
Comparing Proof Systems for

Linear Real Arithmetic with LFSC∗

Andrew Reynolds
Cesare Tinelli
Aaron Stump

The University of Iowa

Liana Hadarean
Yeting Ge

Clark Barrett
New York University

Abstract

LFSC is a high-level declarative language for defining proof systems
and proof objects for virtually any logic. One of its distinguishing fea-
tures is its support for computational side conditions on proof rules. Side
conditions facilitate the design of proof systems that reflect closely the
sort of high-performance inferences made by SMT solvers. This paper in-
vestigates the issue of balancing declarative and computational inference
in LFSC focusing on (quantifier-free) Linear Real Arithmetic. We discuss
a few alternative proof systems for LRA and report on our comparative
experimental results on generating and checking proofs in them.

1 Introduction

A current challenge for the SMT community is to devise a common proof for-
mat for proof-producing SMT solvers. The diversity of theories and solving
algorithms in SMT makes this difficult, as it seems practically infeasible to de-
sign a single set of universally suitable inference rules. To address this difficulty,
previous work introduced LFSC (“Logical Framework with Side Conditions”),
a meta-level language for specifying proof systems in SMT [9], and showed how
to apply it for encoding proofs in the QF IDL logic of SMT-LIB [8, 1]. LFSC is
based on the Edinburgh Logical Framework (LF), a high-level declarative lan-
guage in which logics (understood as inference systems over a certain language
of formulas) can be specified [5]. LFSC increases LF’s flexibility by including
support for computational side conditions on inference rules. These conditions,
expressed in a small functional programming language, enable some parts of
a proof to be established by computation. The flexibility of LFSC facilitates
the design of proof systems that reflect closely the sort of high-performance
inferences made by SMT solvers.

As with LF, a big advantage of LFSC is that, as a meta-level format, it allows
the use of a single type checker to check proofs in any LFSC-specified logic. But
in LFSC, the presence of side conditions opens up a continuum of possible LFSC
encodings of a given inference system, from completely declarative, using rules

∗This work was partially supported by NSF grants 0914877 and 0914956.

1



with no side conditions, at one end; to completely computational, using a single
rule with a huge side condition, at the other.

We argue that supporting this continuum is a major strength of LFSC.
Solver implementors have the freedom to choose where to draw the dividing line
between declarative and computational inference when devising a proof system.
This freedom cannot be abused since any decision is explicitly recorded in the
LFCS specification and becomes part of the proof system’s trusted computing
base. Note, however, that the possibility to create with a relatively small effort
different LFSC proof systems for the same logic provides an additional level
of trust even for proof systems with a substantial computational component—
since at least during the developing phase one could produce proofs in a more
declarative, if less efficient, proof system as well.

Instead of developing a dedicated LFSC checker one could imagine embed-
dind LFSC in existing declarative languages such as Maude or Haskell. While
the advantages of prototyping symbolic tools in these languages are well known,
in our experience their performance lags too far behind carefully engineered
imperative code in C/C++ for high-performance proof checking of very large
proofs. Our approach seeks to strike a pragmatic compromise between trust-
worthiness and efficiency. It would certainly be possible to reduce the size and
complexity of the trusted computing base by using a less optimized implementa-
tion of LFSC, at the cost of reduced performance. A longer-term solution might
be to compile a more declarative description of the checker into a comparably
efficient implementation.

Contributions. In this research, we provide further evidence of the viability
of LFSC for representing and checking unsatisfiability proofs in SMT. We devise
a LFSC proof system, or calculus, for the quantifier-free fragment of Linear Real
Arithmetic (QF LRA) [1], and instrument the Cvc3 SMT solver [2] to produce
proofs in it. To investigate the balance between declarative and computational
inference in proof systems for SMT, we develop alternative translations from
Cvc3 proofs to LFSC that exercise different rules of our calculus. The first
one is a direct encoding in LFSC syntax of the LRA fragment of the proof
system used by Cvc3. Since Cvc3’s proof system predates LFSC, it uses, by and
large, declarative rules with no side conditions. The second translation uses new
arithmetic rules developed with the explicit goal of taking advantage of LFSC’s
side condition facility. It produces more compact subproofs of the arithmetic
lemmas used in the original Cvc3 proof. The third translation is an aggressive
version of the second that tries to compact also portions of the Cvc3 proof that
rely on general equality reasoning.

Paper outline. We begin with a brief introduction to LFSC. Next, we de-
scribe the LFSC LRA calculus, as well as Cvc3’s, abstractly in terms of textbook
logic rules. Then we explain informally how proofs in Cvc3’s native format are
converted in proofs in the LFSC calculus.1 We discuss the main features of these
calculi and our various translations, and then provide comparative experimental
results on generating and checking LFSC proofs.

1A complete and formal description of the two calculi, both at the abstract and the concrete
syntax level, and of the conversion process will be provided in a forthcoming technical report.

