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Abstract. The Nelson-Oppen combination method combines decision procedures
for first-order theories over disjoint signatures into a single decision procedure for
the union theory. To be correct, the method requires that the component theories be
stably infinite. This restriction makes the method inapplicable to many interesting
theories such as, for instance, theories having only finite models.

In this paper, we describe two extensions of the Nelson-Oppen method that
address the problem of combining theories that are not stably infinite. In our ex-
tensions, the component decision procedures exchange not only equalities between
shared variables, but also certain cardinality constraints.

Applications of our results include the combination of theories having only finite
models, as well as the combination of non-stably infinite theories with the theory
of equality, the theories of total and partial orders, and the theory of lattices with
maximum and minimum.
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1. Introduction

In this paper we are concerned with the problem of how to modu-
larly combine individual decision procedures for n first-order theories
T1, . . . , Tn into a decision procedure for their union.

The most successful and well-known method for combining decision
procedures is due to Nelson and Oppen [15]. This method is at the
heart of the verification systems cvc [20], eves [5], sdvs [12], and
simplify [6], among others. Given n theories T1, . . . , Tn over pairwise
disjoint signatures, the Nelson-Oppen method allows one to decide
the satisfiability of quantifier-free formulae in the union theory T =
T1∪· · ·∪Tn, using as black boxes the decision procedures for the compo-
nent theories T1, . . . , Tn. To be correct, the method requires that these
component theories be pairwise signature disjoint and stably infinite.1

1 A theory T is stably infinite if every quantifier-free formula satisfiable in a model
of T is satisfiable in an infinite model of T .
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The problem of combining signature disjoint theories has been ad-
dressed by Ghilardi [10], Tinelli [21], Tinelli and Ringeissen [23], and
Zarba [28]. Here we present two extensions of the method that address
the problem of combining theories that are not stably infinite. This is
an important research problem at the theoretical level because it allows
us to better understand the foundations of combination problems, and
to prove more decidability results by combination techniques. But it
is also interesting at a practical level because (i) proving that a given
theory is stably infinite is not always easy, and (ii) many interesting
theories, such as those admitting only finite models, are not stably
infinite.

In the original Nelson-Oppen method, the component decision pro-
cedures are required to deduce equalities over the shared variables. In
our extensions, the component decision procedures are also required to
compute certain cardinality constraints. More in detail, when combin-
ing a theory T , the decision procedure for T is also required to compute
the function mincardT . This function takes as input a T -satisfiable
conjunction Γ of literals, and returns the minimal cardinality k of any
finite model of T that satisfies Γ.

In our first extension, we combine n signature-disjoint theories
T1, . . . , Tn that have a computable function mincard . We assume that
all theories are stably finite (see later) and that one of them, T1 say,
has only finite models. Note that T1 is not stably infinite, and therefore
the original Nelson-Oppen method does not apply in this case.

Our first extension requires frequent computations of the function
mincard . As we will see later, this function can be expensive to com-
pute. To address this problem, we show a special case in which the
number of calls to mincard can be drastically reduced. That happens
whenever T1 has only models of a fixed (and known) finite cardinality.

In our second extension, we combine n theories T1, . . . , Tn such
that T1 is arbitrary, and T2, . . . , Tn are shiny. We show that in this case
it is enough to call mincard only n−1 times, once for each shiny theory
Ti, with i > 1.

A shiny theory T is a theory with a computable mincard and such
that (i) every T -satisfiable quantifier-free formula is satisfiable in a
finite model of T , and (ii) every quantifier-free formula satifiable in a
T -model of finite cardinality k is satisfiable in a T -model of cardinality
k′, for all k′ > k. Examples of shiny theories include the theory of
equality, the theory of partial orders, the theory of total orders, and
the theory of lattices with maximum and minimum elements.

Shininess is a stronger property than stable infiniteness. Thus, the
significance of our second extension is that, for instance, when we com-
bine n = 2 theories, we can completely forego the stable infiniteness
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requirement on one component theory if we can assume more (that is,
shininess) about the other theory.

The shininess of the theory of equality leads to the following result,
independently discovered also by Ganzinger [7]: if it is possible to decide
the satisfiability in a Σ-theory T of quantifier-free Σ-formulae, then it is
also possible to decide the satisfiability in T of quantifier-free formulae
over any arbitrary signature Ω ⊇ Σ.

1.1. Related work

The first description of the Nelson-Oppen method was published in a
seminal paper by Nelson and Oppen [15]. This paper did not contain the
stable infiniteness requirement. That notion was introduced later [14,
16] to correct a subtle problem in the original proof of correctness.
Examples showing that stable infiniteness is indeed necessary for the
method’s correctness were given in [22] and [1]. The latter paper also
shows that, while an equational theory need not be stably infinite, it is
enough to add a non-triviality axioms (∀x)(∀y)(x 6≈ y) to it to obtain
a stably infinite theory. This result was later generalized first to Horn
theories in [23] and then to convex theories in general in [2].

A model theoretic account on the significance of stable infiniteness
for combination methods a là Nelson and Oppen can be found in [23].
In brief, and roughly speaking, the idea is that stable infiniteness is
a sufficient condition for guaranteeing that all component theories in
a combination have models of the same size. This intuition goes back
to [19, 22] and was used in [1] (and later papers by the same authors)
to prove the correctness of a combination method for the word problem
in equational theories—with countable signatures.

In that work as well the correctness of the given combination method
hinges on the existence of certain models of the same size for each
component theories. There however the existence of these models is not
provided by a stable infiniteness assumption on the theories but simply
by a non-triviality assumption.2 The reason this is enough in [1] is that
the word problem for a non-trivial equational theory can be reduced to
the word problem in the theory’s free model with a countably infinite
set of generators. And this model is countably infinite whenever the
signature of the theory is countable.

The present paper has also connections with previous work by Zarba
on the combination of integers with data structures such as lists [25],
sets [27], and multisets [26]. In particular, in order to relax the stably
infiniteness requirement, Zarba used a mincard function for the case

2 A theory is non-trivial if it admits models of cardinality greater than one.
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of lists and sets, whereas an ad hoc reduction to linear arithmetic was
used for the case of multisets.

The work described in the present paper, which extends and revises
results initially described in [24], is the first that focuses on relaxing
the stable-infiniteness requirement in the general setting of the Nelson-
Oppen method.

1.2. Organization of the paper

The paper is organized as follows. In Section 2 we introduce some
preliminary notions that will be used in what follows. In Section 3
we describe a preprocessing phase that is common to both of our com-
bination methods. In Section 4 we describe and prove correct our first
combination method, which combines one or more stably finite theories
with one having only finite models. In Section 5 we describe and prove
correct our second method, which combines one or more shiny theories
with an arbitrary one. In Section 6 we provide several applications
of our methods. In Section 7 we conclude with directions for further
research. Finally, in Appendix A we prove a technical theorem that is
at the base of the correctness of our methods.

2. Preliminaries

The results in this paper are in the context of first-order logic with
equality. We describe our version of the logic in the following.

2.1. Syntax

A signature is a countable set Σ = ΣC ∪ ΣF ∪ ΣP where ΣC is a set of
constant symbols, ΣF is a set of function symbols, and ΣP is a set of
predicate symbols.

A Σ-atom is an expression of the form P (t1, . . . , tn), where P ∈ ΣP

and t1, . . . , tn are Σ-terms, or an expression of the form s ≈ t, where≈ is
the equality logical symbol and s, t are Σ-terms, or one of the symbols
true, false. Σ-formulae are constructed by applying in the standard
way the connectives ¬, ∧, ∨, → and the quantifiers ∀, ∃ to Σ-atoms.
Σ-literals are Σ-atoms or their negations. Σ-sentences are Σ-formulae
with no free variables.

If ϕ is a term or a formula, vars(ϕ) denotes the set of variables
occurring free in ϕ. Similarly, if Φ is a set of terms or a set of formulae,
vars(Φ) denotes the set of variables occurring free in Φ.
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We identify a conjunction of formulae ϕ1 ∧ · · · ∧ ϕn with the set
{ϕ1, . . . , ϕn}. In addition, we abbreviate literals of the form ¬(s ≈ t)
with s 6≈ t.

