
Submitted to:
PxTP 2019

© Burak Ekici & Arjun Viswanathan & Yoni Zohar & Clark Barrett & Cesare Tinelli
This work is licensed under the
Creative Commons Attribution License.

Verifying Bit-vector Invertibility Conditions in Coq

Burak Ekici
University of Innsbruck

Innsbruck, Austria
burak.ekici@uibk.ac.at

Arjun Viswanathan
University of Iowa

Iowa City, USA
arjun-viswanathan@uiowa.edu

Yoni Zohar
Stanford University

Stanford, USA
yoniz@cs.stanford.edu

Clark Barrett
Stanford University

Stanford, USA
barrett@cs.stanford.edu

Cesare Tinelli
University of Iowa

Iowa City, USA
cesare-tinelli@uiowa.edu

This work is a part of an ongoing effort to prove the correctness of invertibility conditions for the
theory of fixed-width bit-vectors, that are used to solve quantified bit-vector formulas in the Satis-
fiability Modulo Theories (SMT) solver CVC4. While many of these were proved in a completely
automatic fashion for any bit-width, some were only proved for bit-widths up to 65, even though they
are being used to solve formulas over arbitrary bit-widths. In this paper we describe our initial efforts
in proving a subset of these invertibility conditions in the Coq proof assistant. We describe the Coq
library that we use, as well as the extensions that we introduced to it.

1 Introduction

Reasoning logically about bit-vectors is useful for many applications in hardware and software verifica-
tion. While Satisfiability Modulo Theories (SMT) solvers are able to reason about bit-vectors of fixed
width, they currently require all widths to be expressed concretely (by a numeral) in their input formulas.
For this reason, they cannot be used to prove properties of bit-vector operators that are parametric in
the bit-width such as, for instance, the associativity of bit-vector concatenation. Proof assistants such as
Coq [12], that have direct support for dependent-types are better suited for such tasks.

Bit-vector formulas that are parametric in the bit-width, arise in the verification of parametric Boolean
functions and circuits (see, e.g., [7]). In our case, we are mainly interested in parametric lemmas that are
relevant to internal techniques of SMT-solvers for the theory of fixed-width bit-vectors. Such techniques
are developed a priori for every possible bit-width, even though they are applied on a particular bit-width.
Meta-reasoning about the correctness of such solvers then requires bit-width independent reasoning.

An example of the latter kind, which is the focus of the current paper, is the notion of invertibility
conditions [8] as a basis for a quantifier-instantiation technique to reason about the satisfiability of quan-
tified bit-vector formulas. For a trivial case of an invertibility condition consider the equation x+ s = t
where x, s and t are variables of the same bit-vector sort. In the terminology of [8], this equation is
“invertible” for x, i.e., solvable for x, for any value of s and t. A general solution is represented by the
term t− s. Since the solution is unconditional the invertibility condition for x+ s = t is simply the uni-
versally true formula >. The formula stating this fact, referred to here as an invertibility equivalence, is
>⇔ ∃x.x+ s = t, a valid formula in the theory of fixed-sized bit-vectors for any bit-width n for x, s and
t. In contrast, the equation x · s = t is not always invertible for x. A necessary and sufficient condition for
invertibility is (−s | s) & t = t meaning that the invertibility equivalence (−s | s) & t = t⇔∃x.x · s = t is
valid for any bit-width n for x, s and t [8]. Niemetz et al. [8] provide a total of 162 invertibility conditions
for several bit-vector operators for both equations and inequations. However, they were able to verify,

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Verifying Bit-vector Invertibility Conditions in Coq

using SMT solvers, the corresponding invertibility equivalences only for concrete bit-widths up to 65,
given the reasoning limitations of SMT solvers mentioned earlier. A recent paper by Niemetz et al. [9]
addresses this challenge by translating these invertibility equivalences into quantified formulas over the
combined theory of non-linear integer arithmetic and uninterpreted functions — a theory supported by a
number of SMT solvers. While partially successful, this approach failed to verify over a quarter of the
invertibility equivalences.

