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Abstract

The main contribution of this report is a new method for combining de-
cision procedures for the word problem in equational theories. In contrast to
previous methods, it is based on transformation rules, and also applies to theo-
ries sharing \constructors." In addition, we show that|contrary to a common
belief|the Nelson-Oppen combination method cannot be used to combine de-
cision procedures for the word problem, even in the case of equational theories
with disjoint signatures.
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1 Introduction

Equational theories, that is, theories de�ned by a set of (implicitly universally quan-
ti�ed) equational axioms of the form s � t, and their appropriate treatment in
theorem provers play an important rôle in research on automated deduction. On the
one hand, equational axioms occur in many axiom sets handled by theorem provers
since they de�ne common mathematical properties of operators (such as associativ-
ity, commutativity). On the other hand, the straightforward approach for treating
equality (namely, axiomatizing the special properties of equality, and adding these
axioms to the input axioms of the prover) often leads to unsatisfactory results. This
explains the interest in developing special inference methods and decision procedures
for handling equational theories.

The word problem, the problem of whether an equation s � t is entailed by a given
equational theory E, is the most basic decision problem for equational theories. It is,
of course, undecidable, as exempli�ed by the undecidability of the word problem for
�nitely presented semigroups [Mat67]. Nevertheless, there are decidability results for
certain classes of equational theories (such as theories de�ned by a �nite set of ground
equations [NO80]), and there are general approaches for tackling the word problem
(such as Knuth-Bendix completion [KB70], which tries to generate a con
uent and
terminating term rewriting system for the theory).

The present report is concerned with the question of whether the decidability of
the word problem is a modular property of equational theories: given two equational
theories E1 and E2 with decidable word problems, is the word problem for E1 [ E2

also decidable? In this general formulation, the answer is obviously no, with the
word problem for semigroups again providing a counterexample. In fact, consider a
�nitely presented semigroup with undecidable word problem. The set of equational
axioms corresponding to the semigroup's presentation can be seen as the union of
a set A axiomatizing the associativity of the semigroup operation, and a set G of
ground equations corresponding to the de�ning relations of the presentation. The
word problem for G is decidable, since G is a �nite set of ground equations, and
it is quite obvious that the word problem for A is decidable as well. But the word
problem for A [ G is just the word problem for the presented semigroup, which is
undecidable by assumption.

The theories A and G of this example share a function symbol (the binary semi-
group operation). What happens if we assume that there are no shared symbols,
that is, the theories to be combined are built over disjoint signatures? Modularity
properties for term rewriting systems over disjoint signatures have been studied in
detail. It has turned out that con
uence is a modular property [Toy87b], but unfor-
tunately termination is not. In [Toy87a] it is shown that there exist two con
uent
and terminating rewrite systems over disjoint signatures such that their union is not
terminating. Thus, the union of systems that provide a decision procedure for the
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word problem in the single theories does not yield a decision procedure for the word
problem in the combined theory.

Nevertheless, decision procedures for the word problem can be combined in the
case of disjoint signatures (independently of where these decision procedures come
from), that is, if E1 and E2 are equational theories over disjoint signatures, and
both have a decidable word problem, then E1 [E2 has a decidable word problem as
well. This combination result was �rst proved in [Pig74] using results from universal
algebra. It was more recently rediscovered in the term rewriting and automated
deduction community [Tid86, SS89, Nip89, KR94]. Surprisingly, even these more
recent presentations did not appear to be widely known in the computer science
community, possibly because the result was obtained and presented as a side result
of the research on combining matching and uni�cation algorithms. As a matter
of fact, although the result in principle follows from a technical lemma in [Tid86],
it is not explicitly stated there; in [SS89, KR94] it is stated as a corollary, but
not mentioned in the abstract or the introduction; only [Nip89] explicitly refers to
the result in the abstract. The combination methods used in all these papers are
essentially identical, the main di�erences lying in the proofs of correctness. They
all directly transform the terms for which the word problem is to be decided, by
applying collapse equations1 and abstracting alien subterms. This transformation
process must be carried on with a rather strict strategy (in principle, going from the
leaves of the terms to their roots) and it is not easy to describe and comprehend.

In this report, which is a revised and signi�cantly extended version of [BT97],
we introduce a new method for combining decision procedures for the word problem
that works on a set of equations rather than terms. Its transformation rules can
be applied in arbitrary order, that is, no strategy is needed. Thus, the di�erence
between this new approach and the old ones is similar to the di�erence between
Martelli and Montanari's transformation-based uni�cation algorithm [MM82] and
Robinson's original one [Rob65]. We claim that, as in the uni�cation case, this
di�erence makes the method more 
exible, easier to describe and comprehend, and
thus also easier to generalize. This claim is supported by the fact that the approach is
not restricted to the disjoint signature case: the theories to be combined are allowed
to share function symbols that are \constructors" (in a sense to be made more precise
later).

The only other work that presents a combination method for the word problem
in the union of non-disjoint theories is [DKR94], where the problem of combining
algorithm for the uni�cation, matching, and word problem was also investigated
for theories sharing so-called \constructors." The combination method for the word
problem described in [DKR94] is not rule-based since it is a straightforward extension
of the algorithms for the disjoint case, as described in [Pig74, SS89, Nip89, KR94],

1i.e., equations of the form x � t, where x is a variable occurring in the non-variable term t.
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and thus shares the disadvantages of these algorithms. We will show that the notion
of a constructor introduced in [DKR94] is a strict subcase of our notion, and that the
combination result for the word problem presented in [DKR94] can also be obtained
with the help of our rule-based approach.

There is a persistent rumor that combining decision procedures for the word
problem in the disjoint signature case is a special case of Nelson and Oppen's com-
bination method [NO79]. At �rst sight, the idea is persuasive: the Nelson-Oppen
method combines decision procedures for the validity of quanti�er-free formulae in
�rst-order theories, and the word problem is concerned with the validity of quanti�er-
free formulae of the form s � t in equational theories. Considered more closely, this
idea does not quite work, and for two reasons. First, Nelson and Oppen require
the single theories to be stably in�nite, and equational theories need not satisfy
this property.2 Second, although we are only interested in the word problem for
the combined theory, Nelson and Oppen's method generates more general validity
problems in the single theories. Thus, just knowing that the word problems in the
single theories are decidable is not suÆcient. However, our method for combining
decision procedures for the word problem follows an approach very similar to Nelson
and Oppen's.

Outline of the report The next section introduces some necessary notation. Sec-
tion 3 brie
y describes the Nelson-Oppen combination procedure, and investigates
whether it can be applied to equational theories. In Section 4, we introduce a �rst
version of our combination procedure for the word problem, which works for equa-
tional theories over disjoint signatures. Before we can extend this procedure to the
nondisjoint combination of equational theories, we must establish (in Section 5) some
general model-theoretic results for combined equational theories (Subsection 5.1) and
introduce our notion of a constructor (Subsection 5.2). Subsection 5.3 contains some
results concerning the union of theories sharing constructors. In Section 6 we de-
scribe the extended combination procedure for theories sharing constructors, and
prove its correctness. Section 7 investigates the connection between our notion of a
constructor and the one introduced in [DKR94].

2 Formal Preliminaries

In the context of the Nelson-Oppen procedure, we will consider arbitrary �rst-order
theories over a given signature �, which consists of a set �F of function symbols
and a set �P of relation symbols. We treat equality � as a logical symbol, i.e., it is

2It turns out, however, that they satisfy a somewhat weaker property, which in principle suÆces
to apply their method.
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always present and thus needs not be included in the signature. The signature � is
called functional i� �P = ;. In this case, we will use � in place of �F.

Throughout the report, we will only consider countable signatures, we will denote
by V a �xed countably in�nite set of variables and by T (�F; V ) the set of �F-terms
over V . We will use the symbols r; s; t to denote terms, and the symbols x; y; u; v; w; z
to denote variables. With a common abuse of notation we will also use x; y; u; v; w
as the actual variables in our examples. If t is a term, we will denote by t(�) the top
symbol of t and by Var(t) the set of all variables occurring in t. Similarly, if ' is a
formula, Var(') will denote the set of free variables of '.

Where �v is a tuple of variables without repetition, we will write t(�v) to say that
�v lists all the variables of t. When convenient we will treat a tuple �t of terms as the
set of its elements.

A quanti�er-free formula is a Boolean combination of �-atoms, i.e., of formulae
of the form P (s1; : : : ; sn), where P 2 �P [ f�g is an n-ary predicate symbol and
s1; : : : ; sn 2 T (�F; V ) are �F-terms with variables from V . As usual, we say that a
quanti�er-free formula ' is valid in a theory � i� it holds in all models of �, i.e., i� for
all �-structures A that satisfy � and all valuations � of the variables in ' by elements
of A we have A; � j= '. Since a formula is valid in � i� its negation is unsatis�able
in �, we can turn the validity problem for � into an equivalent satis�ability problem:
we know that a formula ' is not valid in � i� there exist a �-model A of � and a
valuation � such that A; � j= :'.

Given a function symbol f 2 �F and a �-structure A, we denote by fA the
interpretation of f in A. This notation can be extended to terms in the obvious
way: if s is a �-term containing n distinct variables, then we denote by sA the n-ary
term function induced by the term s in A. Given a �F-term s, a �-structure A,
and a valuation � (of the variables in s by elements of A), we denote by [[s]]A� the
interpretation of the term s in A under the valuation �. Using the term function
induced by s, this interpretation of s can also be written as [[s]]A� = sA(�a), where �a
is the tuple of values which � assigns to the variables in s.

In the context of equational theories, the attention is restricted to functional
signatures. An equational theory E over the functional signature � is a set of uni-
versally quanti�ed equations between �-terms. As usual, we will omit the universal
quanti�ers; for example, we will denote the equational theory C axiomatizing the
commutativity of the binary function symbol f by C := ff(x; y) � f(y; x)g instead
of C := f8x; y:f(x; y) � f(y; x)g. For an equational theory E, the word problem is
concerned with the validity in E of quanti�er-free formulae of the form s � t. Equiv-
alently, the word problem asks for the (un)satis�ability of the disequation s 6� t in
E|where s 6� t is an abbreviation for the formula :(s � t). As usual, we often
write \s =E t" to express that the formula s � t is valid in E. An equational theory
E is collapse-free i� x 6=E t for all variables x and non-variable terms t.

The equational theory E over the signature � de�nes a �-variety, i.e., the class
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of all model of E. When E is non-trivial i.e., has models of cardinality greater
1, this variety contains free algebras for any set of generators. We will call these
algebras E-free algebras. Given a set of generators (or variables) X, the E-free
algebra with generators X can be obtained as the quotient term algebra T (�;X)==E.
The following is a well-known characterization of free algebras (see, e.g., [Hod93]):

Proposition 1 Let E be an equational theory over � and A a �-algebra. Then, A
is E-free with generators X i� the following holds:

1. A is a model of E;

2. X generates A;

3. for all s; t 2 T (�; V ), if A; � j= s � t for some injection � of Var(s � t) into
X, then s =E t.

In this report, we are interested in combined equational theories, that is, equa-
tional theories E of the form E := E1 [E2, where E1 and E2 are equational theories
over two (not necessarily disjoint) functional signatures �1 and �2. The elements
of �1 \ �2 are called shared symbols. We call 1-symbols the elements of �1 and 2-
symbols the elements of �2. A term t 2 T (�1 [�2; V ) is an i-term i� t(�) 2 V [�i,
i.e., if it is a variable or has the form t = f(t1; :::; tn�1) for some i-symbol f (i = 1; 2).
Notice that variables and terms t with t(�) 2 �1 \ �2 are both 1- and 2-terms. A
subterm s of a 1-term t is an alien subterm of t i� it is not a 1-term and every proper
superterm of s in t is a 1-term. Alien subterms of 2-terms are de�ned analogously.
For i = 1; 2, an i-term s is pure i� it contains only i-symbols and variables. Notice
that every �i-term is a pure i-term and vice versa. An equation s � t is pure i�
there is an i such that both s and t are pure i-terms.

3 The Nelson-Oppen Combination Method

We will �rst recall the general procedure, and then investigate whether it can be
applied to equational theories.

3.1 The General Method

This method is concerned with combining decision procedures for the validity of
quanti�er-free formulae. Assume that �1 and �2 are two disjoint signatures and
that � is obtained as the union of a �1-theory �1 and a �2-theory �2. How can
decision procedures for validity (equivalently: satis�ability) in �i (i = 1; 2) be used
to obtain a decision procedure for validity (equivalently: satis�ability) in �?
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When considering the satis�ability problem, as done in Nelson and Oppen's
method, we may without loss of generality restrict our attention to conjunctive
quanti�er-free formulae, i.e., conjunctions of �-atoms and negated �-atoms. In fact,
a given quanti�er-free formula can be transformed into an equivalent formula in dis-
junctive normal form (i.e., a disjunction of conjunctive quanti�er-free formulae), and
this disjunction is satis�able in � i� one of its disjuncts is satis�able in �.

