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Abstract

We present a general approach for verifying safety properties of Lus-
tre programs automatically. Key aspects of the approach are the choice
of an expressive first-order logic in which Lustre’s semantics is modeled
very naturally, the tailoring to this logic of SAT-based k-induction and
abstraction techniques, and the use of SMT solvers to reason efficiently in
this logic. We discuss initial experimental results showing that our imple-
mentation of the approach is highly competitive with existing verification
solutions for Lustre.

1 Introduction

Lustre is a synchronous dataflow language commonly used in a number of man-
ufacturing industries to model or implement reactive embedded systems [16].
Because of its declarative nature and simplicity, it is well suited to model check-
ing and verification, in particular with regards to safety properties [17]. Existing
formal methods tools for Lustre, however, do not seem to have kept pace with
the latest developments in software model checking and verification, and are
somewhat lacking in scope and scale. Currently, those can be obtained only by
a translation into the specification languages of other tools—such as NuSMV,
SAL, Prover, PVS, ACL2, and so on.

This work aims at bridging the current gap. Its main ingredient is the
choice of an expressive logic with efficient automated reasoners for modeling
Lustre programs and proving safety properties for them. Instead of temporal



reasoning based on propositional logic we rely on temporal reasoning based on
a first-order logic with built-in theories for equality over uninterpreted symbols
and linear mixed real and integer arithmetic.

An approximation of Lustre’s denotational semantics can be modeled simply
and naturally in this logic, with two distinctive advantages: i) infinite-state as
well as finite-state Lustre programs can be encoded uniformly and compactly in
the logic; ii) reasoning about these programs can be done directly in terms of
Lustre’s own dataflow model. This contrast with other approaches which are
either mostly limited to finite-state programs or need a translation into some
other specification language.

The idea of adopting logics of this sort in software model checking is not
new [10, 1, 14, e.g.], and has been applied to the verification of relatively simple
Lustre programs already in [13]. Recent advances in Satisfiability Modulo Theo-
ries (SMT) [4], however, make it now possible to apply this idea to a much wider
range of real-world Lustre applications. Our use of SMT technology builds on
previous research in SAT-based temporal induction (aka, k-induction) [21, 5],
extended and adapted to the SMT case as in [10, 12], as well as on research in
predicate abstraction and refinement.

Our main contribution is the combination of a selection of these techniques
and their tailoring to Lustre. In particular, we extend SMT-based k-induction
to incorporate abstraction and refinement, something that to our knowledge
has not been reported before. The main outcome of our work is a new verifica-
tion system that is highly competitive with current automated solutions for the
verification of safety properties of Lustre programs.

In the following, we first sketch our approach, focusing on major aspects such
as path compression and abstraction refinement. We then discuss an initial ex-
perimental evaluation of our implementation against current alternatives. This
evaluation suggests that our new system considerably advances the state of the
art, as it greatly outperforms current Lustre-specific verifiers. The study also
shows that a direct approach like ours compares very favorably to translating
Lustre programs into the language of a premier SMT-based model checker, SAL
3.0 [9], and using that checker.
Related Work. Our work is closest to Franzén’s [13] which extends SAT-
based k-induction to produce a safety property verifier for Lustre programs with
unbounded integers. There, the extension is achieved by adding to the MiniSat
SAT solver some simple ILP procedures for handling integer constraints. The
focus of [13] was building the extended SAT solver. In contrast, we rely on much
more powerful off-the-shelf embeddable SMT solvers that can also handle linear
rational arithmetic constraints, and work more on improving the k-induction
procedure.

Our path compression method of invariant strengthening and termination
checking can be seen as a special case of the one described by de Moura et
al. [10]. That work, however, also describes invariant strengthening techniques
based on quantifier elimination, which we do not use.

A dependency-based abstraction method analogous to ours is described by



Chan et al. [6] for the dataflow language RSML. There, however, abstractions
appear to be generated statically as a preprocessing step, and not refined dy-
namically. Our abstraction method is more similar to the one developed by
Babic and Hu [2], which uses a SAT solver as its reasoning engine. The main
idea of our method however—treating local variables as input ones and refining
based on spurious counterexamples—goes back to Kurhshan [19] and appears in
various forms in several works on hardware verification. Our use of unsatisfiable
cores in our refinement heuristic recalls a similar approach by Chauhan et al. [7]
for SAT-based model checking.