In this work, we approach the task of verifying the invertibility equivalences proposed in [8] by
proving them interactively with the Coq proof assistant. We extend a rich Coq library for bit-vectors we
developed in previous work [5] with additional operators and lemmas to facilitate the task of verifying
invertibility equivalences for arbitrary bit-widths, and prove a representative subset of them. Our results
offer evidence that proof assistants can support automated theorem provers in meta-verification tasks.

Our Coq library models the theory of fixed-width bit vectors adopted by the SMT-LIB 2 standard [1].1

It represents bit-vectors as lists of Booleans. The bit-vector type is dependent on a positive integer that
represents the length of the list. Underneath the dependent representation is a simply typed or raw bit-
vector type with a size function which is used to explicitly state facts on the length of the list. A functor
translates an instance of a raw bit-vector along with specific information about its size into a dependently-
typed bit-vector. For this work, we extended the library with the arithmetic right shift operation and the
unsigned weak less-than predicate and proved 13 invertibility equivalences. We initially proved these
invertibility equivalences over raw-bit-vectors and then used these proofs when proving the invertibility
equivalences over dependent bit-vectors, as explained in Section 4.

The remainder of this paper is organized as follows. After some technical preliminaries in Section 2,
we provide an overview of invertibility conditions for the theory of fixed-width bit-vectors in Section 3,
and discuss previous attempts to verify them. Then, in Section 4, we describe the bit-vector Coq library
and our current extensions to it. In Section 5, we outline how we used the extended library to prove
the correctness of a representative subset of invertibility equivalences. We conclude in Section 6 with
directions for future work.

2 Preliminaries

We assume the usual terminology of many-sorted first-order logic with equality (see, e.g., [6] for more
details). We denote equality by =, and use x 6= y as an abbreviation for ¬(x = y). The signature ΣBV

of the SMT-LIB 2 theory of fixed-width bit-vectors includes a unique sort for each positive integer n,
which we denote by σ[n]. For every positive integer n and a bit-vector of width n, the signature includes
a constant of sort σ[n] in ΣBV representing that bit-vector, which we denote as a binary string of length
n. The function and predicate symbols of ΣBV are as described the SMT-LIB 2 standard. Formulas of
ΣBV are built from variables (sorted by the sorts σ[n]), bit-vector constants, and the function and predicate
symbols of ΣBV , along with the usual logical connectives and quantifiers. We write ψ[x1, . . . ,xn] to
represent a formula whose free variables are from {x1, . . . ,xn}.

The semantics of ΣBV -formulas is given by interpretations that extend a single many-sorted first-order
structure so that the domain of every sort σ[n] is the set of bit-vectors of bit-width n, and the function and
predicate symbols are interpreted as specified by the SMT-LIB 2 standard. A ΣBV -formula is said to be
valid in the theory of fixed-width bit-vectors if it evaluates to true in every such interpretation.

In what follows, we denote by Σ0 the sub-signature of ΣBV containing only the predicate symbols
<u,≤u, >u, and≥u (corresponding to various unsigned comparisons between bit-vectors), as well as the

1 The SMT-LIB 2 theory is defined at http://www.smt-lib.org/theories.shtml.

http://www.smt-lib.org/theories.shtml

Burak Ekici & Arjun Viswanathan & Yoni Zohar & Clark Barrett & Cesare Tinelli 3

function symbols + (bit-vector addition), &, | (bit-wise conjunction and disjunction), and <<, >> and
>>a (left shift, and logical and arithmetical right shift). We also denote by Σ1 the extension of Σ0 with
the predicate symbols <s, ≤s, >s, and ≥s (corresponding to signed comparisons between bit-vectors),
as well as the function symbols −, ·, ÷, mod (corresponding to subtraction, multiplication, division
and remainder), ∼ , − (negation operators), and ◦ (concatenation). We use 0 to represent the bit-vectors
composed of all 0-bits. Its numerical or bit-vector interpretation should be clear from context. Using
bit-wise negation ∼ , we can express the bitvectors composed of all 1-bits by ∼0.