Given a conjunctive quanti�er-free (�1 [ �2)-formula ' to be tested for satis�-
ability, Nelson and Oppen's method for combining decision procedures proceeds in
three steps:

1. Generate a conjunction '1 ^ '2 that is equivalent to ', where 'i is a pure
�i-formula (i = 1; 2).
Here equivalent means that ' and '1 ^ '2 are satis�able in exactly the same
models of �. This is achieved by replacing alien subterms by variables and
adding appropriate equations (see the example below).

2. Test the pure formulae for satis�ability in the respective theories.
If 'i is unsatis�able in �i for i = 1 or i = 2, then return \unsatis�able."
Otherwise proceed with the next step.

3. Propagate equalities between di�erent shared variables (i.e., variables uj 6= vj
occurring in both '1 and '2), if a disjunction of such equalities can be deduced
from the pure parts.
A disjunction u1 � v1 _ : : : _ uk � vk of equations between di�erent shared
variables can be deduced from 'i in �i i� 'i ^ u1 6� v1 ^ : : : ^ uk 6� vk is
unsatis�able in �i. Since the satis�ability problem in �i was assumed to be
decidable, and since there are only �nitely many shared variables, it is decidable
whether such a disjunction exists.
If no such disjunctions can be deduced, return \satis�able." Otherwise, take
any of them,3 and propagate its equations as follows. For every disjunct uj �
vj, proceed with the second step for the formula '1�j ^ '2�j, where �j :=
fuj 7! vjg for j = 1; : : : ; k. Return \satis�able" i� one of these cases yields
\satis�able."

Example 2 Consider the (equational) theories E1 := ff(x; x) � xg and E2 :=
fg(g(x)) � g(x)g over the signatures �1 := ffg and �2 := fgg.4 If we want to know
whether the (mixed) quanti�er-free formula

g(f(g(z); g(g(z)))) � g(z)

3For eÆciency reasons, one should take a disjunction with minimal k.
4Recall that the equations in Ei are implicitly assumed to be universally quanti�ed.
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is valid in E1 [ E2, we can apply the Nelson-Oppen procedure to its negation

g(f(g(z); g(g(z)))) 6� g(z):

In Step 1, f(g(z); g(g(z))) is an alien subterm in g(f(g(z); g(g(z)))) (since g 2 �2

and f 2 �1). In addition, g(z) and g(g(z)) are alien subterms in f(g(z); g(g(z))).
Replacing these subterms by variables yields the conjunction '1 ^ '2, where

'1 := u � f(v;w) and '2 := g(u) 6� g(z) ^ v � g(z) ^ w � g(g(z)):

In Step 2, it is easy to see that both pure formulae are satis�able in their respective
theories. The equation u � f(v;w) is obviously satis�able in the trivial model of E1

(of cardinality 1). The formula '2 is, for example, satis�able in the E2-free algebra
with two generators, where u is interpreted by one generator, z by the other, and
v;w as required by the equations.

In Step 3, we can deduce w � v from '2 in E2 since '2 contains v � g(z) ^
w � g(g(z)) and E2 contains the universally quanti�ed equation g(g(x)) � g(x).
Propagating the equality w � v yields the pure formulae

'01 := u � f(v; v) and '02 := g(u) 6� g(z) ^ v � g(z) ^ v � g(g(z));

which again turn out to be separately satis�able in Step 2 (with the same models as
used above).

In Step 3, we can now deduce the equality u � v from '01 in E1, and its propa-
gation yields

'001 := v � f(v; v) and '002 := g(v) 6� g(z) ^ v � g(z) ^ v � g(g(z)):

In Step 2, it turns out that '002 is not satis�able in E2, and thus the answer is
\unsatis�able," which shows that g(f(g(z); g(g(z)))) � g(z) is valid in E1 [ E2. In
fact, v � g(z) and the equation g(g(x)) � g(x) of E2 imply that g(v) � g(z), which
contradicts g(v) 6� g(z).

Obviously, the procedure always terminates since there are only �nitely many
shared variables to be identi�ed. In addition, it is easy to see that satis�ability
is preserved at each step. This implies that the procedure is complete, that is, if
it answers \unsatis�able" (because variable propagation has made one of the pure
subformulae unsatis�able in the corresponding component theory), then the original
formula is in fact unsatis�able.

For arbitrary theories �1 and �2, the combination procedure need not be sound
(see Example 4 below). One must assume that each �i is stably in�nite, that is,
such that a quanti�er-free formula 'i is satis�able in �i i� it is satis�able in an
in�nite model of �i. This restriction was not mentioned in Nelson and Oppen's
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original article [NO79]; it was introduced in [Opp80]. Two new and simple proofs
of soundness and completeness of the procedure are given in [Rin96, TH96]. In
essence, both depend on the following proposition (see [TH96] for a proof). For a
�nite set of variables X, let �X denote the conjunction of all disequations x 6� y for
x; y 2 X;x 6= y.

Proposition 3 Let �1 and �2 be two stably in�nite theories over the disjoint signa-
tures �1 and �2, respectively. Let 'i be a quanti�er-free �i-formula (i = 1; 2) and
X be the set of variables occurring in both '1 and '2. If 'i ^�X is satis�able in �i
for i = 1; 2, then '1 ^ '2 is satis�able in �1 [ �2.

It is easy to see that this proposition yields soundness of the procedure, that is,
if the procedure answers \satis�able" then the original formula was satis�able. In
fact, if in Step 3 no disjunction of equalities between shared variables can be derived
from the pure formulae, then the prerequisite for the proposition is satis�ed (take
the disjunction of all x 6� y for x; y 2 X;x 6= y). We will use this proposition also to
prove the correctness of our combination procedure in the disjoint case.

3.2 Its Application to Equational Theories

We now turn to the question of whether the Nelson-Oppen method applies to equa-
tional theories, that is, sets of (implicitly) universally quanti�ed equations. For this
purpose, we will consider only functional signatures, which means that the only
predicate symbol in our formulae will be the equality symbol.

First, note that a trivial equational theory E (i.e., a theory that has only the
trivial 1-element model, or equivalently a theory that entails x � y for distinct
variables x; y) cannot be stably in�nite. However, this is not a real problem since
satis�ability and validity in the trivial model are obviously decidable. In addition,
if E1 or E2 are trivial, then their union is trivial, and thus one does not need a
combination procedure to decide satis�ability in E1 [ E2. The next example shows
that non-trivial equational theories need not be stably in�nite either, and that Nelson
and Oppen's procedure is not correct for such theories.

Example 4 Consider the theory

E1 := ff(g(x); g(y)) � x; f(g(x); h(y)) � yg:

It is easy to see that E1 is non-trivial. In fact, by orienting the equations from left
to right, one obtains a canonical term rewriting system, in which any two distinct
variables have a di�erent normal form. Now, consider the quanti�er-free formula
g(x) � h(x). Obviously, this formula is satis�able in the trivial model of E1. In
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every model A of E1 in which g(x) � h(x) is satis�able, there exists an element e
such that gA(e) = hA(e). But then we have that

a = fA(gA(a); gA(e)) = fA(gA(a); hA(e)) = e

for every element a of A, which entails that A is the trivial model. Thus, g(x) �
h(x) is only satis�able in the trivial model of E1, which show that the (non-trivial)
equational theory E1 is not stably in�nite. To see that this really leads to an incorrect
behavior of the Nelson-Oppen method, let

E2 := fk(x) � k(x)g

and consider the conjunction g(x) � h(x)^ k(x) 6� x. Clearly, k(x) 6� x is satis�able
in E2 (for instance, in the E2-free algebra with 1 generator) and, as we saw earlier,
g(x) � h(x) is satis�able in E1. In addition, no equations between distinct shared
variables can be deduced (since there is only one shared variable). It follows that
Nelson and Oppen's procedure would answer \satis�able" on input g(x) � h(x) ^
k(x) 6� x. However, since g(x) � h(x) is only satis�able in the trivial model of E1,
and no disequation can be satis�ed in a trivial model, g(x) � h(x) ^ k(x) 6� x is
unsatis�able in E1 [ E2.

The problem pointed out by the example is solely due to the fact that one of
the pure subformulae is only satis�able in the trivial model, whereas the other is
not satis�able in the trivial model. Given a quanti�er-free formula ', it is obviously
decidable whether ' is satis�able in the trivial model of E1 [ E2: just replace all
equations by \true" and all negated equations by \false." To test satis�ability in a
non-trivial model of E1 [ E2, one can then consider satis�ability in E 0

1 [ E
0
2, where

E0
i := Ei [ f9x; y: x 6� yg.

Lemma 5 Let E be a non-trivial equational theory.

1. The theory E0 := E [ f9x; y: x 6� yg is stably in�nite.

2. If the satis�ability in E of quanti�er-free formulae is decidable, then the satis-
�ability in E0 is also decidable.

Proof. The second statement is immediate. In fact, let ' be a quanti�er-free formula.
Then ' is satis�able in E0 i� the quanti�er-free formula ' ^ x 6� y is satis�able in
E, where x; y are two distinct variables not occurring in '.

The �rst statement is an easy consequence of the fact that the class of models
of an equational theory is closed under direct products. In fact, assume that the
quanti�er-free formula ' is satis�able in E0, i.e., ' is satis�able in a non-trivial
model A of E. Then the countably in�nite direct product of A with itself is an
in�nite model of E (and of E 0), and it is easy to see that it satis�es '. ut
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The lemma shows that the prerequisites for applying Nelson and Oppen's pro-
cedure are satis�ed for the combined theory E0

1 [ E
0
2, provided that the theories

Ei are non-trivial and satis�ability of quanti�er-free formulae are decidable in Ei

(i = 1; 2). Thus, satis�ability of quanti�er-free formulae in E0
1 [ E

0
2 is decidable.

Since a quanti�er-free formula is satis�able in E1[E2 i� it is satis�able in the trivial
model or in a model of E0

1 [E
0
2, and since we have already seen that satis�ability in

the trivial model is decidable, we obtain the following theorem.

Theorem 6 Let E1 and E2 be two equational theories over disjoint signatures. If
the satis�ability in Ei of quanti�er-free formulae is decidable (i = 1; 2), then the
satis�ability of quanti�er-free formulae in E1 [ E2 is also decidable.

3.3 Its Application to the Word Problem

Recall that the word problem is concerned with the validity in E of quanti�er-free
formulae of the form s � t (equivalently: (un)satis�ability of s 6� t in E). Now, let E1

and E2 be two equational theories over disjoint signatures. Theorem 6 implies that
the word problem is decidable for E1 [ E2, provided that the validity (equivalently:
satis�ability) in E1 and E2 of arbitrary quanti�er-free formulae is decidable.

However, the assumption that the word problem (equivalently: the satis�ability
of formulae of the form s 6� t) is decidable for Ei (i = 1; 2) is too weak for a
straightforward application of the Nelson-Oppen procedure. In fact, the satis�ability
tests in the second and third step of the procedure need not be of the speci�c form
that can be handled by a procedure for the word problem. The procedure for the
word problem considers the satis�ability of a single disequation. In the second step
of Nelson and Oppen's procedure, satis�ability of a conjunction consisting of at
most one disequation and �nitely many equations must be tested, and in the third
step, satis�ability of a conjunction of �nitely many disequations and �nitely many
equations must be tested.

In our method for combining decision procedures for the word problem, the main
ideas to overcome these diÆculties are in principle5 the following:

� In Step 3, propagate only equalities that can be deduced with the help of a
decision procedure for the word problem in Ei:

{ If we have x � s; y � t and s =Ei
t, then propagate x � y.

{ If we have x � s, y occurs in s, and s =Ei
y, then propagate x � y.

� In Step 2, return \unsatis�able" only if equality propagation has generated a
trivially unsatis�able disequation of the form x 6� x.

5The rules of our combination approach are somewhat more complex for technical reasons.
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The main part of the proof of correctness will be to show that this restricted form
of equality propagation and satis�ability test is suÆcient for our purposes.

4 A Combination Procedure for the Word Prob-

lem: The Disjoint Case

In the following, we will present a decision procedure for the word problem in an
equational theory of the form E1 [ E2 where each Ei is a non-trivial equational
theory with decidable word problem. To simplify the exposition, we will start by �rst
considering the case in which the signatures of E1 and E2 are disjoint. In Section 6
we will then extend the results given in this section to the case in which the two
signatures are not disjoint. Of course, this requires some additional restrictions on
the theories to be combined. These restrictions will be introduced in Section 5. Both
in the disjoint and the nondisjoint case, we will assume (with no loss of generality)
that all the signatures considered are countable.

To decide the word problem for E := E1 [ E2, we consider the satis�ability
problem for quanti�er-free formulae of the form s0 6� t0, where s0 and t0 are terms in
the signature of E. As in the Nelson-Oppen procedure, the �rst step of our procedure
transforms a formula of this form into a conjunction of pure formulae by means of
variable abstraction. To de�ne the puri�cation process in more detail, we need to
introduce a little notation and some new concepts.