2 Preliminaries

Lustre is a declarative programming language for manipulating data flows, or
streams, infinite sequences (v0, v1, . . .) of values of conventional data types, such
as (bounded) integers, floating point numbers, and Booleans.

In essence, a Lustre function, called node in Lustre, is the declarative spec-
ification of a stream transformer, mapping a finite set of streams to another
finite set of streams. Operationally, a node has a cyclic behavior: at each cycle
i, it takes as input the value of each input stream at position or instant, i and
returns the value of each output stream at instant i. Lustre nodes have a limited
form of memory in that, when computing the output values they can also look
at input and output values from previous instants, up to a finite limit statically
determined by the program itself.

Figure 1 contains a simple example of a two-node Lustre program. The pro-
gram models a thermostat whose target temperature, initially set to 70 degrees,
can be changed by 1 degree at a time by pressing an “up” or a “down” button.

Typically, the body of a Lustre node consists in a set of definitions, equations
of the form x = t (as seen in the nodes in Figure 1) where x is a variable denoting
an output or a locally defined stream and t is an expression, in a certain stream
algebra, whose variables name input, output, or local streams. More generally,
x can be a tuple of stream variables and t an expression evaluating to a tuple of
the same type (as in the last equation of the node therm control in Figure 1).

Most of Lustre’s operators are pointwise liftings to streams of the usual
operators over stream values. For example, let x = (m0,m1, . . .) and y =
(n0, n1, . . .) be two integer streams. Then, x + y denotes the stream (m0 +
n0,m1 + n1, . . .); a constant like 5, say, denotes the constant integer stream
(5, 5, . . .). Two important additional operators are a unary shift-right operator
pre (“previous”), and a binary initialization operator → (“followed by”). The
first is defined as pre(x) = (v,m0,m1, . . .) with the value v left unspecified. The
second is defined as x→ y = (m0, n1, n2, . . .).

In Figure 1, the definition of the real-valued stream target constrains it to
have value 70 at instant 0. At each instant i > 0 the current value of target is
its previous value (at instant i− 1) minus 1 if the current value of the Boolean
stream down is true; it is its previous value plus 1 if the current value of up is
true; it is the previous value otherwise.



node thermostat (actual_temp, target_temp, margin: real)
returns (cool, heat: bool) ;

let
cool = (actual_temp - target_temp) > margin ;
heat = (actual_temp - target_temp) < -margin ;

tel

node therm_control (actual: real; up, down: bool)
returns (heat, cool: bool) ;

var target, margin: real ;
let
margin = 1.5 ;
target = 70.0 -> if down then (pre target) - 1.0

else if up then (pre target) + 1.0
else pre target ;

(cool, heat) = thermostat (actual, target, margin) ;
tel

Figure 1: A simple Lustre program.

The right-hand side of an equation defining a stream can contain non-
recursive calls to other nodes. Syntactical restrictions on the equations in a
Lustre program guarantee that its streams are well defined.

2.1 From Lustre to SMT

To reason about the values that the streams of a Lustre program have at a given
instant it would be convenient to have a logic in which Lustre’s basic data types
and their operations are built-in. Automated reasoning in such a logic, however,
is not (yet) feasible. In alternative, we can consider an idealized version of Lus-
tre with unbounded integers instead of machine integers and infinite-precision
rationals instead of floating point numbers. Idealized Lustre programs can be
modeled faithfully in a typed first-order logic with uninterpreted function sym-
bols and built-in integers and rationals1. We will call it Idealized Lustre Logic
and denote by IL. The main lure of IL is that the validity in it of quantifier-
free formulas with linear numerical terms is not only decidable but decidable
rather efficiently by means of SMT techniques [4]. The main limitations are
the exclusion of programs containing non-linear operations, and the inability to
model behavior due overflows, underflows and rounding errors.

In this work, we adopted IL as the underlying logic. Future work will focus
on extending our approach efficiently to programs with non-linear expressions
and to a logic modeling real Lustre more accurately.

