
Cooperation of Background Reasoners

in Theory Reasoning by Residue Sharing

Cesare Tinelli (tinelli@cs.uiowa.edu)
Department of Computer Science
The University of Iowa
Iowa City, IA, USA

Abstract. We propose a general way of combining background reasoners in theory
reasoning. Using a restricted version of the Craig Interpolation Lemma, we show
that background reasoner cooperation can be achieved as a form of constraint prop-
agation, much in the spirit of existing combination methods for decision procedures.
In this case, constraint information is propagated across reasoners by exchanging
residues that are, in essence, disjunctions of ground literals over a common signature.
As an application of our approach, we describe a multi-theory version of the semantic
tableau calculus and we prove it sound and complete.
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1. Introduction

Theory reasoning is a powerful deduction paradigm in which a general-
purpose main reasoner is complemented by a background reasoner,
a procedure specialized in (semi-)deciding formula satisfiability with
respect to a fixed theory of interest, the background theory. In the result-
ing system, the inference steps of the main reasoner are typically subject
to certain constraints over the background theory. The satisfiability of
these constraints is not verified by the main reasoner itself but is instead
delegated to the background reasoner. The main motivation for this
delegation is that a background reasoners, for being domain-specific,
is typically more efficient then the main one at processing constraints
over the background theory. Alternatively, a background reasoner may
be already available and ready to use. Finally, a certain theory may
be decidable but impractical to express axiomatically.1 In that case, a
more viable option is to rely on an algorithmic representation of the
theory, its decision procedure, and use it as a background reasoner.

Although the main idea of theory reasoning can be found in sev-
eral early works (such as (Bibel, 1982; Plotkin, 1972) to name just
a few), the first systematic treatment of it was given by Stickel in

1 Presburger arithmetic for instance is decidable but its (first-order) axiomatiza-
tion contains infinitely many instances of the induction schema.
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(Stickel, 1985) which describes a theory version of the resolution cal-
culus and the matings calculus. After that work, nearly all existing
calculi for automatic reasoning have been extended to theory reasoning
(see (Baumgartner et al., 1992) for a survey). Essentially all of them,
however, consider the integration of just one background reasoner into
the main one.

The reason for such a restriction, despite the clear desirability for
modularity and scalability purposes of having several background rea-
soners at once, seems to be simply that no one really knew up to now
how to achieve theory reasoning with multiple background reasoners
in general. Note that, typically, it is not enough to integrate back-
ground reasoners separately into the main reasoner. To reason correctly
with formulas spanning over several background theories, some sort of
cooperation among the background reasoners is necessary. Finding a
general way to achieve this cooperation in a sound and complete way
is a non-trivial task.

We introduce one such way in this paper.2 We show that the coop-
eration of background reasoners in theory reasoning is actually concep-
tually simple, and can be easily described in terms of partial theory
reasoning in the sense of (Stickel, 1985). We appeal to a variant of
a well-known interpolation result, the Craig Interpolation Lemma, to
show that background reasoner cooperation can be achieved as a form
of constraint propagation, much in the spirit of well-known combina-
tion methods for decision procedures (Nelson and Oppen, 1979). The
main idea is to propagate information between reasoners by exchanging
quantifier-free residues (see later) over a common signature.

The Craig Interpolation Lemma states that whenever two first-order
theories T1 and T2 are jointly unsatisfiable they have an interpolant, a
sentence ϕ made only of symbols shared by T1 and T2, which is entailed
by one theory and unsatisfiable with the other. Now, although the
lemma is in principle enough for the type of reasoner cooperation we
suggest, it is not useful in this general formulation because it provides
no information on the syntactical form of interpolants—which could
then be arbitrary formulas. This is unfortunate because most theory
reasoning calculi effectively work only with certain types of formulas
(quantifier-free, usually).

We provide a restricted version of the lemma which shows that,
in essence, in the context of theory reasoning all needed interpolants
are disjunctions of ground literals. Thanks to this result, background
reasoner cooperation by constraint propagation becomes a viable op-
tion, as we will try to demonstrate. To do that we describe a multi-

2 A preliminary version of this paper was presented at FTP 2000 (Tinelli, 2000).
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theory extension of the semantic tableaux calculus, easily obtained from
the corresponding single-theory version, that integrates and combines
background reasoners by means of residue sharing. We show that the
calculus is sound and complete under very general assumptions on the
reasoners and their theories. We also show that for a large class of
background theories the calculus remains complete even if residues are
further restricted from disjunctions of literals to single literals.

After all this it will be clear that—like in all cases of partial theory
reasoning—the real challenge lies in identifying specific situations in
which the generation of residues can be implemented in a reasonably
efficient and complete way. But since this is a research problem in its
own right, we must leave its discussion to further work.

The current paper is organized as follows. Section 2 presents some
formal preliminaries. Section 3 briefly describes the theory reason-
ing paradigm and explains how it can be extended to more than one
background reasoner and theory. The same section also presents the
specialized interpolation results that we will use to combine background
reasoners. Section 4 describes a multi-theory version of free variable
semantic tableaux in which background reasoners cooperate by sharing
residues. The calculus is first proved sound in general, and then it is
proved complete under the restriction that shared residues be just dis-
junctions of literals in the signature shared by the background theories.
Section 5 presents a refinement of the interpolation results in Section 3
and the completeness result in Section 4 to the case of what we call
Σ-convex theories. The class of Σ-convex theories is both large and
significant for theory reasoning because it includes all universal Horn
theories and also a number of prominent non-Horn background theo-
ries such as the theory of rational numbers under addition. Section 6
compares this work to the few existing results on the combination of
background reasoners for theory reasoning. Section 7 concludes the
paper with suggestions for further research. The proofs of the more
technical lemmas in the paper can be found in the appendix.

2. Preliminaries

For convenience and generality, we will use first-order logic (FOL) with
equality as our logical framework. In this logic, the equality symbol is a
predefined logical constant, always interpreted as the identity relation.
FOL without equality, the traditional logic of automated reasoning, can
be obtained from FOL with equality by simply restricting the language
to formulas without the predefined equality symbol.
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α α1 α2

φ ∧ ψ φ ψ

¬(φ ∨ ψ) ¬φ ¬ψ
¬(φ→ ψ) φ ¬ψ

¬¬φ φ ¬⊥

β β1 β2

φ ∨ ψ φ ψ

¬(φ ∧ ψ) ¬φ ¬ψ
φ→ ψ ¬φ ψ

φ↔ ψ φ ∧ ψ ¬φ ∧ ¬ψ
¬(φ↔ ψ) φ ∧ ¬ψ ¬φ ∧ ψ

γ γ1(y)

∀x.φ(x) φ{x 7→ y}
¬∃x.φ(x) ¬φ{x 7→ y}

δ δt

¬∀x.φ(x) ¬φ{x 7→ t}
∃x.φ(x) φ{x 7→ t}

Figure 1. Formula Types.

In this paper, a signature Σ consists of a set ΣP of relation symbols
and a set ΣF of function symbols, each with an associated arity, an
integer n ≥ 0. A constant symbol is a function symbol of zero arity.
Throughout the paper, we will fix a countably infinite set V of variables.
Also, we will fix a constant symbol a and we will implicitly assume that
every signature we consider includes a. As it will be clear later, this
assumption leads to no loss of generality as far as the results presented
here are concerned, but it will simplify some of the proofs in the paper.

For all signatures Σ, following (Fitting, 1996), we denote by Σsko the
signature obtained by adding to Σ a countably infinite set of function
symbols of arity n (not already in Σ), for all n ≥ 0. Also, if X is any set
disjoint from Σ, we denote by Σ(X) the signature obtained by adding
the elements of X as constant symbols to Σ.

We use the standard notions of formula, clause, literal, free and
bound variable, substitution, structure (aka model) and so on. If ϕ is a
formula, we denote by ∀̃ϕ the universal closure of ϕ and by Var(ϕ) the
set of ϕ’s free variables, with Var(Φ) extending the notation to sets Φ
of formulas in the obvious way. We write ϕ(x) to indicate that x is a
free variable of ϕ.

A sentence is a formula with no free variables. A ground formula
is a formula with no variables. A theory is a set of sentences—we do
not insist that the set be consistent. We will talk of Σ-formula, Σ-
structure, Σ-theory and so on, whenever we want to specify that they
have signature Σ. We denote by ⊥ the universally false formula and
assume that it is a (ground) Σ-literal for every signature Σ.

If σ is a substitution be denote by Dom(σ) the set of variables v such
that vσ 6= v and by Ran(σ) the set Var(Dom(σ)σ). We denote the
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empty substitution by ε. We use the notation {x1 7→ t1, . . . , xn 7→ tn}
to denote a substitution σ with Dom(σ) = {x1, . . . , xn} and such that
xiσ = ti for all i ∈ {1, . . . , n}. As usual, we only consider idempotent
substitutions. We extend the application of substitutions to first-order
formulas as obvious but with the proviso that bound variables are
renamed to fresh variables before the application of the substitution.

When needed, we will use Smullyan’s uniform notation for first-order
formulas (see, e.g., (Fitting, 1996)), which classifies them into formulas
of type α, β, γ, δ according to the tables in Figure 1.

We will also use the usual notions of satisfiability and entailment
but extended to the case of formulas, as opposed to sentences, as done
in the mathematical logic literature. Specifically, a set Φ of Σ-formulas
is satisfiable in a Σ-structure A, if there is a valuation θ of V into
elements of A that makes every formula in Φ true in A. In that case,
we say that θ satisfies Φ in A. If every valuation θ of V into A satisfies
Φ in A, we say that A is a model of Φ.3 A Σ-formula ϕ is satisfiable
in A if {ϕ} is satisfiable in A. A set Φ of formulas (resp. a formula) is
satisfiable if it is satisfiable in some structure A, and it is unsatisfiable
otherwise.

