
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

CVC4SY: Smart and Fast Term Enumeration
for Syntax-Guided Synthesis

Andrew Reynolds1, Haniel Barbosa1, Andres Nötzli2,
Clark Barrett2, and Cesare Tinelli1

1 The University of Iowa, Iowa City, USA
2 Stanford University, Stanford, USA

Abstract. We present CVC4SY, a syntax-guided synthesis (SyGuS) solver based
on three bounded term enumeration strategies. The first encodes term enumer-
ation as an extension of the quantifier-free theory of algebraic datatypes. The
second is based on a highly optimized brute-force algorithm. The third combines
elements of the others. Our implementation of the strategies within the satisfiabil-
ity modulo theories (SMT) solver CVC4 and a heuristic to choose between them
leads to significant improvements over state-of-the-art SyGuS solvers.

1 Introduction

Syntax-guided synthesis (SyGuS) [3] is a recent paradigm for program synthesis, suc-
cessfully used for applications in formal verification and programming languages. Most
SyGuS solvers perform counterexample-guided inductive synthesis (CEGIS) [16]: a re-
finement loop in which a learner proposes solutions, and a verifier, generally a satisfia-
bility modulo theories (SMT) solver [8, 9], checks them and provides counterexamples
for failures. Generally, the learner enumerates some set of terms, while pruning spuri-
ous ones [17]. The simplicity and efficacy of enumerative SyGuS have made it the de
facto approach for SyGuS, although alternatives exist for restricted fragments [4, 14].

In previous work [14], we have shown how the SMT solver CVC4 [5] can itself act as
an efficient synthesizer. This tool paper focuses on recent advances in the enumerative
subsolver of CVC4, culminating in the current SyGuS solver CVC4SY. Figure 1 shows
its main components. The term enumerator is parameterized by an enumeration strategy
chosen before solving: CVC4SY S, whose constraint-based (smart) enumeration allows
for numerous optimizations (Section 2); CVC4SY F, based on a new approach for (fast)
enumerative synthesis (Section 3), which has significant advantages with respect to the
enumerative solver CVC4SY S and other state-of-the-art approaches; and CVC4SY H,
based on a hybrid approach combining smart and fast enumeration (Section 4). All
strategies are fully integrated in CVC4, meaning they support inputs in many background
theories, including arithmetic, bit-vectors, strings, and floating point. We evaluate these
approaches on a large set of benchmarks (Section 5).

The Problem A syntax-guided synthesis problem for a function f in a background
theory T consists of a set of semantic restrictions, or specification, for f given by a
(second-order) T -formula of the form Df. ϕrf s, and a set of syntactic restrictions on

Solution
Verifier

Smart Strategy
(S)

Terms

Term
Enumerator

Concretizer

Refinement Constraints

Refinement Constraints

Terms

Fast Strategy
(F)

Hybrid Strategy
(H)

Terms

Fig. 1. Architecture of CVC4SY.

the solutions for f , typically expressed as a context-free grammar. An enumerative
approach to this problem combines a term enumerator and a solution verifier for solving
synthesis conjectures. The role of the term enumerator is to output a stream of terms
t1, t2, . . . over some tuple x̄ of variables representing the inputs of f , where each tirx̄s
is a candidate solution. The role of the solution verifier is to check for each ti whether it
is a solution for f by determining if the negated conjecture ϕrλx̄.tis is unsatisfiable.

Bounded term generation considers terms based on an ordering such as term size
(the number of non-nullary symbols in a term). For each k “ 0, 1, 2, . . ., the term enu-
merator outputs a finite set Sk of terms, each of size at most k. Bounded term generation
in CVC4SY is complete in the sense that, for any k, if f has a solution of size at most k,
then at least one of the terms in Sk is a solution for f . The effectiveness of an approach
for (complete) bounded term generation can be evaluated based on two criteria: piq the
number of terms it generates and piiq the rate at which it generates them.

We follow two approaches for enumerative SyGuS in CVC4SY, each optimized for
one of the criteria above: a smart approach and a fast one. The first aims to generate
reasonably quickly the smallest set of terms while maintaining completeness, while the
second aims to generate terms as quickly as possible.