2.2 A logical model of Lustre

In IL, a stream x of values of type τ can be represented simply as an uninter-
preted function of type N→ τ . Then, equations between streams can be reduced
to universally quantified equations between stream values by a straightforward

1Having tuples as well is convenient but not necessary because they can be treated as
syntactic sugar.



homomorphic translation. For instance, the integer stream equation x = y + z
can be translated into ∀n:N. x(n) = y(n)+z(n), where x, y, and z become func-
tions symbols of type N→ τ .2 Similarly, the equation x = y → y+ pre z can be
translated into ∀n:N. x(n) = ite(n = 0, y(0), y(n) + z(n − 1)) where ite is the
if-then-else operator in the logic.

Let N be any single-node (idealized) Lustre program with stream variables
x = 〈x1, . . . , xp, y1, . . . , yq〉 where x1, . . . , xp are input variables and y1, . . . , yq

are non-input (i.e., local and output) variables. The semantics of N is com-
pletely captured in IL by the universal quantification over the variable n of the
following system of equations

∆(n) =


y1(n) = t1[x(n),x(n− 1), . . . ,x(n− d)]

...
...

...
yq(n) = tq[x(n),x(n− 1), . . . ,x(n− d)]

where each ti is the translation of the expression defining yi in N . Multi-node
programs can be modeled the same way by first recursively in-lining in the main
node all calls to subnodes. For the program in Figure 1, ∆(n) would look like
the following (with m abbreviating margin, and so on):

m(n) = 1.5
t(n) = ite(n = 0, 70.0, ite(d(n), t(n− 1)− 1.0, . . .))
c(n) = (a(n)− t(n)) > m(n)
h(n) = (a(n)− t(n)) < −m(n)

We call an (instantaneous) configuration (for N) any well-typed tuple of
values for x(n). Then, the program N can be understood as a system of con-
straints over instantaneous configurations. The notation for ∆(n) is suggestive
of the fact that the value of yi(n), the (p + i)-th component of the configura-
tion at instant n, is a function of (some of the values in) the configurations at
instants n, n − 1, . . . , n − d. The value d is the maximum “nesting depth” of
the pre operator in the body of N . For simplicity, from now on we will restrict
our presentation to programs with d ≤ 1. The extension to the general case,
implemented in our verifier, is fairly straightforward.

A trace for the program N is a tuple s = 〈s1, . . . , sp+q〉 of streams of the
same type as x. A path (of length l) is a finite sequence (of l) consecutive
configurations on a trace. The possible input/output behaviors of N are exactly
the traces s that satisfy the formula ∀n:N.∆(n) when x is interpreted as s. We
call such traces a legal traces. A configuration is reachable if it occurs in some
legal trace; it is initial if it is the first configuration on a legal trace. A path is
initial if it is the initial segment of a legal trace.

As argued in [17], with Lustre programs one is mostly interested in verifying
safety properties. Being able to checking liveness properties is not so crucial
because Lustre is typically used to model real-time systems. In such systems,

2To simplify the notation we use the same metasymbol to denote both a Lustre variable
and the corresponding function symbol in the translation.



progress must occur within predefined temporal limits and so it expressible as a
safety property. More precisely, we are interested in properties invariant in the
following sense.

Definition 1 A property P of configurations is invariant (for N) if it holds for
all reachable configurations.

More generally, one can consider properties of paths, not of single config-
urations. We do not do that here, just for simplicity. We will consider only
quantifier-free properties, properties expressible by a quantifier-free formula of
IL. While this an actual restriction, invariant properties checked in common
practice are indeed quantifier-free.

Checking invariant properties of Lustre programs can be done by lifting and
adapting to the logic IL a number of SAT-based model checking techniques.
The main ones used in this work is k-induction.

3 SMT-based k-Induction

Let N be again a single node Lustre program, and let ∆(n) be the equational
system modeling N in IL. Let P be a property of N ’s configurations expressible
by a quantifier-free formula P (n) of IL over x(n). If t is any integer term of IL,
we denote by ∆t the formula obtained from ∆(n) by replacing every occurrence
of n with t. Similarly, for Pt.

3.1 Basic Procedure

Similarly to previous work on k-induction-based verification of transition sys-
tems [21, 5, 11, 10], we can prove that P is invariant for N if we succeed in
proving the validity of the following two statements for some concrete k ≥ 0 :

∆0 ∧∆1 ∧ · · · ∧∆k |=IL P0 ∧ P1 ∧ · · · ∧ Pk (1)

∆n ∧∆n+1 ∧ · · · ∧∆n+(k+1) ∧
Pn ∧ Pn+1 ∧ · · · ∧ Pn+k

|=IL Pn+(k+1) (2)

where |=IL denotes logical entailment in IL and n is an uninterpreted integer
constant.