2



2 LF with Side Conditions

As mentioned above, LFSC (“Logical Framework with Side Conditions”) ex-
tends the Edinburgh LF with support for computational side conditions. LF
has been used extensively as a metalanguage for encoding deductive systems
including logics, semantics of programming languages, and many others. Proof
systems are encoded in signatures, which are lists of typing declarations. Each
proof rule is encoded as a constant symbol, whose type represents the inference
allowed by the rule. For example, the following is a standard natural-deduction
introduction rule for conjunction, and its encoding in LF (using the prefix syntax
of LFSC):

F1 F2

F1 ∧ F2
and intro

and_intro : (! F1 formula (! F2 formula (! u1 (pf F1) (! u2 (pf F2)

(pf (and F1 F2))))))

The encoded rule can be read as saying: “for any formulas F1 and F2, and any
proofs u1 and u2 of F1 and F2 respectively, and intro constructs a proof of
(and F1 F2).”

Unfortunately, pure LF is not suitable for encoding large proofs from SMT
solvers. Because LF is purely declarative, computational side conditions like
those considered in this paper would need to be encoded via inference rules. This
would lead to unacceptable bloating of proofs and proof-checking time, as every
inference with a side condition would require an additional non-trivial proof. In
contrast, LFSC allows side conditions to be expressed as computational checks,
which are performed by the LFSC checker when the inference is proof-checked.

3 Proof Generation and Checking

Proofs in our LFSC calculus for LRA are generated from proofs produced by
Cvc3 in its own calculus. We will refer to the former calculus as L and the
latter as C. The reason for translating from Cvc3’s native proofs is that its
proof-generation facility is deeply embedded in the system’s code, and so it
is arduous to modify the system to produce LFSC proofs directly. Instead, a
translation module was added to Cvc3 that traverses the internal data structure
storing the proof, and produces an LFSC proof from it.

We developed three different translations from Cvc3 proofs, differing in how
close they are to the original proof. We refer to these as the literal, the liberal and
the aggressively liberal translation, and name them LRA1, LRA2, and LRA2a,
respectively. To describe their main differences, it is helpful to know that,
roughly speaking, Cvc3’s proofs have a two-tiered structure, typical of solvers
based on the DPLL(T ) architecture [7], with a propositional skeleton filled with
several theory-specific subproofs [4]. The conclusion is reached by means of
propositional or purely equational inferences applied to a set of input formulas
and a set of theory lemmas. The latter are disjunctions of arithmetic atoms
deduced from no assumptions, mostly using proof rules specific to the theory in
question—the theory of real arithmetic in this case.

In the literal translation, LRA1, an LFSC proof is produced directly from
Cvc3’s proof, using whenever possible L rules that mirror the corresponding C
rules, and resorting to additional L-specific rules only for those few C rules that

3



cannot be checked by simple pattern matching (but require, for instance, to
verify that a certain expression in the C rule is a normalized version of another).

In the two liberal translations, the Cvc3 proof is used as a guide to produce
a compact proof that relies on rules with side conditions specific to L—that is,
not encoding a rule of C. The use of side conditions enables a level of compaction
that is otherwise infeasible due to the declarative nature of rules in the C calcu-
lus. In LRA2, the subproofs of all theory lemmas are systematically converted
to more compact proofs that use L-specific rules; the rest of the Cvc3 proof is
translated as in the literal translation. The LRA2a translation is identical to
LRA2 except that it tries to compact also parts of the proof that rely on generic
equality reasoning (for instance, applications of congruence rules), again by us-
ing L-specific rules. This translation, which is still somewhat experimental, uses
an adaptive strategy to switch from L-specific equality rules to C-like equality
rules and back, making heuristic decisions on when it is worthwhile to do so.

On average, the translation times for the three translations are the same.
However, the size of a proof produced with the liberal translations is often
considerably smaller than the size of the corresponding proof generated with
the literal translation. The compression is achieved to a great extent thanks to
L proof rules that work with normalized polynomial atoms, atoms of the form

c1 · x1 + . . .+ cn · xn + cn+1 ∼ 0

where each ci is a rational constant, each xi is a real variable, and ∼ is one of the
relational operators =, >,≥. These rules take normalized atoms in their premise
and introduce only normalized atoms in their conclusion. The computation of
the atoms in the conclusion is delegated to the rule’s side condition, which
consists of a call to a simple polynomial normalization function. Overall, the
LSFC side condition code that defines these functions has about 60 lines of
LISP-like code for a total of less than 2 kilobytes, and is similar in structural
complexity to the implementation of a merge sort of lists of key/value pairs.

Proof Checking. LFSC proofs are checked using a high-performance LFSC
type checker, developed (in around 5kloc of C++) by Reynolds and Stump. In
previous work [8], they showed that the LFSC checker is highly competitive with
alternative approaches to SMT proof checking such as the one used with the
fx7 system [6]. As explained in the cited work, the LFSC checker implements
compilation to C++ of side-condition code, for higher performance. Another
important optimization, called incremental checking, interleaves parsing and
type checking. This makes it possible to parse and type check large proofs,
without needing to build first an abstract syntax tree in memory for the whole
proof. These two optimizations each lead to significant reductions in running
time (on the order of 5x), and also memory usage.