4.1 Abstraction Systems

We will use �nite sets of formulae in place of conjunctions of such formulae. We will
then say that a set of formulae is satis�able in a theory i� the conjunction of its
elements is satis�able in that theory.

We can de�ne a procedure which, given a disequation s0 6� t0 with s0; t0 2 T (�1[
�2; V ), produces an equisatis�able set AS (s0 6� t0) consisting of pure equations and
disequations.6 The puri�cation procedure starts with the set S0 := fx 6� y; x �
s0; y � t0g, where x; y are distinct variables not occurring in s0; t0, if s0 and t0 are
not variables. If s0 (t0) is a variable, the procedure uses s0 in place of x (t0 in
place of y), and omits the corresponding (trivial) equation. Assume that a �nite
set Si consisting of x 6� y and equations of the form u � s (where u 2 V and
s 2 T (�1 [ �2; V ) n V ) has already been constructed. If Si contains an equation
u � s such that s has an alien subterm t at position p, then Si+1 is obtained from
Si by replacing u � s by the equations u � s0 and v � t, where v is a variable not

6Equisatis�able means that, for all algebras A, the disequation s0 6� t0 is satis�able in A i�
AS (s0 6� t0) is satis�able in A.
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occurring in Si, and s0 is obtained from s by replacing t at position p by v. Otherwise,
if all terms occurring in Si are pure, then the procedure stops and returns Si.

It is easy to see that this process terminates and yields a set AS (s0 6� t0) which is
satis�able in E i� s0 6� t0 is satis�able in E. The set AS (s0 6� t0) satis�es additional
properties, whose importance will become clear later on.

De�nition 7 Let x; y 2 V and S be a set of equations of the form v � t where
v 2 V and t 2 T (�1 [ �2; V ) nV . The relation � is the smallest binary relation on
fx 6� yg [ S such that, for all u � s; v � t 2 S,

(x 6� y) � (v � t) i� v 2 fx; yg;

(u � s) � (v � t) i� v 2 Var(s):

By �+ we denote the transitive and by �� the re
exive-transitive closure of �. The
relation � is acyclic if there is no equation v � t in S such that (v � t) �+ (v � t).

Notice that, when� is acyclic, �� is a partial order, and �+ is the corresponding
strict partial order. Since � is the smallest relation satisfying the above properties,
the disequation x 6� y is not larger than any equation u � s, even if x or y occurs in
s.

De�nition 8 (Abstraction System) The set fx 6� yg[S is an abstraction system
with initial formula x 6� y i� x; y 2 V and the following holds:

1. S is a �nite set of equations of the form v � t where v 2 V and t 2 (T (�1; V )[
T (�2; V )) nV ;

2. the relation � on S is acyclic;

3. for all (u � s); (v � t) 2 S,

(a) if u = v then s = t;

(b) if (u � s) � (v � t) and s 2 T (�i; V ) with i 2 f1; 2g

then t(�) 62 �i.

Condition (1) above states that S consists of equations between variables and
pure non-variable terms; Condition (2) implies that for all (u � s); (v � t) 2 S, if
(u � s) �� (v � t) then u 62 Var(t); Condition (3a) implies that a variable cannot
occur as the left-hand side of more than one equation of S; Condition (3b) implies,
together with Condition (1), that the elements of every �-chain of S have strictly
alternating signatures (: : : ;�1;�2;�1;�2; : : : ).

The following proposition is an easy consequence of the de�nition of the puri�-
cation procedure.

14



Input: (s0; t0) 2 T (�1 [ �2; V )� T (�1 [ �2; V )

1. Let S := AS (s0 6� t0).

2. Repeatedly apply (in any order) Coll1, Coll2, Ident, Simpl to S until none
of them is applicable.

3. Succeed if S has the form fv 6� vg [ T , and fail otherwise.

Figure 1: The Combination Procedure.

Proposition 9 Let A be a (�1 [ �2)-algebra. The set AS (s0 6� t0) obtained by
applying the puri�cation procedure to the disequation s0 6� t0 is an abstraction system
which is satis�able in A i� s0 6� t0 is satis�able in A.

In particular, this proposition implies that the disequation s0 6� t0 is satis�able
in E i� AS (s0 6� t0) is satis�able in E.

4.2 The Combination Procedure

Let �1 and �2 be two disjoint (functional) signatures, and assume that Ei is a non-
trivial equational theory over �i with decidable word problem, for i = 1; 2. Fig. 1
describes a procedure that decides the word problem for the theory E := E1 [E2 by
deciding, as we will show, the satis�ability in E of disequations of the form s0 6� t0
where s0; t0 are (�1 [ �2)-terms. It repeatedly applies the transformation rules of
Fig. 2 until no more rules are applicable.

The main idea of the procedure is to see whether the disequation between the
two input terms is satis�able in E by turning the disequation into an abstraction
system, and then propagating some of the equations between variables that are valid
in one of the single theories. The transformations the initial system goes through
will eventually produce an abstraction system whose initial formula has the form
v 6� v i� the initial disequation s0 6� t0 is unsatis�able in E (that is, i� s0 =E t0).

During the execution of the procedure, the set S of formulae on which the pro-
cedure works is repeatedly modi�ed by the application of one of the derivation rules
de�ned in Fig. 2. We describe these rules in the style of a sequent calculus. The
premise of each rule lists all the formulae in S before the application of the rule,
where T stands for all the formulae not explicitly listed. The conclusion of the rule
lists all the formulae in S after the application of the rule. It is understood that any
two formulas explicitly listed in the premise of a rule are distinct.
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Coll1
T u 6� v x � t[y] y � r

T [x=r] (u 6� v)[x=y] y � r

if t is an i-term and y =Ei
t for i = 1 or i = 2.

Coll2
T x � t[y]
T [x=y]

if t is an i-term and y =Ei
t for i = 1 or i = 2

and
there is no (y � r) 2 T .

Ident
T x � s y � t

T [x=y] y � t

if s; t are i-terms and s =Ei
t for i = 1 or i = 2

and
(y � t) 6�� (x � s).

Simpl
T x � t

T

if x 62 Var(T ).

Figure 2: The Derivation Rules.

In essence, Coll1 and Coll2 remove from S collapse equations that are valid in
E1 or E2, while Ident identi�es any two variables equated to equivalent �i-terms
and then discards one of the corresponding equations. We have used the notation
t[y] to express that the variable y occurs in the term t, and the notation T [x=t] to
denote the set of formulae obtained by substituting every occurrence of the variable
x by the term t in the set T .7

Simpl eliminates those equations that have become unreachable along a �-path
from the initial disequation because of the application of previous rules. As we will
see, this rule is not essential but it reduces clutter in S by eliminating equations that
do not contribute to the solution of the problem anymore. It can be used to obtain

7Notice that our use of the notation [x=t] contrasts with the common practice in the literature
(for instance, of programming languages theory). There, the expression T [x=t] above would be
written as T [t=x] instead. We prefer our convention because we �nd it more intuitive, especially in
the case of composed substitutions.
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optimized, complete implementations of the combination procedure.
We prove in Section 4.3 that this combination procedure decides the word problem

for E by showing that the procedure is partially correct (i.e., sound and complete)
and terminates on all inputs.

4.3 The Correctness Proof

In the following, we will denote by S0 the abstraction system AS (s0 6� t0) obtained
by applying the puri�cation procedure to the input disequation, and by Sj (j � 1)
the set S of formulae generated by the combination procedure at the jth iteration
of Step 2. If Step 2 is iterated only n times, we will de�ne Sj := Sn for all j > n.
Correspondingly, we will let �j denote the relation � on Sj (cf. Def. 7).

We �rst show that all sets Sj obtained in correspondence of one run of the com-
bination procedure are in fact abstraction systems. The proof of acyclicity (Condi-
tion 2 in De�nition 8) will be facilitated by the following lemma, whose simple proof
is omitted.

Lemma 10 Let < be a binary relation on a �nite set A, and a; b 2 A be such that
b 6<� a. We denote the restriction of < to A n fag by <a,8 and consider the relations

<1 := <a [ fhd; ei j d < a; b < eg

<2 := <a [ fhd; bi j d < ag:

If < is acyclic, then <1 and <2 are acyclic as well.

Lemma 11 Given an execution of the combination procedure, Sj is an abstraction
system for all j � 0.

Proof. We prove the claim by induction on j. The induction base (j = 0) is
immediate by construction of S0 and Proposition 9. Thus, assuming that j > 0
and that Sj�1 is an abstraction system, consider the following cases, labeled by the
derivation rule applied to Sj�1 to obtain Sj.

Coll1. By the rule's de�nition, Sj�1 and Sj must have the following form:

Sj�1 = fu 6� vg [ fx � t[y]g [ fy � rg [ T
Sj = fu 6� vg[x=y] [ fy � rg [ T [x=r]

Let u0 6� v0 := (u 6� v)[x=y]. We show that Sj is an abstraction system with initial
formula u0 6� v0.

Let S 0j�1 := Sj�1 n fu 6� vg and S0j := Sj n fu0 6� v0g, and let �0
j�1 and �0

j

respectively be the restrictions of �j�1 and �j to these sets of equations. If we take

8That is, <a :=< \ (A n fag)2.
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�0
j�1 to be the relation < of Lemma 10, x � t to be a, and y � r to be b, it is

easy to see that �0
j coincides with <1 (as de�ned in the lemma). Because �j�1 is

acyclic by induction, its subrelation < = �0
j�1 is acyclic as well. Since we know that

a < b, this also implies that b 6<� a, and thus the preconditions of Lemma 10 are
satis�ed. It follows that �0

j is acyclic. By de�nition of the relation �, the initial
disequation cannot be involved in a cycle, and thus �j is acyclic as well. This shows
that condition (2) of De�nition 8 holds.

Since applying the substitution [x=r] does not change the left-hand sides of equa-
tions in T , it is immediate that condition (3a) of De�nition 8 holds as well.

Finally, observe that x can appear in T only in an equation of the form z � s[x]
and that (z � s) �j�1 (x � t) �j�1 (y � r): By induction, we know that there
is an i 2 f1; 2g such that s and r are both non-variable �i-terms; therefore, the
replacement of x by r in T does not generate non-pure terms and it does not change
the signature of the equations in T . It follows that Sj satis�es both conditions (1)
and (3b) of De�nition 8.

Coll2. The proof is essentially a special case of the one above, with r replaced
by y. The proof of condition (2) of De�nition 8 is, however, easier in this case. If
we take x � t to be a and �j�1 to be the relation <, then �j coincides with <a as
de�ned in Lemma 10. If < is acyclic, then its subrelation <a is acyclic as well.

Ident. By the rule's de�nition, Sj�1 and Sj must have the following form:

Sj�1 = T [ fu 6� vg [ fx � sg [ fy � tg
Sj = (T [ fu 6� vg)[x=y] [ fy � tg;

where it is not the case that (y � t) ��
j�1 (x � s). It is not diÆcult to see that this

time �j is derivable from �j�1 in the same way <2 is derivable from < in Lemma 10,
where x � s is a and y � t is b. Again, the preconditions of the lemma are satis�ed,
and it follows that �j satis�es condition (2) of De�nition 8. By induction, we know
that x appears as the left-hand side of no equations in T , and so it is immediate
that Sj satis�es condition (3a). It is also immediate that Sj satis�es condition (1).
Finally, since s and t are both non-variable i-terms, Sj also satis�es condition (3b).
It follows that Sj is an abstraction system with initial formula (u 6� v)[x=y].

Simpl. Immediate consequence of the easily provable fact that, if fu 6� vg [ T 0

is an abstraction system, then fu 6� vg [ T is also an abstraction system for every
T � T 0. ut

The next lemma shows that the derivation rules preserve satis�ability.

Lemma 12 For all j > 0 and all models A of E = E1 [ E2, Sj is satis�able in A
i� Sj�1 is satis�able in A.
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Proof. First assume that Sj has been produced by an application of Coll1. We
know that Sj�1 and Sj have the form

Sj�1 = fu 6� vg [ fx � t[y]g [ fy � rg [ T
Sj = fu 6� vg[x=y] [ fy � rg [ T [x=r]

and that y =Ei
t for i = 1 or i = 2. Assume that the valuation � satis�es Sj�1 in the

model A of E. Since y � t is valid in E, for being valid in Ei, � must assign both x
and y with [[t]]A� , i.e., the interpretation of the term t in A under the valuation �. In
addition, since � satis�es Sj�1, we know that �(y) = [[r]]A� . It follows immediately
that � satis�es Sj in A.

Now, assume that the valuation � satis�es Sj in the model A of E. Observe
that, since Sj�1 is an abstraction system, x does not occur in y � r, and as a
consequence it does not occur in Sj at all. Let �0 be the valuation de�ned by
�0(z) := �(z) for all z 6= x and �0(x) := �(y). It is immediate that �0 satis�es the
set T1 := T [ fx � rg [ fu 6� vg [ fx � yg [ fy � rg in A. Since A is a model of
E and the equation y � t is valid in E, it is also immediate that �0 satis�es the set
T2 := fx � tg in A. It follows that �0 satis�es Sj�1, which is a subset of T1 [ T2.