For all sets Φ,Ψ of formulas, Φ entails Ψ, in symbols Φ |= Ψ, if for
every structure A in the signature of Φ∪Ψ and valuation θ, θ satisfies
Ψ in A whenever it satisfies Φ in A.4 The set Φ entails the formula ϕ,
in symbols Φ |= ϕ, if Φ |= {ϕ}; equivalently, Φ |= ϕ if the set Φ∪{¬ϕ}
is unsatisfiable. Notice that Φ is unsatisfiable if and only if Φ |= ⊥.

The reader unfamiliar with this notion of satisfiability/entailment
for formulas should observe that in it free variables essentially be-
have as free constant symbols (they are rigid). This differs from the
common practice in automated reasoning of treating free variables as
implicitly universally quantified—perhaps as a consequence of the fact
that clauses are written without their universal quantifier prefix. The
distinction here is important and should be kept in mind because,
for example, when we talk about the satisfiability of a clause we are
quantifying its variables universally, whereas when we talk about the
satisfiability of a quantifier-free formula we are not. This means for
instance that if {p(x),¬p(y)} denotes a set of (unit) clauses, it is un-
satisfiable; if it denotes instead a set of literals (no implicit universal
quantifiers), it is satisfiable.

3 Note that if Φ contains only sentences, A is a model of Φ iff Φ is satisfiable in
A.
4 Note that in Φ |= Ψ, the set Ψ is essentially seen as the conjunction of its

elements, not as the disjunction as often found in the literature.
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In theory reasoning, satisfiability and entailment are also given with
respect to a certain theory. The definitions below subsume the various,
not always equivalent ones in the literature.

DEFINITION 2.1. Let T be any theory. A set Φ of formulas is T -
satisfiable iff T ∪ Φ is satisfiable; otherwise, it is T -unsatisfiable. The
set Φ is literally T -(un)satisfiable if the set {ϕ ∈ Φ | ϕ is a literal } is
T -(un)satisfiable. The set Φ T -entails a set Ψ of formulas, in symbols
Φ |=T Ψ, iff T ∪ Φ |= Ψ.

If ϕ is a formula, we will write Φ |=T ϕ whenever Φ |=T {ϕ}. We
will say that ϕ is T -valid if ∅ |=T ϕ. It is a simple exercise to show
that, similarly to the entailment relation |=, the relation |=T defined
above is monotonic and transitive.

Traditionally, authors in theory reasoning define T -satisfiability only
for clauses (in terms of satisfiability of their ground instances in Her-
brand models of T ) and then use another notion, T -complementarity ,
for quantifier-free formulas. In essence, they say that a set S of quantifier-
free formulas is T -complementary whenever it is T -unsatisfiable in the
sense of Definition 2.1, and they say that it is T -unsatisfiable whenever
the set of the universal closures of the elements of S is T -unsatisfiable
again in the sense of Definition 2.1. We find it more convenient5 to adopt
a single notion of T -satisfiability, the one in Definition 2.1, and simply
be careful in distinguishing (genuinely) free variables from implicitly
universally quantified variables.

A formula is universal if it is in prefix normal form and its (possibly
empty) quantifier prefix contains only universal quantifiers. A theory
is universal if it is axiomatized by a set of universal sentences.6 The-
ory reasoning considers only universal theories as background theories
because they are the only ones that can be “safely” built-in into a
deduction calculus. The reason is that one of the main tools for proving
properties of deduction calculi for automated reasoning, the Herbrand
theorem, extends immediately to T -satisfiability in a universal theory.

In this paper, we will not appeal to the Herbrand Theorem directly.
Instead, we will use the satisfiability properties of a theory version of
Hintikka sets. Hintikka sets (whether they are referred to as such or
not) are often used to prove the completeness of calculi for first-order
logic (see (Fitting, 1996; Socher-Ambrosius and Johann, 1997), among
others).

5 And more in line with the established practice in Model Theory, which after
all, provides all the semantical foundations for automated reasoning.
6 Some authors refer to universal theories as open or quantifier-free theories, again

because of the common practice of writing their axioms without the quantifiers.
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DEFINITION 2.2 (T -Hintikka set). Let T be a theory of signature Ω
and let Ω′ be a signature including Ω. A set H of Ω′-sentences is a
T -Hintikka set iff the following holds:

1. H is literally T -satisfiable.

2. For all sentences α ∈ H, α1, α2 ∈ H.

3. For all sentences β ∈ H, β1 ∈ H or β2 ∈ H.

4. For all sentences γ ∈ H and ground Ω′-terms t, γ1(y){y 7→ t} ∈ H.

5. For all sentences δ ∈ H, there is a ground Ω′-term t such that
δt ∈ H.

The usual definition of Hintikka set differs from the one above only
in Point 1 where it requires instead that H contain neither ⊥ nor a
complementary pair of (ground) literals. It should be clear that every
T -Hintikka set is a Hintikka set in the usual sense and, by compactness
of first-order logic, every Hintikka set is a T -Hintikka set when T is
the empty theory.

In FOL without equality, a Herbrand structure of some signature Ω
is a structure whose domain coincides with the set of ground Ω-terms
and that interprets every ground Ω-term as itself. In FOL with equality,
the notion of Herbrand structure is generalized into that of canonical
structure. A canonical structure (of signature Ω) is a structure each of
whose elements is denoted by some ground Ω-term; equivalently, it is a
structure generated by the empty set. Now, it is well-known that every
Hintikka set has a canonical model (Fitting, 1996). That is also true
for T -Hintikka sets, provided that T is universal. More precisely, the
following holds.

LEMMA 2.3. If T is a satisfiable universal theory, then every T -
Hintikka set is satisfiable in a canonical model of T .

A proof of this result is provided in the appendix.

3. Theory Reasoning over Multiple Theories

Because of its generality, theory reasoning encompasses a vast array of
seemingly different reasoning frameworks. Here we will focus on what
(Baumgartner et al., 1992) calls literal level theory reasoning .7 The

7 The other forms of theory reasoning can be recast as essentially special cases
of the literal level form.
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basic operation in traditional refutation-based calculi is the detection
of pairs of complementary literals; in other words, the detection of an
unsatisfiable set Φ made of two quantifier-free formulas of a specific
kind. Literal level theory reasoning generalizes this operation in two
directions: the type and number of quantifier-free formulas in Φ, and the
notion of (un)satisfiability, defined with respect to a certain background
theory T .

3.1. Partial Theory Reasoning

In theory reasoning systems, the T -satisfiability test is not performed
by the main reasoner, the foreground reasoner , but is delegated in-
stead to a specialized subsystem, the background reasoner for T . At
the ground level, we speak of total theory reasoning if the background
reasoner gets a set Φ of formulas from the foreground one and simply
confirms whether Φ is T -unsatisfiable or not; we speak of partial theory
reasoning if, whenever Φ is not T -unsatisfiable, the background rea-
soner returns a residue for it, that is, a quantifier-free formula whose
negation, if added to Φ, would make it T -unsatisfiable. At the non-
ground level, things a bit more complicated because they involve the
computation of substitutions that make Φ (partially) T -unsatisfiable.

The precise general definition of residue varies in the literature,
depending on the author and the partial theory reasoning calculus in
question. But they are all instances of the one below.

DEFINITION 3.1 (Residue). Let Φ be a set of quantifier-free formulas,
called a key set. Let ϕ be a quantifier free formula and σ a substitution
with Dom(σ) ⊆ Var(Φ) such that ϕσ = ϕ. The pair (σ, ϕ) is a T -
residue of Φ iff the set Φσ ∪ {¬ϕ} is T -unsatisfiable or, equivalently,
iff Φσ |=T ϕ.

According to the definition above, the pair (σ,⊥) a is T -residue
of the key set Φ if and only if Φσ is T -unsatisfiable. More precisely
then, we talk of total theory reasoning when the background reasoner
computes only residues of the form (σ,⊥), if any, and of partial theory
reasoning otherwise.

In the following, we will simply say residue instead of T -residue
whenever T is clear from context. Abusing the terminology, we will
also call residue the second component of a residue (σ, ϕ), especially
when σ is the empty substitution.
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3.2. Combining Background Reasoners

Suppose we are interested in a background theory T obtained as the
union of n > 1 theories T1, . . . , Tn. Also suppose that we do not have
a background reasoner for T but we do have one for each Ti. From a
practical standpoint, instead of implementing a reasoner for T anew,
it would be useful to integrate the reasoners for the various Ti directly
into a foreground reasoner and have them work together to detect the
T -unsatisfiability of formulas. The question then is how to make the
reasoners cooperate in a sound and complete way.

In this section, we provide some interpolation results which suggest
that background reasoners can cooperate by exchanging residues over
a common quantifier-free language. In the next section, we will embed
this kind of cooperation into a specific theory reasoning calculus and
show that the resulting calculus is sound and complete. For simplicity,
we will consider the case of just two background theories. From what
follows, however, it should be clear that all the given results lift by
iteration to the case of more than two theories.

We will impose no model-theoretic restrictions on the two theories
other than universality. Also, we will make no assumptions on whether
the theories share no, some or all predicate symbols. However, we will
make the following assumption.

ASSUMPTION 1. All the background theories to be combined will have
exactly the same function symbols.

For our purposes such an assumption is not as stringent as it sounds,
at least in the case of refutation-based theory reasoning calculi.8 In fact,
background reasoners used in such calculi must accept input formulas
containing Skolem symbols, i.e., fresh function symbols produced by the
Skolemization of existential variables. Technically then, all background
theories in theory reasoning have a signature with arbitrarily many
function symbols of arity n for every n ≥ 0, even when the theories
themselves are finitely axiomatized.9 More prosaically, if we make the
very reasonable assumption that a reasoner for a background theory
treats every unknown function symbol as a Skolem symbol, then we
can alway pass to it formulas with function symbols from some other

8 Actually, we are not aware of any theory reasoning calculus that is not
refutation-based.
9 This is also the reason we assume without loss of generality that every signature

we consider contains a designated constant symbol a (see Section 2). Also, observe
that we said “arbitrarily many” function symbols and not “infinitely many”. The
reason is that, in any given derivation in a refutation-based calculus, the number of
Skolem symbols needed is always finite.
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theory. This means that, given two background theories with reasoners
of this sort, the function symbols of one theory can be always thought
with no loss of generality as belonging to the signature of the other.