3 Invertibility Conditions And Their Verification

Many applications rely on bit-precise reasoning and thus can be modeled using the SMT-LIB 2 theory of
fixed-width bit-vectors. For certain applications, such as verification of safety properties for programs,
quantifier-free reasoning is not enough, and the combination of bit-precise reasoning with the ability to
handle quantifiers is needed. Niemetz et al. present a technique to solve quantified bit-vector formulas,
which is based on invertibility conditions [8]. An invertibility condition for a variable x in a ΣBV -literal
`[x,s, t] is a formula IC[s, t] such that ∀s.∀t. IC[s, t]⇔ ∃x.`[x,s, t] is valid in the theory of fixed-width
bit-vectors. For example, consider the bit-vector literal x & s = t where x, s and t are distinct variables of
the same sort. The invertibility condition for x in that literal is t & s = t.

Niemetz et al. [8] define invertibility conditions for a representative set of literals ` having a single oc-
currence of x, that involve the bit-vector operators of Σ1. The soundness of the technique proposed in that
work relies on the correctness of the invertibility conditions. Every literal `[x,s, t] and its corresponding
invertibility condition IC[s, t] induce the invertibility equivalence

IC[s, t]⇔∃x.`[x,s, t] (1)

The correctness of invertibility equivalences should be verified for all possible sorts for the variables
x,s, t for which the condition is well sorted. More concretely, for the case where x,s, t are all of sort σ[n],
say, this means that one needs to prove, for all n > 0, the validity of

∀s : σ[n].∀t : σ[n]. IC[s, t]⇔∃x : σ[n].`[x,s, t] .

This was done in Niemetz et al. [8] using an SMT solver but only for concrete values of n from 1 to 65.
A proof of Equation (1) that is parametric in the bit-width n cannot be done with SMT solvers since they
currently only support the theory of fixed-width bit-vectors, where Equation (1) cannot even be expressed.
To overcome this limitation, a later paper by Niemetz et al. [9] suggested a translation from bit-vector
formulas with parametric bit-widths to the theory of (non-linear) integer arithmetic with uninterpreted
functions. Thanks to this translation, the authors were able to verify, with the aid of SMT solvers for the
theory of integer arithmetic with uninterpreted functions, the correctness of 110 out of 162 invertibility
equivalences. None of the solvers used in that work were able to prove the remaining equivalences. For
those, it then seems appropriate to use a proof-assistant, as this allows for more intervention by the user
who can provide crucial intermediate steps. It goes without saying that even for the 110 invertibility
equivalences that were proved, the level of confidence achieved by proving them in a proof-assistant
such as Coq would be greater than a verification (without a verified formal proof) by an SMT solver.

In the rest of this paper we describe our initial efforts and future plans for proving the invertibility
equivalences, starting with those that were not proved in [9].

4 Verifying Bit-vector Invertibility Conditions in Coq

4 The Coq Bit-vector Library

In this section, we describe the Coq library we use and the extensions we developed with the goal of
formalizing and proving invertibility equivalences. The original library was developed for SMTCoq [5],
a Coq plugin that enables Coq to dispatch proofs to external proof-producing solvers. It is used to
represent SMT-LIB 2 bit-vectors in Coq. Coq’s own library of bit-vectors [4] was an alternative, but it
has only definitions and no lemmas. A more suitable substitute could have been the Bedrock Bit Vectors
Library [2]. We chose the SMTCoq library mainly because it was explicitly developed to represent
SMT-LIB 2 bit-vectors in Coq and came with a rich set of lemmas relevant to proving the invertibility
equivalences.

The Coq library contains both a simply-typed and dependently-typed theory of bit-vectors imple-
mented as module types. The former, which we also refer to as a theory of raw bit-vectors, formalizes
bit-vectors as Boolean lists while the latter defines a bit-vector as a Coq record, with its size as the param-
eter, made of two fields: a Boolean list and a coherence condition to ensure that the parameterized size is
indeed the length of the given list. The library also implements a functor module from the simply-typed
module to the dependently-typed module establishing a correspondence between the two theories. This
way, one can first prove a bit-vector property in the context of the simply-typed theory and then map
it to its corresponding dependently-typed one via the functor module. Note that while it is possible to
define bit-vectors natively as a dependently-typed theory in Coq and prove their properties there, it would
be cumbersome and unduly complex to do dependent pattern matching or case analysis over bit-vector
instances because of the complications brought by Coq’s unification algorithm (which is inherently un-
decidable). One can try to handle such complications as illustrated by Sozeau [11]. However, we found
the two-theory approach of Ekici et al. [5] more convenient in practice for our purposes.