The proof for Coll2 can be derived as a special case of the one for Coll2 with r
replaced by y. Ident can be treated similarly.

Simpl. In this case Sj�1 and Sj have the form

Sj�1 = T [ fx � tg
Sj = T

with x 62 Var(T ). It immediate that, if Sj�1 is satis�able in A, so is Sj. Assume then
that Sj is satis�ed in A by a valuation � of T 's variables. We can �rst choose an
arbitrary extension �0 of � to the variables in Var(t) nVar(T ). From the assumptions
and the fact that Sj�1 is an abstraction system we know that x does not occur in
Var(t) [ Var(T ). Therefore, we can further extend �0 so that it assigns to x the
individual denoted by t, i.e., �0(x) := [[t]]A�0. It follows that �0 satis�es T [ fx � tg
in A. ut

It is now easy to show that the combination procedure is sound.

Proposition 13 If the combination procedure succeeds on an input (s0; t0), then
s0 =E t0.

Proof. By the procedure's de�nition, we know that, if the procedure succeeds, there
is an n > 0 such that Sn = fv 6� vg [ T . Since Sn is clearly unsatis�able in E, we
can conclude by a repeated application of Lemma 12 that S0 = AS (s0 6� t0) is also
unsatis�able in E. By Proposition 9, it follows that s0 6� t0 is unsatis�able in E,
which means that s0 =E t0. ut
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Next, we show that the combination procedure always terminates.

Lemma 14 The combination procedure halts on all inputs.

Proof. As mentioned above, the puri�cation procedure used in Step 1 of the combina-
tion procedure terminates. In addition, since every equivalence test in the derivation
rules can be performed in �nite time because of the decidability of the word problems
in E1 and in E2, every run of Step 2 is also executable in �nite time. All we need to
show then is that the procedure performs Step 2 only �nitely many times. For j � 0,
let Nj be the number of variables occurring on the left-hand side of an equation in
Sj . Looking at each derivation rule, it is easy to see that N0 > N1 > N2 : : : , which
means that the total number of repetitions of Step 2 is bounded by N0. ut

Finally, we show that the combination procedure is also complete.

Proposition 15 The combination procedure succeeds on input (s0; t0) if s0 =E t0.

Proof. By Lemma 14, the procedure either succeeds or fails; therefore, we can prove
the claim by proving that, if the procedure fails on input (s0; t0), then s0 6=E t0.
Thus, assume that the procedure fails and let Sn be the set obtained in the last
transformation step. Given Lemma 12 and the construction of S0, it is suÆcient to
show that Sn is satis�able in E.

From Lemma 11 we know that Sn is an abstraction system with an initial formula
of the form x 6� y for distinct variables x and y (otherwise the procedure would have
succeeded). It follows that Sn n fx 6� yg can be partitioned into the sets

T1 := fxj � sj(�uj)gj2I and T2 := fyj � tj(�vj)gj2J ;

where I and J are �nite, sj 2 T (�1; V ) nV , tj 2 T (�2; V ) nV , and �uj (resp. �vj)
is the sequence of variables occurring in sj (resp. tj). It is an easy consequence of
De�nition 8 that each xj occurs only once in T1,9 each yj occurs only once in T2, and
fxigi2I and fyjgj2J are disjoint.

Let X be the set Var(T1) \ Var(T2) of all variables occurring in both T1 and T2.
For i = 1; 2, let Ai be an Ei-free algebra over a countably in�nite set of generators Yi.
Since Ei is non-trivial by assumption, this free algebra exists and has a cardinality
greater than 1. Consequently, Ai is also a model of E0

i := Ei [ f9u; v: u 6� vg. By
Lemma 5, the theory E 0

i is stably in�nite. We show below that, for i = 1; 2,

Ti [ fx 6� yg [�X

9Note that condition (2) of De�nition 8 entails that xj cannot occur in �uj, condition (3b) entails
that xj cannot occur in �uj0 for j 6= j0, and condition (3a) entails that xj 6= xj0 for j 6= j0.
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is satis�able in Ai, where �X is the set of all the disequations between two distinct
elements of X. It will then follow from an application of Proposition 3 that Sn is
satis�able in E0

1 [ E
0
2, and thus also in E = E1 [ E2.

We restrict our attention to the case in which i = 1 (i = 2 can be treated
analogously). Let U be the set of all variables occurring on the right-hand sides of
equations in T1 (that is, the variables in the sequences �uj). We consider a valuation
� of Var(T1) into A1 assigning each u 2 U with a distinct element of Y1 and each xj
with [[sj]]A1

� (the interpretation of the term sj in A1 under the variable assignment
�). Notice that � is well-de�ned because all the xj's are distinct and xj 62 U , as we
saw earlier. By construction, � satis�es T1.

Next, we show that �(u) 6= �(v) for all distinct variables u; v 2 Var(T1), which
will imply that � satis�es �X .

If both u and v are in U , �(u) 6= �(v) is obvious by the construction of �. Hence,
let u = xj for some j 2 I and assume by contradiction that �(xj) = �(v). If v = x`
for some ` 2 I, by the construction of � we have that A1; � j= sj � s`. Since �
evaluates the variables in the equation si � sj by distinct generators of A1, and A1

is E1-free, it follows by Proposition 1 that sj =E1
s`; but then, given that either

(x` � s`) 6�� (xj � sj) or (xj � sj) 6�� (x` � s`) by the acyclicity of abstraction
systems, the derivation rule Ident applies to Sn, against the assumption that Sn was
the last set. If v 2 U , similarly to the previous case we obtain that v =E1

sj. Now,
if v does not occur in sj, it is easy to see that E1 only admits trivial models, against
the assumption that E1 is non-trivial. If v occurs in sj, either Coll1 or Coll2 applies
to Sn, again against the assumption that Sn was the last set.

In conclusion, we have shown that

A1; � j= T1 [�X :

To complete the proof, we must show that � also satis�es x 6� y. Recall that x; y
are distinct. Thus, if they both occur in T1, we already know by the above that
�(x) 6= �(y). Otherwise, we simply need to extend � to Var(T1) [ fx; yg so that
�(x) 6= �(y). ut

As an aside, we would like to point out that nowhere in the proof of Proposition 15
did we use the fact that Simpl can no longer be applied. Thus, the proof also
shows that the modi�ed procedure obtained by removing the rule Simpl is complete.
Obviously, this modi�ed procedure is sound and terminating as well.

Combining the results of this section, which show total correctness of the proce-
dure, we also obtain the known modularity result for the word problem in case of
component theories with disjoint signatures.

Theorem 16 For i = 1; 2, let Ei be a non-trivial equational theory of signature �i

such that �1 \�2 = ;. If the word problem is decidable for E1 and for E2, then it is
also decidable for E1 [ E2.
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A closer look at the termination proof and the de�nition of the puri�cation pro-
cedure reveals that, modulo the complexity of the decision procedures for the word
problem in the single theories, our combination procedure is polynomial.

Corollary 17 Let E1 and E2 be non-trivial equational theories over disjoint signa-
tures whose word problems are decidable in polynomial time. Then the word problem
for E1 [ E2 is also decidable in polynomial time.

5 Combining Non-Disjoint Equational Theories

The rest of this report is concerned with the question of how the combination result
stated in Theorem 16 can be lifted to the combination of equational theories whose
signatures are not disjoint. As shown in the introduction, the union of equational
theories with decidable word problem need not have a decidable word problem. Thus,
one needs appropriate restrictions on the theories to be combined. The purpose of
this section is to introduce such restrictions, and to establish some useful properties
of theories satisfying these conditions. In particular, we will show a result that
will play the rôle of Proposition 3 in the proof of completeness of the combination
procedure.

Several of the results in Subsections 5.1 and 5.2 below10 are special cases of
more general results �rst described in [TR98]. That work considers the problem
of combining decision procedures for the satis�ability of �rst-order formulae with
respect to arbitrary �rst-order theories. The combination method described there
is a proper extension of the Nelson-Oppen method and as such cannot be applied
to the word problem, exactly for the same reasons given in Section 3. However,
the proof of correctness for the combination procedure in [TR98] uses some general
results about the combination of models of �rst-order sentences which are useful for
our purposes as well. We have adapted some of the concepts and results introduced
in [TR98] to the more speci�c context of equational theories. Although the proofs
of the original results carry over to this special case, we provide direct proofs here
both for completeness' sake and because they are simpler.

5.1 Fusions of Algebras and Unions of Equational Theories

In the following, given an 
-algebra A and a subset � of 
, we will denote by A�

the reduct of A to the subsignature �. Furthermore, we will use the symbol A to
denote the carrier of A.

10Speci�cally, Proposition 19, Lemma 20, Proposition 21, and Proposition 31. Also, what we give
as a characterization of constructors in Theorem 24 is a special case of the de�nition of constructors
in [TR98].
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De�nition 18 The (�1 [ �2)-algebra F is a fusion of the �1-algebra A1 and the
�2-algebra A2 i� F�1 is �1-isomorphic to A1 and F�2 is �2-isomorphic to A2.

We will denote by Fus(A1;A2) the set of all the fusions of A1 and A2. By
the above de�nition, it is immediate that Fus(A1;A2) = Fus(A2;A1) and that
Fus(A1;A2) is closed under (�1 [ �2)-isomorphism.11

In essence, a fusion of A1 and A2, if it exists, is an algebra that is identical to A1

when seen as a �1-algebra, and identical to A2 when seen as a �2-algebra. We can
show that two algebras admit a fusion exactly when they have the same cardinality
and interpret in the same way the symbols shared by their signatures.

Proposition 19 Let A be a �1-algebra, B a �2-algebra, and � := �1 \ �2. Then,
Fus(A;B) 6= ; i� A� is �-isomorphic to B�.

Proof. ()) Let F 2 Fus(A;B). By de�nition we have that A �= F�1 and B �= F�2.
From the fact that � � �1 and � � �2 it follows immediately that A� �= F� and
B� �= F�, which implies that A� �= B�.

(() Let h be an arbitrary �-isomorphism of A� onto B�. Consider a (�1 [�2)-
structure F whose carrier is the carrier B of B, and which interprets the function
symbols of �1[�2 as follows: for all g 2 �1[�2 of arity n � 0 and all b1; : : : ; bn 2 B,

gF(b1; : : : ; bn) :=

�
h(gA(h�1(b1); : : : ; h�1(bn))) if g 2 (�1 n�2)
gB(b1; : : : ; bn) if g 2 �2

Intuitively, F interprets �2-symbols as B does. For �1-symbols that are not also
�2-symbols, the isomorphism h is used to transfer their interpretation from A to B.

By construction of F , it is immediate that B and F�2 are isomorphic (with the
identity mapping as isomorphism). We prove below that h is a �1-isomorphism of
A onto F�1 . It will then follow from De�nition 18 that F is a fusion of A and B.

Since we already know that h is a bijection, it remains to be shown that it is a
�1-homomorphism. If g is an n-ary function symbol of �1 n�2 and a1; : : : ; an 2 A,
then

h(gA(a1; : : : ; an)) = h(gA(h�1(h(a1); : : : ; h�1(h(a1)an)))) (by def. of inverse)
= gF(h(a1); : : : ; h(an)) (by def. of gF ):

If g is an n-ary function symbol of � = �1 \ �2 and a1; : : : ; an 2 A, then

h(gA(a1; : : : ; an)) = gB(h(a1); : : : ; h(an)) (since h is a hom.)
= gF(h(a1); : : : ; h(an)) (by def. of gF ):

ut

11We must point out, however, that Fus(A1;A2) may contain non-isomorphic structures.

23



If A1 and A2 are two algebras and h is a isomorphism between their �-reducts
(with � being the intersection of their signatures), we will call canonical fusion of
A1 and A2 with respect to h the fusion of A1 and A2 constructed exactly as in the
proof above.

Fusions of algebras have a close link with unions of theories, which we will exploit
later.

Lemma 20 If E1; E2 are two equational theories of signature �1;�2, respectively,
and F is a fusion of a model of E1 and a model of E2, then F is a model of E1[E2.

Proof. By the de�nition of fusion it is immediate that F�1 models every sentence
in E1 while F

�2 models every sentence in E2; therefore, F models every sentence of
E1 [ E2. ut

Conversely, it is also easy to see that every model of E1 [ E2 is the fusion of a
model of E1 and a model of E2 (see [TR98] for a proof).