For every integer n > 0, we denote with δn a cardinality constraint
that says that there must be at least n elements. More precisely, we
use the notation Γ∪ δn, for every conjunction Γ of literals, to denote a
conjunction of literals obtained by using the following process:

1. generate n fresh variables w1, . . . , wn not occurring in Γ;

2. let δn = {wi 6≈ wj | 1 ≤ i < j ≤ n}.

2.2. Semantics

DEFINITION 1. Let Σ be a signature. A Σ-interpretation A with
domain A over a set of variables V is a map which interprets:

− each variable x as an element xA ∈ A;

− each constant c ∈ ΣC as an element cA ∈ A;

− each function symbol f ∈ ΣF of arity n as a function fA : An →
A;

− each predicate symbol P ∈ ΣP of arity n as a subset PA of An.

Unless otherwise specified, we use the convention that calligraphic
letters A, B, . . . denote interpretations, and that the corresponding
Roman letters A, B, . . . denote the domains of the interpretations.

Let A be a Σ-interpretation over a set of variables V . For a Σ-term t
over V , we denote with tA the evaluation of t under the interpretation
A. Likewise, for a Σ-formula ϕ over V , we denote with ϕA the truth-
value of ϕ under the interpretation A. If T is a set of Σ-terms over V ,
we denote with TA the set {tA | t ∈ T}.

A formula ϕ is satisfied by an interpretation A if it evaluates to true
under A. If ϕ is satisfied by A, we say that A is a model of ϕ. A formula
ϕ over a set V of variables is:

− valid, if it is satisfied by all interpretations over V ;

− satisfiable, if it is satisfied by some interpretation over V ;

− unsatisfiable, if it is not satisfiable.
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The notion of validity, satisfiability, and unsatisfiability naturally
extend to sets of formulae.

2.3. Theories

If Σ is a signature, a Σ-theory is any set of Σ-sentences. Given a Σ-
theory T , a T -model is a Σ-interpretation that satisfies all sentences in
T . A formula ϕ over a set V of variables is:

− T -valid, if it is satisfied by all T -models over V ;

− T -satisfiable, if it is satisfied by some T -model over V ;

− T -unsatisfiable, if it is not T -satisfiable.

The notion of T -validity, T -satisfiability, and T -unsatisfiability nat-
urally extend to sets of formulae.

A theory T is axiomatized by a set S of sentences if S and T are
logically equivalent, that is, if S and T have the same set of models.

Given a Σ-theory T and a set L of formulae, the satisfiability problem
of T with respect to L is the problem of deciding, for each formula ϕ
in L, whether or not ϕ is T -satisfiable. When we do not specify L,
it is implicitly assumed that L is the set of all Σ-formulae. However,
when we say “quantifier-free satisfiability problem”, without specifying
L, then we implicitly assume that L is the set of all quantifier-free
Σ-formulae.

In this paper, we will use the usual notion of stable infiniteness for
a theory, together with its “dual” one, which we call stable finiteness.

DEFINITION 2. A Σ-theory T is stably infinite (respectively, sta-

bly finite) if every quantifier-free Σ-formula ϕ is T -satisfiable if and
only if it is satisfied by a T -interpretation A whose domain A is infinite
(respectively, finite).

Examples of stably infinite theories include the theory of equality,
the theory of integer arithmetic, the theory of rational arithmetic, the
theory of acyclic lists, and the theory of arrays. (Note that since we
regard ≈ as a logical symbol, for us the theory of equality and the
empty theory are the same theory.)

Examples of stably finite theories include the theory of equality,
all theories having only finite models, and all theories axiomatized by
formulae in the Bernays-Schönfinkel-Ramsey class [3, 18].

A theory can be both stably finite and stably infinite. We will show
that in Section 6 for a number of theories.
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DEFINITION 3. A Σ-theory T is smooth if for every quantifier-free
Σ-formula ϕ, for every T -model A satisfying ϕ, and for every cardinal
number κ > |A| there exists a T -model B satisfying ϕ such that |B| = κ.

The following proposition is a direct consequence of Definition 3.

PROPOSITION 4. Every smooth theory is stably infinite.

The next proposition is useful when proving that a theory is smooth.

PROPOSITION 5. Let T be a Σ-theory. Then the following are equiv-
alent:

1. T is smooth;

2. for every quantifier-free Σ-formula ϕ and for every finite T -model
A of ϕ there exists a T -model B of ϕ such that |B| = |A|+ 1.

Proof. (1⇒ 2). Trivial.

(2⇒ 1). Let ϕ be a quantifier-free formula, and let A be a model of ϕ.
By induction on |A|, one can see that if A is finite then ϕ has a model

of any finite cardinality κ > |A|. By compactness, ϕ has a countably
infinite model, and by the Upward Löwenheim-Skolem Theorem, ϕ has
also a model of any infinite cardinality κ.

If instead A is infinite then, by the upward Löwenheim-Skolem The-
orem again, it follows that ϕ has a model of any (infinite) cardinality
κ > |A|. 2

Given a Σ-theory T and a T -satisfiable set Γ of Σ-literals, we denote
with mincardT (Γ) the smallest cardinality of a T -model satisfying Γ.
When T is the theory of equality, we abbreviatemincardT withmincard
(without any subscript).

Note that if T is a stably finite theory then, for every T -satisfiable
set of literals Γ, mincardT (Γ) is an integer.

DEFINITION 6. A Σ-theory T is shiny if:

− T is smooth;

− T is stably finite;

− mincardT is computable.

Examples of shiny theories include the theory of equality, the theory
of partial orders, the theory of total orders, and the theory of lattices
with maximum and minimum elements.
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3. Preprocessing

Let Ti be a Σi-theory, for i = 1, . . . , n. Assume that all the signatures
Σ1, . . . ,Σn are pairwise disjoint, and that all the quantifier-free satisfia-
bility problems for T1, . . . , Tn are decidable. Finally, let T = T1∪· · ·∪Tn

and Σ = Σ1 ∪ · · · ∪ Σn.
In this and the next two sections, we describe two combination

methods that, under certain conditions, yield a decision procedure for
the quantifier-free satisfiability problem of T .

Without loss of generality, we restrict ourselves to conjunctions of
literals. Note that this can always be done because every formula ϕ can
be effectively converted into an equisatisfiable formula in disjunctive
normal form ψ1 ∨ · · · ∨ ψn, where each ψi is a conjunction of literals.
Then ϕ is satisfiable if and only if at least one of the disjuncts ψi is
satisfiable.

Our methods share a common nondeterministic preprocessing phase,
and have separate check phases. We describe the preprocessing phase
in this section, and we remind to Sections 4 and 5 for the check phases.

The preprocessing phase consists of a variable abstraction step and
a nondeterministic decomposition step.

First step: variable abstraction
Let Γ be a conjunction of Σ-literals. The output of the variable ab-
straction step is a conjunction

Γ′ = Γ1 ∪ · · · ∪ Γn

satisfying the following properties:

(a) each literal in Γi is a Σi-literal, for i = 1, . . . , n;

(b) Γ′ is T -satisfiable if and only if so is Γ.

Properties (a) and (b) can be effectively enforced with the help of fresh
variables. For instance, the simplest way to enforce both properties is to
use fresh variables in order to flatten the input, so that all literals in Γ′

are of the form x0 ≈ f(x1, . . . , xn), x1 ≈ x2, x1 6≈ x2, P (x1, . . . , xn), or
¬P (x1, . . . , xn), where f is a function symbols, P is a predicate symbol,
and the xi are variables.

Second step: decomposition
Let Γ1 ∪ · · · ∪ Γn be a conjunction of literals obtained in the variable
abstraction step. Let V be the set of variables that occur in at least
two of the conjunctions Γi, that is

V =
⋃

i6=j

(vars(Γi) ∩ vars(Γj)) .
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In words, V is a set of the variables that are shared by at least two of
the conjunctions Γ1, . . . ,Γn.