The library adopts the little-endian notation for bit-vectors, thus following the internal representation
of bit-vectors in SMT solvers such as CVC4. This makes arithmetic operations easier to perform since
the least significant bit of a bit-vector is the head of the list representing it in the raw theory.

Out of the 11 bit-vector operators and 10 predicates contained in Σ1, the library had support for 8
operators and 6 predicates. The supported predicates, however, can be used to express the other 4. The
predicates that were not directly supported by the library were the weak inequalities ≤u, ≥u, ≤s, ≥s and
the operations that were not supported were >>a,÷, and mod . We extended the library with the operator
>>a and the predicate ≤u, and redefined << and >>, as explained in Section 5.

We focused on invertibility conditions for literals of the form x � s ./ t and s � x ./ t, where x, s and
t are variables and � and ./ are respectively function and predicate symbols in Σ0. Σ0 was chosen as a
representative set because it seemed both expressive enough and feasible for proofs in Coq. Such literals,
as well as their invertibility conditions, include only operators that are supported by the library (after its
extension with >>a). Whenever an invertibility condition included an occurrence of a weak unsigned
inequality, we represented that within Σ0 using logical negation and the corresponding strict inequality.
While the correctness of this representation is intuitively clear, we plan to prove it in Coq in future work.
We did use ≤u explicitly, however, in the proof of the invertibility equivalence for the literal x>>s >u t.

To demonstrate the intuition and various aspects of the extension of the library, we briefly describe the
addition of≤u. The Coq definitions concerning≤u are presented in Figure 1.2 Like most other operators,
≤u is defined in several layers. The function bv_ule at the highest layer, ensures that comparisons
are between bit-vectors of the same size and then calls ule_list. Since bit-vectors in the library are

2Both the library and the proofs of invertibility equivalences can be found at https://github.com/ekiciburak/

bitvector/tree/pxtp2019. It compiles with coqc-8.9.0.

https://github.com/ekiciburak/bitvector/tree/pxtp2019
https://github.com/ekiciburak/bitvector/tree/pxtp2019

Burak Ekici & Arjun Viswanathan & Yoni Zohar & Clark Barrett & Cesare Tinelli 5

1 Fixpoint ule_list_big_endian (x y : list bool) :=

2 match x, y with

3 | nil, nil => true

4 | nil, _ => false

5 | _, nil => false

6 | xi :: nil, yi :: nil => orb (eqb xi yi)

7 (andb (negb xi) yi)

8 | xi :: x', yi :: y' => orb (andb (Bool.eqb xi yi) (ule_list_big_endian x' y'))
9 (andb (negb xi) yi)

10 end.

11

12 Definition ule_list (x y: list bool) :=

13 (ule_list_big_endian (List.rev x) (List.rev y)).

14

15 Definition bv_ule (a b : bitvector) : bool :=

16 if @size a =? @size b then

17 ule_list a b

18 else

19 false.

Figure 1: Definitions of ≤u in Coq.

represented in little-endian notation, and since we want to start comparing bits starting from the most
significant bit, which is more convenient to access from the head of the list, ule_list reverses the lists
and calls ule_list_big_endian, which we consider to be at the lowest layer of the definition. ule_-
list_big_endian then does a lexicographical comparison of the two bit-vectors, starting from the most
significant bits.

To see why the addition of≤u to the library is useful, consider, for example, the following parametric
lemma, stating that ∼0 is the largest unsigned bit-vector of its type:

∀x : σ[n].x≤u ∼0 (2)

When not using this explicit operator, we usually rewrite it as:

∀x : σ[n].x <u ∼0∨ x =∼0 (3)

In such cases, since the definitions of <u and = have a similar structure to the one in Figure 1, we strip
down the layers of <u and = separately, whereas using ≤u, we only do this once. Depending on the
specific proof at hand, using ≤u is sometimes more convenient for this reason.