Technical Preliminaries As we showed in previous work [14], syntactic restrictions
can be conveniently represented as a set of (algebraic) datatypes, for which some SMT
solvers have dedicated decision procedures [7, 13]. For instance, given a function f :
px : Intq ˆ py : Intq Ñ Int and the context-free grammar R below specifying what
integer (I) and Boolean (B) terms can appear in candidate solutions for f :

I ::“ 0 | 1 | x | y | I ` I | I ´ I | itepB, I, Iq (1)
B ::“ B ě B | I « I | B | B ^B (2)

our SyGuS solver generates the following mutually recursive datatypes:

I “ 0 | 1 | x | y | pluspI, Iq | minuspI, Iq | itepB, I, Iq (3)
B “ geqpI, Iq | eqpI, Iq | notpBq | andpB,Bq (4)

2

Each datatype constructor corresponds to a production rule of R, e.g. plus corresponds
to the rule I ::“ I`I . A datatype term such as pluspx, yq represents the arithmetic term
x` y. We will use these datatypes as a running example.

For a datatype term t, we write isCptq to denote the discriminator predicate that
is satisfied exactly when t is interpreted as a datatype whose top constructor is C. We
write selτnptq to denote a shared selector [15] applied to t, interpreted as the nth child
of t with type τ if one exists, and interpreted as an arbitrary element of τ otherwise.
A term consisting of zero or more consecutive nested applications of shared selectors
applied to a term t is a shared selector chain (for t).

2 Smart Enumerative SyGuS

Our smart enumerative SyGuS approach CVC4SY S, is based on finding solutions for an
evolving set of constraints in an extension of the quantifier-free fragment of algebraic
datatypes. These constraints are constructed to rule out many redundant solutions while
not overconstraining the problem, potentially missing actual solutions.

In detail, candidate solutions for the function f : τ1 Ñ τ2 to be synthesized are con-
structed by maintaining a set of constraints F , initially empty, for a first-order variable
d ranging over the datatype representing τ2. For example, consider again the function
f with the syntactic restrictions expressed by the datatypes in Equations 3 and 4. If the
term generator finds a model for F , it provides to the solution verifier the integer term
which corresponds to the value of d in the model; for example, it provides x` 1 when
d is interpreted as pluspx, 1q. In turn, if the solution verifier finds that x ` 1 is not a
solution, it provides the blocking constraint ispluspdq_ isxpsel

I
1 pdqq_ is1psel

I
2 pdqq,

i.e., the datatype constraint that rules out the current value for d, which is then added to
F . This is a syntactic constraint on future candidate solutions from the term generator.
Its atoms are discriminators applied to shared selector chains.

CVC4SY S uses a number of optimization techniques in addition to the basic loop
above, which we describe in the remainder of this section. These techniques produce
blocking constraints via the lemmas-on-demand paradigm [6] that eagerly rule out spu-
rious candidates, prior to the solution verification step. Additionally, whenever possible,
it strengthens blocking constraints via novel generalization techniques, with the effect
of ruling out larger classes of candidates.

Blocking via Theory Rewriting with Structural Generalization As we describe in pre-
vious work [14], the enumerative solver of CVC4 uses its rewriter as an oracle for dis-
covering when candidate solutions are redundant. The motivation is that for any two
equivalent terms t and s, only one of them needs to be checked with the solution veri-
fier, since either both t and s are solutions to the synthesis conjecture or neither is. Given
a term t, we write tÓ to denote its rewritten form. Note that it is possible for equivalent
terms not to have the same rewritten form. This is a consequence of the trade-offs in the
implementation of CVC4’s rewriter, which must balance efficiency and completeness.

As an example, suppose that the term enumerator previously generated x`y and that
d’s current value is the datatype term representing y ` x, where, however, px` yqÓ “
py ` xqÓ. We first generate a blocking constraint templateRrzs of the form ispluspzq_

3

 isypsel
I
1 pzqq_ isxpsel

I
2 pzqq, where z is a fresh variable. This template is subsequently

instantiated with z ÞÑ u for any shared selector chain u of type I that currently (or
later) appears in F , starting with d itself. This has the effect of ruling out all candidate
solutions that have y`x as a subterm, which is justified by the fact that each such term
is equivalent to one in which all occurrences of y ` x are replaced by x` y.

We employ a refinement of this technique, which we call theory rewriting with
structural generalization, which searches for and then blocks only the minimal skeleton
of the term under test that is sufficient for determining its rewritten form. For example,
consider the if-then-else term t “ itepx « 0^ y ě 0, 0, xq, This term is equivalent to
x, regardless of the value of predicate y ě 0. This can be confirmed by the rewriter by
computing that itepx « 0^ w, 0, xqÓ “ x where w is a fresh Boolean variable. Then,
instead of generating a constraint that blocks only (the datatype value corresponding
to) t, we generate a stronger constraint that does not depend on the subterm y ě 0. In
other words, this blocking constraint rules out all candidate solutions that contain the
subterm itepx « 0^w, 0, xq, for any termw. We compute these generalizations using a
recursive algorithm that iteratively replaces each subterm of the current candidate with
a fresh variable, and checks whether its rewritten form remains the same.