In the decomposition step we nondeterministically guess an equiva-
lence relation E over V . Intuitively, what we are guessing is, for each
variable x, y ∈ V , whether or not we have x = y.

Then, we construct the arrangement of V induced by E, defined by

arr(V,E) = {x ≈ y | x, y ∈ V and (x, y) ∈ E} ∪

{x 6≈ y | x, y ∈ V and (x, y) /∈ E} ,

and we output the conjunction

Γ1 ∪ · · · ∪ Γn ∪ arr(V,E) . (1)

We call (1) a conjunction in arranged normal form.

Note that a conjunction in arranged normal can also be thought as
having the form

(Γ1 ∪ arr(V,E)) ∪ · · · ∪ (Γn ∪ arr(V,E)) .

Then, if we let Vi = vars(Γi ∪ arr(V,E)), we have the property that

⋃

i6=j

(Vi ∩ Vj) =
⋂

i

Vi .

This is a crucial property for following technical result, which is at the
core of our combination method’s correctness, and whose proof can be
found in the appendix.

THEOREM 7 (Generalized Combination for Disjoint Signatures). Let
Φ = Φ1 ∪ · · · ∪ Φn, where Φi is a set of Σi-formulae, for i = 1, . . . , n.
Also, let Vi = vars(Φi) and V =

⋃

i6=j (Vi ∩ Vj). Assume that all the
signatures Σ1, . . . ,Σn are pairwise disjoint, and that

⋃

i6=j

(Vi ∩ Vj) =
⋂

i

Vi .

Then Φ is satisfiable if and only if there exist interpretations A1, . . . ,An

such that:

(i) Ai satisfies Φi, for i = 1, . . . , n;

(ii) |A1| = |A2| = · · · = |An|;

(iii) xAi = yAi if and only if xAj = yAj , for all i, j and for every
x, y ∈ V .
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1: N ← 1
2: while true do
3: if ∃i such that Γi ∪ arr(V,E) ∪ δN is Ti-unsatisfiable then
4: return fail

5: else if ∃i such that mincardTi
(Γi ∪ arr(V,E) ∪ δN ) = m > N

then

6: N ← m
7: else

8: return succeed

Figure 1. The check phase of the first combination method.

4. Theories having only finite models

In this section we describe and prove correct the check phase of our
first combination method, which allows us to combine n theories with
a computable mincard , provided that at least one of them has only
finite models.

Thus, let Ti be a Σi-theory, for i = 1, . . . , n. Assume that all the
signatures Σ1, . . . ,Σn are pairwise disjoint, and that all the quantifier-
free satisfiability problems for T1, . . . , Tn are decidable. Also, let T =
T1 ∪ · · · ∪ Tn and Σ = Σ1 ∪ · · · ∪ Σn. Finally, assume that:

(i) Ti is stably finite, for i = 1, . . . , n;

(ii) mincardTi
is computable, for i = 1, . . . , n;

(iii) all T1-interpretations are finite.

If Γ = Γ1∪· · ·∪Γn∪arr(V,E) is a conjunction of literals in arranged
normal form obtained in the preprocessing phase, then we can check
the T -satisfiability of Γ by running the procedure in Figure 1 on it.

4.1. An example

Example 8. Let T1, T2, T3 be theories such that, for each interpreta-
tion A we have:

− A is a T1-interpretation if and only if |A| ≤ 10;

− A is a T2-interpretation if and only if |A| is not even;

− A is a T3-interpretation if and only if |A| is not odd.

Note that the union theory T = T1 ∪ T2 ∪ T3 is inconsistent. This
inconstency can be formally checked with our methods by verifying
that the formula true is T -unsatisfiable.
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Indeed, the formula true is already in arranged normal form, and
therefore we can simply apply to it the procedure in Figure 1. Then,
said procedure will return fail after 10 iterations of the while loop. 2

4.2. Correctness

The following proposition shows that the procedure in Figure 1 is
terminating.

PROPOSITION 9. Let Γ = Γ1 ∪ · · · ∪Γn ∪ arr(V,E) be a conjunction
of literals in arranged normal form. Then the procedure in Figure 1
terminates on input Γ.

Proof. By contradiction, assume that the procedure in Figure 1 does
not terminate on input Γ. Then the set T1∪Γ1∪arr(V,E)∪δN is satis-
fiable for increasing large N . By compactness, T1∪Γ1∪arr(V,E) is sat-
isfiable in an infinite interpretation, which contradicts the assumption
that all T1-interpretations are finite. 2

The following two propositions show that the procedure in Figure 1
is also partially correct.3

PROPOSITION 10. Let Γ = Γ1 ∪ · · · ∪ Γn ∪ arr(V,E) be a conjunc-
tion of literals in arranged normal form. If Γ is T -satisfiable then the
procedure in Figure 1 outputs succeed on input Γ.

Proof. Let F be a T -interpretation satisfying Γ, and let κ = |F |.
Since F satisfies T1, κ ∈ N

+.
Recalling that the procedure is terminating, let k1, . . . , kq be all the

values taken by N , in order, during the execution of the procedure on
input Γ.

By induction, we show that ki ≤ κ, for all i = 1, . . . , q. The base
case is trivial because k1 = 1. For the induction step, assume that
kj ≤ κ. By construction, there exists an index i such that kj+1 =
mincardTi

(Γi∪arr(V,E)∪δkj
). Note that F satisfies Γi∪arr(V,E)∪δkj

.
Thus, kj+1 ≤ κ.

Since kq ≤ κ, the procedure cannot fail for N = kq. Thus, since kq

is the last value held by N , the procedure must return succeed. 2

PROPOSITION 11. Let Γ = Γ1∪· · ·∪Γn∪arr(V,E) be a conjunction
of literals in arranged normal form. If the procedure in Figure 1 outputs
succeed on input Γ then Γ is T -satisfiable.

3 Recall that a procedure P is partially correct if it returns a correct answer each
time it terminates.
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1: N ← k
2: if Γ1 ∪ arr(V,E) ∪ δN is T1-unsatisfiable then
3: return fail

4: else

5: for i← 2 to n do
6: if Γi ∪ arr(V,E) ∪ δN is Ti-unsatisfiable then
7: return fail

8: else if mincardTi
(Γi ∪ arr(V,E) ∪ δN ) > N then

9: return fail

10: return succeed

Figure 2. An optimization of the first combination method.

Proof. Let k be the last value held by the variable N . Then, for
all indices i, we have that Γi ∪ arr(V,E) ∪ δk is Ti-satisfiable, and
that mincardTi

(Γi ∪ arr(V,E) ∪ δk) = k. It follows that there exist
interpretations A1, . . . ,An satisfying all requirements of Theorem 7.
Hence, Γ is satisfiable. 2

Combining Propositions 9, 10, and 11 with the observation that a
conjunction of literals has only finitely many arranged normal forms,
we obtain the following decidability result.

THEOREM 12. Let T = T1∪· · ·∪Tn be the union of pairwise signature-
disjoint theories such that:

(i) Ti is stably finite, for i = 1, . . . , n;

(ii) mincardTi
is computable, for i = 1, . . . , n;

(iii) all T1-interpretations are finite.

If all the quantifier-free satisfiability problems of T1, . . . , Tn are decid-
able, then the quantifier-free satisfiability problem of T is decidable.

4.3. An optimization

Our first combination method can be optimized when all T1-models
have a fixed, known cardinality k. In this case, in order to prove that
a conjunction Γ = Γ1 ∪ · · · ∪Γn ∪ arr(V,E) in arranged normal form is
T -satisfiable, it suffices to run the more efficient procedure in Figure 2
to Γ.

The correctness of this optimization can be proved along the same
lines as in Section 4.2.
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Example 13. Let T1 and T2 be theories such that, for each interpre-
tation A we have:

− A is a T1-interpretation if and only if |A| = 10;

− A is a T2-interpretation if and only if |A| is not even.

Note that the union theory T = T1∪T2 is inconsistent. This incons-
tency can be formally checked with our methods by verifying that the
formula true is T -unsatisfiable.