5 Proving Invertibility Equivalences in Coq

In this section we provide specific details about proving invertibility equivalences in Coq. In addition to
the bit-vector library described in Section 4, in several proofs of invertibility equivalences we benefited
from CoqHammer [3], a plug-in that aims at extending the automation in Coq by combining machine
learning and automated reasoning techniques in a similar fashion to what is done in Isabelle/HOL [10].
Note that one does not need to install CoqHammer in order to build the bit-vector library, since all the
proof reconstruction tactics of CoqHammer are included in it.

6 Verifying Bit-vector Invertibility Conditions in Coq

1 Theorem bvashr_ult2_rtl : forall (n : N), forall (s t : bitvector n),

2 (exists (x : bitvector n), (bv_ult (bv_ashr_a s x) t = true)) ->

3 (((bv_ult s t = true) \/ (bv_slt s (zeros n)) = false) /\

4 (bv_eq t (zeros n)) = false).

5 Proof. intros n s t H.

6 destruct H as ((x, Hx), H).

7 destruct s as (s, Hs).

8 destruct t as (t, Ht).

9 unfold bv_ult, bv_slt, bv_ashr_a, bv_eq, bv in *. cbn in *.

10 specialize (InvCond.bvashr_ult2_rtl n s t Hs Ht); intro STIC.

11 rewrite Hs, Ht in STIC. apply STIC.

12 now exists x.

13 Qed.

Figure 2: A proof of one direction of the invertibility equivalence for >>a and <u using dependent-types.

The natural representation of bit-vectors in Coq is the dependently-typed representation, and there-
fore the invertibility equivalences are formulated using this representation. As discussed in Section 4,
however, proofs in this representation are composed of proofs over simply-typed bit-vectors, which are
easier to reason about. Some conversions between the different representations are then needed to lift a
proof over raw bit-vectors to one over dependently-typed bit-vectors.

For example, Figure 2 includes a proof of the following direction of the invertibility equivalence for
>>a and <u:

∀s : σ[n].∀t : σ[n].(∃x : σ[n].s>>a x <u t) ⇒ ((s <u t ∨ ¬(s <s 0)) ∧ t 6= 0) (4)

In the proof, lines 6–9 transform the dependent bit-vectors from the goal and the hypotheses into simply-
typed bit-vectors. Then, lines 10–12 invoke the corresponding lemma for simply-typed bit-vectors (called
InvCond.bvashr_ult2_rtl) along with some simplifications.

Most of the effort in this project went into proving equivalences over raw bit-vectors. As an illustra-
tion, consider the following equivalence over << and >u:

∀s : σ[n].∀t : σ[n].(t <u ∼0<<s)⇔ (∃x : σ[n].x<<s >u t) (5)

The left-to-right implication is easy to prove using ∼0 itself as the witness of the existential proof goal
and considering the symmetry between >u and <u. The proof of the right-to-left implication relies on
the following lemma:

∀x : σ[n].∀s : σ[n].(x<<s)≤u (∼0<<s) (6)

From the right side of the equivalence in Equation (5), we get some x for which x<<s>u t holds. Flipping
the inequality, we have that t <u x<<s; using this, and transitivity over <u and ≤u, the aforementioned
lemma (from Equation (6)) gives us the left side of the equivalence in Equation (5).

As mentioned in Section 4, we have redefined the shift operators << and >> in the library. This
was instrumental, for example, in the proof of Equation (6). Figure 3 includes both the original and new
definitions of <<. The definitions of >> are similar. Originally, << was defined using the shl_one_-

bit and the shl_n_bits functions. shl_one_bit shifts the bit-vector left by one bit and is repeatedly
called by shl_n_bits to complete the shift. The new definition shl_n_bits_a uses mk_list_false
which constructs the necessary list of 0s and appends (++ in Coq) it to the beginning of the list (since we

Burak Ekici & Arjun Viswanathan & Yoni Zohar & Clark Barrett & Cesare Tinelli 7

1 Definition shl_one_bit (a: list bool) : list bool :=

2 match a with

3 | [] => []

4 | _ => false :: removelast a

5 end.

6

7 Fixpoint shl_n_bits (a: list bool) (n: nat): list bool :=

8 match n with

9 | O => a

10 | S n' => shl_n_bits (shl_one_bit a) n'
11 end.