Blocking via CEGIS with Structural Generalization Synthesis solvers based on CEGIS
maintain a list of refinement points that witness the infeasibility of previous candidate
solutions. That is, given a synthesis conjecture Df.@x̄. ϕrf, x̄s, the solver maintains a
growing list p̄1, . . . , p̄n of values for x̄ that witness the infeasibility of previous can-
didates u1, . . . , un for f . Then, when a new candidate u is generated, we first check
whether ϕru, p̄is is false for some i ď n. When a candidate u fails to satisfy ϕru, p̄is,
CVC4SY S further applies a form of generalization analogous to the structural general-
ization described above. We call this CEGIS with structural generalization, where the
goal is to find the minimal skeleton of u that also fails to satisfy some refinement point.

For example, suppose f is the function to synthesize, ϕ includes the constraint
fpx, yq ď x ´ 1, and p1 “ p3, 3q is a refinement point. Then, the candidate term
urx, ys “ itepx ě 0, x, y`1q will be discarded, because itep3 ě 0, 3, 4q ę 2. Notice,
however, that any candidate u1 “ itepx ě 0, x, wq is falsified by p1, regardless of what
w is, since u1r3, 3s ď 2 is equivalent to 3 ď 2. This indicates that we can block all ite
candidate terms with condition x ě 0 and true branch x. We can express this constraint
in CVC4SY S by dropping the disjuncts that relate to the false branch of the ite term.
This form of blocking is particularly useful when synthesizing multiple functions pf1,
. . . , fnq, since it is often the case that a candidate for a single fi is already sufficient to
falsify the specification, regardless of what the candidates for the other functions are.

Evaluation Unfolding This technique uses evaluation functions to encode the rela-
tionship between the datatype terms assigned to d and their analogs in the theory T .
For example, the evaluation function for the datatype I defined in (3) is a function
EI : Iˆ Intˆ Int ÞÑ Int defined axiomatically so that EIpd,m, nq denotes the result of
evaluating d by interpreting any occurrences of x and y in d respectively asm and n and
interpreting the other constructors as the corresponding arithmetic/Boolean operators,
e.g. EIpminuspx, yq, 5, 3q is interpreted as 2. When a refinement point c̄ is generated, we
add a constraint requiring that the evaluation of d at c̄ must satisfy the specification. For

4

example, for conjecture Df.@x. fpx ` 1, xq ď 0, and refinement point x ÞÑ 1, we add
the constraint EIpd, 2, 1q ď 0. Then, when a literal isCptq is asserted for a term t of type
I, we can add a constraint corresponding to the one-step unfolding of the evaluation of
t. Specifically, when isitepdq is asserted, we generate the constraint

isitepdq ñ EIpd, 2, 1q « itepEBpsel
B
1 pdq, 2, 1q,EIpsel

I
1 pdq, 2, 1q,EIpsel

I
2 pdq, 2, 1qq

indicating that the evaluation of d on point p2, 1q indeed behaves like an ite term when d
has top symbol ite. Our implementation adds these constraints for all terms t whose top
symbols correspond to ite or Boolean connectives. For terms t whose top symbol is any
of the other operators, we add constraints corresponding to their total evaluation of t
when the value of t is fully determined, for example, t « pluspx, yq ñ EIpt, 2, 1q « 3.
Notice this constraint with t “ d along with the refinement constraint EIpd, 2, 1q ď 0
suffices to show that d cannot be pluspx, yq.

3 Fast Enumerative SyGuS

The techniques in the previous section prune the search space so that often, only a small
subset of the entire possible set of terms is considered for a given term size bound.
The main bottleneck, however, is managing the large number of blocking constraints
generated. Moreover, the benefits of this approach are limited when the grammar or
specification does not admit opportunities for generalization.

For this reason, we have also developed CVC4SY F, which, in the spirit of other
SyGuS solvers (notably ESOLVER [17]), relies on a principled brute-force approach
for term generation. In contrast to other solvers, however, which are built as layers on
top of the core SMT reasoner, CVC4SY F is fully integrated as a subsolver of CVC4,
so communication with other components has almost no overhead. This technique, fast
enumerative synthesis, does not use constraint solving to generate new terms. As a
result, the majority of optimizations from Section 2 are incompatible with it.