For this work, a few new features were added to the LFSC checker:

• support for arbitrary-precision rational arithmetic;

• local definitions via a let construct; and

• a compare primitive function, to allow side-condition code to impose an
ordering on LFSC variables.2

2This is used in sorting lists of monomials, for example.

4



Γ1 ` t1 ∼ t2 ⇔ t3 ∼ t4 Γ2 ` t3 ∼ t4 ⇔ t5 ∼ t6
Γ1,Γ2 ` t1 ∼ t2 ⇔ t5 ∼ t6

iff trans

Γ1 ` t1 ∼ t2 Γ2 ` t1 ∼ t2 ⇔ t3 ∼ t4
Γ1,Γ2 ` t3 ∼ t4

iff mp

Γ1 ` t1 = t2 Γ2 ` t3 = t4
Γ1,Γ2 ` t1 ∼ t3 ⇔ t2 ∼ t4

congr 1
Γ1 ` t1 = t2 Γ2 ` t2 = t3

Γ1,Γ2 ` t1 = t3
eq trans

Γ1 ` t1 = t2 Γ2 ` t3 = t4
Γ1,Γ2 ` t1 ./ t3 = t2 ./ t4

congr 2
Γ1 ` t1 = t2

Γ1,Γ2 ` t2 = t1
eq symm

Figure 1: Some of Cvc3’s propositional and equality proof rules for QF LRA.

Γ1 ` t1 > t2 Γ2 ` t2 > t3
Γ1,Γ2 ` t1 > t3

gt trans
Γ1 ` t1 > t2 Γ2 ` t2 > t1

Γ1,Γ2 ` ⊥
gt acyc

[0 � c]

` (0 ∼ c)⇔ ⊥
const pred 1

` t1 ∼ t2 ⇔ 0 ∼ t2 − t1
right minus left

[t′ canonical form of t]

` t = t′
canon

[c non-negative]

` t1 ∼ t2 ⇔ c · t1 ∼ c · t2
mult pred

` t1 > t2 ⇔ t2 < t1
flip ineq ` t1 ∼ t2 ⇔ t1 + t3 ∼ t2 + t3

plus pred

Figure 2: Some of Cvc3’s arithmetic proof rules for QF LRA.

4 The Cvc3 and LFSC Calculi for LRA

The C calculus. The fragment of Cvc3’s proof system for QF LRA3 can be
described mathematically as a sequent calculus C with judgments of the form
Γ ` ϕ, where Γ is a set of quantifier-free LRA formulas and ϕ is a single LRA
formula, also quantifier-free. Each rule is an instance of this general schema:

Γ1 ` ϕ1 · · · Γn ` ϕn

Γ ` ϕ

for some n ≥ 0. The axioms of the calculus, i.e., the proof rules with with n = 0,
have, however, conclusions of a more restricted form: either ϕ ` ϕ or ` ψ. The
first kind of axiom is used to introduce assumptions in sequents; the second to
introduce some basic LRA theorems. A small sample of Cvc3’s rules is provided
in Figures 1 and 2.4 The rules are fairly standard and self-explanatory, with
the possible exception of canon. This rule asserts an equality between a term t
and its equivalent canonical form produced by Cvc3’s canonizer module, which
applies some standard equivalence-preserving simplifications.

Although the C calculus itself is quite general, all Cvc3 proofs in it are

3The complete proof system is a lot larger because it supports a much larger logic than
QF LRA.

4A more extensive set of rules is provided in the appendix. To ease formatting, some rule
names may have a different name from the one used by Cvc3.

5



` ct = cp
poly norm const ` vt = vp

poly norm var

Γ1 ` t1 = p1 Γ2 ` t2 = p2
Γ1,Γ2 ` t1 + t2 = (p1 + p2)↓

poly norm+
Γ ` t = p

Γ ` ct · t = (cp · p)↓
poly normc·

Γ ` t1 − t2 = p

Γ ` t1 = t2 ⇔ p = 0
poly norm=

Γ ` t1 − t2 = p

Γ ` t1 > t2 ⇔ p > 0
poly norm>

Γ1 ` t1 ∼ t2 Γ2 ` t1 ∼ t2 ⇔ p ∼ 0

Γ1,Γ2 ` p ∼ 0
poly form

Figure 3: Some conversion rules of L. The expressions ct and cp denote the same
rational constant, in one case seen as a term and in the other as a polynomial
(similarly for the variables vt and vp).

Γ1 ` p ≥ 0 Γ2 ` p′ ≥ 0 [p+ p′ = 0]

Γ1,Γ2 ` p = 0
lra≥≥to=

[c ≥ 0]

` c ≥ 0
lra≥axiom

Γ ` p = 0 [p 6= 0]

Γ ` ⊥ lra contra=

Γ ` p > 0 [c > 0]

Γ ` (c · p)↓ > 0
lra multc>

Γ1 ` p1 > 0 Γ2 ` p2 > 0

Γ1,Γ2 ` (p1 + p2)↓ > 0
lra add>>

Figure 4: Some of the polynomial rules of L.

refutations, that is, have a conclusion of the form Γ ` ⊥ where Γ is a subset of
the formulas whose joint satisfiability Cvc3 was asked to check.