Indeed, the formula true is already in arranged normal form, and
therefore we can simply apply to it the procedure in Figure 2, which
will return fail at line 7 of the first (and unique) iteration of the for
loop. 2

5. Shiny theories

In this section we describe and prove correct the check phase of our
second combination method, which allows us to combine several shiny
theories with one arbitrary theory.

Thus, let Ti be a Σi-theory, for i = 1, . . . , n. Assume that all the
signatures Σ1, . . . ,Σn are pairwise disjoint, and that all the quantifier-
free satisfiability problems for T1, . . . , Tn are decidable. Also, let T =
T1 ∪ · · · ∪ Tn and Σ = Σ1 ∪ · · · ∪ Σn. Finally, assume that:

(i) T1 is arbitrary;

(ii) T2, . . . , Tn are shiny.

If Γ = Γ1∪· · ·∪Γn∪arr(V,E) is a conjunction of literals in arranged
normal obtained in the preprocessing phase, then we can check the
T -satisfiability of Γ by running the procedure in Figure 3 on it.

5.1. Examples

The next two examples illustrate the use of our second combination
method. They are adapted from [22] and [1], respectively, where they
were used to show that the Nelson-Oppen method is in fact incorrect
on non-stably infinite theories.

Example 14. Let Σ1 = {f} and Σ2 = {g} be signatures, where f and
g are distinct unary function symbols. Also, let T1 be a Σ1-theory such
that all T1-interpretations have cardinality at most two, and let T2 be
the theory of equality over the signature Σ2.
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14 Cesare Tinelli and Calogero Zarba

1: N ← 1
2: for i← 2 to n do
3: if Γi ∪ arr(V,E) is Ti-unsatisfiable then
4: return fail

5: else

6: N ← max(N,mincardTi
(Γi ∪ arr(V,E))

7: if Γ1 ∪ arr(V,E) ∪ δN is T1-unsatisfiable then
8: return fail

9: else

10: return succeed

Figure 3. The check phase of the second combination method.

Since T1 is not stably infinite, we cannot use the Nelson-Oppen
combination method in order to combine T1 with T2. However, in Sec-
tion 6.2 we will show that the theory of equality is shiny, regardless of
the associated signature. Thus, we can apply our second combination
method to T1 and T2.

4

As an example, let Γ be the following conjunction of literals:

Γ =







f(x) 6≈ f(y) ,
g(x) 6≈ g(z) ,
g(y) 6≈ g(z)







.

This conjunction is (T1∪T2)-unsatisfiable. In fact, Γ implies x 6≈ y∧x 6≈
z ∧ y 6≈ z, and therefore every interpretation satisfying Γ must have
cardinality at least three. However, every (T1 ∪ T2)-interpretation has
at most two elements.

Let us apply our second combination method to Γ. In the variable
abstraction phase we return the conjunctions

Γ1 =
{

f(x) 6≈ f(y)
}

, Γ2 =

{

g(x) 6≈ g(z) ,
g(y) 6≈ g(z)

}

.

Since vars(Γ1)∩ vars(Γ2) = {x, y}, in the decomposition phase only
two equivalence relations can be guessed: either (x, y) ∈ E or (x, y) /∈ E.

If we guess (x, y) ∈ E then we have that Γ1 ∪ {x ≈ y} is T1-
unsatisfiable and therefore the procedure in Figure 3 will output fail
when reaching line 8.

If instead we guess (x, y) /∈ E then we have that Γ2 ∪ {x 6≈ y} is
T2-satisfiable. In addition, we also have mincardT2

(Γ2 ∪ {x 6≈ y}) = 3.
To see this, first observe that Γ2∪{x 6≈ y} implies x 6≈ y∧x 6≈ z∧y 6≈ z,

4 Note that if we knew that mincardT1
was computable, we could use the first

combination method as well.
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Combining Non-Stably Infinite Theories 15

and therefore mincardT2
(Γ2∪{x 6≈ y}) ≥ 3. Moreover, we can construct

an interpretation A of cardinality 3 satisfying Γ2 ∪ {x 6≈ y} by letting
A = {a1, a2, a3}, xA = a1, y

A = a2, z
A = a3, and f

A(a) = a, for each
a ∈ A.5 Since Γ1 ∪ {x 6≈ y} ∪ δ3 is T1-unsatisfiable, the procedure in
Figure 3 will output fail when reaching line 8.

Summing up, the procedure in Figure 3 outputs fail for all pos-
sible arrangements, and therefore we can declare that Γ is (T1 ∪ T2)-
unsatisfiable. 2

Example 15. Let Σ1 = {f, g, h} and Σ2 = {k} and be signatures,
where k, f and g are distinct unary function symbols. Let T1 be the
equational theory

T1 =

{

(∀x)(∀y)(x ≈ f(g(x), g(y))),
(∀x)(∀y)(f(g(x), h(y)) ≈ y)

}

,

and let T2 be the theory of equality over the signature Σ.
As explained in [1], using simple term rewriting arguments it is

possible to show that T1 admits models of cardinality greater than
one, and so admits models of infinite cardinality. (This is because the
set of models of an equational theory is closed under direct products.)
However, T1 is not stably infinite.

In fact, consider the quantifier-free formula g(z) ≈ h(z). This for-
mula is T1-satisfiable because both the formula and T1 admit a trivial
model, that is, a model with just one element. Now let A be any T1-
model of g(z) ≈ h(z), let a0 = zA, and let a ∈ A. Because of the axioms
of T1, we have that

a = fA(gA(a), gA(a0)) = fA(gA(a), hA(a0)) = a0

Given that a is arbitrary, this entails that |A| = 1. Thus, g(z) ≈ h(z)
is only satisfiable in trivial models of T1, which entails that the theory
T1 is not stably infinite.

Now let Γ be the following conjunction of literals:

Γ =

{

g(z) ≈ h(z) ,
k(z) 6≈ z

}

.

This conjunction is (T1 ∪ T2)-unsatisfiable, because g(z) ≈ h(z) is sat-
isfiable only in trivial models of T1 ∪ T2 (for being satisfiable only in
trivial models of T1, as seen above), while k(z) 6≈ z is satisfiable only
in non-trivial models of T1 ∪ T2.

5 We will see how to effectively compute mincardT1
in Section 6.1.
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16 Cesare Tinelli and Calogero Zarba

Let us apply our second combination method to Γ. In the variable
abstraction phase we simply return the conjunctions

Γ1 =
{

k(z) 6≈ z
}

, Γ2 =
{

g(z) ≈ h(z)
}

.

Since vars(Γ1) ∩ vars(Γ2) = {z}, in the decomposition phase there
is only one equivalence relation that can be guessed: (z, z) ∈ E.

Clearly, Γ2 is T2-satisfiable, and in models of cardinality at least
2. Therefore, we have that mincardT2

(Γ1) = 2. Moreover, for what
we argued above, Γ1 ∪ δ2 is T1-unsatisfiable, so that the procedure in
Figure 3 will output fail when reaching line 8. 2

5.2. Correctness

Clearly, the procedure in Figure 3 is terminating. The following two
propositions show that the procedure is also partially correct.

PROPOSITION 16. Let Γ = Γ1 ∪ · · · ∪ Γn ∪ arr(V,E) be a conjunc-
tion of literals in arranged normal form. If Γ is T -satisfiable then the
procedure in Figure 3 outputs succeed on input Γ.

Proof. Let F be a T -interpretation satisfying Γ. Clearly, FΣi,V is a
Ti-interpretation satisfying Γi∪arr(V,E), for i = 2, . . . , n, and therefore
the procedure can never reach line 4.

Let k be the final value held by the variable N . By definition of
mincard , we have k ≤ |F |, which implies that FΣ1,V is also a T1-
interpretation satisfying Γ1 ∪ arr(V,E) ∪ δk. Therefore, the procedure
can never reach line 7 either, and it must terminate at line 9 outputting
succeed. 2

PROPOSITION 17. Let Γ = Γ1∪· · ·∪Γn∪arr(V,E) be a conjunction
of literals in arranged normal form. If the procedure in Figure 3 outputs
succeed on input Γ then Γ is T -satisfiable.