Algorithm To generate terms up to a given size k, we maintain a set Skτ of terms of type
τ and size k for each datatype τ corresponding to a non-terminal symbol of our input
grammar R. First, we compute for each such τ the set Cτ of its constructor classes,
an equivalence relation over the constructors of τ that groups them by their type. For
example, the constructor classes for I are tx, y, 0, 1u, tplus,minusu and titeu. Then, we
use the following procedure for generating all terms of size k for type τ :

FASTENUM(τ , k):
For all:

– Constructor classes C P Cτ , whose elements have type τ1ˆ . . .ˆ τn Ñ τ ,
– Tuple of naturals pk1, . . . knq such that k1`. . .`kn`itepn ą 0, 1, 0q “ k,

(a) Run FASTENUM(τi, ki) for each i “ 1, . . . , n,
(b) Add Cpt1, . . . , tnq to Skτ for all tuples pt1, . . . , tnq with ti P Skiτi and all

constructors C P C.

The recursive procedure FASTENUM(τ , k) populates the set Skτ of all terms of type τ
with size k. These sets are cached globally. We incorporate an optimization that only

5

adds terms Cpt1, . . . , tnq to Skτ whose corresponding terms in the theory T are unique
up to rewriting. This mimics the effect of blocking via theory rewriting as described
in Section 2. For example, pluspy, xq is not added to S1

I if that set already contains
pluspx, yq, noting that px` yqÓ “ py ` xqÓ. By construction of Skτ for k ě 1, this has
the cascading effect of excluding all terms having y ` x as a subterm.

We observe that theory rewriting with structural generalization cannot be easily
incorporated into this scheme since it requires the use of a constraint solver, something
that the above algorithm seeks to avoid.

4 Hybrid Approach: Variable-Agnostic Enumerative SyGuS

We follow a third approach, in solver CVC4SY H, that combines elements of the pre-
vious approaches. The idea is to use the (smart) approach from Section 2 to generate
terms, but then generate multiple candidate solutions from each term using a fast sub-
procedure we call a concretizer. We implement an instance of this scheme, which we
call variable-agnostic term generation, that produces only terms that are unique mod-
ulo alpha-equivalence. In our running example, when a term t such as x ` 1 is pro-
duced, the concretizer produces all terms generated by the grammar R that are alpha-
equivalent to t, namely, tx ` 1, y ` 1u in this case. The advantage of this approach
is that CVC4SY H can block any term whose variables are not canonically ordered;
that is, assuming for instance that x ă y, it may block terms like 1 ´ y and y ` y,
noting they are alpha-equivalent to 1 ´ x and x ` x, respectively. To implement this
blocking scheme, we introduce unary Boolean predicates prex and postx for each vari-
able x in our grammar, where prex (resp., postx) holds for t if and only if variable
x occurs in a depth-first left-to-right traversal of our candidate term before (resp., af-
ter) traversing to the position indicated by the selector chain t. We encode the seman-
tics of these predicates based on the arguments of constructors in our signature, e.g.
ispluspzq ñ pprexpzq « prexpsel

I
1 pzqq ^ postxpsel

I
2 pzqq « postxpzqq. We then assert

that prex and prey are false for our top-level variable d, and require isypzq ñ prexpzq
for all z, stating that x must come before y in the traversal of any generated term.

This technique is useful for grammars with many variables, such as grammars in
invariant synthesis problems, where the number of terms of small size is prohibitively
large. Blocking based on theory rewriting (with generalization) from Section 2 is com-
patible with this technique and is used in CVC4SY H. However, the other optimizations
are disabled, since they prune solutions in a way that is not agnostic to variables.

5 Evaluation

We evaluated the above techniques in CVC4SY on four benchmark sets: invariant synthe-
sis benchmarks from the verification of Lustre [11] models; a set from work on synthe-
sizing invertibility conditions for bit-vector operators [12] (IC-BV); a set of bit-vector
invariant synthesis problems [2] (CegisT); and the SyGuS-COMP 2018 [1] bench-
marks from five tracks: assorted problems (General), conditional linear arithmetic prob-
lems (CLIA), invariant synthesis problems (INV), and programming-by-examples prob-
lems [10] with a set over bit-vectors (PBE-BV) and another over strings (PBE-Str). We