The L calculus. At the abstract level, the LFSC calculus L can be described
as a proper superset of C. In reality, L includes a set of rules that, while essen-
tially the same as those in C, have a different concrete syntax. The remaining
rules of L are those used by the two liberal translations. Some of these rules
convert arithmetic terms used in the C rules to polynomials, and back. This is
because, in the concrete LFSC syntax, arithmetic terms—denoted by the letter
t in the rules—and polynomials—denoted by p—belong to different types, with
the polynomial type optimized to support fast normalization operations. The
conversion rules operate on mixed-type atoms that have a term argument and a
polynomial argument. A sample of such rules is provided in Figure 3. There, e↓
denotes the results of converting the polynomial expression e into a normalized
polynomial. The normalization is done by the rule’s side condition, which is
however left implicit to simplify the notation.

A further set of rules operate only on polynomial atoms and are used by the
liberal translations to generate proofs of LRA lemmas. A selection of these rules
is provided in Figure 4. To ease formatting, explicit side conditions are written
together with the premises, but enclosed in brackets. Although side conditions
use the same syntax used in the sequents, they should be read as a mathematical
notation. For example, p = 0 in a premise denotes an atomic formula whose
left-hand side is an arbitrary polynomial and whose right-hand side is the 0

6



Γ1 ` 2x > 2y

` x > y ⇔ 2x > 2y

` 2x > 2y ⇔ x > y
e

Γ1 ` x > y
m

Γ2 ` y > x + 5

Γ ` x > x + 5
t

...
` x > x + 5⇔ ⊥

e

Γ ` ⊥
m

...
Γ1 ` 2x− 2y > 0

Γ1 ` x− y > 0

...
` 0 = 0

Γ1 ` x− y > 0

...
Γ2 ` −x + y − 5 > 0

Γ ` −5 > 0

...
` 0 = 0

Γ ` −5 > 0

Γ ` ⊥

Figure 5: Example of a proof fragment in the C calculus (top) and the cor-
responding fragment in the L calculus using polynomial rules (bottom), with
Γ1 = {2x > 2y}, Γ2 = {y > x+ 5} and Γ = Γ1 ∪ Γ2.

...
Γ1 ` 2x− 2y > 0

Γ1 ` x− y > 0

...
Γ2 ` −x + y − 5 > 0

Γ ` −5 > 0

Γ ` ⊥

Figure 6: Proof fragment eventually produced by the liberal translations from
the C proof fragment in the previous figure.

polynomial; in contrast, the side condition [p + p′ = 0], say, denotes the result
of checking whether the expression p+ p′ evaluates to 0 in the polynomial ring
Q[X], where Q is the field of rational numbers and X the set of all variables (or
“free constants” in SMT-LIB parlance).

5 From C proofs to L proofs

In this section, we describe briefly the main approach used by the liberal trans-
lations to produce more compact proofs. Due to space restrictions, se cannot
give a comprehensive description of the translation algorithm here. Instead, we
give the main intuition, focusing on the translation of theory lemma (sub)proofs,
and provide an example.

Theory lemmas in Cvc3 proofs are derived by first proving ϕ1, . . . , ϕn ` ⊥
from assertions (axioms) of the form ψ ` ψ, where all the ψ’s and ϕi’s are
arithmetic atoms. These proofs rely on a variety of rules, including equivalence
axioms of the form ` ψ1 ⇔ ψ2, used a rewrite rules, and standard rules for
natural deduction. In contrast, theory lemma proofs in the L calculus amount
to determining a list of rational coefficients that when multiplied by the asserted
atomic formulas, allow one to produce an inconsistent polynomial atom cp ∼ 0
for some constant polynomial cp (such as 3 = 0 or −1 > 0), using simple
polynomial ring operations like addition and subtraction. An important point

7



is that these coefficients are computed directly, deterministically and efficiently,
from the Cvc3 proof.

The translation process exploits the fact that in many cases, a proof of a
polynomial atom can be derived in L that is at least as strong as the formula
that is proved by the Cvc3 proof. That is to say, if a subproof P of a theory
lemma proves Γ ` ψ in C, there often exists a proof of Γ ` p ∼ 0 in L such that
Γ entails (p ∼ 0)⇒ ψ.5 In fact, it is often the case that Γ entails (p ∼ 0)⇔ ψ.

The translation to L proofs is performed incrementally and bottom-up over
the structure of the Cvc3 proof, where applications of rules in C are first trans-
lated to applications of corresponding rules for polynomials in L. The proof
obtained this way is then compacted to eliminate superfluous subproofs. For
instance, consider a Cvc3 subproof whose conclusion is obtained with an ap-
plication of the rule gt trans from Figure 2. The corresponding proof in the L
calculus will then have the form

...
Γ1 ` p1 > 0

...
Γ2 ` p2 > 0

Γ ` p1 + p2 > 0

where p1 > 0 implies (or is equivalent to) the formula t1 > t2 in the premise of
gt trans; likewise, p2 > 0 implies (or is equivalent to) t2 > t3. The conclusion
p1 +p2 > 0 will then be equivalent to formula t1 +t2 > t2 +t3, or simply t1 > t3,
as derived by gt trans.