In the presence of certain conditions, the test for satis�ability in a fusion of two
algebras can be reduced to a \local" satis�ability test in each of the algebras. For i =
1; 2, consider a �i-algebra Ai and an arbitrary �i-formula 'i, and let � := �1 \ �2.
Obviously, if we know that the joint formula '1 ^ '2 is satis�able in a fusion of A1

and A2, we also know that '1 is satis�able in A1 and '2 is satis�able in A2.
What about the converse? Assume we know that '1 is satis�able in A1 and '2 is

satis�able in A2. Under which additional conditions can we conclude that '1 ^'2 is
satis�able in a fusion of A1 and A2? Intuitively, and speaking modulo isomorphism,
we know from the de�nition of fusion that, for i = 1; 2, a valuation �i of Var('i)
that makes 'i true in Ai will also make 'i true in every element of Fus(A1;A2). For
'1 ^ '2 to be satis�able in an element of Fus(A1;A2), however, it is necessary that
�1 and �2 agree on the values they assign to the variables shared by '1 and '2. The
problem is that, in general, we cannot tell whether there exist valuations �1 and �2
that agree on the shared variables. One case in which we can is described by the
proposition below.

Proposition 21 Let A1 be a �1-algebra and and A2 be a �2-algebra, and � :=
�1 \�2. Assume that their reducts A1

� and A2
� are both free in the same �-variety

and their respective sets of generators Y1 and Y2 have the same cardinality. If 'i is
satis�able in Ai with the variables in Var('1) \ Var('2) taking distinct values over
Yi for i = 1; 2, then there is a fusion of A1 and A2 in which '1 ^ '2 is satis�able.

Proof. Let U := Var('1) \ Var('2). Then for i = 1; 2, consider a valuation �i :
Var('i) �! Ai such that Ai; �i j= 'i, and whose restriction to U is an injection
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of U into Yi. Where �1(U) denotes the image of U under �1, consider the map
f : �1(U) �! Y2 such that

f(�1(v)) = �2(v) for all v 2 U:

Since f is injective by construction and Y1 and Y2 have the same cardinality, f can
be extended to a bijection f 0 of Y1 onto Y2. Now, by assumption the algebras A1

�

and A2
� are free in the same variety. By well-known results from Universal Algebra

(see, e.g., [BN98], Theorem 3.3.3) then, f 0, which is a bijection between their sets
of generators, can be extended to a �-isomorphism h between the two algebras. It
follows by Proposition 19 that Fus(A1;A2) is nonempty.

Let F be the canonical fusion of A1 and A2 with respect to h.12 Then let
� : Var('1 ^ '2) �! F be a valuation such that

�(v) :=

�
h(�1(v)) if v 2 Var('1)
�2(v) if v 2 Var('2)

Notice that � is well-de�ned because by construction h(�1(v)) = �2(v) for all v 2
Var('1) \ Var('2). We show that F ; � j= '1 ^ '2, which will prove the claim.

We know from the proof of Proposition 19 that h is actually a �1-isomorphism
of A1 onto F

�1 . Similarly, the identity map between the carriers of A2 and F is a
�2-isomorphism of A2 onto F�2. From this it is easy to see that

F�1 ; h Æ �1 j= '1 and F�2 ; �2 j= '2:

From the de�nition of � (and of reduct) it follows immediately that F ; � j= '1 and
F ; � j= '2. Therefore, F ; � j= '1 ^ '2. ut

Notice that the proposition does not require that the whole algebras be free but
just their reducts to the common signature. In the following, however, we will be
interested in countably generated Ei-free �i-algebras (i = 1; 2) whose reducts to the
common signature � := �1 \ �2 are free for the same variety, and over a countably
in�nite set of generators. In the next subsection then, we will �rst develop criteria
that make sure that the reduct of a free algebra is again free.

5.2 Theories Admitting Constructors

In general, the property of being a free algebra is not preserved under signature
reduction. The problem is that the reduct of an algebra may need more generators
than the algebra itself. For example, consider the signature 
 := fp; sg and the
equational theory E axiomatized by the equations

E := fx � p(s(x)); x � s(p(x))g : (1)

12Recall that, by construction, F and A2 have the same carrier.
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The integers Z are a free model of E over a set of generators of cardinality 1 when s

and p are interpreted as the successor and the predecessor function, respectively. In
fact, any singleton set of integers is a set of free generators for Z. The number zero,
for instance, generates all the positive integers with the successor function and the
negative ones with predecessor function. Now, if � := fsg, then Z� is de�nitely not
free because it does not even admit a non-redundant set of generators,13 which is a
necessary condition for an algebra to be free.

Nonetheless, there are free algebras some of whose reducts, although requiring a
possibly larger set of generators, are still free. These algebras are models of equa-
tional theories that admit constructors in the sense explained below.

In the following, 
 will be an at most countably in�nite functional signature, and
� a subset of 
. For a given equational theory E over 
 we de�ne the �-restriction
of E as E� := fs � t j s; t 2 T (�; V ) and s =E tg:

De�nition 22 (Constructors) The subsignature � of 
 is a set of constructors
for E if the following two properties hold:

1. The �-reduct of the countably in�nitely generated E-free 
-algebra is an E�-
free algebra.

2. E� is collapse-free.

De�nition 22 is a rather abstract formulation of our requirements on the theory E.
In the following, we develop a more concrete characterization of theories admitting
constructors. In particular, this characterization will make it easier to show that a
given theory admits constructors. But �rst, we must introduce some more notation.

Given a subset G of T (
; V ), we denote by T (�; G) the set of terms over the
\variables" G. More precisely, every member of T (�; G) is obtained from a term
s 2 T (�; V ) by replacing the variables of s with terms from G. To express this
construction we will denote any such term by s(�r) where �r is the tuple made, without
repetitions, of the terms of G that replace the variables of s. Notice that this notation
is consistent with the fact that G � T (�; G). In fact, every r 2 G can be represented
as s(r) where s is a variable of V . Also notice that T (�; V ) � T (�; G) whenever
V � G. In this case, every s 2 T (�; V ) can be trivially represented as s(�v) where �v
are the variables of s.

For every equational theory E over the signature 
 and every subset � of 
, we
de�ne the following subset of T (
; V ):

GE(�; V ) := fr 2 T (
; V ) j r 6=E f(�t) for all f 2 � and �t in T (
; V )g:

13A set of generators for an algebra A is redundant if one of its proper subsets is also a set of
generators for A.
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In essence, GE(�; V ) is made, modulo E equivalence, of 
-terms whose top symbol is
not in �. We will show that, if � is a set of constructors for E, then GE(�; V ) deter-
mines a set of free generators for the �-reduct of the countably in�nitely generated
E-free algebra.

But �rst, let us prove the following properties of GE(�; V ).

Lemma 23 Let E be an equational theory over 
 and � � 
.

1. GE(�; V ) is closed under equivalence in E;

2. GE(�; V ) is nonempty i� V � GE(�; V );

3. If V � GE(�; V ), then E� is collapse-free.

Proof. Let G := GE(�; V ).
(1) Let r 2 G. Then, any t 2 T (
; V ) such that t =E r is an element of G.

Otherwise, there would be a term t0 2 T (
; V ) such that t0 =E t and t0(�) 2 �. But
then we would also have that t0 =E r, against the assumption that r 2 G.

(2) Since V is assumed to be countably in�nite, V � G obviously implies that
G is nonempty. We prove the other direction by proving its contrapositive. Assume
that there exists a variable v 2 V nG. By de�nition of G then, there exists an f 2 �
and a tuple �t of 
-terms such that v =E f(�t). Now consider any r 2 T (
; V ). By
applying the substitution fv 7! rg to the equation v � f(�t), we obtain a tuple of

-terms �t0 such that r =E f(�t0), which means that r 62 G. From the generality of r
it follows that G is empty.

(3) Again, we prove the contrapositive. Assume that E� is not collapse-free.
Then there exists a non-variable �-term s and a variable v 2 V such that v =E� s.
By de�nition of G this implies that v 62 G, and thus V 6� G. ut

Theorem 24 (Characterization of constructors) Let � � 
, E a non-trivial
equational theory over 
, and G := GE(�; V ). Then � is a set of constructors for E
i� the following holds:

1. V � G.

2. For all t 2 T (
; V ), there is an s(�r) 2 T (�; G) such that

t =E s(�r):

3. For all s1(�r1); s2(�r2) 2 T (�; G),

s1(�r1) =E s2(�r2) i� s1(�v1) =E s2(�v2);

where �v1; �v2 are fresh variables abstracting �r1; �r2 so that two terms in �r1; �r2 are
abstracted by the same variable i� they are equivalent in E.
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Proof. Let A be an E-free 
-algebra with the countably in�nite set of generators
X. Where � is any bijective valuation of V onto X,14 let

Y := f[[r]]A� j r 2 Gg:

(() Assume that the three conditions in the formulation of the theorem are
satis�ed. We show that E� is collapse-free and A� is E�-free with generators Y .

By Lemma 23(3), the assumption that V � G implies that E� is collapse-free.

To show that A� is E�-free we start by observing that, since A is a model of
E, its reduct A� is a model of E�. Next, we show that A� is generated by Y . In
fact, let a be an element of A|which is also the carrier of A�. We know that as
an 
-algebra A is generated by X; thus there exists a term t 2 T (
; V ) such that
a = [[t]]A� . By condition (2), the term t 2 T (
; V ) is equivalent modulo E to a term
s(�r) 2 T (�; G). Since A is a model of E, this implies that a = [[t]]A� = [[s(�r)]]A� , from
which it easily follows by de�nition of Y that a is �-generated by Y .

The above entails that A� satis�es the �rst two conditions of Proposition 1. To
show that it is E�-free then it is enough to show that it also satis�es the third
condition of the same proposition.

Thus, let s1(�v1); s2(�v2) 2 T (�; V ) and assume that A�; �0 j= s1(�v1) � s2(�v2) for
some injection �0 of V0 := Var(s1(�v1) � s2(�v2)) into Y . By de�nition of Y we know
that, for all v 2 V0, there is a term rv 2 G such that �0(v) = [[rv]]A� . Using these
terms we can construct two tuples �r1 and �r2 of terms in G such that, for i = 1; 2,
the term si(�ri) is obtained from si(�vi) by replacing each variable v in Var(si(�vi)) by
the term rv, and A; � j= s1(�r1) � s2(�r2). Since A is E-free with generators X and �
is injective as well we can conclude by Proposition 1(3) that s1(�r1) =E s2(�r2).

Since �0 is injective, we know that ru 6=E rv for distinct variables u; v 2 V0. Thus,
considered the other way round, the equation s1(�v1) � s2(�v2) can be obtained from
s1(�r1) � s2(�r2) by abstracting the terms �r1; �r2 such that two terms are abstracted by
the same variable i� they are equivalent modulo E. Thus, we can apply condition
(3) to obtain s1(�v1) =E s2(�v2). Since the terms s1(�v1); s2(�v2) are �-terms, this is the
same as saying that s1(�v1) =E� s2(�v2).

()) Now assume that � is a set of constructors for E, which implies that A� is
E�-free for some set Z of generators. First, notice that Z cannot be the empty set.
Otherwise, the 
-algebra A would also be generated by the empty set, contradicting
our assumption that the theory E is non-trivial. In fact, take an arbitrary element
x from the (countably in�nite) set of generators X of A. If A is also generated by
the empty set, then there exists a ground term s (i.e., a term without variables)
such that x = [[s]]A� .

15 Where v 2 V is such that �(v) = x, the identity x = [[s]]A�

14Such a valuation � exist since V is assumed to be countably in�nite.
15Since s is a ground term, the value [[s]]A� does not depend on �.
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entails that A; � j= v � s, and so, by Proposition 1(3), that v =E s. Since s does
not contain v, this implies that any term is equivalent in E to s, i.e., E is trivial.

Next, we prove that Z = Y . Ad absurdum, assume that Y nZ is nonempty and
let y 2 Y nZ. Since A is 
-generated by X and A� is �-generated by Z, we know
that there exist a non-variable �-term s and a tuple �t of 
-terms such that [[ti]]

A
� 2 Z

for all elements ti of �t and y = [[s(�t)]]A� . By de�nition of Y we know that there is
a term r 2 G such that y = [[r]]A� . As A is E-free and � is injective, we can then
conclude by Proposition 1(3) that r =E s(�t), but then r cannot be in G. It follows
that Y � Z.

To show the other inclusion, consider a generator z 2 Z. We prove below that
z 2 Y and so Z � Y . Since A is 
-generated by X, there exists an 
-term r such
that z = [[r]]A� . If r 62 G, there exists a function symbol f 2 � and a tuple of

-terms �t such that r =E f(�t). Since the elements of the tuple �t are all �-generated
by Z, there is a variable v, a non-variable �-term s, and an injective mapping �0 of
Var(s)[fvg into Z such that �0(v) = z = [[s]]A

�

�0 .16 As A� is E�-free with generators
Z, we obtain that v =E� s. But this contradicts the fact that E� is collapse-free. It
follows that r 2 G, which implies that z 2 Y by de�nition of Y .

In conclusion, we have shown that Z is nonempty and coincides with Y =
f[[r]]A� j r 2 Gg. In particular, this means that G is nonempty either. The �rst
condition in the formulation of the theorem then follows directly from Lemma 23(2).
The second condition follows from the fact that A� is �-generated by Z. Similarly,
the third condition follows from Proposition 1(3). ut

The proof of the theorem provides a little more information than stated in the
formulation of the theorem.