6

Set # a+si a s s-cg s-eu s-rg s-r f f-r h h-rg h-r EUS

General 413 293 237 228 229 232 230 220 237 226 221 225 213 290
Gen-CrCi 214 159 159 159 159 143 159 159 155 132 130 137 125 152
CLIA 88 86 20 20 19 19 19 18 20 16 16 16 16 85
INV 127 109 109 109 109 109 109 109 110 109 109 109 109 68
PBE-BV 753 751 751 721 721 721 721 628 751 717 721 721 628 745
PBE-Str 109 105 105 104 104 104 87 75 105 103 102 87 75 74

Subtotal 1704 1503 1381 1341 1341 1328 1325 1209 1378 1303 1299 1295 1166 1414

IC-BV 160 135 135 135 132 130 130 133 138 132 128 126 127
CegisT 79 56 43 43 43 43 42 41 42 42 42 42 41
Lustre 485 255 255 255 255 218 211 221 231 213 248 244 234

Total 2428 1949 1814 1774 1771 1719 1708 1604 1789 1690 1717 1707 1568

Table 1. Summary of number of problems solved per benchmark set. Best results are in bold.

also considered separately the CrCi subset from General, which corresponds to cryp-
tographic circuit synthesis. We ran our experiments on a cluster equipped with Intel
E5-2637 v4 CPUs running Ubuntu 16.04, providing one core, 1800 seconds, and 8GB
RAM for each job. Results are summarized in Table 1 and Figure 2. We denote the
strategies from Sections 2, 3, and 4 by s, f and h, respectively (smart, fast, and hy-
brid); disabling the optimizations from Section 2 is marked by “-” and the suffixes
r (rewriting), rg (rewriting with structural generalization), cg (CEGIS with structural
generalization), and eu (evaluation unfolding). We also evaluated two meta-strategies
of CVC4SY: a and a+si. The auto strategy a picks a strategy based on the properties
of the problem: f for PBE problems and for problems without the Boolean type or the
ite operator in their grammar and s otherwise. Strategy a+si uses the single-invocation
solver [14] on problems that are amenable to quantifier elimination and a otherwise. We
use the state-of-the-art SyGuS solver EUSOLVER [4] (EUS) as a baseline, but only for
SyGuS-COMP benchmarks due to limitations in its parser.

Overall, strategy s excels on more challenging benchmark sets such as Lustre and
Gen-Crci, while strategy f excels on the majority of the others. The gains for f are
especially significant on PBE problems, where it outperforms both s and EUS by sev-
eral orders of magnitude. Such gains are significant given that CVC4 won this track
at SyGuS-COMP 2018 by employing s alone, and a variant of EUS won it in 2017.
This result can be explained as a consequence of two factors. First, the string and bit-
vector grammars contain many operators with the same type, making the constructor
class optimization of the f algorithm very effective. Second, although not described
in this paper, all solvers in our evaluation use divide-and-conquer algorithms for PBE
problems [4], which are not compatible with the optimizations cg and eu. The most
important optimization for all CVC4SY strategies and with all benchmark sets is r. The
optimization eu is especially effective when grammars contain ite and Boolean connec-
tives, such as those in the Lustre set and in some subsets of General, on which we can

7

0 200 400 600 800 1000 1200 1400 1600
10−1

100

101

102

103 a+si
EUS
a
f
s
s-cg
s-eu
s-rg
f-r
h
h-rg
s-r
h-r

10 1 100 101 102 103

s
10 1

100

101

102

103

h

10 1 100 101 102 103

f
10 1

100

101

102

103

s

10 1 100 101 102 103

s
10 1

100

101

102

103

f

10 1 100 101 102 103

EUS
10 1

100

101

102

103

f

Fig. 2. Cactus plot on commonly supported benchmark sets. The first scatter plot is for the Lustre
set, the second for the Gen-Crci set, and the latter two for the 862 benchmarks from the PBE sets.

see the biggest gains of s with respect to s-eu; cg is more helpful for IC-BV, with a few
harder benchmarks only solved due to this technique.

The first scatter plot in Figure 2 shows the advantage of h over s on Lustre, a bench-
mark set containing invariant synthesis problems with dozens of variables. We remark
this configuration excels at quickly finding small solutions for problems with many vari-
ables, although solves fewer problems overall. The second scatter plot shows that while
s takes significantly longer on easy problems, it outperforms f in the long run. The last
two plots show that f significantly outperforms the state of the art on PBE benchmarks.