For a concrete example of the translation mechanism, Figure 5 gives a proof
fragment of a C refutation of the set {2x > 2y, y > x+5}. The lines marked with
t correspond to an application of gt trans, those marked with m to an application
of iff mp, and those marked with e to an application of an equivalence rule. Be-
low the C proof, the figure shows a corresponding L proof (fragment) that closely
matches the C proof but uses polynomial rules instead. For each node in the
C proof, a polynomial inference (possibly preceded by a constant multiplication
inference) suffices to prove an equivalent or stronger conclusion. Equivalence
inferences in the C proof are replaced by inferences of the trivial identity 0 = 0
in the L proof, modus ponens inferences by polynomial subtraction inferences,
and transitivity inferences for > by polynomial addition inferences. Similar con-
versions apply to all C rules used in theory lemma proofs. Note how the L proof
ends up containing subproofs that clearly do not contribute to the value of the
inconsistent polynomial atom −5 > 0, namely those with conclusion ` 0 = 0.
The translation will prune all such subproofs and compact the rest of the proof
accordingly. The final result of applying the liberal translations to the C proof
of Figure 5 is shown in Figure 6.

6 Experimental Results

To evaluate the various translations experimentally, we looked at all the QF LRA
benchmarks from SMT-LIB. Our results do not contain comparisons with third
party proof checkers because of a lack of viable alternatives. A potential candi-
date was a former system developed by Ge and Barrett that used the HOL Light
prover as a proof checker for Cvc3 [3]. Unfortunately, that system, which was

5It is our experience that all subproofs P of theory lemmas in Cvc3 exhibit this property.

8



Bench Class # cvc cvcpf lra1 lra2 lra2a lrant cvcpf lra1 lra2 lra2a lrant lra1 lra2 lra2a lrant T%
check 1 0.1 0.2 0.3 0.2 0.2 0.2 0.3 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.04 72%
clock_synchro 18 9.0 18.1 23.2 22.7 21.6 22.3 9.1 14.1 12.4 7.2 12.0 3.8 3.5 2.2 3.2 17%
gasburner 19 2.3 6.3 9.5 8.2 8.3 7.3 8.5 13.3 7.5 6.7 6.3 3.6 2.3 2.0 1.8 46%
pursuit 8 13.9 22.7 26.6 26.2 26.3 25.9 3.9 4.9 3.5 3.5 3.2 1.3 1.0 0.9 0.8 36%
spider 35 6.9 13.8 18.4 18.1 18.3 17.7 10.0 12.0 10.5 10.4 10.2 3.4 3.0 3.2 3.1 15%
tgc 16 3.6 8.6 11.1 10.7 11.2 10.5 7.9 8.1 6.7 7.2 6.5 2.2 2.3 2.0 1.8 11%
TM 1 16.3 26.0 29.0 28.9 28.9 29.0 1.3 2.8 2.8 2.8 2.8 0.6 0.6 0.6 0.6 0%
tta_startup 24 24.0 55.5 66.0 65.7 67.9 65.5 36.3 39.2 39.1 45.7 38.8 8.2 8.4 10.0 8.2 2%
windowreal 23 16.8 34.5 35.6 35.5 36.6 35.4 18.5 19.9 19.7 21.4 19.6 5.3 5.3 5.9 5.3 3%
Total 145 92.8 185.7 219.6 216.2 219.1 213.9 95.8 114.8 102.4 104.9 99.5 28.6 26.4 26.8 24.9 11%

Solve + Pf Gen + Pf Conv (s) Proof Size (MB) Pf Check Time (s)

Table 1: Cumulative results, grouped by benchmark class. Column 2 gives
the numbers of benchmarks in each class. Columns 3 through 8 give Cvc3’s
(aggregate) runtime for each of the five configurations. Columns 9 through 13
show the proof sizes for each of the 5 proof-producing configurations. Columns
14 through 17 show LFSC proof checking times. The last column gives the
percentage of proof nodes found beneath theory lemmas in Cvc3’s native proofs.

never tested on QF LRA benchmarks and was not kept in sync with the latest
developments of Cvc3, currently breaks on most of them. While we expect that
it could be fixed, the required amount of effort is beyond the scope of this work.

We ran our experiments on a Linux machine with a 2.67GHz 4-core Xeon pro-
cessor and 8GB of RAM. From all the 317 unsatisfiable QF LRA benchmarks,
we selected the 189 benchmarks that Cvc3 could solve in 60s. We discuss only
145 of these 189 benchmarks here because for the rest Cvc3 either could not
produce a proof in 300s or produced one containing a few known proof rules that
we have not been able to implement in LSFC yet because of time constraints.

