapsto (l_{\max} + u_{\min})/2\}$

Linear integer arithmetic (LIA) [FMSD 2017]

• Maximal lower (minimal upper) bounds [Cooper 1972]

$$l_1 < k, \dots, l_n < k \implies \{x \mapsto l_{\max} + c\}$$

Linear real arithmetic (LRA) [FMSD 2017]

 Maximal lower (minimal upper) bounds [Loos+Wiespfenning 1993]

$$l_1 < k, \dots, l_n < k \implies \{x \mapsto l_{\max} + d\}$$

(may involve virtual terms δ , ∞)

Interior point method [Ferrante&Rackoff 1979]

 $l_{\max} < k < u_{\min} \implies \{x \mapsto (l_{\max} + u_{\min})/2\}$

Linear integer arithmetic (LIA) [FMSD 2017]

• Maximal lower (minimal upper) bounds [Cooper 1972]

$$l_1 < k, \dots, l_n < k \implies \{x \mapsto l_{\max} + c\}$$

Linear real arithmetic (LRA) [FMSD 2017]

 Maximal lower (minimal upper) bounds [Loos+Wiespfenning 1993]

$$l_1 < k, \dots, l_n < k \implies \{x \mapsto l_{\max} + d\}$$

(may involve virtual terms $\delta \infty$)

• Ir Common termination argument: a finite number of instances cover all cases

Linear integer arithmetic (LIA) [FMSD 2017]

• Maximal lower (minimal upper) bounds [Cooper 1972]

$$l_1 < k, \dots, l_n < k \implies \{x \mapsto l_{\max} + c\}$$

Finite domains

• Model-based value instantiations [Wintersteiger et al. 2013]

$$D = \{d_1, \ldots, d_n\} \implies \{x \mapsto d_i\}$$

Fixed-size Bit vectors

• Value instantiations [Neimetz et al. 2016]

$$0 \le i < w \implies \{x \mapsto 2^i\}$$

• Invertibility conditions [CAV 2018]

(next slides)

Datatypes

• Stay tuned ...

Finite domains

• Model-based value instantiations [Wintersteiger et al. 2013]

$$D = \{d_1, \ldots, d_n\} \implies \{x \mapsto d_i\}$$

Fixed-size Bit vectors

• Value instantiations [Neimetz et al. 2016]

$$0 \le i < w \implies \{x \mapsto 2^i\}$$

• Invertibility conditions [CAV 2018]

(next slides)

Datatypes

• Stay tuned ...

Finite domains

• Model-based value instantiations [Wintersteiger et al. 2013]

$$D = \{d_1, \ldots, d_n\} \implies \{x \mapsto d_i\}$$

Fixed-size Bit vectors

• Value instantiations [Neimetz et al. 2016]

$$0 \le i < w \implies \{x \mapsto 2^i\}$$

Invertibility conditions [CAV 2018]

(next slides)

Datatypes

• Stay tuned ...

Outline

Introduction

- Quantifier Instantiation
 - E-matching
 - Conflict-Based Quantifier Instantiation
 - Model-based Quantifier Instantiation

Counter-Example-Guided Quantifier Instantiation

- Quantifier Instantiation for Bit Vectors
- Quantifier Instantiation for Floating Point Arithmetic

Conclusion

Example: Prove unsatisfiability of

 $\psi = \forall x. x + s \not\approx t$

with x, s, t bit vectors of size n

It is crucial to find good set of instantiation candidates for x

Example: Prove unsatisfiability of

 $\psi = \forall x. x + s \not\approx t$

with x, s, t bit vectors of size n

Naive approach: Enumerate 2ⁿ possible values for x

Example: Prove unsatisfiability of

 $\psi = \forall x. x + s \not\approx t$

with x, s, t bit vectors of size n

Better approach:

- 1. Try to solve $\neg(x + s \not\approx t)$ for x (yielding x = t s)
- 2. Instantiate ψ with computed symbolic solution

$$\underbrace{\frac{t-s}{t-s} + s \not\approx t}_{\text{UNSAT}}$$

Quantifier Instantiation for Bit Vectors

Idea: Compute symbolic solutions of bit vector constraints

Idea: Compute symbolic solutions of bit vector constraints

Problem: hard or impossible in general

Idea: Compute symbolic solutions of bit vector constraints

Problem: hard or impossible in general

Example: $2 \cdot x \approx 3$ is unsolvable

Idea: Compute symbolic solutions of bit vector constraints

Problem: hard or impossible in general

Our Answer:

- 1. Consider restricted case where φ has the form $x \diamond s \bowtie t$ or $s \diamond x \bowtie t$ with \bowtie relational operator and x not in s or t
- 2. Consider *conditional* symbolic solutions

(e.g., identify conditions under which $s \cdot x \approx t$ is solvable)

Example: $x \cdot s \approx t$

- Invertibility condition: $(-s | s) \& t \approx t$
- $\cdot (-s \mid s) \& t \approx t \equiv_{BV} \exists x. x \cdot s \approx t$

Invertibility Conditions

- · 162 IC's for: {≈, $\not\approx$, <_u, ≤_u, >_u, ≥_u, <_s, ≤_s, >_s, ≥_s} × {~, &, |, <<, ≫, ≫_a, -, +, ·, mod, ÷, ∘, [:]}
- 83 crafted manually
- 79 generated automatically with syntax-guided synthesizer

Example: $x \cdot s \approx t$

- Invertibility condition: $(-s | s) \& t \approx t$
- $(-s \mid s) \& t \approx t \equiv_{BV} \exists x. x \cdot s \approx t$

Invertibility Conditions

- 162 IC's for: $\{\approx, \not\approx, <_u, \leq_u, >_u, \geq_u, <_s, \leq_s, >_s, \geq_s\} \times \{\sim, \&, |, \ll, \gg, \gg_a, -, +, \cdot, \mathsf{mod}, \div, \circ, [:]\}$
- 83 crafted manually
- 79 generated automatically with syntax-guided synthesizer

Example: $x \cdot s \approx t$

- Invertibility condition: $(-s | s) \& t \approx t$
- $(-s \mid s) \& t \approx t \equiv_{BV} \exists x. x \cdot s \approx t$

• 79 generated automatically with syntax-guided synthesizer

Example: $x \cdot s \approx t$

- Invertibility condition: $(-s | s) \& t \approx t$
- $(-s \mid s) \& t \approx t \equiv_{BV} \exists x. x \cdot s \approx t$

Invertibility Conditions

- 83 crafted manually
- 79 generated automatically with syntax-guided synthesizer

A Few Invertibility Conditions

$\ell[x]$	~	≉
x · s ⋈ t	$(-s \mid s) \& t \approx t$	s ≉ 0 ∨ t ≉ 0
x mod s ⋈ t	\sim (-s) $\geq_u t$	s ≉ 1 ∨ t ≉ 0
s mod x ⋈ t	$(t+t-s)$ & $s \ge_u t$	s≉0∨t≉0
x ÷ s ⋈ t	$(s \cdot t) \div s \approx t$	s ≉ 0 ∨ t ≉ ~0
$s \div x \bowtie t$	$s \div (s \div t) \approx t$	$\begin{cases} s \& t \approx 0 & \text{for } \kappa(s) = 1 \\ \top & \text{otherwise} \end{cases}$
x & s ⋈ t	$t \& s \approx t$	s ≉ 0 ∨ t ≉ 0
x s ⋈ t	$t \mid s \approx t$	s ≉ ~0 ∨ t ≉ ~0
$x \gg s \bowtie t$	$(t \ll s) \gg s \approx t$	$t \not\approx 0 \lor s <_{u} \kappa(s)$
$s \gg x \bowtie t$	$\bigvee_{i=0}^{\kappa(s)} s \gg i \approx t$	s ≉ 0 ∨ t ≉ 0
$x \gg_a s \bowtie t$	$(S <_{U} \kappa(S) \Rightarrow (t \ll S) \gg_{a} S \approx t) \land$	Т
$s \gg_a x \bowtie t$	$(s \ge_{u} \kappa(s) \Rightarrow (t \approx -0 \lor t \approx 0))$ $\bigvee_{i=0}^{\kappa(s)} s \gg_{a} i \approx t$	(t ≉ 0 ∨ s ≉ 0) ∧ (t ≉ ~0 ∨ s ≉ ~0)
A Few More Invertibility Conditions