3.3. The Interpolation Lemma

For the rest of this section we fix two signatures Σ1,Σ2 such that Σ1
F =

Σ2
F, and two universal theories T1, T2 of respective signature Σ1,Σ2.

Also, let Σ := Σ1 ∩ Σ2.
The main theoretical result of the paper is provided by the following

restricted version of the Craig Interpolation Lemma, whose proof can
be found in the appendix.

PROPOSITION 3.2 (Ground Interpolation Lemma). If T1 ∪ T2 is un-
satisfiable, then

T1 |= ϕ and T2 |= ¬ϕ

for some ground Σ-formula ϕ.

We call the formula ϕ an interpolant of T1 and T2. Note that, al-
though this notion is not symmetric in T1 and T2, ϕ is an interpolant
of T1 and T2 iff ¬ϕ is an interpolant of T2 and T1.

For our purposes, the following corollary of Proposition 3.2 will be
more useful.

PROPOSITION 3.3. For i = 1, 2 let Φi be a set of Σi-literals. Then,
the following are equivalent:

1. Φ1 ∪ Φ2 is (T1 ∪ T2)-unsatisfiable;

2. there is a finite set Ψ of disjunctions of Σ-literals with Var(Ψ) ⊆
Var(Φ1 ∪ Φ2) such that

Φ1 |=T1 Ψ and Φ2 ∪Ψ |=T2 ⊥ .

Proof. (1 ⇒ 2) Let X = Var(Φ1) ∪ Var(Φ2). For i = 1, 2, let Ωi :=
Σi(X) and consider Φi as a set of ground Ωi-formulas. Then note that
Ti ∪ Φi is a universal Ωi-theory and Ω1

F = Ω2
F. By an application of

Proposition 3.2 then, there is a ground Ω-formula ϕ such that T1 ∪
Φ1 |= ϕ and T2 ∪ Φ2 |= ¬ϕ; equivalently, such that Φ1 |=T1 ϕ and
Φ2 ∪ {ϕ} |=T2 ⊥. The claim then follows by assuming, with no loss of
generality, that ϕ is in conjunctive normal form and choosing Ψ to be
the set of ϕ’s conjuncts.

(2 ⇒ 1) By the monotonicity of entailment (|=), it is immediate
that Φ1 |=T1∪T2 Ψ and Φ2 ∪Ψ |=T1∪T2 ⊥. From the transitivity and the
monotonicity of the relation |=T1∪T2 it follows that Φ1∪Φ2 |=T1∪T2 ⊥. 2
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α

α1
α2

β

β1 | β2

γ

γ1(y)
where y is a fresh free variable

δ

δf(~x)

where f is a fresh function symbol in Ωsko \Ω and
~x = (x1, . . . , xn) with {x1, . . . , xn} = Var(δ)

Figure 2. Tableau Expansion Rules.

Note that the existence of an interpolant set Ψ for Φ1 and Φ2 above
is already guaranteed by the Craig Interpolation Lemma. The contri-
bution of Proposition 3.3 is to show that this set can be chosen so that
all of its formulas are disjunctions of literals with no new variables.

Finally, we point out that Proposition 3.3 holds as stated in both
flavors of first-order logic: the one with equality and the one with-
out equality. The only difference is that, whereas in the first flavor
the formulas of the interpolant set Ψ might contain equations, in the
second flavor they will not.10 This entails in particular that, in FOL
without equality, if the theories share no relation symbols at all, the
only possible interpolant set of Φ1 and Φ2 in Proposition 3.3 is either
{⊥} or {¬⊥}.

4. A Multi-Theory Tableau Calculus

The interpolation results of the previous section can be used to inte-
grate multiple background reasoners into a theory reasoning calculus. In
this section, we define a multi-reasoner extension of the partial theory
version of free variable semantic tableaux.

We do this in two stages. First, we provide a generalized (partial)
theory reasoning version of the semantic tableau calculus. Like every
theory reasoning extensions of existing refutation calculi, this general-
ized calculus replaces the search for two complementary literals with
the search for a T -unsatisfiable key set, for some background theory T .
Then, we show that when T is in fact the union of two theories T1 and
T2, it is enough to look only for T1-unsatisfiable or T2-unsatisfiable key
sets. The main consequence of this fact is that a stand-alone background

10 Unless, of course, an equality predicate is explicitly axiomatized in one of the
two theories, and the equality symbol used in the axiomatization also belongs to the
signature of the other theory.
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12 Cesare Tinelli

reasoner for T is in principle not necessary if background reasoners for
T1 and for T2 are already available.11

Our treatment of the free variable semantic tableau calculus will
follow closely the one given in (Fitting, 1996).

4.1. Free Variable Semantic Tableaux

A tableau is a finite tree each of whose nodes is labeled by a formula.
Since tableaux, for being trees, are directed acyclic graphs, we will
represent every tableau S as the pair (V,E) where V is the set of S’s
nodes and E is the set of S’s (directed) edges. In the following, to
simplify the exposition, we blur the distinction between a node and
the formula that labels it. Technically, this is incorrect because it is
certainly possible for a tableau to have distinct nodes with the same
label, but it will simplify our exposition. This imprecision should cause
no problems if the distinction between a node and its label is kept in
mind.

We denote an edge from a formula ϕ to a formula ψ in a tableau
by the ordered pair 〈ϕ,ψ〉. A directed path from the root node of a
tableaux to one of its leaf nodes is called a branch. We denote by leaf (B)
the leaf node of a branch B. If B is a branch and σ a substitution, we
denote by Bσ the branch obtained by replacing each node ϕ in B by
the node ϕσ—similarly for set of branches or edges in a tableau. For
notational convenience, we will often treat a branch B as the multiset
of formulas in its nodes. A tableau branch is closed if it contains the
node ⊥ and open otherwise. A tableau is closed if all of its branches are
closed. In the following, the letters j and n will denote finite ordinal
numbers whereas the letter κ will denote an ordinal smaller than or
equal to the first infinite ordinal. For every κ then, we will denote a
(possibly infinite) sequence a0, a1, a2, . . . of κ elements by (aj)j<κ.

For the rest of this section we will fix a signature Ω and a satisfiable
universal Ω-theory T . Also, we will implicitly assume for all tableaux
mentioned below that the signature of their formulas is (included in)
Ωsko.

DEFINITION 4.1. Let S = (V,E) and S ′ be two tableaux. We say that
S′ T -derives from S iff S ′ is obtained from S in one of the following
ways:

1. by applying one of the expansion rules in Fig. 2 to a formula ϕ in
a branch B of S, i.e., by defining S ′ as follows for some ϕ ∈ B:

11 We must say “in principle” here because we are ignoring efficiency concerns.
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S′ :=















(V ∪ {α1, α2}, E ∪ {〈leaf (B), α1〉, 〈α1, α2〉}) if ϕ has type α
(V ∪ {β1, β2}, E ∪ {〈leaf (B), β1〉, 〈leaf (B), β2〉}) if ϕ has type β
(V ∪ {γ1(y)}, E ∪ {〈leaf (B), γ1(y)〉}) if ϕ has type γ
(V ∪ {δf(~x)}, E ∪ {〈leaf (B), δf(~x)〉}) if ϕ has type δ

where y and f(~x) above are defined as in Figure 2, or

2. by adding a T -residue to a branch B of S, i.e., by defining S ′ as
follows:

S′ := (V ∪ {ψ}, E ∪ {〈leaf (B), ψ〉})σ

where (σ, ψ) is a T -residue of some Ω-key set Φ ⊆ B.

The definition above reduces to the usual one given for non-theory
tableaux if T is the empty theory. In that case, the key sets of interest
consist of two literals with the same predicate symbol and opposite
sign, and all residues have the form (σ,⊥) where σ is a (most general)
syntactical unifier of the key set.

DEFINITION 4.2 (Derivation). A (possibly infinite) sequence (Sj)j<κ
of κ tableaux is a (tableau) T -derivation iff for all j > 0, Sj derives
from Sj−1.

We say that a tableau branch B ′ extends a tableau branch B if there
is a substitution σ such that Bσ, as a path, is an initial segment of B ′

(possibly coinciding with B′). It is easy to verify that every branch of
a tableau in a T -derivation extends one, and only one, branch in each
previous tableau in the derivation.

DEFINITION 4.3 (Proof). Let ϕ be an Ω-sentence. A T -derivation
(Sj)j<κ is a (tableau) T -derivation of ϕ iff S0 is a tableau whose only
node is ¬ϕ. The derivation (Sj)j<κ is a (tableau) T -proof of ϕ iff there
is an n < κ such that Sn is closed.

For convenience, we will simply say derives, derivation, proof and
so on in place of T -derives, T -derivation, T -proof whenever T is clear
from context or not important.

The tableau calculus induced by the above notions of derivation
and proof is sound and complete in the sense that an Ω-formula ϕ is
T -valid iff there is a tableau proof for it. The soundness argument is
very similar to that for non-theory tableaux. We provide a proof below,
concentrating on the residue rule. As for completeness, we will actually
show that a restricted version of the calculus is already complete. The
most important restriction will concern the residue rule, as we will see.
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14 Cesare Tinelli

Soundness
As usual, every tableau S can be seen as a (Ωsko-)sentence: the universal
closure of the disjunction of all the branches of S, where each branch
is seen as the conjunction of the formulas in it. For simplicity, we will
denote this sentence just by ∀̃ S.

To prove the soundness of the calculus, it is enough to show that
derivations preserve the T -satisfiability of tableaux, when seen as sen-
tences.

LEMMA 4.4. Let S, S ′ be two tableaux such that S ′ T -derives from S.
If ∀̃ S is T -satisfiable then ∀̃ S′ is also T -satisfiable.