Proof. Let k be the final value held by the variable N . Then there
exist interpretations A1, . . . ,An such that:

− A1 is a T1-interpretation satisfying Γ1 ∪ arr(V,E) ∪ δk;

− Ai is a Ti-interpretation satisfying Γi ∪ arr(V,E), for i = 2, . . . , n.

Moreover, mincard(Γi ∪ arr(V,E)) ≤ k, for i = 2, . . . , n. Let κ =
|A1|. Clearly, |A1| ≥ k. By definition of mincard and the smoothness of
A2, . . . ,An, we can then assume without loss of generality that |Ai| = κ
as well, for i = 2, . . . , n.

Thus, since all the Ai satisfy arr(V,E), we can apply Theorem 7,
obtaining that Γ is T -satisfiable. 2
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Combining Non-Stably Infinite Theories 17

Combining Propositions 16 and 17 with the fact that the procedure
in Figure 3 is terminating, we obtain the following decidability result.

THEOREM 18. Let T = T1∪· · ·∪Tn be the union of pairwise signature-
disjoint theories such that:

(i) T1 is arbitrary;

(ii) T2, . . . , Tn are shiny;

If all the quantifier-free satisfiability problems of T1, . . . , Tn are decid-
able, then the quantifier-free satisfiability problem of T is decidable.

6. Applications

In this section, we present some examples of theories to which our
combination results apply.

To prove our claims we will use the following definition and lem-
mas, adapted from basic notions and results in model theory (see, for
instance, [11]).

DEFINITION 19. Let Σ be a signature, and let A and B be Σ-in-
terpretations over some set V of variables. A map h : A → B is an
embedding of A into B if the following conditions hold:

− h is injective;

− h(uA) = uB for each variable or constant u ∈ V ∪ ΣC;

− h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)), for each n-ary func-
tion symbol f ∈ ΣF and a1, . . . , an ∈ A;

− (a1, . . . , an) ∈ PA if and only if (h(a1), . . . h(an)) ∈ PB, for each
n-ary predicate symbol P ∈ ΣP and a1, . . . , an ∈ A.

We say that A is embedded in B if there is an embedding of A
into B.

LEMMA 20. Let A,B be two interpretations such that A is embedded
in B, and let ϕ be a quantifier-free formula. Then ϕ is satisfied by B
whenever it is satisfied by A.

DEFINITION 21. A formula is universal if it is of the form

(∀x1) · · · (∀xn)ψ ,

where n ≥ 0 and ψ is quantifier-free. A theory is universal if it is
axiomatized by a set of universal sentences.
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18 Cesare Tinelli and Calogero Zarba

Input: a T -satisfiable set Γ of Σ-literals over the variables V
Output: mincardT (Γ)
1: k ← 0
2: while true do
3: k ← k + 1
4: for all Σ-interpretations A over V of cardinality k do
5: if Γ ∪ diagram(A) is T -satisfiable then
6: return k

Figure 4. A procedure for computing mincardT .

LEMMA 22. Let T be a universal Σ-theory and let A be a Σ-interpre-
tation. If A is embedded in a model of T , then A is also a model of
T .

Since both combination methods require at least one of the compo-
nent theories to have a computable mincard , we start by providing a
general sufficient condition for that, which will be useful later.

6.1. Computability of mincardT

In this subsection we address the problem of computing mincardT , for
theories T that are stably finite and have a decidable quantifier-free
satisfiability problem. We show that for any such theory T , mincardT

is always computable, provided that Σ is finite and that T is universal.
Intuitively, we compute mincardT (Γ) by enumerating, modulo iso-

morphism, all Σ-interpretations A in increasing order of cardinality,
and checking whether T ∪ Γ is satisfied by A. This enumeration can
be effectively done because we assume that Σ is finite. Termination
is guaranteed by the stable finiteness of T , and partial correctness is
guaranteed by the universality of T .

Figure 4 shows a procedure for computing mincardT . There, the
notation diagram(A) in line 5 stands for a set of literals that can be
intuively seen as a finite specification of the interpretation A. More in
detail, diagram(A) is effectively constructed from A using the following
process:

1. For each element a in A, generate a fresh variable ya. Also, initially
let ∆ = ∅.

2. For each variable or constant symbol u in V ∪ ΣC, if uA = a, add
the literal u ≈ ya to ∆.

3. For each function symbol f in ΣF of arity n, if a = fA(a1, . . . , an),
add the literal ya ≈ f(ya1

, . . . , yan) to ∆.
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Combining Non-Stably Infinite Theories 19

4. For each predicate symbol P in ΣP∪{≈} of arity n, if (a1, . . . , an) ∈
PA, add the literal P (ya1

, . . . , yan) to ∆; if instead (a1, . . . , an) /∈
PA, add the literal ¬P (ya1

, . . . , yan) to ∆.

We define diagram(A) as the set ∆ obtained at the end of this
process. By construction, diagram(A) is satisfied by the expansion A′

of A to the new variables ya (with a ∈ A) that interprets each ya as a.
For simplicity, we will identify A′ with A in the following.

The following proposition proves that the procedure in Figure 4
effectively computes mincardT (Γ).

PROPOSITION 23. Let T be a stably finite Σ-theory with a decidable
quantifier-free satisfiability problem. If Σ is finite and T is universal,
then mincardT is computable.

Proof. Let Γ be a T -satisfiable set of Σ-literals over some set V of
variables.

We first show that the procedure in Figure 4 must terminate on
input Γ. In fact, since T is stable finite, there exists a T -interpretationA
satisfying Γ such that |A| = k, for some positive integer k. By construc-
tion of diagram(A), we have that A satisfies diagram(A). Therefore, A
satisfies T ∪ Γ ∪ diagram(A), and the procedure stops no later than at
iteration k.

Next, we show that the procedure is also partially correct. Thus,
assume that the procedure stops at iteration k. Then there exists a T -
interpretation B satisfying Γ∪ diagram(A), where |A| = k. If we prove
that there exists an embedding ofA into B, by Lemma 22 we obtain that
A satisfies T ∪ Γ ∪ diagram(A),6 which implies that mincardT (Γ) ≤ k.

Indeed, an embedding of A into B is provided by the function h :
A→ B defined by

h(a) = yBa , for each a ∈ A .

By construction, h in injective.
Let u ∈ V ∪ ΣC, and let a = uA. Then the literal u ≈ ya is in Γ.

Thus h(uA) = yBa = uB.
Let f ∈ ΣF be a function symbol of arity n. Let fA(a1, . . . , an) = a.

Then

h(fA(a1, . . . , an)) = h(a)

= yBa

= fB(yBa1
, . . . , yBan

)

= fB(h(a1), . . . , h(an)) .

6 This is because T ∪ Γ ∪ diagram(A) can be seen as an universal theory if we
consider the (free) variables of Γ and of diagram(A) as constant symbols.
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Let P ∈ ΣF be a predicate symbol of arity n. Assume first that
(a1, . . . , an) ∈ PA. Then (yBa1

, . . . , yBan
) ∈ PB. It follows that (h(a1), . . . ,

h(an)) ∈ P
B. Vice versa, it can be shown that if (h(a1), . . . , h(an)) ∈ P

B

then (a1, . . . , an) ∈ P
A.

Since h is an embedding of A into B, by Lemma 22 A satisfies
T ∪ Γ ∪ diagram(A), and therefore mincardT (Γ) ≤ k. All we need to
show then is that mincardT (Γ) = k. Assume by contradiction that
mincardT (Γ) < k. Then there exists a T -interpretation A of cardinality
n < k that satisfies Γ. But then, A also satisfies T ∪ Γ ∪ diagram(A),
and the procedure would have stopped at iteration n, not k. 2

The procedure in Figure 4 has of course only theoretical interest
because it has a prohibitive time complexity. To see that, first observe
that for any set A of cardinality n > 1 there are at least 2n possible
functions from A into itself—all the possible binary functions on A.
That means that if Σ has at least one function symbol, there are at
least 2n non-isomorphic Σ-interpretations of cardinality n. Consider
then any satisfiable set Γ of literals containing the set δn+1. Since the
smallest T -model satisfying δn+1 has cardinality n + 1, the procedure
will certainly construct all those 2n interpretations of cardinality n
before succeeding. It follows that for all formulae Γ like the above for
which n + 1 is at least linear in the size of Γ,7 the complexity of the
procedure is at least exponential in the size of Γ.