We collected runtimes for the following five main configurations of Cvc3.

cvc Default configuration, solving benchmarks but with no proof generation.

cvcpf Solving with proof generation in Cvc3’s native format.

lra1 Solving with proof generation and literal translation to LFSC.

lra2 Solving with proof generation and liberal translation to LFSC.

lra2a Like lra2 but with aggressively liberal translation to LFSC.

We also ran a sixth configuration, lrant, for the purpose of isolating the non-
theory component of proof sizes and checking times. This configuration ignores
(trusts) all theory lemmas, but otherwise is identical to both lra1 and lra2.
Comparisons with this configuration are useful because the liberal translations
work mostly by compacting the theory-specific portion of a proof. Hence, their
effectiveness is expected to be correlated with the amount of theory content of a
proof. We measure that as the percentage of nodes in a Cvc3 proof that belong
to the (sub)proof of a theory lemma. For this data set, the average theory
content is very low, about 11%.

Table 1 shows a summary of our results for various classes of benchmarks.6

As can be seen from the table, Cvc3’s solving times with native proof generation
are on average 2 times slower than without. The translation to LFSC proofs

6Detailed results, together with LFSC definitions of all proof rules, are available at http:

//clc.cs.uiowa.edu/smt10 .

9



Figure 7: Comparing proof sizes.

Figure 8: Solving times vs. proof checking times.

adds additional overhead, which is however less than 18% on average for all
translations.

The scatter plots in Figure 7 are helpful in comparing the sizes of Cvc3 native
proofs versus their literal translation LRA1, and the size of the latter proofs
versus the size of LFSC proofs produced with the liberal translations LRA2 and
LRA2a. The first plot clearly shows that, save a couple of outliers, LRA1 suffers
only a small constant overhead, which we believe is due to structural differences
between the Cvc3 and the LFSC proof languages. The second plot shows that
the liberal translation introduces constant compression factors over the literal
one. A number of benchmarks in our test set do not benefit from the LRA2
translation. We have found that such benchmarks are not heavily dependent
on theory reasoning, having a theory content of less than 5%. In contrast, for
benchmarks with a high theory content, LRA2 is effective at proof compression.
When focusing on theory lemma subproofs (by subtracting proofs sizes in lrant

10



from both lra1 and lra2), LRA2 presents an average compression factor of 5.39.
Over the set of all benchmarks with enough theory content, quantified as 10% or
more, LRA2 compresses proof sizes an average of 34%. The differences in proof
sizes between benchmarks with enough theory content and the rest are magnified
in the LRA2a translation. With the former set, LRA2a compacts the proof size
by 62% on average. However, LRA2a suffers on the other benchmarks, showing
a 11% increase in size on average. This can be attributed to cost incurred by
context switching between compact and literal translation modes. LRA2 is the
more effective of the two liberal translations, showing an average compressions
of 12%.

We compared the proof checking times of LRA1 vs. LRA2 and LRA2a, using
the LFSC checker. Perhaps unsurprisingly, their scatter plots (not shown here)
are very similar to the corresponding ones in Figure 7. Over benchmarks with
enough theory content, checking LRA2 proofs is on average 25% faster than
checking the corresponding LRA1 proofs. Looking just at theory lemmas, this
time by subtracting the checking times of lrant, reveals that proof checking
times are 2.3 times faster for LRA2 than for LRA1.

It is generally expected that proof checking should be substantially faster
than proof generation or even just solving. This is generally the case for both
LRA1 and LRA2. Compared against Cvc3’s solving times alone, LFSC proof
checking are 3.25 times faster with LRA1 proofs, and 3.5 times faster with LRA2
proofs. A more detailed comparison can be seen in Figure 8. We have noticed
that LRA1 proof checking times are actually slower than Cvc3 solving times for a
certain set of theory heavy benchmarks, as shown by the steep linear line above
the diagonal of the first scatter plot of Figure 8. It is interesting to observe that
the proof checking times for these benchmarks are significantly lower for LRA2,
with the net result that, modulo measurement errors, all proof checking times
are equal or smaller than their corresponding solving times, with a significant
portion being considerably smaller.

7 Conclusion and Further Work

We have investigated alternative proof systems for quantifier-free Linear Real
Arithmetic in the LFSC framework. Proofs in these systems were produced by
translating in LFSC proofs generated by the Cvc3 SMT solver. We discussed
three translations, differing in their degree of faithfulness to native Cvc3 proofs
and compaction of arithmetic or equational reasoning steps. These differences
were made possible by the flexibility of LFSC which allows one to modulate the
amount of declarative and computational proof checking that goes into a proof
system.

We have shown that a translation mixing declarative propositional and equa-
tional reasoning proof rules with more computational arithmetic proof rules is
effective in producing smaller proof sizes and proof checking times, while also
maintaining a high level of trust because of the simplicity of the side condi-
tions. Because LFSC is a meta-logical framework, such experimentation was
done without modification to the core of the proof checker, thus allowing an
effective methodology for comparing multiple approaches.