Proof. If S′ derives from S by means of an expansion rule (cf. Defini-
tion 4.1(1)), bar the restriction to the Ωsko-models of T only, the claim
is proved exactly as for (non-theory) free-variable semantic tableaux.12

Suppose then that S ′ derives from S by an application of the residue
rule. Let B,Φ, σ, ψ be as specified in Definition 4.1(2) and let ϕB be
the conjunction of all the formulas in B.

Then, ∀̃S is (logically equivalent to) a sentence of the form ∀̃(ϕ∨ϕB)
and ∀̃S′ is (logically equivalent to) a sentence of the form ∀̃(ϕσ∨(ϕBσ∧
ψ)). Now assume that ∀̃S is T satisfiable, and so there is a Ωsko-model
A of T such that ϕ ∨ ϕB is satisfied by every valuation into A. From
this it follows immediately that ϕσ ∨ ϕBσ is also satisfied by every
valuation into A. Then, any such valuation θ satisfies either ϕσ or ϕBσ
in A. Now, if θ satisfies ϕσ it clearly satisfies ϕσ ∨ (ϕBσ ∧ ψ). If θ
satisfies ϕBσ, it must satisfy ψ as well. The reason is that ϕBσ |=T ψ

by definition of residue and the inclusion Φσ ⊆ Bσ. It follows that then
θ satisfies ϕBσ ∧ ψ. Either way, θ satisfies ϕσ ∨ (ϕBσ ∧ ψ) in A. Since
θ was arbitrary, we have that ∀̃ (ϕσ ∨ (ϕBσ ∧ ψ)) is satisfiable in A,
which means that ∀̃ S′ is T -satisfiable. 2

The soundness of the calculus follows immediately from the lemma
above.

PROPOSITION 4.5 (Soundness). Every Ω-formula ϕ that has a tableau
T -proof is T -valid.

Completeness
We will now show that our tableaux calculus is complete even if subject
to a number of restrictions on the possible derivations. Some of these

12 See, e.g., (Fitting, 1996). There, a tableau S is called ∀-satisfiable if ∀̃ S is
satisfiable in our sense.
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Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing 15

restrictions correspond to the usual ones found in non-theory tableaux:
each derivation is strict, in the sense that no occurrence of non-γ
formula in a branch is used more than once to expand that branch;
each derivation is constructed in a fair way, in the sense that every
occurrence of a non-literal formula in a branch has a chance to be
expanded later on in the derivation, and γ formulas have a chance to
be expanded arbitrarily often.

The other restrictions are specific to our theory reasoning extension
and hence concern the residue rule. We will see that it is enough to
consider only key sets that are sets of literals, and residues that are
disjunctions of literals. In addition, if the background theory T is the
union of two theories T1, T2 with respective signatures Σ1,Σ2 sharing all
of their functions symbols, key sets can be chosen to contain only Σ1-
literal or only Σ2-literals, and residues that contain predicate symbols
not in Σ1 ∩ Σ2 or variables not in the current branch can be ignored.

DEFINITION 4.6. Let (Sj)j≤n be a derivation and B a branch of Sn.
A node ϕ of B is reduced in B iff ϕ is a literal, or it is of type α, β or
δ and there is a j ∈ {1, . . . , n} such that Sj derives from Sj−1 by the
application of an expansion rule to ϕ in the branch of Sj−1 extended by
B.

Note that according to the definition above, nodes of type γ are never
reduced in any branch. We will use the following fact about reducible
nodes in a tableaux branch of a derivation.

LEMMA 4.7. Let (Sj)j≤n be a derivation, B a branch of Sn and ϕ a
reduced node of B. Then,

− if ϕ is of type α, then both α1 and α2 are in B;

− if ϕ is of type β, then either β1 or β2 is in B;

− if ϕ is of type δ, then δt is in B for some Ωsko-term t.

Proof. By a straightforward induction argument based on the definition
of the expansion rules. 2

DEFINITION 4.8 (Strict Derivation). A derivation is strict iff none
of its tableaux derives from the previous one by the application of an
expansion rule to a reduced node in a branch.

DEFINITION 4.9 (Fair Derivation). A derivation (Sj)j<κ is fair iff
for every j < κ, every branch B of Sj, every formula ϕ in B and
every m > 0, there is a tableau Sj′ with j ≤ j′ < κ such that either ϕ
is reduced in the branch B′ of Sj′ extending B or—when ϕ is of type
γ—ϕ has m (distinct) γ1 instances in B

′.
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16 Cesare Tinelli

It is easy to show that a derivation that is both strict and fair is
infinite if, and only if, some tableau in the derivation contains a node
of type γ.

The next lemma shows that every T -valid sentence has a strict and
fair derivation of a certain restricted form.

LEMMA 4.10. Let ϕ be an Ω-sentence. Then, the following holds:

1. there is a strict and fair tableau derivation (Sj)j<κ of ϕ such that,
for all 0 < j < κ, Sj derives from Sj−1 by means of a tableau
expansion rule;

2. if ϕ T -valid, then for each such derivation there is an n < κ

and a substitution σ such that every branch of Snσ is literally
T -unsatisfiable.

Proof. LetD be the set of all fair and strict derivations of ϕ as in Point 1
above. One can prove that D is non-empty by using one of the usual
fair tableau construction rules from the literature. Therefore, we prove
just Point 2 here and refer the reader to (Fitting, 1996) for a proof of
Point 1.13 We prove the claim in Point 2 by proving its contrapositive.

Assume that every derivation (Sj)j<κ in D is such that

for all n < κ and σ, Snσ has a literally T -satisfiable branch. (1)

We prove below that then ¬ϕ is T -satisfiable, which entails that ϕ is
not T -valid.

Given any derivation (Sj)j<κ in D, let S∗ := (
⋃

j<κ Vj ,
⋃

j<κEj),
where for each j < κ, Vj is the set of nodes and Ej the set of edges of
Sj . Note that S∗ is itself a tree (albeit a possibly infinite one) and that
it extends each Sj .

Now let X be the set of S∗’s free variables. Observe that (a) the
first tableau in the derivation has no free variables, (b) a free variable
can occur in a later tableau only as the result of the expansion of a γ
formula, and (c) each such expansion introduces a fresh variable. This
means that for each x ∈ X, if any, there is an n > 0 such that x
first occurs in Sn—in the sense that it occurs in Sn but not in Sn−1.
Moreover, x only occurs in Sn in a leaf γ1(x). Where B is the branch of
Sn with leaf of the form γ1(x), let d(x) be the number of free variables
y other than x such that γ1(y) occurs in B. Then, let t0, t1, . . . be any

13 A fine but important point to notice here is that every derivation generated
according to a fair tableau construction rule is fair and strict in our sense. In practice,
this means that no search is necessary to produce a derivation that belongs to D
above.
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Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing 17

enumeration of all the ground Ωsko-terms and let σ be a substitution
such that xσ = td(x) for all x ∈ X. It should be clear from the above
that σ is well-defined over X (although possibly non-injective).

To start with, we claim that at least one branch of S∗σ is literally
T -satisfiable. In fact, assume by contradiction that every branch B∗ of
S∗σ is literally T -unsatisfiable. By compactness, for each B∗ then there
is a finite set ΦB∗ of literals included in B∗ that is T -unsatisfiable. It
follows by construction of S∗ that there is an n < κ such that each set
ΦB∗ is included in a branch of Snσ. But that means that no branch of
Snσ is literally T -satisfiable, against (1) above.

Now, let B∗σ be a literally T -satisfiable branch of S∗σ and assume
that a formula α occurs in B∗. By construction of B∗, α occurs in some
tableau Sj of the derivation in the branch Bj of Sj extended by B∗.
Since the derivation is fair there is an n with j ≤ n < κ such that α is
reduced in the branch of Sn extending Bj (and extended by B∗). By
Lemma 4.7, α1 and α2 occur in that branch and so in B∗. In a similar
way, we can show that if a formula β occurs in B∗ then either β1 or β2
occurs in B∗, and if a formula δ occurs in B∗ then some δt occurs in
B∗ for some Ωsko-term t.

Finally, if a formula γ occurs in B∗, again by the fairness of the
derivation, it is not difficult to show that B∗ contains infinitely-many
distinct variants of the formula γ1(x)—where x is replaced by a different
variable. In addition, for each i ≥ 0 there is a variant γ1(yi) such
that d(yi) = i. By construction of the substitution σ, it follows that
γ1(yi){yi 7→ ti} occurs in B∗σ for all i ≥ 0, where t0, t1, . . . is the
enumeration chosen earlier of all ground Ωsko-terms.

All this shows thatB∗σ (which, notice, contains only Ωsko-sentences)
is a T -Hintikka set, and so it is T -satisfiable by Lemma 2.3. Now,
¬ϕ belongs to B∗σ because it is the root node of S∗ and it equals
(¬ϕ)σ for having no free variables. It follows that ¬ϕ is T -satisfiable,
as claimed. 2

The completeness of our theory tableau calculus already follows
from the lemma above. In fact, each branch B of Sn in the lemma,
given that Bσ is literally unsatisfiable, must contain a set of literals
that admits 〈σ,⊥〉 as a T -residue. But then Sn can be turned into a
closed tableau by finitely many applications of the residue rule. The
first of these applications closes one branch of Sn by adding ⊥ to it
and applying the substitution σ to the resulting tableau. Each of the
following applications closes one of the remaining branches by simply
adding ⊥ to them—the reason being that, after the substitution, all
the branches admit 〈ε,⊥〉 as a residue.
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18 Cesare Tinelli

Notice that this completeness argument is a direct generalization of
the one given for the usual (non-theory) semantic tableaux calculus.
There, each branch of Sn is closed by finding a substitution σ, com-
puted by a simultaneous unification algorithm, that when applied to
the tableau makes one pair of literals in each branch complementary.
In effect then, the non-theory tableau calculus is an instance of the
calculus described above in which the background theory T is empty
and the background reasoner used to compute T -residues is just a
procedure for (syntactic) unification.