For all benchmark sets, the auto strategy a chooses the best enumerative strategy
of CVC4SY with only a few exceptions, and hence it is the default configuration of
CVC4SY. Due to specialized synthesis techniques [14, 4], both a+si and EUS outper-
form the purely enumerative strategies of CVC4. This is reflected in the cactus plot on
the commonly supported benchmark sets, where a and f solve more benchmarks than
EUS for lower times but then EUS solves more benchmarks in the end. For a+si, the
cactus plot shows that it outperforms EUS significantly. Nevertheless, we remark that
a+si is able to solve only 393 (16%) of the overall benchmarks using only single invo-
cation techniques. Hence, we conclude that both smart and fast enumerative strategies
are critical subcomponents in our approach to syntax-guided synthesis.

Acknowledgments This work was partially supported by the National Science Foun-
dation under award 1656926 and by the Defense Advanced Research Projects Agency
under award FA8650-18-2-7854.

8

References

[1] SyGuS-COMP 2018. http://sygus.seas.upenn.edu/SyGuS-COMP2018.
html, 2018.

[2] A. Abate, C. David, P. Kesseli, D. Kroening, and E. Polgreen. Counterexample guided
inductive synthesis modulo theories. In H. Chockler and G. Weissenbacher, editors, Com-
puter Aided Verification (CAV), Part I, volume 10981 of Lecture Notes in Computer Sci-
ence, pages 270–288. Springer, 2018.

[3] R. Alur, R. Bodı́k, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit, P. Mad-
husudan, M. M. K. Martin, M. Raghothaman, S. Saha, S. A. Seshia, R. Singh, A. Solar-
Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In M. Irlbeck, D. A. Peled,
and A. Pretschner, editors, Dependable Software Systems Engineering, volume 40 of NATO
Science for Peace and Security Series, D: Information and Communication Security, pages
1–25. IOS Press, 2015.

[4] R. Alur, A. Radhakrishna, and A. Udupa. Scaling enumerative program synthesis via di-
vide and conquer. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 319–336, 2017.

[5] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds,
and C. Tinelli. CVC4. In Proceedings of the 23rd International Conference on Computer
Aided Verification, CAV’11, pages 171–177. Springer-Verlag, 2011.

[6] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on demand in sat modulo
theories. In M. Hermann and A. Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), volume 4246 of Lecture Notes in Computer Science,
pages 512–526. Springer Berlin Heidelberg, 2006.

[7] C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for satisfiability in
the theory of recursive data types. Electr. Notes Theor. Comput. Sci., 174(8):23–37, 2007.

[8] C. Barrett and C. Tinelli. Satisfiability modulo theories. In E. M. Clarke, T. A. Henzinger,
H. Veith, and R. Bloem, editors, Handbook of Model Checking., pages 305–343. Springer,
2018.

[9] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories.
In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications, pages 825–885. IOS
Press, 2009.

[10] S. Gulwani. Programming by examples: Applications, algorithms, and ambiguity resolu-
tion. In International Joint Conference on Automated Reasoning (IJCAR), volume 9706 of
Lecture Notes in Computer Science, pages 9–14. Springer, 2016.

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow program-
ming language lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

[12] A. Niemetz, M. Preiner, A. Reynolds, C. Barrett, and C. Tinelli. Solving quantified bit-
vectors using invertibility conditions. In H. Chockler and G. Weissenbacher, editors, Com-
puter Aided Verification (CAV), Part II, volume 10982 of Lecture Notes in Computer Sci-
ence, pages 236–255. Springer, 2018.

[13] A. Reynolds and J. C. Blanchette. A decision procedure for (co) datatypes in SMT solvers.
In International Conference on Automated Deduction, pages 197–213. Springer Interna-
tional Publishing, 2015.

[14] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. W. Barrett. Counterexample-guided
quantifier instantiation for synthesis in SMT. In Computer Aided Verification - 27th Inter-
national Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part II, pages 198–216, 2015.

9

http://sygus.seas.upenn.edu/SyGuS-COMP2018.html
http://sygus.seas.upenn.edu/SyGuS-COMP2018.html

[15] A. Reynolds, A. Viswanathan, H. Barbosa, C. Tinelli, and C. Barrett. Datatypes with shared
selectors. In Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, pages 591–608, 2018.

[16] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat. Combinatorial
sketching for finite programs. pages 404–415. ACM, 2006.

[17] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. K. Martin, and R. Alur.
TRANSIT: specifying protocols with concolic snippets. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June
16-19, 2013, pages 287–296, 2013.

10

	cvc4sy: Smart and Fast Term Enumeration for Syntax-Guided Synthesis