Our most immediate next effort will go towards collecting more substantial
experimental evidence that our approach scales well. While we have every reason

11



to believe so, our current data set consists of relatively small proofs (< 1MB on
average), which can be checked very quickly (< 0.3s on average). For this goal,
at least in the short run, we may need to consider other SMT-LIB logics beside
QF LRA.

Acknowlegments We thank the anonymous reviewers for their helpful sug-
gestions for improving the presentation of the paper.

References

[1] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.

[2] Clark Barrett and Cesare Tinelli. CVC3. In W. Damm and H. Hermanns,
editors, Proceedings of the 19th International Conference on Computer Aided
Verification (CAV’07), Berlin, Germany, volume 4590 of Lecture Notes in
Computer Science, pages 298–302. Springer, 2007.

[3] Yeting Ge and Clark Barrett. Proof translation and SMT-LIB benchmark
certification: A preliminary report. In Proceedings of SMT’08, 2008.

[4] Amit Goel, Sava Krstić, and Cesare Tinelli. Ground interpolation for com-
bined theories. In R. Schmidt, editor, Proceedings of the 22nd International
Conference on Automated Deduction (Montreal, Canada), volume 5663 of
Lecture Notes in Artificial Intelligence, pages 183–198. Springer, 2009.

[5] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Log-
ics. Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993.

[6] M. Moskal. Rocket-Fast Proof Checking for SMT Solvers. In C. Ramakrish-
nan and J. Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 2008.

[7] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-
Loveland Procedure to DPLL(T). Journal of the ACM, 53(6):937–977,
November 2006.

[8] Duckki Oe, Andrew Reynolds, and Aaron Stump. Fast and flexible proof
checking for SMT. In Proceedings of SMT’09, 2009.

[9] A. Stump. Proof Checking Technology for Satisfiability Modulo Theories.
In A. Abel and C. Urban, editors, Logical Frameworks and Meta-Languages:
Theory and Practice, 2008.

12



A C Proof Rules

The following is a representative list of rules in the C calculus. The letters c
and t, possibly with subscripts, denote rational constants and arithmetic terms,
respectively.

A.1 Arithmetic Axioms
[0 � c]

` (0 ∼ c)⇔ ⊥
const pred 1

[0 ∼ c]
` (0 ∼ c)⇔ >

const pred 2

[c non-negative]

` t1 ∼ t2 ⇔ c · t1 ∼ c · t2
mult ineqn

[c non-zero]

` t1 = t2 ⇔ c · t1 = c · t2
mult eqn

` t1 ∼ t2 ⇔ 0 ∼ t2 − t1
right minus left ` t1 > t2 ⇔ t2 < t1

flip ineq

` t1 ∼ t2 ⇔ t1 + t3 ∼ t2 + t3
plus pred ` ¬(t1 > t2)⇔ t1 ≤ t2

negated ineq

[c1 > c2]

` 0 > c1 + t⇒ 0 > c2 + t
weaker ineq

` (t1 − t2) = t1 + (−1 · t2)
minus to plus

[t′ canonical form of t]

` t = t′
canon

A.2 Natural Deduction Rules
Γ1 ` t1 ∼ t2 ⇔ t3 ∼ t4 Γ2 ` t3 ∼ t4 ⇔ t5 ∼ t6

Γ1,Γ2 ` t1 ∼ t2 ⇔ t5 ∼ t6
iff trans

Γ1 ` t1 ∼ t2 Γ2 ` t1 ∼ t2 ⇔ t3 ∼ t4
Γ1,Γ2 ` t3 ∼ t4

iff mp

Γ1 ` t1 ∼ t2 ⇔ t3 ∼ t4
Γ1 ` t3 ∼ t4 ⇔ t1 ∼ t2

iff symm

Γ1 ` t1 ∼ t2 ⇒ t3 ∼ t4 Γ2 ` t3 ∼ t4 ⇒ t5 ∼ t6
Γ1,Γ2 ` t1 ∼ t2 ⇒ t5 ∼ t6

impl trans

Γ1 ` t1 ∼ t2 Γ2 ` t1 ∼ t2 ⇒ t3 ∼ t4
Γ1,Γ2 ` t3 ∼ t4

impl mp

A.3 Equality Rules

` t1 = t1
refl

Γ1 ` t1 = t2 Γ2 ` t3 = t4
Γ1,Γ2 ` t1 ∼ t3 ⇔ t2 ∼ t4

congr 1
Γ1 ` t1 = t2 Γ2 ` t2 = t3

Γ1,Γ2 ` t1 = t3
eq trans

Γ1 ` t1 = t2 Γ2 ` t3 = t4
Γ1,Γ2 ` t1 ./ t3 = t2 ./ t4

congr 2
Γ1 ` t1 = t2

Γ1,Γ2 ` t2 = t1
eq symm

13



A.4 Arithmetic Rules
Γ1 ` t1 > t2 Γ2 ` t2 > t3

Γ1,Γ2 ` t1 > t3
gt trans

Γ1 ` t1 > t2 Γ2 ` t2 > t1
Γ1,Γ2 ` ⊥

gt acyc

Γ1 ` t1 ≥ t2 Γ2 ` t1 ≤ t2
Γ1,Γ2 ` t1 = t2

gt antisym

B L Proof Rules

In the proof rules below, the expression e↓ denotes the result of normalizing
the polynomial expression e to a polynomial. The normalization is done by the
rules side condition, which is however left implicit here to keep the notation
uncluttered.