In the general case, where T is not necessarily empty, it is sufficient
to have a background reasoner for T that is able to enumerate all the
T -residues of signature Ωsko for each given Ωsko-key set. From that and
Lemma 4.10, one can show that every T -valid formula has a strict and
fair proof. We show below that it is not necessary to have a background
reasoner for T if T is the union of two theories each with its own
background reasoner.

We will do that by assuming that T := T1 ∪ T2 where, for i = 1, 2,
Ti is a universal theory of signature Σi equipped with a background
reasoner that can enumerate the Ti-residues of signature Σsko for each
given Σi

sko-key set, where Σ := Σ1 ∩ Σ2. Since we assume that the
background reasoner for Ti accepts arbitrary function symbols in its
input formulas14, we will also assume—with no loss of generality as
pointed out in Section 3.2—that Σ1 and Σ2 share all their function
symbols, and we will treat each Ti as Σi

sko-theory.

For the main completeness result, we need the following lemma as
well.

LEMMA 4.11. Let i ∈ {1, 2} and let Sm be a tableau all of whose
branches contain a Ti-unsatisfiable set of quantifier-free Σi

sko-formulas.
Then, there is a strict tableau derivation (Sj)m≤j≤n for which the fol-
lowing holds:

1. for all j with m < j ≤ n, Sj derives from Sj−1 by means of a
tableau expansion rule;

2. every branch of Sn contains a Ti-unsatisfiable set of Σi
sko-literals.

Proof. It is a simple, if tedious, exercise to show that there is a strict
tableau derivation (Sj)m≤j≤n satisfying Point 1 above and such that
each quantifier-free node of Sn is reduced in every branch of Sn in which
it occurs. We prove by contradiction that Sn satisfies Point 2 above.

14 Those in Σi
sko \Σi.
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Suppose that Sn has a branch Bn such that the set of all Σi
sko-literals

in Bn is Ti-satisfiable. If Bm is the branch of Sm extended by Bn let
Φ be a Ti-unsatisfiable set of quantifier-free Σi

sko-formulas occurring
in Bm. Then, consider Φ as a set of ground formulas in the expanded
signature Σi

sko(V ). Using the fact that the elements of Φ are reduced
nodes of Bn and that each of their subformulas occurring in B is also
reduced, we can show by Lemma 4.7 that Φ is contained in a Ti-Hintikka
set of Σi

sko(V )-sentences. But then, as a set of Σi
sko(V )-sentences, Φ

is Ti-satisfiable by Lemma 2.3, which contradicts the assumption that,
as a set of Σi

sko-formulas, Φ is Ti-unsatisfiable. 2

Let us say that an application of the residue rule is restricted to T1
and T2 iff for i = 1 or i = 2,

1. the key set Φ of the branch B chosen by the rule consists of Σi
sko

literals only,

2. the added residue (σ, ψ) is a Ti-residue and such that ψ is a dis-
junction of Σsko-literals all of whose variables occur in Bσ.

Our tableau calculus is complete even if every application of the residue
rule is restricted to T1 and T2. But before proving this claim, let us see
with an example how a derivation with such a restriction would look
like.

EXAMPLE 4.12. Consider the universal theories T1 and T2 defined
as follows and sharing the binary relation symbol R.

T1 :=

{

∀u∀v (P1u ∧Q1(v, v)→ R(u, v)),
∀u∀v (R(u, v)→ T1(u, v))

}

T2 :=
{

∀v (P2v ∧R(v, fv)→ R(fv, v))
}

Now consider a tableau containing a branch B, represented below as
the list of formulas in its nodes:

B = [. . . , P1x, P2x, Q1(y, z), ¬T1(y, x)]

It is not difficult the see that the substitution σ := {y 7→ fx, z 7→
fx} is such that the subset {P1x, P2x,Q1(fx, fx),¬T1(fx, x)} of for-
mulas in Bσ is (T1∪T2)-unsatisfiable. The following describes a possible
derivation that closes B with a sequence of applications of the residue
rule restricted to T1 and T2. At each step j below, ◦ denotes list con-

catenation, B(j) is the current extension of B, Φ
(j)
i is a key set from

B(j) in the signature of Ti, and (σ(j), ψ(j)) is a possible Ti-residue of

Φ
(j)
i in the shared signature.
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20 Cesare Tinelli

B(0) = B = [. . . , P1x, P2x, Q1(y, z), ¬T1(y, x)]

Φ
(0)
1 = {P1x, Q1(y, z)}

σ(0) = {z 7→ y}
ψ(0) = R(x, y)

B(1) = (B(0) ◦ [ψ(0)])σ(0)

= [. . . , P1x, P2x, Q1(y, y), ¬T1(y, x), R(x, y)]

Φ
(1)
2 = {P2x, R(x, y)}

σ(1) = {y 7→ fx}
ψ(1) = R(fx, x)

B(2) = (B(1) ◦ [ψ(1)])σ(1)

= [. . . , P1x, P2x, Q1(fx, fx), ¬T1(fx, x), R(x, fx), R(fx, x)]

Φ
(2)
1 = {¬T1(fx, x), R(fx, x)}

σ(2) = {}
ψ(2) = ⊥

B(3) = (B(2) ◦ [ψ(2)])σ(2)

= [. . . , P1x, P2x, Q1(fx, fx), ¬T1(fx, x), R(x, fx), R(fx, x), ⊥]

The example above was constructed for simplicity so that only residues
containing a single literal would be needed to close the branch. In
general, however, residues with a proper disjunctions of literals may
be necessary in a proof, unless an additional condition is imposed on
the theories. We will discuss this condition and its implications in the
next section. First, we must prove our completeness claim.

PROPOSITION 4.13 (Completeness). For every T -valid sentence ϕ
or signature Ω = Σ1 ∪ Σ2, there is a strict and fair tableau proof of ϕ
in which every application of the residue rule is restricted to T1 and T2.

Proof. By Lemma 4.10, there is a strict and fair derivation (Sj)j<κ of ϕ,
a substitution σ into Ωsko-terms, and a m < κ. such that every branch
of Smσ is literally T -unsatisfiable. Let B one of the branches of Sm.
First we show that there is a derivation starting with Sm that does
not touch the other branches of Sm and extends B to a finite number
of branches all of which contain a T2-unsatisfiable set of quantifier-free
Σ2-formulas.

Recall that Ω = Σ1 ∪ Σ2, Σ1
F = Σ2

F and Σ = Σ1 ∩ Σ2. Now, since
Bσ is literally T -unsatisfiable, for i = 1, 2, there must be a finite set
Φi of Σskoi -literals in B such that Φ1σ ∪ Φ2σ is T -unsatisfiable. By
Proposition 3.3, the following holds for some set Ψ := {ψ1, . . . , ψl} of
disjunctions of Σsko-literals all of whose variables occur in Φ1σ ∪ Φ2σ
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and so in Bσ.

Φ1σ |=T1 Ψ (2)

Φ2σ ∪Ψ |=T2 ⊥ (3)

By (2) Φ1σ T1-entails every formula in Ψ which means, say, that 〈σ, ψ1〉
is a T1-residue of Φ1 and 〈ε, ψk〉 is a T1-residue of Φ1σ for all k ∈
{2, . . . , l}. From this it follows that there is a finite tableau derivation
(Sm, Sm+1, . . . , Sm+l) such that (a) Sm+1 is obtained, through an appli-
cation of the residue rule, by first adding the formula ψ1 to the branch
B of Sm and then applying the substitution σ to the whole tableau, and
(b) for all k ∈ {2, . . . , l}, Sm+k is obtained, also through an application
of the residue rule, by adding the formula ψk to the branch of Sm+k−1
that extends B.

The branch of Sm+l extending B then contains the set Φ2σ ∪ Ψ
of quantifier-free Σsko2 -formulas, which is T2-unsatisfiable by (3) above.
Also, each of the other branches of Sm+l coincides with a branch of Smσ
and so is literally T -unsatisfiable. Using a similar argument for these
branches we can then show that there is a finite (and strict) tableau
derivation (Sm, . . . , Sm+p) such that every Sm+k (for k ∈ {1, . . . , p}) is
obtained from Sm+k−1 by an application of the residue rule restricted
to T1 and T2, and every branch of Sm+p contains a T2-unsatisfiable set
of quantifier-free Σsko2 -formulas.

Applying Lemma 4.11 to Sm+p and T2, we can conclude that there is
a strict derivation (Sm, . . . , Sm+p+q) such that every branch of Sm+p+q
contains a T2-unsatisfiable set of Σ2

sko-literals. This is to say that each
of these sets admits the T2-residue 〈ε,⊥〉. But then, we can argue as
before that there is a strict tableau derivation (Sm, . . . , Sm+p+q+r) such
that Sm+p+q+r is obtained by successive applications of the residue rule
restricted to T2, each adding ⊥ to an open branch of Sm+p+q until all
of them are closed. The claim then follows by considering (any fair
extension of) the derivation (Sj)j≤m+p+q+r. 2

In conclusion, we have proven the following about the calculus above.

THEOREM 4.14. Let T1, T2 be two universal theories with respective
signatures Σ1,Σ2 such that Σ1

F = Σ2
F and T := T1 ∪ T2 is satisfiable.

Let ϕ be a (Σ1 ∪ Σ2)-sentence. Then, ϕ is T -valid iff there is a strict
and fair tableau proof of ϕ in which every application of the residue
rule is restricted to T1 and T2.
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5. Refinements: The Convex Case

In this section we show that the Ground Interpolation Lemma of Sec-
tion 3.3 can be further refined if the two theories T1 and T2 are also
convex in a sense defined below. One consequence of this refinement is
the possibility of strengthening the theory tableau calculus described
in the previous section. As we will see, when two theories is convex,
the completeness of the calculus is preserved even if one considers only
unit residues, by which we mean residues of the form (σ, p) where p is
a single literal. Such a restriction is significant because it considerably
reduces the non-determinism of the residue rule, allowing more efficient
implementations of the calculus.