12

13 Definition shl_n_bits_a (a: list bool) (n: nat): list bool :=

14 if (n <? length a)%nat then

15 mk_list_false n ++ firstn (length a - n) a

16 else

17 mk_list_false (length a).

18

19 Theorem bv_shl_eq: forall (a b : bit-vector), bv_shl a b = bv_shl_a a b.

Figure 3: Various definitions of <<

are using the little endian notation); the bits to be shifted from the original bit-vector are retrieved using
the firstn function, which is defined in the Coq library for lists. The nat type used in Figure 3 is the
Coq representation of Peano natural numbers that has 0 and S as its two constructors — as depicted in
the pattern match in lines 9 and 10. The theorem at the bottom of Figure 3 allows us to switch between
the two definitions when needed. Function bv_shl defines the left shift operation using shl_n_bits

whereas bv_shl_a does it using shl_n_bits_a.
The new definition uses firstn and ++, over which many necessary properties are already proven

in the standard library. This benefits us in manual proofs, and in calls to CoqHammer, since the latter
is able to use lemmas from the imported libraries to prove the goals that are given to it. Using this
representation, proving Equation (6) reduces to proving the lemmas bv_ule_1_firstn and bv_ule_-

pre_append, shown in Figure 4. The proof of bv_ule_pre_append benefited from the property app_-

comm_cons from the standard list library of Coq, while firstn_length_le was useful in reducing
the goal of bv_ule_1_firstn to Coq’s equivalent of Equation (2). The statements of the properties
mentioned from the standard library are also shown in Figure 4. mk_list_true creates a bit-vector that
represents ∼0, of the length given to it as input, and bv_ule is the representation of ≤u in the bit-vector
library. bv_ule has output type bool (and so we equate terms in which it occurs to true), while the
functions from the standard library have output type Prop. We also have two definitions for >>a. Proof
of their equivalence (as done for the other shift operators) is planned for future work.

Table 1 summarizes the results for proving invertibility equivalences that correspond to invertibility
conditions for the signature Σ0. In the table, X means that we have verified the invertibility equivalence
in Coq, and that it was not verified in [9], while X means the opposite. XX means that the invertibility
equivalence was verified using both approaches, and 5 means that it was verified in neither. We suc-
cessfully proved all invertibility equivalences over = that are expressible in Σ0, including 4 that were not
proved in [9]. For the rest of the predicates, we focused only on the 5 invertibility equivalences that were
not proved by [9], and were able to prove 4 of them. Overall, these results strictly improve the results

8 Verifying Bit-vector Invertibility Conditions in Coq

1 Lemma bv_ule_1_firstn : forall (n : nat) (x : bitvector),

2 (n < length x)%nat ->

3 bv_ule (firstn n x) (firstn n (mk_list_true (length x))) = true.

4

5 Lemma bv_ule_pre_append : forall (x y z : bitvector), bv_ule x y = true ->

6 bv_ule (z ++ x) (z ++ y) = true.

7

8 Theorem app_comm_cons : forall (x y:list A) (a:A), a :: (x ++ y) = (a :: x) ++ y.

9

10 Lemma firstn_length_le: forall l:list A, forall n:nat,

11 n <= length l -> length (firstn n l) = n.

Figure 4: Examples for lemmas that were used in proofs of invertibility equivalences.

`[x] = 6= <u >u

x & s ./ t X X X X

x | s ./ t X X X X

x<<s ./ t X X X X

s<<x ./ t XX X X X

x>>s ./ t XX X X 5

s>>x ./ t XX X X X

x>>a s ./ t X X X X

s>>a x ./ t XX X X X

x+ s ./ t XX X X X

Table 1: Results of proving invertibility equivalences for literals in Σ0.

of [9], as we were able to prove 8 additional invertibility equivalences in Coq. Taking into account our
work together with [9], only one invertibility equivalence for the restricted signature is not fully proved
yet, for the literal x>>s >u t. Note that one direction of it was successfully proved both in Coq and
in [9], namely the direction IC[s, t]⇒ `[x,s, t].