B.1 Arithmetic Axioms

` 0 = 0
lra=axiom

[c > 0]

` c > 0
lra>axiom

[c ≥ 0]

` c ≥ 0
lra≥axiom

B.2 Equality Deduction Rule

Γ1 ` p ≥ 0 Γ2 ` p′ ≥ 0 [p+ p′ = 0]

Γ1,Γ2 ` p = 0
lra≥≥to=

B.3 Contradiction Rules
Γ ` p = 0 [p 6= 0]

Γ ` ⊥ lra contra=

Γ ` p > 0 [p 6> 0]

Γ ` ⊥ lra contra>

Γ ` p ≥ 0 [p < 0]

Γ ` ⊥
lra contra≥

Γ ` p 6= 0 [p = 0]

Γ ` ⊥
lra contra6=

14



B.4 Multiplication Rules

Γ ` p = 0

Γ ` (c · p)↓ = 0
lra multc=

Γ ` p > 0 [c > 0]

Γ ` (c · p)↓ > 0
lra multc>

Γ ` p ≥ 0 [c ≥ 0]

Γ ` (c · p)↓ ≥ 0
lra multc≥

Γ ` p 6= 0 [c 6= 0]

Γ ` (c · p)↓ 6= 0
lra multc 6=

B.5 Addition Rules
Γ1 ` p1 = 0 Γ2 ` p2 = 0

Γ1,Γ2 ` (p1 + p2)↓ = 0
lra add==

Γ1 ` p1 > 0 Γ2 ` p2 > 0

Γ1,Γ2 ` (p1 + p2)↓ > 0
lra add>>

Γ1 ` p1 ≥ 0 Γ2 ` p2 ≥ 0

Γ1,Γ2 ` (p1 + p2)↓ ≥ 0
lra add≥≥

Γ1 ` p1 = 0 Γ2 ` p2 > 0

Γ1,Γ2 ` (p1 + p2)↓ > 0
lra add=>

Γ1 ` p1 = 0 Γ2 ` p2 ≥ 0

Γ1,Γ2 ` (p1 + p2)↓ ≥ 0
lra add=≥

Γ1 ` p1 > 0 Γ2 ` p2 ≥ 0

Γ1,Γ2 ` (p1 + p2)↓ > 0
lra add>≥

Γ1 ` p1 = 0 Γ2 ` p2 6= 0

Γ1,Γ2 ` (p1 + p2)↓ 6= 0
lra add=6=

B.6 Subtraction Rules
Γ1 ` p1 = 0 Γ2 ` p2 = 0

Γ1,Γ2 ` (p1 − p2)↓ = 0
lra sub==

Γ1 ` p1 > 0 Γ2 ` p2 = 0

Γ1,Γ2 ` (p1 − p2)↓ > 0
lra sub>=

Γ1 ` p1 ≥ 0 Γ2 ` p2 = 0

Γ1,Γ2 ` (p1 − p2)↓ ≥ 0
lra sub≥=

Γ1 ` p1 6= 0 Γ2 ` p2 = 0

Γ1,Γ2 ` (p1 − p2)↓ 6= 0
lra sub6==

15



B.7 Term Normalization Rules

In the rules below ct and cp denote the same rational constant, in one case
considered of term type and in the other as of polynomial type (similarly for
the variables vt and vp).

` ct = cp
poly norm const

` vt = vp
poly norm var

Γ1 ` t1 = p1 Γ2 ` t2 = p2
Γ1,Γ2 ` t1 + t2 = (p1 + p2)↓

poly norm+

Γ1 ` t1 = p1 Γ2 ` t2 = p2
Γ1,Γ2 ` t1 − t2 = (p1 − p2)↓

poly norm−

Γ ` t = p

Γ ` ct · t = (cp · p)↓
poly normc·

Γ ` t = p

Γ ` t · ct = (pp · c)↓
poly norm·c

B.8 Equation Normalization Rules

Γ ` t1 − t2 = p

Γ ` t1 = t2 ⇔ p = 0
poly norm=

Γ ` t1 − t2 = p

Γ ` t1 > t2 ⇔ p > 0
poly norm>

Γ ` t1 − t2 = p

Γ ` t1 ≥ t2 ⇔ p ≥ 0
poly norm≥

Γ ` t2 − t1 = p

Γ ` t1 < t2 ⇔ p > 0
poly norm<

Γ ` t2 − t1 = p

Γ ` t1 ≤ t2 ⇔ p ≥ 0
poly norm≤

Γ ` t2 − t1 = p

Γ ` t1 6= t2 ⇔ p 6= 0
poly norm 6=

Γ1 ` t1 ∼ t2 Γ2 ` t1 ∼ t2 ⇔ p ∼ 0

Γ1,Γ2 ` p ∼ 0
poly form

16