ℓ[x]	<s< th=""><th>>s</th><th></th></s<>	>s		
$x \cdot s \bowtie t$	\sim (-t) & (-s s) < _s t	$t <_{s} t - ((s \mid t) \mid -s)$		
$x \mod s \bowtie t$	$\sim t <_{s} (-s \mid -t)$	$(s >_{s} 0 \Rightarrow t <_{s} \sim (-s))$ $(s <_{s} 0 \Rightarrow t \not\approx \max_{s}) \land$	\wedge	
		(t ≉ 0 ∨ s ≉ 1)		
s mod <i>x</i> ⋈ <i>t</i>	$s <_s t \lor 0 <_s t$	$(s \ge_{s} 0 \Rightarrow s >_{s} t) \land$ $(s <_{s} 0 \Rightarrow ((s-1) \gg 1) >_{s} t)$		
$\mathbf{v} \div \mathbf{s} \bowtie t$	$t <_{s} 0 \Rightarrow \min_{s} \div s <_{s} t$	$\frac{(3 < s + 0)}{\sim 0 + s > s + t} = \frac{(3 + 1) > s + 1}{\sim 0 + s > s + t}$		
X - 3 M L	$t \leq 0 \rightarrow \min_{s} \div 3 < t$	(
		$s >_s t$	for $\kappa(s) = 1$	
$s \div x \bowtie t$	$s <_s t \lor t \ge_s 0$	$\begin{cases} s >_{s} t \\ (s \ge_{s} 0 \Rightarrow s >_{s} t) \land \\ (s <_{s} 0 \Rightarrow s \gg 1 >_{s} t) \end{cases}$	otherwise	
		$\left((s <_{s} 0 \Rightarrow s \gg 1 >_{s} t) \right)$)	
x & s ⋈ t	\sim (-t) & s < _s t	t <₅ s & max₅		
x s ⋈ t	\sim (s - t) s < _s t	t <₅ (s max₅)		
s x ⋈ t				
x ≫ s ⋈ t	\sim ($-t$) >> s < _s t	t <s (maxs="" th="" ≪s)="" ≫s<=""><th></th></s>		
s ≫ x ⋈ t	$s <_s t \lor 0 <_s t$	$(s <_s 0 \Rightarrow s \gg 1 >_s t) \land$	\ \	
		$(s \ge_s 0 \Rightarrow s >_s t)$		

From Invertibility Conditions to Symbolic Instantiations

Hilbert choice functions $\varepsilon X. \varphi$

- Represents a solution for φ if there is one
- Represents arbitrary value, otherwise

Embed invertibility conditions into choice functions

BV literal: $l[x] = x \diamond s \bowtie t$ Inv. condition: IC_x Symbolic solution: $\varepsilon y. (IC_x \Rightarrow l[y])$

From Invertibility Conditions to Symbolic Instantiations

Hilbert choice functions $\varepsilon X. \varphi$

- Represents a solution for φ if there is one
- · Represents arbitrary value, otherwise

Embed invertibility conditions into choice functions

BV literal: $l[x] = x \diamond s \bowtie t$ Inv. condition: IC_x Symbolic solution: $\varepsilon y. (IC_x \Rightarrow l[y])$