Both entailments can be decided by current SMT solvers for IL. To verify
P then, one asks the solver to prove both cases for some initial choice of k,
retrying with a larger k until either the base case (1) is proven invalid or both
the base case and the induction step (2) are proven valid. In the first situation,
P is not invariant for N , and a counterexample path can be generated from an
IL-model of ∆0 ∧ · · · ∧∆k ∧ ¬(P0 ∧ · · · ∧ Pk) provided that the SMT solver is
able to return models. In the second situation, P has been shown to hold for
a set of configurations including all reachable configurations, which implies it is
invariant.

This procedure is sound; it will never mistake a variant property for an
invariant one. Standard arguments [12] can be used to show that in general



the procedure is not—and cannot be made—complete for general Lustre pro-
grams; specifically, the procedure may keep increasing k indefinitely for some
invariant properties. Nevertheless, a number of improvements are possible to
increase the procedure’s accuracy, the set of invariant properties it can prove.
Further improvements can also be applied to accelerate convergence to an an-
swer. Two main enhancements to the basic k-induction procedure that we have
found effective in practice are described in the next two sections.

The procedure’s efficiency is also increased by exploiting several features of
SMT solvers based on the lazy approach [4]. Similarly to previous SAT-based k-
induction work [11, e.g.], we take full advantage of the fact that such solvers are
on-line, incremental and backtrackable, return models, compute unsatisfiable
cores, and can remember learned lemmas. Details on this and on other useful
enhancements based on program slicing and other static preprocessing of the
formulas in (1) and (2) can be found in [15].

3.2 Path Compression

A major enhancement of the basic procedure is represented by path compression,
first introduced for k-induction in [5, 21]. In our setting, path compression is
achieved by strengthening the left hand side of (1) and (2) so as to eliminate from
consideration paths that contain repeated configurations or, more generally,
configurations that are equivalent in an appropriate sense. A rather general
notion of path compression for SMT-based k-induction is presented in [10].
Performance considerations usually prevent one from using that notion in its
full generality. We use the one defined below, which seems better suited to the
current capabilities of SMT solvers for IL.

Let us assume for convenience that the argument of each application of the
operator pre in the program N is just a stream variable.3 We call those variables
the state variables of N . Given a configuration v for N , the state of v is the
subtuple of v corresponding to N ’s state variables. A path is compressed if no
two configurations in it have the same state and none of them, except possibly
the first, are initial.

We strengthen the premise of (2) by adding a quantifier-free formula Cn,k

over N ’s state variables that is satisfied by all and only those traces whose
configurations from position n to n + k form a compressed path:

∆n ∧∆n+1 ∧ · · · ∧∆n+(k+1) ∧
Pn ∧ Pn+1 ∧ · · · ∧ Pn+k ∧ Cn,k

|=IL Pn+(k+1) (2’)

It is immediate that using (2’) instead of (2) preserves the k-induction pro-
cedure’s accuracy. More interestingly, it also preserves its soundness, as proved
in [15].

In addition to facilitating the SMT solver’s task of proving Pn+(k+1), the
restriction to compressed paths also yields a complete k-induction procedure

3We can always reduce ourselves to this case by first applying simple observational-
equivalence-preserving transformations to N .



whenever the length of compressed initial paths is (statically) bounded above.
Completeness then is achieved, while preserving soundness, by checking (1) and
(2’) for consecutive values of k starting at 0, and verifying before repeating the
whole loop with a larger k whether there are any compressed initial paths of
length k + 1. In turn, this is done by checking that the entailment

∆0 ∧ · · · ∧∆k |=IL ¬C0,k+1 (3)

holds. This is analogous to a loop check in Bounded Model Checking: if the
test succeeds, no counterexamples will be found from k+ 1 on—because if they
existed they could be compressed to counterexamples of length k′ < k + 1,
against the fact that (1) held for k′. Hence, one can stop the induction loop
and conclude that P is invariant for N .

3.3 Structural Abstraction

Abstraction is often helpful in scaling up the verification of properties of tran-
sition systems. One tries to prove a safety property for a given system S by
proving it for a conservative abstraction S] of S that is easier to deal with.
This process may be followed by some refinement of the abstraction when the
property does not hold for it. The same principle applies to Lustre programs as
well, with some added advantages provided by Lustre’s declarative nature.