One may wonder whether mincardT can be computed more effi-
ciently using a better procedure. Unfortunately, this is not the case for
many theories of interest. We show in the next subsection that for a
large class of theories, including the theory of equality, the computation
of mincard is actually NP-hard.8

6.2. The Theory of Equality

For any signature Σ, the Σ-theory of equality—the theory axiomatized
by an empty set of Σ-sentences—is stably infinite and has a decidable
quantifier-free satisfiability problem [16]. The decidability results in [16]
also show that a quantifier-free formula ϕ is satisfiable in the theory
if and only if it is satisfiable in a model of the theory with cardinality
bounded above by the size of ϕ. Given that the theory is trivially
universal, we have the following specialization of Proposition 23.

PROPOSITION 24. For every finite signature Σ, the Σ-theory of equal-
ity is stably finite and has a computable mincard.

7 Which is the case for instance if Γ coincides with δn+1.
8 This amends an incorrect result in [24] where we claimed that the complexity

of mincard for the theory of equality is polynomial.
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We point out that, for satisfiability purposes, the limitation to fi-
nite signatures is really immaterial. In fact, if one is interested in the
satisfiability of a formula ϕ in the theory of equality, it is enough to
consider the theory of equality over the (finitely-many) symbols of ϕ.

We now show that the theory of equality is also shiny.

PROPOSITION 25. Let ϕ be a quantifier-free formula, and let A be
a finite model of ϕ. Then there exists a model B of ϕ such that |B| =
|A|+ 1.

Proof. Let k = |A|. We construct a Σ-model B of ϕ such that |B| =
k + 1 as follows. Let

B = A ∪ {b} ,

where b /∈ A. Then, fix an arbitrary element a0 ∈ B, and let

− for variables and constants:

uB = uA ,

− for function symbols of arity n:

fB(a1, . . . , an) =

{

fA(a1, . . . , an) , if a1, . . . , an ∈ A ,

a0 , otherwise,

− for predicate symbols of arity n:

(a1, . . . , an) ∈ P
B ⇐⇒ a1, . . . , an ∈ A and (a1, . . . , an) ∈ P

A .

We have |B| = k + 1. In addition, the map h : A → B defined by
h(a) = a, for each a ∈ A, is an embedding of A into B. Since A satisfies
ϕ, by Lemma 20 it follows that B also satisfies ϕ. 2

Combining Propositions 5 and 25, we obtain smoothness.

PROPOSITION 26. For every signature Σ, the Σ-theory of equality is
smooth.

The shininess of the theory of equality then follows from Proposi-
tions 24 and 26.

PROPOSITION 27. For every finite signature Σ, the Σ-theory of equal-
ity is shiny.
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Proposition 27 is relevant because, together with our second combi-
nation method,it tells us that any procedure that decides the quantifier-
free satisfiability problem for a Σ-theory T can be extended to accept
inputs Γ containing arbitrary free symbols9 in addition to the symbols
in Σ. More formally, we have the following theorem.

THEOREM 28. Let T be a Σ-theory such that the quantifier-free sat-
isfiability problem of T is decidable. Then, for every signature Ω ⊇ Σ,
the quantifier-free satisfiability problem of T with respect to Ω-formulae
is decidable.

The result in Theorem 28 was also independently discovered by
Ganzinger and reported (without proof) in [7]. A new proof of the
result that does not explicitly rely on the shininess of the theory of
equality was recently given by Ganzinger, Sofronie-Stokkermans, and
Waldmann [8].

6.2.1. Complexity of mincard
Although mincard is computable for the theory of equality, its com-
putation is NP-hard. We show that below by reducing the k-coloring
problem to it.10

The k-coloring problem is defined as follows: Given a finite undi-
rected graph G with nodes V and a positive integer k, is there a
way to map each node in V to an integer in {1, . . . , k} so that no
two adjacent nodes are mapped to the same integer? This problem is
NP-complete [9].

Now consider the k-cardinality problem, which we define as follows:
Given a satisfiable set Γ of literals over the empty signature11, and a
positive integer k, does Γ have a model of cardinality k?

We start by showing that the k-coloring problem is polynomially
reducible to the k-cardinality problem. Let G = (V,E) be an undirected
graph with nodes V = {v1, . . . vn} and edges E, and let k be a positive
integer. Consider v1, . . . vn as logical variables and let

Γ = {u 6≈ v | u, v ∈ V and (u, v) ∈ E} .

Note that Γ is satisfiable—by an interpretation that interprets each
variable in V as a different element—and that the construction of Γ
takes polynomial time in the size of G.

PROPOSITION 29. The set Γ is satisfied by an interpretation of car-
dinality k if and only if G is k-colorable.

9 Also referred to as “uninterpreted” symbols by some authors.
10 That the k-coloring problem was already used in [17] to find models of the

theory of equality of “small” cardinality.
11 In other words, Γ is a set of equalities and disequalities between variables.
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Proof. Since Γ contains only disequalities between variables of V , we
can consider in the following only Σ-interpretations over V where Σ is
the empty signature.

First, assume that Γ is satisfied by a Σ-interpretation A of cardinal-
ity k. Let A = {a1, . . . , ak}. Then we can map each variable v ∈ Σ to i if
vA = ai. This way, we map V into {1, ..., k} so that for all (u 6≈ v) ∈ Γ,
u and v are mapped to different values. But then this map is precisely
a k-coloring of G.

Vice versa, let h : V → {1, . . . , k} be a k-coloring of G. We can
define a Σ-interpretation A as follows: A = {1, . . . , k} and vA = h(v)
for all v ∈ Σ. By construction, A satisfies Γ. 2

The proposition above implies that the k-cardinality problem isNP-
hard. A consequence of this fact is that the computation of mincard
for the theory of equality over the empty signature is itself NP-hard,
as it corresponds to the “optimization version” of the k-cardinality
problem—given a satisfiable set Γ of literals over the empty signature,
determine the size of the smallest model of Γ.

PROPOSITION 30. The computation of mincard for the theory of
equality over the empty signature is NP-hard.

Proof. The k-cardinality problem can be reduced polynomially to
the computation of mincard for the given theory as follows.

To see if a set Γ of literals over the empty signature is satisfied by
an interpretation of cardinality k, we can compute m = mincard(Γ)
and then compare it with k. If m ≤ k, by the smoothness of the theory
of equality we know that Γ has a model of cardinality k. If m > k,
by definition of mincard—and the fact that the theory has an empty
axiomatization—we know that Γ has no models of cardinality k. 2

The result above has far-reaching implications as it can be extended
to the Σ-theory of equality for any signature Σ, and more generally,
to any Σ-theory T with computable mincardT that admits models of
arbitrary finite cardinality. The reason is that if T is such a theory, we
can use mincardT to implement mincard for the theory of equality over
the empty signature.

To see that, let Γ be a satisfiable set of literals over the empty
signature. Because of the stable finiteness of the theory of equality, we
can assume that Γ is satisfied by a finite interpretation A, again over
the empty signature. Since T admits models of any finite cardinality
and A’s signature is empty, it is easy to see that A is the reduct of
some model of T . It follows that Γ is T -satisfiable and so mincardT

is defined for it. Let then m = mincardT (Γ). We claim that m =
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mincard(Γ) as well. In fact, assume by contradiction that Γ has a model
B of cardinality less than m. Then, by the same argument as above,
B is the reduct of some T -model of Γ. But then mincard(Γ) cannot be
m. By Proposition 30 it follows that the computation of mincardT is
NP-hard.

6.3. BSR-theories

In this subsection we show that a large class of theories are stably
finite and have a computable mincard function. Among these theories
we single out a couple that are also smooth. We call these theories BSR-
theories after Bernays, Schönfinkel, and Ramsey, who studied some of
their properties.