Corollary 25 Let � be a set of constructors for E, A an E-free 
-algebra with the
countably in�nite set of generators X, and � a bijective valuation of V onto X. Then
the reduct A� is an E�-free algebra with generators Y := f[[r]]A� j r 2 GE(�; V )g, and
X � Y .

Notice that X � Y is an immediate consequence of V � GE(�; V ).
Condition 2 of Theorem 24 says that, when � is a set of constructors for E, every


-term t is equivalent in E to a term s(�r) 2 T (�; G) where G := GE(�; V ). We
will call s(�r) a normal form of t in E|in general, a term may have more than one
normal form. We will say that a term t is in normal form if it is already of the form
t = s(�r) 2 T (�; G). Because V � G, it is immediate that �-terms are in normal
form, as are terms in G. We will say that a term t is E-reducible if it is not in normal
form. Otherwise, we will say that it is E-irreducible.

We will make use of normal forms in the extended combination procedure. In
particular, we will consider normal forms that are computable in the following sense.

16Note that v may be an element of Var(s).
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De�nition 26 (Computable Normal Forms) Let � be a set of constructors for
the equational theory E over the signature 
. We say that normal forms are com-
putable for � and E if there is a computable function

NFE
� : T (
; V ) �! T (�; G)

such that NFE
�(t) is a normal form of t, i.e., NFE

�(t) =E t.

Notice that De�nition 26 does not entail that the variables of NFE
�(t) are included

in the variables of t. However, if V0 := Var(NFE
�(t)) nVar(t) is nonempty, then

�(NFE
�(t)) is also a normal form of t for any injective renaming � of the variables in

V0. Consequently, if V1 is a given �nite subset of V , we can always assume without
loss of generality that Var(NFE

�(t)) nVar(t) and V1 are disjoint.
17 As a rule then we

will always assume that the variables occurring in a normal form NFE
�(t) but not in

t, if any, are fresh variables.
An important consequence of De�nition 26|to which we will appeal in proving

the termination of the extended combination procedure|is that, when normal forms
are computable for � and E, it is always possible to tell whether a term is in normal
form or not.

Proposition 27 Let � be a set of constructors for the equational theory E over the
signature 
 and assume that normal forms are computable for � and E. Then, the
E-reducibility of terms in T (
; V ) is decidable.

Proof. Observe that any t 2 T (
; V ) can be seen as having the form s(�r) where s
is a �-term and �r are terms whose top symbols are not in �. From the de�nition
of normal form it is immediate that s(�r) is in normal form exactly when every
components of �r is in G. But being a member of G is a decidable property of 
-
terms: to test whether any r 2 T (
; V ) is in G, it is enough to compute NFE

�(r)
and look at its top symbol. In fact,

r 2 G i� NFE
�(r)(�) 62 �:

To see that �rst notice that, by the de�nition of G, if NFE
�(r) starts with a �-symbol

then r 62 G. Now, if NFE
�(r) does not start with a �-symbol, since it is a term in

T (�; G) it must be an element of G, r0 say. But then, by de�nition of NFE
�, r and

r0 are equivalent in E, which entails that r 2 G by Lemma 23(1). ut

We provide below two examples of equational theories admitting constructors
in the sense of De�nition 22. But �rst, let us consider some immediate counter-
examples:

17Otherwise, we apply an appropriate renaming that produces a normal form of t satisfying such
disjointness condition.
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� The signature � := 
 := ffg is not a set of constructors for the theory E
axiomatized by fx � f(x)g because De�nition 22(2) is not satis�ed.

� The signature � := ffg � ff; gg =: 
 is not a set of constructors for the theory
E axiomatized by fg(x) � f(g(x))g because Theorem 24(2) is not satis�ed.
In fact, the term g(x) does not have a normal form. (The signature ff; gg,
however, is a set of constructors for the same theory.)

� Finally, take 
 := ff; gg and � := ffg and consider the theoryE := ff(g(x)) �
f(f(g(x)))g. Then we have GE(�; V ) = V [ fg(t) j t 2 T (
; V )g. It is easy
to see that conditions (1) and (2) of Theorem 24 hold. However, condition (3)
does not hold since f(g(x)) =E f(f(g(x))), although f(y) 6=E f(f(y)).

Example 28 The theory of the natural numbers with addition is the most imme-
diate example of a theory with constructors. Consider the signature �1 := f0; s;+g
and the equational theory E1 axiomatized by the equations below:

x+ (y + z) � (x+ y) + z;
x+ y � y + x;

x+ s(y) � s(x+ y);
x+ 0 � x:

(2)

The signature � := f0; sg is a set of constructors for E1 in the sense of De�nition 22.
Instead of showing this directly, we prove that the three conditions of Theorem 24
are satis�ed.

First observe that the �rst two equations of E1 de�ne associativity and commu-
tativity of +. Let us call the theory axiomatized by these two equations AC. It is
possible to show18 that orienting the other equations in E1 from left to right, one
obtains a canonical term rewrite system R modulo AC. Here \modulo AC" means
that, instead of syntactic matching, AC-matching is used when determining whether
a rule is applicable. We denote the rewrite relation induced by R modulo AC by
!R;AC. The normal form of a term t w.r.t.!R;AC (i.e., the irreducible term reached
by applying !R;AC as long as possible starting with t), is unique only modulo AC.
For any t 2 T (
; V ), we use t#R;AC to denote a normal form of t with respect!R;AC.
Because R is canonical modulo AC, any term has a normal form (termination), and
the normal forms of two E1-equivalent terms are equivalent modulo AC, that is,
s =E1

t i� s#R;AC =AC t#R;AC (Church-Rosser modulo AC).
We claim that GE1

(�; V ) is the set of 
-terms whose normal form w.r.t. !R;AC

not 0 and does not start with s.19 In other words, G := GE1
(�; V ) coincides with

18For example by employing a term rewriting laboratory like REVEAL.
19Note that this property is invariant under AC, i.e., whether it is satis�ed or not does not depend

on which representative of the AC-class of the normal form is taken.
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the set

G0 := ft 2 T (
; V ) j t#R;AC(�) 62 �g:

From the fact that t =E t#R;AC, it follows immediately that G � G0. To prove that
G0 � G we show that no term not in G is in G0.

If t 62 G, then t is equivalent in E1 to a term t0 where t0 is either 0 or starts with
s. Since t and t0 have the same normal form (modulo AC) it is enough to show that
t0#R;AC(�) 2 �. This is immediate if t0 is 0 because 0#R;AC is obviously 0. If t0 starts
with s, notice that, since the left-hand sides of the rules in R do not start with s,
there cannot be a rewrite at the top of t0 (or any of its descendants). In addition,
the equations from AC do not contain s at all. It follows that t0#R;AC starts with s

as well. This completes the proof of G0 = GE1
(�; V ).

Now, it is immediate that v 2 G0 for all variables v 2 V as v#R;AC = v. Hence,
Theorem 24(1) is satis�ed by E1 and �.

To see that Theorem 24(2) is satis�ed it is enough to show that t#R;AC 2 T (�; G0)
for all t 2 T (
; V ). This is immediate if t#R;AC 2 T (�; ;)[G0. Otherwise is is easy
to show that t#AC = sn(r) where n � 1 and r is not 0 and does not start with
s. Since any subterm of an irreducible term is irreducible as well, we know that
r#R;AC = r. Thus, r 2 G0 by de�nition of G0, and so t#R;AC 2 T (�; G0).

To see that Theorem 24(3) is satis�ed, �rst observe that (again a consequence of
the fact that s does not occur at the top in the left-hand sides of the rewrite rules)
sn(r)#R;AC = sn(r#R;AC) for all n � 0 and terms r.

Now let t1; t2 2 T (�; G0) be such that t1 =E1
t2. We know that each ti has

the form sni(ri) where ni � 0 and ri does not start with the symbol s. Since R is
canonical modulo AC, t1 =E1

t2 implies that sn1(r2)#R;AC =AC sn2(r2)#R;AC. As seen
before sni(ri)#R;AC = sn1(ri#R;AC) for i = 1; 2, and ri#R;AC does not start with s. It
follows that n1 = n2, and thus r1#R;AC =AC r2#R;AC, which entails that r1 =E1

r2.
Abstracting then r1 and r2 by the same variable v in the equation sn1(r1) � sn1(r2)
we obtain the equation sn1(v) � sn1(v), which is trivially valid in E1.

Note that the restriction of E1 to � (i.e., the theory E1
�) is the syntactic equality

of �-terms. This is an immediate consequence of the fact that the rules in R and
the equations in AC cannot be applied to terms that do not contain +.

Example 29 Consider the signature �2 := f0; s;mod2g and the equational theory
E2 axiomatized by the equations below:

mod2(0) � 0;
mod2(s(0)) � s(0);

mod2(s(s(x))) � mod2(x);
mod2(mod2(x)) � mod2(x):

(3)
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The signature � := f0; sg is a set of constructors for E2 in the sense of De�nition 22.
As in the previous example we can show that the three conditions of Theorem 24.
Here we can use the fact that orienting the equations from left to right yields a
canonical term rewriting system.20 As in the previous example, the restriction of E2

to � (i.e., the theory E2
�) is the syntactic equality of �-terms.

The next example di�ers from the previous ones in that the restriction of the
theory to the constructor signature is no longer syntactic equality.

Example 30 Consider the signature �3 := f0; 1; rev; �g and the equational theory
E3 axiomatized by the equations below:

x � (y � z) � (x � y) � z;
rev(0) � 0;
rev(1) � 1;

rev(x � y) � rev(y) � rev(x);
rev(rev(x)) � x:

(4)

Note that orienting the equations from left to right yields a canonical term rewriting
system R3. We denote the normal form of a term t w.r.t. this rewrite system by
t#R3

.
We claim that the signature �0 := f0; 1; �g is a set of constructors for E3 in the

sense of De�nition 22. Again, we prove this by showing that the three conditions of
Theorem 24 are satis�ed.

First, we show that G := GE(�0; V ) is equal to

G0 := frevk(v) j v 2 V and k � 0g:

Assume that s 62 G. Then s is E3-equivalent to 0 or 1, or it is of the form s1 � s2.
If we analyze the rules in R3, and take into account that the R3-normal forms of
E3-equivalent terms are equal, then we see that the R3-normal form of s is 0 or 1, or
has top symbol �. Since the R3-normal form of any term in G0 is either v or rev(v),
this shows that s 62 G0, and thus G0 � G.

Conversely, assume that s 2 G nG0, and let s be minimal with this property. Since
s(�) 2 �0 would contradict our assumption that s 2 G, we know that s = rev(s0) for
a term s0. Obviously, s0 62 G0 since otherwise s 2 G0 as well. In addition, since s
was assumed to be a minimal term in G nG0, we know that s0 2 G. However, this
means that s0 =E1

t for a term t with t(�) 2 �0. But then the rules of R3 can be
applied to rev(t) such that the resulting term has its top symbol in �0 as well. Since

20Termination should be clear and con
uence can easily be checked by computing all critical
pairs.
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s =E3
rev(t), this contradicts our assumption that s 2 G. Thus, we have shown that

G � G0.
Now it is immediate from the de�nition of G0 that V � G0, and thus Theo-

rem 24(1) is satis�ed by E3 and �0.
To see that Theorem 24(2) is satis�ed, it is suÆcient to show that the R3-normal

form of any term t 2 T (�3; V ) is of the form

t#R3
= (� � � ((r1 � r2) � r3) � � � � � rk)

where ri 2 f0; 1g [ V [ frev(v) j v 2 V g. This can easily be proved by showing that,
to any term not in this form, one of the rules of R3 applies.

To see that Theorem 24(3) holds, we consider a term s(�r) 2 T (�0; G), that is
s(�v) is a �0-term and any r in the tuple �r belongs to G. It is easy to see that the
R3-normal form of s(�r) can be obtained by computing the normal form of s(�v) w.r.t.
the rule x � (y � z) ! (x � y) � z, and then inserting into this term the normal forms
of the terms in �r w.r.t. the rule rev(rev(x)) ! x. Now, Theorem 24(3) is an easy
consequence of this fact.

5.3 Combination of Theories Sharing Constructors

For the next results, in which we go back to the problem of combining equational
theories, we will consider two non-trivial equational theories E1, E2 with respective
signatures �1;�2 such that

� � := �1 \ �2 is a set of constructors for E1 and for E2, and

� E1
� = E2

�.

The theories E1; E2 introduced in the above examples satisfy these conditions. In
fact, we have already seen that � is a set of constructors for E1 and for E2, and
E1

� = E2
� is syntactic equality of �-terms.

For i = 1; 2, let Ai be an Ei-free �i-algebra with a countably in�nite set Xi

of generators,21 and let Yi := f[[r]]Ai
�i

j r 2 GE(�i; V )g; where �i is any bijective
valuation of V onto Xi.

Proposition 31 Let '1; '2 be two arbitrary �rst-order formulas of respective signa-
ture �1;�2. If 'i is satis�able in Ai with Var('1) \ Var('2) taking distinct values
over Yi for i = 1; 2, then '1 ^ '2 is satis�able in E1 [ E2.