Traditionally, predicate abstraction, a popular abstraction approach in soft-
ware model checking [3], takes an infinite-state system S and a set of abstraction
predicates, and generates a conservative (typically finite-state) abstraction of S.
A main challenge in predicate abstraction is coming up with a good set of ab-
straction predicates.

With Lustre, a predicate completely capturing the behavior of a single node
programN is readly provided by the equational system (predicate) ∆ introduced
in Section 2.1. This suggests a conceptually and practically much simpler yet
effective form of abstraction, which we call structural abstraction following [2],
based on the syntactical structure of N . In our case, it consists simply in
removing equations from ∆. Conversely, refinement is achieved by adding back
equations from ∆ to the current abstraction ∆] ⊆ ∆.

At the Lustre level, this is essentially a form of localization abstraction [19]
as it corresponds to turning some non-input streams of N into input ones,
and removing their defining equation from the program. Clearly, the set of
legal traces for the resulting program N ] contains all the legal traces for N .
Therefore, every property invariant for N ] is also invariant for N . A property
P that is invariant for N but not for N ] will have spurious counterexamples,
legal traces for N ] that falsify P but are not legal traces of N .

We integrated the following counterexample-driven refinement strategy into
our k-induction procedure. Instead of instances of the original system ∆, we
use instances of its current abstraction ∆], initially consisting of the definitions
of the variables of N that occur in the property to be checked. Whenever the
base step (1) or the induction step (2) produces a spurious counterexample, we



refine ∆] as explained below and redo the step, repeating this process until no
spurious conter-examples are returned for that step.

Note that we refine the predicate ∆] itself, not its single instances ∆]
0, . . . ,∆

]
k

or ∆]
n, . . . ,∆

]
n+(k+1) used respectively in (1) and (2). Doing the latter is usually

too fined grained, producing rather slow convergence.
We observe that it is possible to combine abstraction with path compression

and loop detection. However, the combination must be done carefully since it
can create subtle soundness issues (again, see [15]).

The Refinement Step

We experimented with several choices for refining ∆] and we settled on the
following one, which seems to be the most effective in practice. To start, observe
that ∆ induces a (possibly cyclic) directed graph G over its terms, where for
each equation y = t in ∆, y is linked to t and t is linked to every stream variable
occurring in it.

Refinement is done essentially by starting from a non-input variable y, and
doing a depth-first traversal of G—taking care of breaking the loops in the
graph—until some input variable x is reached. The set of all equations along
the current path in G from y to x that are not already in ∆] are then added to
∆]. If this set is empty, the next path from y to an input variable is considered,
until ∆] changes or all paths have been explored. In the latter case, we say that
y is completely defined in ∆]; then, some other input variable must be chosen for
refinement. Progress is guaranteed by eventually choosing a non-input variable
that does not yet occur as a left-hand side in ∆]. When there are no more such
variables, ∆] has been completely refined into ∆.

The rationale of this path refinement strategy is to increase in a refinement
step the number of paths in the graph G connecting a non-input variable to
the input variables it ultimately depends on. This is more likely to produce a
refinement that rules out spurious counterexamples than, say, a breadth-first
refinement strategy over G, which may need to go through various levels of
G before it starts adding constraints to ∆] that connect input and non-input
variables.

The remaining question is which non-input variables to choose for refine-
ment. For that, we rely on the help of the SMT solver. Let ∆]

0,k abbreviate
∆]

0 ∧ · · · ∧ ∆]
k and let P0,k abbreviate P0 ∧ · · · ∧ Pk. When the solver reports

that
∆]

0,k |=IL ¬P0,k

(the version of (1) using ∆]) does not hold, it also returns a counter-model M
for it. Specifically, M is a set of equalities of the form x(m) = v where x is a
stream variable, m is a numeral in {0, . . . , k}, and v is a concrete value of the
proper type (an integer number, a rational number, or a Boolean value), such
that M |=IL ∆]

0,k ∧ ¬P0,k.
To check that M can be extended to a counterexample for the original pro-

gram N , it is enough to check the IL-satisfiability of the set ∆0 ∧ · · · ∧∆k ∧M.



Figure 2: Runtimes for Kind with and without abstraction, on hard invalid
problems.