The notion of theory convexity we adopt here is based on one due
to Nelson and Oppen (Nelson and Oppen, 1979). It is also related to
the notion of independence of negative constraints (see (Lassez and
McAloon, 1990) for a general treatment) from the constraint program-
ming literature.

DEFINITION 5.1 (Σ-Convex Theory). Let Σ be a signature. A theory
T of signature Ω is Σ-convex iff for every set Φ of Ω-literals and every
finite non-empty set Ψ of positive Σ-literals,

Φ |=T
∨

p∈Ψ

p iff Φ |=T p for some p ∈ Ψ .

We prove in the appendix that universal Horn theories are Σ-convex
for any Σ. There, we also provide references to examples of non-Horn
universal theories that are Σ-convex for some signature Σ. This shows
that an important portion of candidate background theories for theory
reasoning are in fact convex, which justifies the particular relevance of
the results presented in this section.

These results and their proofs will use Horn formulas. Following
(Hodges, 1993a), we call a basic Horn formula a formula of the form

¬p1 ∨ · · · ∨ ¬pn ∨ q

where n ≥ 0 and each of p1, . . . , pn, q is a positive literal (possibly ⊥).15

For the rest of this section, we will fix two signatures Σ1,Σ2 such
that Σ1

F = Σ2
F and two universal theories T1, T2 of respective signature

Σ1,Σ2 such that T1∪T2 is satisfiable. Also, we assume that both theories
is Σ-convex for Σ := Σ1 ∩ Σ2.

15 Note that this definition rules out every disjunction ¬p1 ∨ · · · ∨ ¬pn of negative
literals. However, we can treat such a disjunction as a basic Horn formula as well
by identifying it with the logically equivalent formula ¬p1 ∨ · · · ∨ ¬pn ∨ ⊥.
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PROPOSITION 5.2 (Horn Ground Interpolation Lemma). If T1 ∪ T2
is unsatisfiable, then

T1 |= ϕ and T2 |= ¬ϕ

for some conjunction ϕ of ground basic Horn formulas of signature Σ.

Proof. By Proposition 3.2, there is a ground Σ-formula ϕ such that

T1 |= ψ and T2 |= ¬ψ . (4)

With no loss of generality we can assume that ψ has the conjunctive
normal form ψ1 ∧ · · · ∧ψn. For each j ∈ {1, . . . , n}, we can also assume
that ψj has the form

¬pj1 ∨ · · · ∨ ¬p
j
mj
∨ qj1 ∨ · · · ∨ q

j
nj

where mj ≥ 0, nj ≥ 1, each pjk and each qjk is a positive ground literal,

and q
j
1, say, is always ⊥. Let j ∈ {1, . . . , n}. By (4) above, we have

that T1 |= ¬p
j
1 ∨ · · · ∨ ¬p

j
mj
∨ qj1 ∨ · · · ∨ q

j
nj
. By the properties of logical

entailment and the definition of |=T1 it follows that

{pj1, . . . , p
j
mj
} |=T1 q

j
1 ∨ · · · ∨ q

j
nj
.

From the Σ-convexity of T1 we can conclude that there is a kj ∈

{1, . . . , nj} such that {pj1, . . . , p
j
mj
} |=T1 q

j
kj
.16 In conclusion, for all

j ∈ {1, . . . , n} there is a kj ∈ {1, . . . , nj} such that

T1 |= ¬p
j
1 ∨ · · · ∨ ¬p

j
mj
∨ qjkj

.

Let ϕ be the conjunctions of all the Horn formulas ¬pj1∨· · ·∨¬p
j
mj
∨qjkj

above. It is immediate that T1 |= ϕ. To prove the proposition then it is
enough to show that T2 ∪ {ϕ} is unsatisfiable.

Suppose ad absurdum that T2 ∪ {ϕ} is satisfiable in some structure

A. In that case, T2 ∪ {¬p
j
1 ∨ · · · ∨ ¬p

j
mj
∨ qjkj

} is satisfiable in A for

every j ∈ {1, . . . , n}. But then, T2 ∪ {ψj} with ψj = ¬p
j
1 ∨ · · · ∨ ¬p

j
mj
∨

q
j
1 ∨ · · · ∨ q

j
nj

is clearly also satisfiable in A for every j ∈ {1, . . . , n}.

Noting that none of the elements of T2 ∪ {ψj} has free variables, it
follows that T2∪{ψ1∧ · · ·∧ψn} is satisfiable in A. But this contradicts
the assumptions that ψ = ψ1 ∧ · · · ∧ ψn and T2 |= ¬ψ. It follows that
T2 ∪ {ϕ} is unsatisfiable. 2

16 If {pj

1
, . . . , pj

mj
} is T1-unsatisfiable, one such kj is 1, given the assumption that

q
j

1
= ⊥.

pap.tex; 20/08/2002; 12:29; p.23



24 Cesare Tinelli

As in Section 3.3, the following corollary of Proposition 3.2 is more
useful for our purposes.

PROPOSITION 5.3. For i = 1, 2 let Φi a set of Σi-literals. Then, the
following are equivalent:

1. Φ1 ∪ Φ2 is (T1 ∪ T2)-unsatisfiable;

2. there is a finite set Ψ of basic Horn formulas of signature Σ with
Var(Ψ) ⊆ Var(Φ1 ∪ Φ2) such that

Φ1 |=T1 Ψ and Φ2 ∪Ψ |=T2 ⊥ .

Proof. Similarly to Proposition 3.3. 2

Now, we could use the result above in the proof of Proposition 4.13
to show that the tableau calculus in the previous section is complete
even if residues are restricted to basic Horn formulas. In fact, we can
do even better and restrict residues to just positive literals. The main
reason for this is provided by the following lemma.

LEMMA 5.4. For i = 1, 2 let Φi a set of Σi-literals such that Φ1 ∪ Φ2
is (T1 ∪ T2)-unsatisfiable. Then there is a finite n, a sequence (Φi

j)j≤n
of sets of Σi-literals with Φi

0 = Φi for i = 1, 2, and a sequence (aj)j≤n
of positive Σ-literals with an = ⊥ such that:

1. for all j < n and i = 1, 2, Φi
j+1 = Φi

j ∪ {aj};

2. for all j ≤ n, Var(aj) ⊆ Var(Φ1j ∪ Φ2j ) and either Φ1j |= aj or

Φ2j |= aj.

Proof. We construct recursively three sequences (Φ1j )j≤n, (Φ
2
j )j≤n and

(aj)j≤n that satisfy the statement of the lemma. To build (aj)j≤n we
use an auxiliary sequence (Ψj)j≤n in which each element Ψj is an
interpolant set of Φ1j and Φ2j .

Let Φi
0 := Φi for i = 1, 2. By Proposition 5.3, there is a finite set

Ψ0 :=











¬p1,1 ∨ · · · ∨ ¬p1,n1 ∨ q1
...

¬pm,1 ∨ · · · ∨ ¬pm,nm
∨ qm











of basic Horn formulas of signature Σ with Var(Ψ0) ⊆ Var(Φ
1
0 ∪ Φ20)

such that

Φ10 |=T1 Ψ0 and Φ20 ∪Ψ0 |=T2 ⊥ .

We define a0 according to the following (mutually exclusive and ex-
haustive) cases:

pap.tex; 20/08/2002; 12:29; p.24



Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing 25

1. Ψ0 is empty. Then Φ20 |=T2 ⊥. We set a0 = ⊥.

2. Ψ0 6= ∅ and one of Ψ0’s members is a single positive literal qk—
which happens if nk = 0 for some k. Then Φ10 |=T1 qk. We set
a0 := qk.

3. Ψ0 6= ∅ but none of Ψ0’s members is a single positive literal. Then
nk > 0 for all k. From the fact that Φ20 ∪ Ψ0 |=T2 ⊥ it is easy to
show by simple logical reasoning that Φ20 |=T2 p1,1∨· · ·∨pm,1. If Φ

2
0

is T2-unsatisfiable, we set a0 := ⊥. Otherwise, we know that, since
T2 is convex, there is a k such that Φ20 |=T2 pk,1. In that case, we
set a0 := pk,1. In both cases we have that Φ20 |=T2 a0.

It is immediate that Var(a0) ⊆ Var(Φ
1
0 ∪ Φ20) in all cases. Now, if

a0 = ⊥ we stop; that is, (aj)j≤n is just (aj)j≤0. Otherwise, we consider
the sets Φ11 := Φ10 ∪ {a0} and Φ21 := Φ20 ∪ {a0} and the set Ψ1 obtained
from Ψ0 by removing (the disjunction with) the literal a0 from all the
formulas of Ψ0. It is not difficult to see that Ψ1 is an interpolant set of
Φ11 and Φ21, i.e., Φ

1
1 |=T1 Ψ1 and Φ21 ∪Ψ1 |=T2 ⊥.

Applying the same process recursively to Φ11, Φ
2
1 and Ψ1 we can

generate the sequences (Φ1j )j , (Φ
2
j )j , (Ψj)j and (aj)j where each Ψj is an

interpolant set of Φ1j , Φ
2
j and (Φ1j )j and (Φ2j )j , and (aj)j have the desired

properties. The finiteness of the all the sequences is guaranteed by the
fact that each Ψj+1 is obtained from Ψj by removing all occurrences
of a literal in Ψj . 2

Now let T := T1 ∪ T2 The lemma above is basically saying that a
background reasoner for T1 and a one for T2 can together detect the
T -unsatisfiability of a set like Φ1∪Φ2 above by just exchanging entailed
Σ-atoms back and forth. Using the lemma it is not difficult to modify
the proof of Proposition 4.13 to show that the tableau calculus in the
previous section satisfies the following completeness result.