From Invertibility Conditions to Symbolic Instantiations

Hilbert choice functions $\varepsilon X. \varphi$

- Represents a solution for φ if there is one
- · Represents arbitrary value, otherwise

Embed invertibility conditions into choice functions

BV literal: $l[x] = x \diamond s \bowtie t$ Inv. condition: IC_x Symbolic solution: $\varepsilon y. (IC_x \Rightarrow l[y])$

Note 1: Choice function expresses all conditional solutions with a single term

Hilbert choice functions $\varepsilon X. \varphi$

- Represents a solution for φ if there is one
- · Represents arbitrary value, otherwise

Embed invertibility conditions into choice functions

BV literal: $l[x] = x \diamond s \bowtie t$ Inv. condition: IC_x Symbolic solution: $\varepsilon y. (IC_x \Rightarrow l[y])$

Note 2: The ε binder can be later eliminated from instances by Skolemization:

 $\varphi[\varepsilon y. (IC_x \Rightarrow l[y])] \longrightarrow \varphi[k] \land (IC_x \Rightarrow l[k])$

- 1. Pick variable to solve for (x)
- 2. Compute inverse/IC's along path to x
- 3. Solve $z \cdot s_1 >_u t$ for z $IC_z = t <_u -s \mid s$ $z = \varepsilon y \cdot IC_z \Rightarrow y \cdot s_1 >_u t$ 4. Solve $s_2 + x \approx z$ for x $IC_x = \top$ $x = z - s_2$

Instantiation for *x*: εy . $(t <_u -s | s \Rightarrow s_1 \cdot y >_u t) - s_2$

- 1. Pick variable to solve for (x)
- 2. Compute inverse/IC's along path to x
- 3. Solve $z \cdot s_1 >_u t$ for z

$$\begin{aligned} & |C_z &= t <_u - s \mid s \\ & z &= \varepsilon y . \, |C_z \Rightarrow y \cdot s_1 >_u t \end{aligned}$$

4. Solve $s_2 + x \approx z$ for x $IC_x = \top$ $x = z - s_2$

Instantiation for *x*: εy . $(t <_u -s | s \Rightarrow s_1 \cdot y >_u t) - s_2$

- 1. Pick variable to solve for (x)
- 2. Compute inverse/IC's along path to x
- 3. Solve $z \cdot s_1 >_{u} t$ for z

$$IC_z = t <_u -s \mid s$$

$$z = \varepsilon y \cdot IC_z \Rightarrow y \cdot s_1 >_u t$$

4. Solve
$$s_2 + x \approx z$$
 for x

 $\begin{array}{rcl} IC_{X} & = & \top \\ X & = & Z - S_{2} \end{array}$

- 1. Pick variable to solve for (x)
- 2. Compute inverse/IC's along path to x
- 3. Solve $z \cdot s_1 >_u t$ for z

$$IC_z = t <_u -s \mid s$$

$$z = \varepsilon y \cdot IC_z \Rightarrow y \cdot s_1 >_u t$$

4. Solve
$$s_2 + x \approx z$$
 for x

$$\begin{array}{rcl} IC_{x} & = & \top \\ x & = & z - S_{2} \end{array}$$

Instantiation for x: $\varepsilon y.(t <_u -s | s \Rightarrow s_1 \cdot y >_u t) - s_2$

Non-linear constraints (multiple occurrences of a variable)

- Try to linearize with rewriting/normalization e.g., $x + x + s \approx t \longrightarrow 2 \cdot x + s \approx t$
- Otherwise, replace extra occurrences of x with value in current model I
 e.g., x ⋅ x + s ≈ t → x ⋅ x^I + s ≈ t

► Future work: Use SyGuS to synthesize IC's for non-linear cases

Non-linear constraints (multiple occurrences of a variable)

- Try to linearize with rewriting/normalization e.g., $x + x + s \approx t \longrightarrow 2 \cdot x + s \approx t$
- Otherwise, replace extra occurrences of x with value in current model \mathcal{I} e.g., $x \cdot x + s \approx t \longrightarrow x \cdot x^{\mathcal{I}} + s \approx t$