If this set is IL-unsatisfiable, ∆]
n needs to be refined. To direct the refinement

to relevant program variables we ask the SMT solver for a minimal (or just
smaller) subset M ′ of M that is enough to cause the unsatisfiability. Then, we
pick for refinement a stream variable x that occurs in an equation x(m) = v
of M ′ and is not completely defined in ∆]. This helps the refinement process
focus on parts of the definition graph G whose absence from ∆] was decisive in
generating the counter-model M .

4 Experimental Results

We implemented the k-induction framework above in Kind, a new automated
inductive prover for idealized Lustre. Kind is written in OCaml and relies on
an external SMT solver for reasoning in the logic IL. Currently, Kind supports
the SMT solvers CVC3 and Yices. The version discussed here uses Yices 1.0.9.
Kind can be run in one of two major modes: induction and bmc. The first
implements the k-induction decision procedure presented in Section 2.1. The
second skips all operations related to the induction step of the procedure, making
Kind essentially behave like a bounded model checker.

We performed extensive experiments with Kind, testing the performance of
various combinations of enhancements over the basic induction procedure, and
comparing the best ones against other verification systems.4 The tests were run
on a dedicated cluster of four 3.0 GHz Intel Pentium 4 machines, each with 1
Gb of physical memory, under RedHat Enterprise Linux 4.0. Timeouts were set
to 900 seconds.

We based our test set on a number of sources. Most test problems were
4Kind’s executable, the benchmarks discussed here as well as more detailed results are

available from http://combination.cs.uiowa.edu/Kind/.



provided by colleagues in academia and industry. Others were adapted from
published case studies. To increase the number of problems, we introduced
a small number of modifications into the existing ones, simulating likely user
errors. We grouped together all variants of the same original problem generated
this way and removed any duplicates from the group, considering two variants
duplicates if they produced too similar results (same valid/invalid answer and
approximately the same runtimes) for all systems and configurations tried. This
was done to prevent biasing the test set against or in favor of any one system.

The final test set had 1047 problems, each with a single property, classifiable
into 6 groups: two groups with problems about memory controllers, one involv-
ing protocols, one based on simulations (often involving vehicles), one based
on larger simulations, with several hundred lines of Lustre code apiece, and one
with mostly toy problems involving counters. We partitioned the problems into:
(i) a set of 447 invalid problems, problems whose property was disproved with
a (real) counterexample; (ii) a set of 376 valid problems, problems whose prop-
erty was declared proved by at least one systems; (iii) a set of 224 unsolved
problems, which will not be considered below. Of the 823 solved problems, 20
valid and 18 invalid problems used rational streams, the rest used only integer
and/or Boolean streams.

The most advanced system in the comparison was part of the SAL 3.0
toolset [9]. Even if it has an induction mode, strictly speaking, and contrary
to Kind, SAL is not a full-blown induction prover. In induction mode, SAL
first performs a BMC-like test up to a user specified limit l on the number k of
unrollings, and then follows that with a single induction test if the BMC test
found no counterexamples. For a fairer comparison, we replicated this behavior
in Kind as well. Then we ran both SAL and Kind in an iterative deepening fash-
ion on each problem, starting with l = 0 and repeatedly re-starting the system
with a greater value of l until a conclusive answer was returned. We eventually
chose to increment l by 3 at each restart because it seemed to produce the best
results for both systems. For uniformity and space constraints, we report only
results where iterative deepening was applied when Kind was run in induction
mode.

Of the two main enhancements to the basic k-induction procedure presented
in this paper, we focus on the evaluation of structural abstraction. The other
enhancement, path compression, gave better overall results for Kind in induction
mode, in terms of number of solved problems and run time. In particular, it
allowed Kind to determine the validity of 8 problems that were not solvable by
any of the other systems. Hence, all the results presented in this section are
with Kind running with path compression on, unless specified otherwise. The
other input options provided by Kind, and not discussed here, were each given
the same value across the board.

4.1 Abstraction vs. no abstraction

When verifying safety properties, it is customary to attempt first a quick run
of bounded model checking, to see if a counterexample can be found. If that



fails, the more expensive full verification check is then performed. Following
this practice, it makes sense to look at Kind’s results when run in bmc mode
on the invalid problems and in interative-deepening inductive more on the valid
ones.