PROPOSITION 5.5 (Convex Completeness). For every T -valid sen-
tence ϕ of signature Σ1 ∪Σ2, there is a strict and fair tableau proof of
ϕ in which every application of the residue rule is restricted to T1 and
T2 and its residue has the form (σ, p) where p is a positive Σ-literal.
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6. Related Work

Our Ground Interpolation Lemma (Proposition 3.2) can also be seen as
a instance of a general interpolation theorem for infinitary logic17 due
to Malitz (Malitz, 1969). In our terms, the theorem states that any two
theories T1 and T2 whose union is unsatisfiable, admit an interpolant
ψ in their shared signature which is a universal sentence (of infinitary
logic) whenever T2 is universal. Again, the contribution of Lemma 3.2 is
to show that if T1 is also universal and T1 and T2 have the same function
symbols and contain only finitary formulas, then ψ is a ground finitary
formula.

The only research we are aware of that focuses on the cooperation of
background reasoners in theory reasoning is that reported in (Käufl and
Zabel, 1990; Tinelli and Harandi, 1998; Baalen and Roach, 1999; Peter-
mann, 2000; Zarba, 2002). Except for (Petermann, 2000) and (Zarba,
2002), all of these works embed a well-known combination method by
Nelson and Oppen (Nelson and Oppen, 1979) into a specific theory rea-
soning calculus: analytic tableaux in (Käufl and Zabel, 1990), a variant
of the CLP scheme in (Tinelli and Harandi, 1998), and constrained
resolution in (Baalen and Roach, 1999).

In essence, the approach in each of these papers is a specialization
of the one presented here. One major difference is that the background
reasoners return only residues of the form 〈ε, ψ〉, which basically means
that they treat key sets as if they were ground. This is enough for
completeness in both the CLP scheme (Jaffar and Maher, 1994) and in
constrained resolution (Bürckert, 1994). It is also enough in (Käufl and
Zabel, 1990) because in the used tableau calculus γ formulas are ex-
panded into their ground instances—which makes the calculus very in-
efficient though. Another major difference with our approach is that the
two background theories are stably-infinite (see, e.g., (Oppen, 1980))
and share at most the equality and the constant symbols, whereas in
our case the theories, although possibly not stably-infinite, share all
function symbols. The net effect of these differences—leading to more
restricted but stronger computational results than ours—is that for
each key set Φ it is enough to consider only the finitely many residues
〈ε, ψ〉 in which ψ is a disjunction of equations between certain subterms:
the alien subterms in Φ (see (Tinelli and Harandi, 1996) for details).

In (Petermann, 2000), some special types of background theories
are integrated into the theory connection calculus. A number of rather
specific syntactical restrictions are imposed on the theories, including
the disjointness of their sets of predicate symbols, none of which are

17 The extension of first-order logic that contains a conjunction and a disjunction
symbol of countably infinite arity.
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necessary in our approach. It is not clear, however, exactly how the
approach in (Petermann, 2000) compares to ours.

A very recent work, (Zarba, 2002), extends semantic tableaux into
a total multi-theory reasoning calculus by the addition of four new
derivations rules. There are no restrictions of the background theo-
ries except that the satisfiability in them of ground literals must be
decidable. The effect of the new rules is to purify mixed literals into
conjunctions of pure ground literals (over a signature extended with
Skolem constants), and to split branches on tautologies of the form
p ∨ ¬p, where p is any ground literal over the shared signature (in-
cluding the Skolem constants). Since splitting on tautologies is clearly
impractical in general, (Zarba, 2002) presents an alternative version of
the calculus that replaces splitting by a residue rule inspired by our own
calculus. The main advantage of this new calculus over ours is that the
residue rule needs to add only disjunctions of positive literals.18 The
main disadvantage of the calculus is that, for being based on semantic
tableaux, it blindly expands γ formulas into their ground instances.

7. Conclusions

In this paper we have sought to demonstrate that, contrary to a com-
mon belief in the field, integrating multiple background reasoners in
theory reasoning is conceptually straightforward. Thanks to a spe-
cialization of Craig’s interpolations lemma, the needed cooperation
between the background reasoners can be achieved as a simple form
of constraint propagation over a common language.

Our main contribution was to show that, under some conditions on
the background theories, the propagated constrains can be restricted
to disjunctions of literals in the signature Σ shared by the theories. The
requirements on the background theories, namely that they be universal
and have all their function symbols in common, are very mild: the first
is a given in all theory reasoning calculi; the second is typically easy
to satisfy, as explained in Section 3.2. We have also shown that if the
theories are Σ-convex as well, the propagated constrains can be further
restricted to single Σ-literals.

18 (Zarba, 2002) puts a lot of emphasis on the fact that it does not require, like
we do, that the background theories have all their function symbols in common.
However, (Zarba, 2002) requires the background reasoners to accept inputs with
Skolem constants, which makes its results no more general than ours. In fact, it
is easy to show that a reasoner deciding the satisfiability of ground formulas with
Skolem constants can be always augmented to decide the satisfiability of quantifier-
free formulas with Skolem function symbols of non-zero arity, which is enough for
our purposes, as explained in Section 3.2.
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For concreteness, we have proved our claims here in the context
of a specific theory reasoning calculus. We have described a multi-
theory version of the semantic tableau calculus in which the cooperation
among the background reasoners is achieved by the sort of constraint
propagation mentioned above, and we have proved the calculus sound
and complete.

We stress that our combination results are not limited to the the-
ory calculus considered here. For instance, although not shown in this
paper, we have been able to extend theory resolution (Stickel, 1985;
Baumgartner, 1992) in a similar way and produce corresponding sound-
ness and completeness results. We conjecture that analogous multi-
theory extensions can be obtained for all the major literal-level theory
reasoning calculi.

7.1. Further Research

Further research is obviously needed to assess the practical utility of the
combination results presented here. The two major practical issues for
actual theory reasoning systems are—on the foreground reasoner side—
how to choose key sets effectively and—on the background reasoner
side—how to generate residues efficiently.19 These same issues remain
crucial in our approach as well. We did show that, under the right condi-
tions, it is enough to consider only certain types of key sets and residues.
But even within these restrictions the number of possible choices is still
large enough to make actual applications impractical without further
optimizations. As we mentioned in the introduction, the research chal-
lenge is now to identify specific combinations of theories and more or
less general implementation techniques like those described in (Beckert
and Pape, 1996) for which our cooperation approach is feasible.

Focusing on the specialized results from Section 5, one potentially
interesting application could come in conjunction with Baumgartner’s
results on linearizing completion (Baumgartner, 1996), a technique for
producing background reasoners automatically for certain universal
Horn theories. Linearizing completion takes a finite set T of Horn
clauses and either diverges or produces a finite set I(T ) of unit-resulting
inference rules. This set constitutes an inference system that in turn
can be automatically “compiled” into a specialized reasoner RT for
T . The reasoner RT is refutationally complete with respect to T -
unsatisfiability. More interestingly for us though, RT can be used as
a rather efficient background reasoner for partial theory reasoning cal-
culi: one that preserves the completeness of the overall calculus while

19 A noteworthy approach partially addressing these issues and based on incre-
mental methods is described in (Beckert and Pape, 1996).
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only needing key sets up to a certain cardinality, and producing “few”
T -residues, all of them unit (see (Baumgartner, 1996) for more details).

The major limitation of linearizing completion is that it often di-
verges on the input set T of clauses. In some cases, however, it is
possible to partition T into two sets T1 and T2 such that linearizing
completion on each of them separately succeeds (Baumgartner, 2001).
Until now this fact was not extremely useful because, clearly, neither of
the two reasoners produced this way would be a background reasoner
for T when taken separately. The two reasoners, however, can now be
combined with our approach to reason over T in cooperation. Although
this idea looks promising, the cases mentioned in (Baumgartner, 2001)
involve very simple theories. More work needs to be done to find more
interesting cases of theories that can be partitioned into subtheories on
which linearizing completion converges.
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Appendix

A. Proofs

In the following, we will use the standard model-theoretic notions of
embedding, isomorphism, substructure, generators, reducts and so on.
The reader is referred to (Hodges, 1993b), among others, for their
definition. The results given here are expressed and hold in first-order
logic with equality. However, all of them can be shown to hold as stated
in first-order logic without equality as well.

Where A is a structure of signature Ω, we denote by diag(A) the set
of all ground Ω-literals that are true in A; if Σ is a subsignature of Ω,
we denote by AΣ the reduct of A to Σ; if X is a subset of the universe
of A, we denote by 〈X〉A the substructure of A generated by X.

We will appeal to the following three basic results from model theory.
The first is an elementary fact. For a proof of the other two, again see
(Hodges, 1993b), among others.
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LEMMA A.1. Let A be an Ω-structure, Σ a subsignature of Ω and X
a subset of A’s universe. If ΣF = ΩF, then 〈X〉A

Σ = 〈X〉AΣ.

LEMMA A.2 (Robinson’s Diagram Lemma). Let A be a Σ-structure
generated by the empty set and B a structure whose signature includes
Σ. Then, A is embeddable in BΣ whenever B models the set diag(A).

LEMMA A.3. The set of models of a universal Σ-theory T is closed
under substructures. That is, every substructure of a (Σ-)model of T is
a model of T .

We will also appeal to the notion of fusion from (Tinelli and Ringeis-
sen, 2002) and some of its properties, proved in (Tinelli and Ringeissen,
2002).

DEFINITION A.4 (Fusion). For i = 1, 2 let Ai be a structure of sig-
nature Σi. A (Σ1 ∪Σ2)-structure F is a fusion of A1 and A2 if F

Σi is
isomorphic to Ai for i = 1, 2.

Fusions of structures do not always exist. The following proposition
establishes a necessary and sufficient condition for their existence.

PROPOSITION A.5. Let A and B be two structure and let Σ be the
intersection of their signatures. Then, A and B admit a fusion exactly
when AΣ is isomorphic to BΣ.

Fusions of structures are related to unions of theories as follows.

PROPOSITION A.6. For i = 1, 2 let Ti be a theory of signature Σi. A
(Σ1 ∪ Σ2)-structure is a model of T1 ∪ T2 iff it is the fusion of a model
of T1 and a model of T2.