Future work: Use SyGuS to synthesize IC's for non-linear cases

Non-linear constraints (multiple occurrences of a variable)

- Try to linearize with rewriting/normalization e.g., $x + x + s \approx t \longrightarrow 2 \cdot x + s \approx t$
- Otherwise, replace extra occurrences of x with value in current model \mathcal{I} e.g., $x \cdot x + s \approx t \longrightarrow x \cdot x^{\mathcal{I}} + s \approx t$

► Future work: Use SyGuS to synthesize IC's for non-linear cases

Experimental Results

	CVC4 _{base}	Q3B	Boolector	Z3	CVC4 _{ic}
keymaera (4035)	3823	3805	4025	4031	3993
psyco (194)	194	99	193	193	190
scholl (374)	239	214	289	271	246
tptp (73)	73	73	72	73	73
uauto (284)	112	256	180	190	274
wintersteiger (191)	168	184	154	162	168
Total (5151)	4609	4631	4913	4920	4944

Limits: 300 seconds CPU time limit, 100G memory limit

 $CVC4_{ic}$ won division BV at SMT-COMP 2018

Outline

Introduction

- Quantifier Instantiation
 - E-matching
 - Conflict-Based Quantifier Instantiation
 - Model-based Quantifier Instantiation

Counter-Example-Guided Quantifier Instantiation

Quantifier Instantiation for Bit Vectors

Quantifier Instantiation for Floating Point Arithmetic

Conclusion

Similar approach can be applied to Floating Points [CAV 2019]

However, invertibility conditions are much more complex

Similar approach can be applied to Floating Points [CAV 2019]

However, invertibility conditions are much more complex (found 167/188 IC's so far)

Similar approach can be applied to Floating Points [CAV 2019] However, invertibility conditions are much more complex

(Shown for FP[3,5])

(white dot = IC is sat, black dot = IC is unsat)

Similar approach can be applied to Floating Points [CAV 2019] However, invertibility conditions are much more complex

(a)
$$(t \stackrel{RTN}{-} s) \stackrel{R}{+} s \approx t \lor t \approx s \lor (t \stackrel{RTP}{-} s) \stackrel{R}{+} s \approx t$$

(b) $t \approx (t \stackrel{RTP}{\div} s) \stackrel{R}{\cdot} s \lor t \approx (t \stackrel{RTN}{\div} s) \stackrel{R}{\cdot} s \lor (s \approx \pm \infty \land t \approx \pm \infty) \lor (s \approx \pm 0 \land t \approx \pm 0)$
...

 $\exists x. x + s \approx t$ $\equiv_{\rm BV}$ $(t \stackrel{RTN}{-} s) \stackrel{R}{+} s \approx t \lor t \approx s \lor (t \stackrel{RTP}{-} s) \stackrel{R}{+} s \approx t$

 $\exists x. x + s \approx t$ $\equiv_{\rm BV}$ $(t \stackrel{RTN}{-} s) \stackrel{R}{+} s \approx t \lor t \approx s \lor (t \stackrel{RTP}{-} s) \stackrel{R}{+} s \approx t$ rounding towards rounding towards corner case negative (zero) positive x = t - sx = t - sx = +0

Conclusion

Conclusion

- SMT solvers do not operate just on ground formulas
- There has been considerable progress on reasoning with quantified formulas in SMT
- Still, a lot more needs to be done
- The quest of combining theory and quantifier reasoning efficiently is still on
- \cdot The CVC4 team is at the forefront of this quest
- CVC4 is available at http://cvc4.cs.stanford.edu/
- · Join our quest!
- We are hiring PhD students and postdocs and welcome collaborations with other groups

Related and Future Work

- Symmetry elimination
- Proofs
- Synthesis
- Abduction

Thank you