Our expectation was that abstraction would not be effective with easy prob-
lems, because of its significant overhead. Hence, the purpose of our evaluation
was to verify whether abstraction is beneficial with complex problems without
producing an unacceptable slowdown with simple ones. Our results partially
confirm this thesis.

As a simple complexity measure, let us classify a problem as easy if Kind
could solve it within 2 seconds without abstraction, and hard otherwise.

Of the 447 invalid problems, 404 were easy in this sense and were cumula-
tively solved in 32s. Each of them had a counterexample path of length at most
13. The remaining problems took from 2s to 316s each to solve, for a total of
2989s, with counterexample lengths ranging from 18 to 43. With abstraction,
Kind solved each of the easy problems within 2s as well, but took 73s overall,
with a slowdown factor of 2.3. However, it solved the hard problems in 1694s
with an overall speed up factor of 1.8. Runtimes in seconds for the hard invalid
problems are plotted in Figure 2. As can be clearly seen, only in one case does
abstraction produce a significant slowdown. In most of the other cases it is
instead quite effective, with speed-ups in excess of 300% for several problems.

In contrast, abstraction was not effective for the valid problems. To start,
almost all of them, 370 over 376, were easy and were solved in a total of 35s
without abstraction, with induction depths (the value of k) of 12 or less. The 6
hard problems took from 2s to 101s, with one timeout. The total time for them
was 217s, with induction depths ranging from 11 to 17. With abstraction, Kind
solved each of the easy problems within 2s except six (solved in less than 4s),
with a total time of 115s and a slowdown factor of 3.3. It also solved all of the
hard problems, but it was actually 1.6 times slower on them (340s) than Kind
without abstraction.

4.2 Kind vs. other Lustre checkers

To evaluate Kind against the state of the art in the automated verification of
Lustre programs, we compared it with all the publicly-available Lustre verifiers
we were aware of: Lesar, built by Lustre’s developers at Verimag [20], Nbac,
also developed at Verimag [18], and Rantanplan and Luke, both developed at
Chalmers University [13, 8]. We were unable to run the latest version of Nbac,
and we used instead the version provided in the Lustre 4 distribution. Unfor-
tunately, this version appears to be unsound5 and so we had to discard it from
this evaluation.

Lesar is a state-based verification tool included with the Lustre 4 distribu-
tion. It is primarily a BDD-based symbolic model checker, with some limited

5It classified as valid a number of problems for which at least two of the other systems
were able to find a counterexample.



Figure 3: Kind vs. Rantanplan and Luke on valid and invalid problems.

support for integers through abstraction and a polyhedral library. Due to this,
it is incomplete for non-Boolean problems.

Rantanplan could be considered the closest precursors to Kind since it is
based on k-induction and SMT techniques. As mentioned in related work, its
induction procedure and its SMT support are however less sophisticated, in
particular it does not perform abstraction and refinement. Finally, it does not
support programs with rational streams.

Luke is another k-induction verifier, inspiring much of the work in Rantan-
plan, but it is based on propositional logic and was developed mostly for educa-
tional purposes. It accepts programs with integers by treating them as bounded
integers of a user-specified size.

Since none of these systems have something comparable to Kind’s bmc mode,



Figure 4: Kind vs. SAL, respectively on invalid and valid problems.

we report the results obtained by Kind when run in iterative-deepening induc-
tion mode on both valid and invalid problems. In that mode, Kind solved all of
the valid problems but timed out on 8 of the invalid ones.

We ran Lesar from the distribution in its standard configuration (with the
-poly argument). Lesar solved correctly fewer than 10% of the valid problems,
often quickly producing an incorrect answer for the rest. Since Lesar is incom-
plete but does not return counterexamples, measuring its performance on the
invalid problems is not meaningful.

Rantanplan and Luke were more comparable to Kind. Their performance
against our system is summarized in the scatter plots of Figure 3, which show
runtimes in seconds, on a log-log scale. Timeout points also include problems
that a system solved incorrectly due to its incompleteness, or could not solve



because they were out of its scope or caused a runtime error (such as stack
overflow).

We tried several of the configurations for Rantanplan suggested in [12], with
generally similar results, and chose one that seemed one of the best overall
performers: deletion filtering with the Pooh checker used in online integration
and GLPK as the offline infeasibility checker. Rantanplan solved 84% of the 823
solved problems, (against Kind’s 99%) and was overall an order of magnitude
slower than Kind on them. Of the 133 problems not solved by Rantanplan, 38
could not be solved due to presence of rational streams, 2 produced incorrect
counterexamples, 26 caused run-time errors, and the rest timed out.