6 Conclusion and Future Work

We have described our work-in-progress on verifying bit-vector invertibility conditions in the Coq proof
assistant, which required extending a bit-vector library in Coq. The most immediate direction for future
work is proving more of the invertibility equivalences supported by the bit-vector library. In addition,
we plan to extend the library so that it supports the full syntax in which invertibility conditions are
expressed, namely Σ1. We expect this to be useful also for verifying properties about bit-vectors in other
applications. Finally, we plan to open source the library and make the connection between the various
definitions in the different layers of the library more robust, so that general users can use any of them
with an easy conversion.

Burak Ekici & Arjun Viswanathan & Yoni Zohar & Clark Barrett & Cesare Tinelli 9

References
[1] Clark Barrett, Aaron Stump & Cesare Tinelli (2010): The SMT-LIB Standard: Version 2.0. In A. Gupta

& D. Kroening, editors: Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(Edinburgh, UK).

[2] Tej Chajed, Haogang Chen, Adam Chlipala, Joonwon Choi, Andres Erbsen, Jason Gross, Samuel Gruetter,
Frans Kaashoek, Alex Konradi, Gregory Malecha, Duckki Oe, Murali Vijayaraghavan, Nickolai Zeldovich
& Daniel Ziegler: Bedrock Bit Vectors Library. Available at https://github.com/mit-plv/bbv.

[3] Lukasz Czajka & Cezary Kaliszyk (2018): Hammer for Coq: Automation for Dependent Type Theory. J.
Autom. Reasoning 61(1-4), pp. 423–453.

[4] Jean Duprat: Library Coq.Bool.Bvector. Available at https://coq.inria.fr/library/Coq.Bool.

Bvector.html.
[5] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds & Clark W. Barrett

(2017): SMTCoq: A Plug-In for Integrating SMT Solvers into Coq. In: CAV (2), Lecture Notes in Computer
Science 10427, Springer, pp. 126–133.

[6] Herbert Enderton & Herbert B Enderton (2001): A mathematical introduction to logic. Elsevier.
[7] Aarti Gupta & Allan L. Fisher (1993): Representation and Symbolic Manipulation of Linearly Inductive

Boolean Functions. In: Proceedings of the 1993 IEEE/ACM International Conference on Computer-aided
Design, ICCAD ’93, IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 192–199. Available at
http://dl.acm.org.stanford.idm.oclc.org/citation.cfm?id=259794.259827.

[8] Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark Barrett & Cesare Tinelli (2018): Solving Quantified
Bit-Vectors Using Invertibility Conditions. In: Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part II, pp. 236–255, doi:10.1007/978-3-319-96142-2 16. Available at https://doi.org/
10.1007/978-3-319-96142-2_16.

[9] Aina Niemetz, Mathias Preiner, Andrew Reynolds Yoni Zohar, Clark Barrett & Cesare Tinelli: Towards
Bit-Width-Independent Proofs in SMT Solvers. To appear in the proceedings of CADE 2019.

[10] Tobias Nipkow, Lawrence C Paulson & Markus Wenzel (2002): Isabelle/HOL: a proof assistant for higher-
order logic. 2283, Springer Science & Business Media.

[11] Matthieu Sozeau (2010): Equations: A Dependent Pattern-Matching Compiler. In: Interactive The-
orem Proving, First International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceed-
ings, pp. 419–434, doi:10.1007/978-3-642-14052-5 29. Available at https://doi.org/10.1007/

978-3-642-14052-5_29.
[12] The Coq development team (2019): The Coq Proof Assistant Reference Manual Version 8.9. Available at

https://coq.inria.fr/distrib/current/refman/.

https://github.com/mit-plv/bbv
https://coq.inria.fr/library/Coq.Bool.Bvector.html
https://coq.inria.fr/library/Coq.Bool.Bvector.html
http://dl.acm.org.stanford.idm.oclc.org/citation.cfm?id=259794.259827
http://dx.doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
http://dx.doi.org/10.1007/978-3-642-14052-5_29
https://doi.org/10.1007/978-3-642-14052-5_29
https://doi.org/10.1007/978-3-642-14052-5_29
https://coq.inria.fr/distrib/current/refman/

	Introduction
	Preliminaries
	Invertibility Conditions And Their Verification
	The Coq Bit-vector Library
	Proving Invertibility Equivalences in Coq
	Conclusion and Future Work