21Ai exists because Ei is non-trivial.
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Proof. Let E0 := E1
� (= E2

�). By Corollary 25, Ai
� is E0-free with generators

Yi for i = 1; 2. Moreover, Y1 and Y2 have the same cardinality because, for i =
1; 2, Xi � Yi � Ai by construction of Yi and Xi and Ai are countably in�nite by
assumption. By Proposition 21 then '1 ^ '2 is satis�able in a fusion of A1 and A2,
which is a model of E1 [ E2 by Lemma 20. ut

Again, note that '1 and '2 in the proposition above are arbitrary formulae.
Therefore, if we take both of them to be the disequation x 6� y we immediately
obtain the following corollary.

Corollary 32 If E1 and E2 satisfy the above assumptions, then E1 [ E2 is non-
trivial.

In the following we will show that, under the assumptions on E1; E2 stated at the
beginning of this subsection, the signature � := �1 \�2 is also a set of constructors
for E := E1 [ E2, and E� = E1

� = E2
�. In addition, if the word problem for Ei

is decidable and normal forms are computable for � and Ei (i = 1; 2), then normal
forms are also computable for � and E.

We start by showing that E is a conservative extension of both E1 and E2.

Proposition 33 For all j 2 f1; 2g and t1; t2 2 T (�j; V )

t1 =Ej
t2 i� t1 =E t2:

Proof. The implication from left to right is immediate since Ej � E. For the
converse, assume that j = 2 (the proof for j = 1 is symmetrical), and let t1; t2 2
T (�2; V ) such that t1 =E t2.

Then, for i = 1; 2, let Ai be the Ei-free algebra with the countably in�nite set of
generators Xi. In the proof of Proposition 31 we have already seen that (under the
given assumptions) A1

� and A2
� are isomorphic. Consider the canonical fusion F of

A1 and A2 w.r.t. some isomorphism h of A1
� onto A2

�, and recall that F�2 = A2.
Now, since t1 =E t2 and F is a model of E, we have that F ; � j= t1 � t2 for

any valuation � of Var(t1 � t2) into F (= A2). In particular, we can choose �
to be an injection into X2. Observing that t1; t2 are �2-terms we then have that
A2; � j= t1 � t2. It follows by Proposition 1 that t1 =E2

t2. ut

From the above result it is almost trivial to show the following.

Corollary 34 E� = E1
� = E2

�.

To show that � is a set of constructors for E1 [ E2, we will show that the three
conditions in Theorem 24 are satis�ed. Before we can do that, we need an appropriate
characterization of GE(�; V ). We will show that, modulo E, this set is identical to
the set G0 de�ned below.
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De�nition 35 For i = 1; 2, let Gi := GEi
(�; V ). The set G0 is inductively de�ned

as follows:

1. Every variable is an element of G0, that is, V � G0.

2. Assume that r(�v) 2 Gi for i 2 f1; 2g and �r is a tuple of elements of G0 such
that the following conditions are satis�ed:

(a) r(�v) 6=E v for all variables v 2 V ;

(b) rk(�) 62 �i for all components rk of �r;

(c) the tuple �v consists of all variables of r without repetitions;

(d) the tuples �v and �r have the same length;

(e) rk 6=E r` if rk; r` occur at di�erent positions in the tuple �r.

Then r(�r) 2 G0.

Notice that Gi � G0 for i = 1; 2 because the components of �r above can also be
variables. Also notice that an element of G0 cannot have a shared symbol (i.e., a
symbol in �) as top symbol since it is a variable or it \starts" with an element of
Gi.

Lemma 36 For all t 2 T (�1[�2; V ), there exists a term s(�r) 2 T (�; G0) such that
t =E s(�r), and this term can be e�ectively computed from t.

Proof. In order to show that s(�r) is computable, we will need to know that the
word problem for E is decidable. In the next section we will show that, under the
assumptions on Ei made above, this is in fact the case (see Theorem 51). We prove
the claim by term induction.

(Base case) If t 2 V then t 2 G0, and thus the claim is trivially true.
(Induction step) Let t 2 T (�1 [ �2; V ) nV . If t 2 T (�i; V ) for i = 1 or i = 2,

then we can simply compute the normal for � and Ei, which does the job since
Gi � G0.

Otherwise, t has the form t1(�t), where t1 2 T (�i; V ) nV for i = 1 or i = 2, and
�t is a tuple with at least one nonvariable term and such that the top symbol of no
term in �t is in �i. For simplicity, let us assume that �t has length 1 and i = 1. (The
proof for the general case is an easy generalization of what follows.)

Therefore, let �t = t2 and so t = t1(t2). We know that t2 is a nonvariable term with
top symbol in �2 n�1. By the induction hypothesis there is a term t3 2 T (�; G0)
e�ectively computable from t2 and such that t2 =E t3. This means that t =E t1(t3).
If t3 is a variable then t1(t3) 2 T (�1; V ) and so we can prove the claim as before.
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Therefore, assume that t3 is not a variable (and is not equivalent to one in E).22

Since t3 2 T (�; G0), there exists a �-term s3(�u3) and a tuple �r3 of elements of G0

such that t3 = s3(�r3).
For components r of �r3 we distinguish three cases. If r is a variable, then r 2 G0

and r(�) 62 �1. If r(�) 2 �2, then r 2 G0 also implies r(�) 62 �1 by de�nition of G0.
If r(�) 2 �1, then r 2 G0 and the de�nition of G0 imply that r is of the form br(�r4)
where br(�u4) is a �1-term and the components of �r4 are elements of G0 whose top
symbol does not belong to �1. From this it is clear that the decomposition of r into
the form br(�r4) can be e�ectively computed.

As an easy consequence of the above case distinction we can represent t3 in the
form t3 =E t4(�r) where t4(�u) is a �1-term and the components of �r are elements of
G0 whose top symbol does not belong to �1. In addition, since the word problem
for E is decidable and E is nontrivial, we can assume without loss of generality that
di�erent positions in the tuple �r are occupied by terms that are not equivalent in
E, and that a nonvariable component of �r is not equivalent in E to a variable.23 To
sum up, we have that

t =E t1(t4(�u))[�u=�r];

where t1(t4(�u)) is a �1-term, and each component of �r is an element of G0 whose top
symbol does not belong to �1.

By our assumption on E1, since t1(t4(�u)) is a �1-term, it is possible to compute a
normal form of it for � and E1. This normal form is a term s1(�r1) 2 T (�; G1) such
that t1(t4(�u)) =E1

s1(�r1). Furthermore, we can assume without loss of generality
that: (a) all variables occurring in �r1 but not in �u are fresh; and (b) if r =E v for a
variable v and a component r of �r1, then r = v.24

From the fact that E1 � E it follows that

t =E t1(t4(�u))[�u=�r] =E s1(�r1)[�u=�r]:

Because of the way s1(�r1)[�u=�r] was constructed, it is immediate that this term is
computable from t. To complete the proof of the lemma, it remains to show that
s1(�r1)[�u=�r] 2 T (�; G0). To do that it is enough to show that r[�u=�r] 2 G0 for each
component r of �r1.

If r is a variable not occurring in �u, the claim is obvious because r[�u=�r] = r 2 V
and V � G0. If r is a variable in �u, then r[�u=�r] is a component of �r and so an element
of G0 by the above.

22The second assumption is without loss of generality since E is nontrivial and the word problem
for E is decidable.

23Because of this assumption we need not have syntactic equality between t3 and t4(�r).
24Recall that V � G1, and that the word problem for E is decidable.
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Otherwise, r has the form r(�z) where �z are the variables of r with no repetitions.
Observe that assumption (b) above entails that r(�z) 6=E v for all v 2 V , and thus
De�nition 35(2a) is satis�ed for r(�z). Now let �r0 := �z[�u=�r]. It is easy to see that
each component of �r0 is an element of G0 satisfying De�nition 35(2b) (for i = 1).
In fact, each component of �r0 is either a component of �r or a variable. To see that
De�nition 35(2e) is satis�ed, recall that, �rst, the tuple �r satis�es this property, and
the possible additional variables in �r0 (i.e., the variables in �z that are not contained
in �u) were assumed to be fresh. It is easy to see that the other conditions of De�ni-
tion 35(2) are satis�ed as well. It follows that r[�u=�r] = r(�z)[�z=�r0] 2 G0. ut

Lemma 37 For all t 2 GE(�; V ) there exists r 2 G0 such that t =E r.

Proof. By the previous lemma, there exists s(�r) 2 T (�; G0) such that t =E s(�r).
The de�nition of GE(�; V ) implies that s cannot be a nonvariable term, and thus
s(�r) = r for some r 2 G0. ut

Lemma 38 G0 � GE(�; V ).

Proof. For i = 1; 2, let Ai be an Ei-free �i-algebra with a countably in�nite set Xi

of generators and let

Yi := f[[r]]Ai
�i
j r 2 GEi

(�; V )g

where �i is any bijective valuation of V onto Xi. By Corollary 25, Ai
� is Ei

�-free
with generators Yi and Xi � Yi.

Now let Zi := Yi nXi and let fX1;1;X1;2g be a partition of X1 such that X1;1

is countably in�nite and Card(X1;2) = Card(Z2).25 Similarly, let fX2;1;X2;2g be
a partition of X2 such that Card(X2;2) = Card(Z1) and X2;1 is countably in�nite.
Then consider 3 arbitrary bijections

h1 : Z1 �! X2;2; h2 : X1;1 �! X2;1; h3 : X1;2 �! Z2:

Observing that fZi;Xi;1;Xi;2g is a partition of Yi for each i, it is immediate that
h1 [ h2 [ h3 is a (well-de�ned) bijection of Y1 onto Y2.

Since E1
� = E2

� by Corollary 34, A1
� and A2

� are free in the same variety
with sets of generators of the same cardinality. As we have seen in the proof of
Proposition 21, the bijection h1 [ h2 [ h3 can be extended to a �-isomorphism h of
A1

� onto A2
�.

Let F be the canonical fusion of A1;A2 w.r.t. h as constructed in the proof
of Proposition 19. Recall that F is a model of E and A�2 = A2, and let � be

25This is possible because Z2 is countable (possibly �nite).
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an arbitrary bijective valuation of V onto X2;1. We will prove later that for all
r 2 G0 nV ,

[[r]]F� 2 Z2 if r(�) 2 �2 and [[r]]F� 2 X2;2 if r(�) 2 �1 (5)

which entails that [[r]]F� 2 Y2 for all r 2 G
0.

To prove the lemma's claim now let r 2 G0 and assume by contradiction that
r 62 GE(�; V ). Then, by the de�nition of GE(�; V ) and Lemma 36, there is a term
s(�r) 2 T (�; G0) with s nonvariable such that r =E s(�r). In fact, since r 62 GE(�; V )
we know by de�nition of GE(�; V ) that there is a term f(�t) with f 2 � such that
r =E f(�t). By Lemma 36 we can assume that each term in �t is in T (�; G0). It
follows that the term f(�t) is in T (�; G0) as well. Obviously, this term has the form
s(�r) with s nonvariable.

Since F is a model of E, we then have that F ; � j= r � s(�r). Let, v; �v be fresh
variables abstracting r; �r in r � s(�r) so that terms equivalent in E are replaced by
the same variable. Since we know that [[r]]F� 2 Y2 for all r 2 G

0, it is clear that there
exists an injective valuation � of v; �v into Y2 such that

F ; � j= v � s(�v):

Since v � s(�v) is a �-equation and F� is E2
�-free with generators Y2, this entails

by Proposition 1 that v =E2
� s(�v). However, this is impossible because E2

� is
collapse-free by assumption. From the generality of r it follows that G0 � GE(�; V ).

We are left with proving that (5) above holds. We will do this by term induction.
(Base case) Assume that r 2 GE2

(�; V ) nV . First, we show that [[r]]F� 2 Y2. Since
� is a bijective valuation of V onto X2;1, �2 is a bijective valuation of V onto X2, and
X2;1 � X2, there is a term r0 obtained by a bijective renaming of the variables in r
such that [[r]]F� = [[r0]]A2

�2
. It is easy to see that r 2 GE2

(�; V ) implies r0 2 GE2
(�; V ),

and thus [[r0]]A2

�2
2 Y2 by de�nition of Y2. We prove by contradiction that [[r]]F� 62 X2.

In fact, if [[r]]F� 2 X2, it is easy to show that there is a v 2 V and an injective
valuation � of Var(v � r) into X2 such that F ; � j= v � r. Recalling that F�2 is
E2-free with generators X2 we then obtain by Proposition 1 that v =E2

r, which
contradicts the fact that v 6=E r by construction of G0 (see De�nition 35(2a)). It
follows that [[r]]F� 2 Z2 = Y2 nX2.