Consistently to what observed in [12], Luke performed better than Rantan-
plan on the invalid problems. However, it solved only 71% of the 823 solved
problems (mostly finite-state problems), being overall 30% faster than Kind on
those. Of the 242 problems not solved by Luke, 38 could not be solved due to
presence of rational streams, 19 produced incorrect counterexamples due to the
incompleteness of the bounded integer support, and the rest timed out.

4.3 Kind vs. SAL

Even if Kind was consistently and significantly better than the available Lustre-
native verifiers, it could be argued that those systems are, for various reasons,
not cutting-edge anymore. We looked then for a publicly available state-of-
the-art tool that could verify safety properties of both finite- and infinite-state
reactive systems. The eventual choice of the SAL toolset was motivated as
follows.

The toolset contains a model checker (sal-inf-bmc, hereafter referred to as
SAL) in many ways similar to Kind: it can be run in either bmc or induction
mode, has a form of path compression, is SMT-based, and uses Yices. The
main differences are that it does not use abstraction and is not Lustre-specific.
Instead, it uses its own input language, based on the traditional two-state model.
This allowed us to verify our hypothesis that adapting existing techniques to
work directly on a logical model of Lustre leads to better performance.

To run SAL on Lustre problems we utilized a well-tuned Lustre-to-SAL
translation developed at Rockwell Collins along the lines of the translations
described in [22]. Rockwell Collins has been developing and continually im-
proving translators from Lustre to various model checkers, including SAL, over
several years for the verification of production-level Lustre models of its avionics
software.

We ran SAL and Kind in their respective bmc mode on the invalid problems,
and in iterative-deepening induction mode on the valid ones. Among SAL’s dif-
ferent command-line configurations only its analogous to path compression (the
-acyclic option) produced any significant differences in overall performance with
respect to the default configuration. Specifically, enabling path compression was
better in induction mode and worse in bmc mode for SAL. The scatter plots of
Figure 4 summarize SAL’s results in those configurations against Kind’s results
with path compression enabled only in induction mode and abstraction enabled



in both modes. As the plots show, the two systems are comparable but Kind’s
performance dominates.

Both systems solved all the invalid problems, with Kind being more than 50%
faster overall. Moreover, Kind solved all valid problems while SAL timed out on
10 of them. On the valid problems solved by both systems, Kind was more than
50% faster. Interestingly, on the latter problems, Kind without abstraction, a
configuration more closely comparable to SAL, was actually more than 500%
faster.

Overall, these results seems to support our hypothesis that a Lustre-specific
k-induction tool would offer a performance premium over a translation-based
approach. On the other hand it must be added that, looking at its source code,
SAL does not appear to exploit the advanced features of Yices as much as Kind
does, which might be a big factor in Kind’s better performance.

5 Conclusion and Further Work

We have presented a general approach for the verification of Lustre programs
built around SMT-based k-induction. The approach has a wider scope than
that of existing verifiers for Lustre since it can handle finite- and infinite-state
programs with integer and rational streams. It scales much better to realistic
programs thanks to the compactness of its logical translation and a tight in-
tegration with efficient SMT solvers. Also, it lends itself quite naturally to a
form of structural abstraction and refinement that adds further scalability when
model checking complex properties or programs. The approach seems general
enough to be applicable to other synchronous dataflow languages as well.

We conclude by mentioning a couple of additional directions for further work.
Our path refinement strategy adds to the current abstraction entire equations
from the concrete system ∆. More fine-grained refinements would be obtained
by statically preprocessing ∆ and breaking complex equations it into simpler
ones by introducing additional local streams. We would like to investigate and
evaluate automated strategies for doing this.

Our abstraction technique can support modular verification of multinode
programs when individual nodes are annotated with sufficiently expressive in-
variants. We plan to investigate ways of avoiding or delaying the in-lining of
subnode calls when invariants are available. We also plan to investigate ways
to produce node invariants automatically during the verification of a property,
with the goal of speeding up later re-verification attempts of the same property
caused by changes in the code or the property’s formulation—something that
occurs often in real world situations.
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