A.1. T -Hintikka Sets

We start by proving Lemma 2.3, stating that for each satisfiable uni-
versal theory T , every T -Hintikka set is satisfiable in a canonical model
of T .

LEMMA 2.3. If T is a satisfiable universal theory, then every T -
Hintikka set is satisfiable in a canonical model of T .

Proof. Assume that T has signature Ω. Where Ω′ is a signature includ-
ing Ω (and having at least a constant symbol), letH be a T -Hintikka set
of signature Ω′ and let Φ be the (possibly infinite) set of all the literals

pap.tex; 20/08/2002; 12:29; p.30



Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing 31

in H.20 By Definition 2.2(1), the universal theory Φ ∪ T is satisfiable.
Let A be any Ω′-model of Φ ∪ T and let B be the substructure of A
generated by the empty set. By Lemma A.3, B as well is a model of
Φ∪T . Since it is generated by the empty set, we know that, in addition,
B is (isomorphic to) a canonical model of Φ∪T . We prove by structural
induction that every sentence of H holds in B.

(Base case) Every literal of H holds in B by construction, for being
an element of Φ.

(Induction step) We consider just the β and γ sentences of H. For
α or δ sentences the argument is similar. If a sentence β is in H then
βi ∈ H for i = 1 or i = 2. By induction hypothesis, βi holds in B. But
then, by definition, β is also holds in B. If a sentence γ is in H then
γ1(t) ∈ H for all ground Ω′-terms t. By induction hypothesis, each γ(t)
holds in B. Since every element of B is denoted by some ground term
t, given that B is a canonical model, it follows that the formula γ(x)
in the free variable x is satisfied in B by every interpretation of x. But
by the semantics of universal quantification, this means that γ holds in
B. 2

A.2. Ground Interpolation Lemma

In this subsection we prove Proposition 3.2, the Ground Interpola-
tion Lemma from Section 3.3. As in that section, we fix two signa-
tures Σ1,Σ2 such that Σ1

F = Σ2
F and two universal theories T1, T2 of

respective signature Σ1,Σ2. Also, let Σ := Σ1 ∩ Σ2.
The proof of the lemma will be facilitated by the following interme-

diate result. In its proof, we use l̄ to denote the complement of a literal
l.

LEMMA A.7. Let Ψ be the set of all disjunctions ψ of ground Σ-literals
such that T1 |= ψ. If every finite subset of Ψ is T2-satisfiable, then the
theory T1 ∪ T2 is satisfiable.

Proof. Assume that every finite subset of Ψ is T2-satisfiable. Then,
every finite subset of Ψ ∪ T2 is satisfiable. By the compactness of
first-order logic, this entails that the whole Ψ ∪ T2 is satisfiable. Let
A2 be a Σ2-model of Ψ ∪ T2 and assume with no loss of generality
that A2 is generated by the empty set.21 Since ΣF = Σ1

F = Σ2
F by

assumption, the Σ-reduct A2
Σ as well is generated by the empty set.

20 Note, that since H is a set of sentences, each literal in it must be ground.
21 Otherwise, one can consider in its place the substructure of A2 generated by the

empty set. This substructure exists because Σ2 contains at least a constant symbol;
moreover, it is a model of Ψ ∪ T2 by Lemma A.3 because Ψ ∪ T2 is universal.
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We start by showing by contradiction that the Σ1-theory T1∪diag(A2
Σ)

is satisfiable.
If T1 ∪ diag(A2

Σ) is not satisfiable, then by compactness again we
can show that there is a finite subset {l1, . . . , ln} of diag(A2

Σ) that
is T1-unsatisfiable. This implies that the formula ψ := l̄1 ∨ · · · ∨ l̄n is
entailed by T1. For being a disjunction of ground Σ-literals, ψ must then
be an element of Ψ. Now, since A2 models Ψ and ψ is a Σ-formula, we
then have that l̄1∨· · ·∨ l̄n is true in A2

Σ. But this is impossible because
every lj is in diag(A2

Σ), the set of ground Σ-literals true in A2
Σ, and

so every l̄j is false in A2
Σ.

Now let A1 be a Σ1-model of T1 ∪ diag(A2
Σ), and assume, again

with no loss of generality, that A1 is generated by the empty set. By
Lemma A.2, since A1 models diag(A2

Σ), A2
Σ is embeddable into A1

Σ.
Recalling that A2

Σ is generated by the empty set, this means that
A2

Σ is isomorphic to 〈∅〉A1Σ , the substructure of A1
Σ generated by the

empty set. By Lemma A.1, since ΣF = Σ1
F, this substructure coincides

with 〈∅〉A1
Σ, that is, with A1

Σ.
In conclusion, we have shown that the structures A1 and A2 have

isomorphic reducts over their shared signature Σ. Therefore, they admit
a fusion F by Proposition A.5. Since by construction A1 is model of T1
and A2 is model of T2, we can conclude by Proposition A.6 that F is a
model of T1 ∪ T2, which makes T1 ∪ T2 satisfiable. 2

PROPOSITION 3.2. (Ground Interpolation Lemma) If T1∪T2 is un-
satisfiable, then T1 |= ϕ and T2 |= ¬ϕ for some ground Σ-formula
ϕ.

Proof. Assume that T1 ∪ T2 is unsatisfiable and let Ψ be the set of all
disjunctions ψ of ground Σ-literals such that T1 |= ψ. By the contrapos-
itive of Lemma A.7, we know that there is a finite subset {ψ1, . . . , ψn}
of Ψ that is T2-unsatisfiable. Let ϕ := ψ1 ∧ · · · ∧ ψn. By construction,
ϕ is a ground Σ-formula such that T1 |= ϕ and T2 |= ¬ϕ. 2

A.3. Σ-Convex Theories

In this subsection we show that every Horn theory, and in particular
every universal Horn theory, is Σ-convex for any Σ. Then, we point to
some examples of non-Horn Σ-convex theories. We start by defining
(universal) Horn theories, again following (Hodges, 1993a).

Recall that a basic Horn formula is a formula of the form ¬p1 ∨
· · · ∨ ¬pn ∨ q where n ≥ 0 and each of p1, . . . , pn, q is a positive literal
(possibly ⊥). A Horn formula is a formula of the form Q.(ϕ1∧· · ·∧ϕn)
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where Q is an arbitrary quantifier prefix, n > 0 and each ϕj is a basic
Horn formula. A Horn sentence is Horn formula with no free variables
and a universal Horn sentence is a Horn sentence whose quantifier
prefix contains only universal quantifiers. A universal Horn theory is a
set of universal Horn sentences.22

The convexity of Horn theories is an almost immediate consequence
of a well-known result by McKinsey, one of whose formulations is the
following (see (Hodges, 1993a)).

LEMMA A.8 (McKinsey’s Lemma). Let T be a satisfiable Horn theory
and let Ψ be a set of positive ground literals. If every model of T is a
model of at least one element of Ψ, then there is a p ∈ Ψ such that
T |= p.

PROPOSITION A.9. Every Horn theory is Σ-convex for any signature
Σ.

Proof. Let Σ be any signature and T a Horn theory of signature Ω.
Let Φ be a set of Ω-literals and Ψ a finite, non-empty set of positive
Σ-literals such that Φ |=T

∨

p∈Ψ p. We show that Φ |=T p for some
p ∈ Ψ.

If Φ is T -unsatisfiable, the claim is trivially true for any p ∈ Ψ.
Therefore assume that Φ is T -satisfiable and consider Φ and Ψ as sets
of ground literals in the signature Ω(X) and Σ(X), respectively, where
X := Var(Φ ∪Ψ). Then observe that T ′ := T ∪Φ is a satisfiable Horn
theory of signature Ω(X) and that T ′ |=

∨

p∈Ψ p. The claim then follows
immediately from Lemma A.8. 2

To conclude, in (Nelson and Oppen, 1979) an Ω-theory T is called
convex iff whenever a conjunction of Ω-literals T -entails a disjunction
of equalities between variables, it T -entails one of the equalities in the
disjunction. That paper also provides some example of convex, univer-
sal theories two of which—a theory of rational numbers under addition
and a theory of lists—are not (axiomatizable by) Horn theories.

It is easy to see that, in FOL with equality, convex theories in the
sense of (Nelson and Oppen, 1979) are Σ-convex theories according to
Definition 5.1, where Σ is the empty signature. There is, however, an
even stronger connection between the two definitions.

PROPOSITION A.10. Every convex theory of signature Ω is Σ-convex
with Σ := ΩF.

22 Note that a universal Horn sentence is a universal sentence as defined in
Section 2. Similarly, a universal Horn theory is a universal theory.
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Proof. Let T be the convex Ω-theory and Σ := ΩF. Let Φ be any set
of Ω-literals and Ψ any finite non-empty set of positive Σ-literals such
that Φ |=T

∨

p∈Ψ p. We prove that Φ |=T p for some p ∈ Ψ.
Since Σ contains only function symbols, Ψ must be a set of equalities.

So let Ψ := {s1 ≈ t1, . . . , sn ≈ tn} where≈ denotes the equality symbol.
By compactness, we can assume with no loss of generality that Φ is
finite. Now, from the assumption that Φ |=T

∨

j=1,...,n sj ≈ tj we can
deduce by elementary logical reasoning that

∧

p∈Φ

p ∧ (
∧

j

xj ≈ sj) ∧ (
∧

j

yj ≈ tj) |=T
∨

j

xj ≈ yj

where all the xj and yj are fresh variables. Since the conjunction above
is a conjunction of Ω-literals, by the convexity of T there is a j ∈
{1, . . . , n} such that

∧

p∈Φ

p ∧ (
∧

j

xj ≈ sj) ∧ (
∧

j

yj ≈ tj) |=T xj ≈ yj

But this entails that Φ |=T sj ≈ tj for some j ∈ {1, . . . , n}. 2
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