DEFINITION 31 (BSR-theories). A sentence ϕ is a BSR-sentence

if it is of the form (∃x1) · · · (∃xm)(∀y1) · · · (∀yn)ψ, where m,n ≥ 0 and
ψ is a quantifier-free formula that does not contain function symbols.

A BSR-theory is a finite set of BSR-sentences.

The following proposition was proved by Bernays and Schönfinkel [3]
for the case of first-order logic without equality, and by Ramsey [18]
for the case of first-order logic with equality.

PROPOSITION 32. Let Φ a conjunction of BSR-sentences. Then there
exists an integer k, bounded above by the size of Φ, such that Φ is
satisfiable if and only if it has a model of cardinality k.

A consequence of Proposition 32 is that the satisfiability of finite sets
Φ of BSR-sentences is decidable: one simply Skolemizes Φ into a set Φ′

and checks the satisfiability of Φ′ in Herbrand interpretations.12 Now,
it is easy to see that Φ′ will contain no function symbols, therefore all
Herbrand interpretations over the signature of Φ′ are finite. It is enough
then to construct all such interpretations up to cardinality n where n
is the size of Φ, until one is found that satisfies Φ′.

Proposition 32 is interesting because it entails that the quantifier-
free satisfiability problem of any BSR-theory T is decidable. The reason
is simply that a quantifier-free formula ϕ is T -satisfiable exactly when
the finite set T ∪ϕ′ of BSR-sentences is satisfiable, where ϕ′ is the exis-
tential closure of ϕ. From this observation it is clear that the following
proposition holds.

PROPOSITION 33. Every BSR-theory T is stably finite. Moreover,
the quantifier-free satisfiability problem of T is decidable and mincardT

is computable.

12 By the Herbrand theorem, looking at Herbrand interpretations only is enough
because Φ′ is universal.
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From Proposition 33, we can immediately obtain the following spe-
cialization of Theorem 12.

COROLLARY 34. Let S be a stably finite theory admitting only finite
models and let T be any BSR-theory signature-disjoint with S. If the
quantifier-free satisfiability problem of S is decidable and mincardS is
computable, then the quantifier-free satisfiability problem of S ∪ T is
also decidable.

In general BSR-theories are not smooth, and so not shiny either. For
instance, the theory

T = { (∀x)(∀y)(x ≈ y) }

is a BSR-theory, but it is obviously not smooth because it only admits
models of cardinality 1. Smooth BSR-theories however do exist. We
provide two examples of them in the following.

Partial and total orders
Two smooth—and so also shiny— BSR-theories are the theories of
partial and of total orders. The theory PO of partial orders is defined
by the following axioms:

(∀x)¬(x < x) (irreflexivity)

(∀x)(∀y)(∀z)(x < y ∧ y < z → x < z) (transitivity) .

The theory TO of total orders extends the theory of partial orders,
with the following axiom

(∀x)(∀y)(x < y ∨ x = y ∨ y < x) (trichotomy) .

We prove that both PO and TO are smooth.

PROPOSITION 35. Let Σ = {<}, let ϕ be a quantifier-free Σ-formula,
let A be a finite PO-model of ϕ, and let k = |A| be an integer. Then
there exists a PO-model B of ϕ of cardinality k + 1.

Proof. We construct a Σ-model B of ϕ such that |B| = k + 1 as
follows. Let

B = A ∪ {b} ,

where b /∈ A. Then let

uB = uA , for variables ,

and
a1 <

B a2 ⇐⇒ a1 <
A a2 and a1, a2 ∈ A .
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We have |B| = k + 1. Since <B is clearly irreflexive and transitive
by construction, B is a model of PO . In addition, the map h : A→ B
defined by h(a) = a, for each a ∈ A, is an embedding of A into B. Since
A satisfies ϕ, by Lemma 20 it follows that B satisfies ϕ as well. 2

Combining Proposition 5 and 35 we obtain the smoothness of the
theory of partial orders.

PROPOSITION 36. The theory PO of partial orders is smooth.

PROPOSITION 37. Let Σ = {<}, let ϕ be a quantifier-free Σ-formula,
let A be a finite TO-model of ϕ, and let k = |A| be an integer. Then
there exists a TO-model B of ϕ of cardinality k + 1.

Proof. We construct a Σ-model B of ϕ such that |B| = k + 1 as
follows. Let

B = A ∪ {b} ,

where b /∈ A. Then let

uB = uA , for variables ,

and

a1 <
B a2 ⇐⇒









a1 <
A a2 and a1, a2 ∈ A

or

a1 6= b and a2 = b









Intuitively, we defined <B exactly as <A, with the difference that the
new element b becomes the new maximum element. It is immediate
that <B is a total order and so that B is a model of TO . We have that
|B| = k + 1. In addition, the map h : A → B defined by h(a) = a,
for each a ∈ A, is an embedding of A into B. Since A satisfies ϕ, by
Lemma 20 it follows that B satisfies ϕ as well. 2

Combining Proposition 5 and 37 we obtain the smoothness of the
theory of total orders.

PROPOSITION 38. The theory TO of total orders is smooth.

In conclusion, we have the following result.

PROPOSITION 39. The theory TO of total orders and the theory PO
partial orders are shiny.

Proof. By Propositions 33, 36 and 38. 2

From Proposition 39, we now obtain the following specialization of
Theorem 18.
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COROLLARY 40. Where O is either TO or PO, let T be any theory
signature-disjoint with O. If the quantifier-free satisfiability problem of
T is decidable, then the quantifier-free satisfiability problem of O∪T is
also decidable.

6.4. The Theory of Lattices with Top and Bottom

We conclude the section with one more example of a shiny theory, the
theory of lattices with top and bottom elements. In contrast with the
theories considered so far, this theory has both a non-empty axiomati-
zation and a signature with function symbols. Furthermore, although
the theory can be axiomatized as an extension of the theory PO of
partial orders, its shininess does not follow from the shininess of PO .
As a matter of fact, it appears that the basic theory of lattices, with
no top and bottom elements (and with no distributivity axioms), is not
shiny.13

The theory LTB of lattices with top and bottom elements is the
theory defined by the following axioms:

(∀x)(x+ x = x) ( cancelation for + )

(∀x)(x · x = x) ( cancelation for · )

(∀x)(∀y)(x+ y = y + x) ( commutativity of + )

(∀x)(∀y)(x · y = y · x) ( commutativity of · )

(∀x)(∀y)(∀z)(x+ (y + z) = (x+ y) + z) ( associativity of + )

(∀x)(∀y)(∀z)(x · (y · z) = (x · y) · z) ( associativity of · )

(∀x)(x+ 1 = 1 ∧ x · 1 = x) ( maximum element 1 )

(∀x)(x+ 0 = x ∧ x · 0 = 0) ( minimum element 0 ) .

The quantifier-free satisfiability problem of LTB is decidable. This
can be shown, for instance, by adapting the decidability results in [4]
about a theory of complete lattices with monotone functions. More
precisely, the decision procedure given in [4] can be readily adapted
to provide a decision procedure for the quantifier-free satisfiability
problem of LTB . For any LTB -satisfiable conjunction of literals Γ
given as input, this procedure essentially contructs a LTB -model of
Γ of cardinality polynomial in the size of Γ (see [4] for details). From
the correctness of the procedure (and the basic fact that a quantifier-
free formula is satisfied by an interpretation A if one disjunct of its
conjunctive normal form is satisfied by A) it follows that LTB is stably
finite. These observations are summarized in the following proposition.

13 More accurately, our attempts to prove it shiny have failed so far.
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PROPOSITION 41. LTB is a stably finite universal theory with a
decidable quantifier-free satisfiability problem.

We now show that LTB is smooth.

PROPOSITION 42. Let Σ = {+, ·, 0, 1}, let ϕ be a quantifier-free Σ-
formula, let A be a finite LTB-model of ϕ, and let k = |A| be an integer.
Then there exists an LTB-model B of ϕ of cardinality k + 1.

Proof. We construct a Σ-model B of ϕ such that |B| = k + 1 as
follows. Let

B = A ∪ {b} ,

where b /∈ A. Then let

uB = uA , for variables and constants ,

b1 +
B b2 =















b1 +
A b2 if b1, b2 ∈ A

1 if b1 6= b2 and b ∈ {b1, b2}

b if b1 = b2 = b

and

b1 ·
B b2 =















b1 ·
A b2 if b1, b2 ∈ A

0 if b1 6= b2 and b ∈ {b1, b2}

b if b1 = b2 = b

Intuitively, if we take the usual view of a lattices as partial order where
x < y if x 6= y∧x+y = y, the new element b is one that is incomparable
with all the old ones except that it is smaller than 1 and greater than
0. It is not difficult to see that both +B and ·B are well-defined and
satisfy the axioms of LTB , making B a model of LTB . Moreover, the
map h : A → B defined by h(a) = a, for each a ∈ A, is an embedding
of A into B. Since A satisfies ϕ, by Lemma 20 it follows that B satisfies
ϕ as well. 2

Combining Proposition 5 and 42 we obtain the smoothness of LTB .

PROPOSITION 43. The theory LTB is smooth.

Finally, observing that LTB is universal we have the following result.

PROPOSITION 44. The theory LTB of lattices with top and bottom
element is shiny.

Proof. By Propositions 23, 41 and 43. 2

From Proposition 44, we now obtain the following specialization of
Theorem 18.
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COROLLARY 45. Let T be any theory signature-disjoint with LTB.
If the quantifier-free satisfiability problem of T is decidable, then also
the quantifier-free satisfiability problem of LTB ∪ T is decidable.

7. Conclusion

We have addressed the problem of extending the Nelson-Oppen com-
bination method to theories that are not stably infinite.

We provided two new combination methods that are based on the
Nelson-Oppen method, but that can combine theories that may not
be stably infinite. Our methods work by propagating equality con-
straints between the component decision procedures, as well as minimal
cardinality constraints.

Using the first method, we are able to combine n stably finite theo-
ries T1, . . . , Tn with a computable mincard function, provided that T1
has only finite models.

Using our second method we are able to combine one arbitrary
theory with n theories that are shiny. Recall that shininess is a stronger
property than stable infiniteness. The significance of this result then is
that we can completely forego the stable infiniteness requirement on
one component theory if we can assume more (i.e., shininess) about
the other ones.

Both methods require the computability of the mincard function
for some or all of the component theories. We showed that for theo-
ries T that satisfy the other combination requirements, mincardT is
often computable because the additional requirement on T that make
mincardT computable are not very strong: it is enough for T to have
a finite signature and be universal. We also showed however that when
mincardT is computable its complexity is in general NP-hard. In fact,
we showed this to be the case for all theories T that have models of
arbitrary finite cardinality.

We gave some examples of shiny theories, namely the theory of
equality, the theory of partial orders, the theory of total orders, and
the theories of lattices with top and bottom.

We plan to continue our research on relaxing the stable infinite-
ness requirement by aiming at finding general sufficient conditions for
shininess, and identifying additional specific examples of shiny theories.
Moreover, due to the complexity of mincard , it would be natural to
study how to avoid its computation.
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Appendix

A. The Combination Theorem

In this appendix, we prove the Generalized Combination Theorem for
Disjoint Signatures (Theorem 7).

We will use the following Combination Theorem, a fundamental
model-theoretic result originally due to Ringeissen [19] and Tinelli and
Harandi [22] independently, and later refined by Tinelli and Ringeis-
sen [23] and Manna and Zarba [13].

THEOREM 46 (Combination). Let Σ1 and Σ2 be arbitrary signatures,
let Φi be a set of arbitrary Σi-formulae, for i = 1, 2, and let Vi =
vars(Φi). Then Φ1 ∪ Φ2 is satisfiable if and only if there exists a Σ1-
interpretation A satisfying Φ1 and a Σ2-interpretation B satisfying Φ2

such that
AΣ1∩Σ2,V1∩V2 ∼= BΣ1∩Σ2,V1∩V2 .

Proof. See either [13] or [29]. 2

THEOREM 47 (Generalized Combination). Let Σ1, . . . ,Σn be n > 1
arbitrary signatures and let Φ = Φ1 ∪ · · · ∪Φn, where Φi is a set of Σi-
formulae, for i = 1, . . . , n. Also, let Vi = vars(Φi), V =

⋃

i6=j(Vi ∩ Vj),
and Σ =

⋃

i6=j(Σi ∩ Σj). Assume that

⋃

i6=j

(Σi ∩ Σj) =
⋂

i

Σi ,

and
⋃

i6=j

(Vi ∩ Vj) =
⋂

i

Vi .

Then Φ is satisfiable if and only if there exist interpretations A1, . . . ,An

such that:

(i) Ai satisfies Φi, for i = 1, . . . , n;

(ii) AΣ,V
i
∼= A

Σ,V
j , for each i, j.

Proof. Assume that Φ is satisfiable, and let F be any interpretation
satisfying Φ. Then the only-if direction holds if we let Ai = F

Σi,Vi , for
i = 1, . . . , n.

Vice versa, suppose that there exist interpretations A1, . . . ,An such
that (i) and (ii) hold. For k = 2, . . . , n, let Ωk = Σ1 ∪ · · · ∪ Σk and
Uk = V1 ∪ · · · ∪ Vk. We claim that, for k = 2, . . . , n, Φ1 ∪ · · · ∪ Φk is
satisfied by an Ωk-interpretation Fk over Uk such that FΣ,V

k = AΣ,V
1 .

We proceed by induction on k. The base case, k = 2, follows imme-
diately by (the proof of) Theorem 46.
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For the induction step, assume that Φ1 ∪ · · · ∪ Φk is satisfied by an
interpretation Fk such that FΣ,V

k = AΣ,V
1 . Observing that Ωk∩Σk+1 =

Σ, Uk ∩ Vk+1 = V , and AΣ,V
1
∼= A

Σ,V
k+1, we then have that F

ΣF∩Σk+1

k
∼=

A
ΣF∩Σk+1

k+1 . Therefore, we can apply (the proof of) Theorem 46, and
obtain an interpretation Fk+1 satisfying Φ1 ∪ · · · ∪Φk ∪Φk+1 such that

FΣ,V
k+1
∼= A

Σ,V
1 . 2

THEOREM 7 (Generalized Combination for Disjoint Signatures). Let
Φ = Φ1 ∪ · · · ∪ Φn, where Φi is a set of Σi-formulae, for i = 1, . . . , n.
Also, let Vi = vars(Φi) and V =

⋃

i6=j (Vi ∩ Vj). Assume that all the
signatures Σ1, . . . ,Σn are pairwise disjoint, and that

⋃

i6=j

(Vi ∩ Vj) =
⋂

i

Vi .

Then Φ is satisfiable if and only if there exist interpretations A1, . . . ,An

such that:

(i) Ai satisfies Φi, for i = 1, . . . , n;

(ii) |A1| = |A2| = · · · = |An|;

(iii) xAi = yAi if and only if xAj = yAj , for all i, j and for every
x, y ∈ V .

Proof. Assume that Φ is satisfiable, and let F be any interpretation
satisfying Φ. Then the only-if direction holds if we let Ai = FΣi,Vi , for
i = 1, . . . , n.

Vice versa, suppose that there exist interpretations A1, . . . ,An such
that (i) and (ii) hold. We can construct an isomorphism h of AV

i into
AV

j , for each i, j by using the following process.

First, let h(xAi) = xAj , for every x ∈ V . Note that this position is
sound because property (ii) holds. Moreover, we have that h is bijective.

Since h is a bijective function, we have |V Ai | = |V Aj |, and since
|Ai| = |Aj |, we also have that |Ai \V

Ai | = |Aj \V
Aj |. We can therefore

extend h to a bijective function h′ from Ai to Aj .
Clearly, by construction h′ is an isomorphism of Ai

V into Aj
V . Thus,

we can apply Theorem 47, and obtain the existence of an interpretation
F satisfying Φ1 ∪ · · · ∪ Φn. 2
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