If r(�v) 2 GE1
(�; V ) nV , let �b be the tuple of values that � assigns, in order, to

the variables in �v. By construction of F , we know that26

[[r]]F� = rF (�b) = h(rA1(h�1(�b))):

Since �b contains no repetitions and is included in X2;1, we have by construction of h
that h�1(�b) contains no repetitions and is included in X1;1. As we did in the previous

26The expression h�1(�b) below denotes the tuple obtained from �b by replacing each element b of
�b by h�1(b).
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case then, we can prove that rA1(h�1(�b)) 2 Z1. By construction of h again this then
implies that [[r]]F� = h(rA1(h�1(�b))) 2 X2;2.

(Induction step) If t 2 G0 n (GE1
(�; V ) [GE2

(�; V )), then t has the form

r(�v; �r)

where r 2 GEi
(�; V ) nV with i 2 f1; 2g, �v � V , �r � G0 nV , �r is nonempty and

r0(�) 62 �i for all r0 2 �r. Let �b be the tuple of values that � assigns, in order, to the
variables in �v and �c the tuple made, in order, of all the elements [[r0]]F� with r0 2 �r.

If i = 2, then �b � X2;1 by de�nition of � and �c � X2;2 by induction hypothesis.
It is immediate that �b contains no repetitions and has no elements in common with
�c. We claim that �c contains no repetitions either. In fact, assume that [[r1]]F� =
[[r2]]F� for two distinct r1; r2 2 �r. Then, F ; � j= r1 � r2, which implies, again by
Proposition 1, that r1 =E2

r2. This contradicts the fact that the tuple �r must satisfy
De�nition 35(2e). Given these facts, it is easy to show (as in the base case) that
[[r(�v; �r)]]F� 2 Z2.

If i = 1, by construction of F we know that

rF (�b; �c) = h(rA1(h�1(�b); h�1(�c))):

Now, observe that �b � X2;1 by de�nition of � and �c � Z2 by induction hypothesis.
It follows by construction of h that h�1(�b) � X1;1 and h�1(�c) � X1;2. Observing that
�b and �c do not contain repetitions (and have no common elements) we can prove (as
in the case i = 2 before) that rA1(h�1(�b); h�1(�c)) 2 Z1. By construction of h again,
we then �nally have that rF (�b; �c) 2 X2;2 which means that [[r]]F� 2 X2. ut

Theorem 39 Let E1, E2 be two non-trivial equational theories with respective sig-
natures �1;�2 such that

� � := �1 \ �2 is a set of constructors for E1 and for E2;

� E1
� = E2

�;

� the word problem for Ei is decidable and normal forms are computable for �
and Ei for i = 1; 2.

Then the following holds:

1. � is a set of constructors for E1 [ E2.

2. E� = E1
� = E2

�.

3. Normal forms are computable for � and E.
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Proof. Point 2 is immediate by Corollary 34. Point 3 is an easy consequence of
Lemma 36 and 38. We prove point 1 by showing that E and � satisfy Theorem 24.

Now, Theorem 24(1) and (2) are an immediate consequence of the de�nition of
G0 and Lemma 36 and 38. To prove Theorem 24(3) we will use the algebra F and
the valuation � de�ned in the proof of Lemma 38.

Let s1(�r1); s2(�r2) be terms in T (�;GE(�; V )) and s1(�v1); s2(�v2) the terms ob-
tained from them by abstracting E-equivalent elements in �r1; �r2 with the same vari-
able. It is immediate that s1(�v1) =E s2(�v2) implies s1(�r1) =E s2(�r2).

Therefore, assume that s1(�r1) =E s2(�r2). By Lemmas 37 we can assume with
no loss of generality that s1(�r1); s2(�r2) 2 T (�; G0). Now, since F is a model of E,
s1(�r1) =E s2(�r2) entails that

F ; � j= s1(�r1) � s2(�r2):

Recall that F� is E�-free with generators Y2 and [[r]]F� 2 Y2 for all elements of G0.
From this it is easy to see that there is an injective valuation � of �v1 [ �v2 into the
generators of F� such that F�; � j= s1(�v1) � s2(�v2). It follows by Proposition 1 that
s1(�v1) =E� s2(�v2), which implies immediately that s1(�v1) =E s2(�v2). ut

6 An Extended Combination Procedure

In the following, we consider the equational theory E := E1 [E2 where, for i = 1; 2,

� Ei is a non-trivial equational theory over the (countable) signature �i;

� � := �1 \ �2 is a set of constructors for Ei;

� the word problem for Ei is decidable;

� normal forms are computable for � and Ei.

For now, we do not assume that E1
� = E2

�, as we did in the previous subsec-
tion. As we will see, such a restriction is not required to show the termination and
soundness properties of the extended combination procedure. It will be used only to
prove the procedure's completeness.

In the previous section, we would have represented the normal form of a term in
T (�i; V ) (i = 1; 2) as s(�q) where s was a term in T (�; V ) and �q a tuple of terms in
GEi

(�; V ). Considering that GEi
(�; V ) contains V because of the assumption that

� is a set of constructors, we will now use a more descriptive notation. We will
distinguish the variables in �q from the non-variables terms and write s(�y; �r) instead,
where �y collects the elements of �q that are in V and �r those that are in GEi

(�; V ) nV .
In Section 4, we have introduced the notion of an abstraction system to prove

some properties of the combination procedure. Now we will view the elements of
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the abstraction system (i.e., the equations and the initial disequation) as nodes of a
graph whose edges are induced by the relation �.

6.1 Abstraction Systems as Directed Acyclic Graphs

Consider an abstraction system A as de�ned in Section 4. Such a system induces a
graph GA := (A;�) whose set of nodes is A and whose set of edges consists of all
pairs (a1; a2) 2 A�A such that a1 � a2. According to De�nition 8, GA is in fact a
directed acyclic graph (or dag).27

Assuming the standard de�nition of path between two nodes and of length of a
path in a dag, we de�ne below a notion of height of a node, which measures the
longest possible path from a \root" of the graph to the node. This notion will be
used in the de�nition of our combination procedure, and it will be important for the
termination proof.

De�nition 40 (Node Height) Let G := (N;E) be a dag with �nite sets of nodes
and edges. A node a 2 N is a root of G i� there is no a0 2 N such that (a0; a) 2 E.28

The function h : N �! N is de�ned as follows. For all a 2 N,

� h(a) = 0, if a is a root of G;

� h(a) equals the maximum of the lengths of all the paths from the roots of G to
a, otherwise.29

Later, we will appeal to the following easily provable facts about the height
function introduced above.

Lemma 41 The following holds for every �nite dag G and associated height function
h.

1. For all nodes a; b of G, if there is a non-empty path from a to b then h(a) < h(b).

2. Adding an edge from a node of G to another of greater height does not change
the height of any node of G.

3. Removing an edge in G does not increase the height of any node of G (although
it may decrease the height of some).

4. Removing a node and relative edges from G does not increase the height of the
remaining nodes (although it may decrease the height of some).

27Observe that GA need not be a tree or even be connected.
28Because of the acyclicity condition, any �nite dag has at least one root.
29This maximum exists because G is �nite and acyclic.
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Input: (s0; t0) 2 T (�1 [ �2; V )� T (�1 [ �2; V ).

1. Let S := AS (t1 6� t2).

2. Repeatedly apply (in any order) Coll1, Coll2, NIdent, Simpl, Shar1,
Shar2 to S until none of them is applicable.

3. Succeed if S has the form fv 6� vg [ T and fail otherwise.

Figure 3: The Extended Combination Procedure.

We say that an equation of an abstraction system A is reducible i� one of its
sides is Ei-reducible for i = 1 or i = 2. The disequation in A is always irreducible.

De�nition 42 (Node Reducibility) Let (A;�) be the dag induced by the abstrac-
tion system A and let a 2 A. We say that the reducibility of a is 1, and write
rA(a) = 1, if a is reducible; we say that it is 0, and write rA(a) = 0, otherwise.

6.2 The Extended Combination Procedure

The combination procedure described in Fig. 3 is an extension of the combination
procedure introduced in Section 4. We have added two new derivation rules, Shar1
and Shar2, and have modi�ed the rule Ident (see Fig. 4). Notice that neither Shar1
nor Shar2 applies if �1 and �2 do not share function symbols.

The only di�erence between the rules Ident and NIdent is that the condition
\(y � t) 6�� (x � s)" is replaced by \x 6= y and h(x � s) � h(y � t)." Since
(y � t) �+ (x � s) implies h(x � s) > h(y � t) (by Lemma 41(1)), the condition in
NIdent implies the one in Ident, although the converse need not be true. However,
the strengthening of the precondition will not have any impact on the completeness
of the new combination procedure. In fact, we still have the property that for any
two equations x � s; y � t in an abstraction system, either h(x � s) � h(y � t) or
h(x � s) � h(y � t). Thus, if the abstraction system contains two distinct equations
x � s; y � t satisfying the condition that s; t are i-terms and s =Ei

t for i = 1 or
i = 2, then NIdent is applicable. As a consequence, all the previous proofs in which
we assumed that Ident had been applied carry over unchanged to this section where
we assume that NIdent has been applied.

The main idea of the rules Shar1 and Shar2 is to push shared function symbols
towards lower positions of the �-chains they belong to so that they can be processed
by other rules. To do that, the rules replace the reducible right-hand side t of an
equation x � t by its normal form, and then plug the \shared part" of the normal
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NIdent
T x � s y � t

T [x=y] y � t

if s; t are i-terms and s =Ei
t for i = 1 or i = 2

and
x 6= y and h(x � s) � h(y � t).

Shar1
T u 6� v x � t �y1 � �r1
T [x=s(�y; �z)[�y1=�r1]] �z � �r u 6� v x � s(�y; �r) �y1 � �r1

if (a) t is an Ei-reducible i-term for i = 1 or i = 2,

(b) NFEi

� (t) = s(�y; �r) 62 V ,
(c) �r non-empty,
(d) �z fresh variables with no repetitions,
(e) �r1 irreducible (for both theories),
(f) �y1 � Var(s(�y; �r)) and

(x � s(�y; �r)) � (y � r) for no (y � r) 2 T .

Shar2
T u 6� v x � t[�y] �y � �r
T [x=s[�y=�r]] u 6� v x � s[�y=�r] �y � �r

if (a) t is an Ei-reducible i-term for i = 1 or i = 2,

(b) NFEi

� (t) = s 2 T (�; V ) nV ,
(c) �r irreducible (for both theories),
(d) �y � Var(s) and

(x � s) � (y � r) for no (y � r) 2 T .

Figure 4: The New Derivation Rules.

form into all equations whose right-hand sides contain x. The exact formulation of
the rules is somewhat more complex since we must ensure that the resulting system
is again an abstraction system. In particular, the \alternating signature" condition
(3b) of De�nition 8 must be respected.

In the description of the rules, an expression like �z � �r denotes the set fz1 �
r1; : : : ; zn � rng where �z = (z1; : : : ; zn) and �r = (r1; : : : ; rn), and s(�y; �z) denotes
the term obtained from s(�y; �r) by replacing the subterm rj with zj for each j 2
f1; : : : ; ng. Observe that this notation also accounts for the possibility that t reduces
to a non-variable term of GEi

(�; V ). In that case, s will be a variable, �y will be
empty, and �r will be a tuple of length 1. Substitution expressions containing tuples
are to be interpreted accordingly; e.g., [�z=�r] replaces the variable zj by rj for each
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j 2 f1; : : : ; ng.
In both Shar rules it is assumed that the normal form is not a variable. The

reason for this restriction is that the case where an i-term is equivalent modulo Ei

to a variable is already taken care of by the rules Coll1 and Coll2. By requiring
that �r be non-empty, Shar1 excludes the possibility that the normal form of the
term t is a shared term. It is Shar2 that deals with this case. The reason for a
separate case is that we want to preserve the property that every �-chain is made
of equations with alternating signatures (cf. De�nition 8(3b)). When the equation
x � t has immediate �-successors, the replacement of t by the �-term s may destroy
the alternating signatures property because x � s, which is both a �1- and a �2-
equation, may inherit some of these successors from x � t.30 Shar2 restores this
property by merging into x � s all of its immediate successors|which are collected,
if any, in the set �y � �r. Condition (d) in Shar2 makes sure that the tuple �y � �r
collects all these successors. The replacement of �y1 by �r1 in Shar1 is done for similar
reasons. In both Shar rules, the restriction that all the terms in �r (resp. �r1) be in
normal form is necessary to ensure termination. We will see that it can be imposed
without loss of generality.

We prove below that the new combination procedure decides the word problem
for E = E1 [ E2 again by showing that the procedure is sound, terminates on all
inputs, and, whenever E1

� = E2
�, is also complete.

6.3 The Correctness Proof

In the following, we assume that Si and �i are de�ned as in Subsection 4.3. Again,
we will �rst show that all sets Sj obtained in correspondence of one run of the
combination procedure are in fact abstraction systems.

Lemma 43 Given an execution of the combination procedure, Sj is an abstraction
system for all j � 0.

Proof. We prove the claim by induction on j. The induction base (j = 0) is
again immediate by construction of S0 and Proposition 9.31 The induction step is
also proved as in Lemma 11 for the cases in which Sj is derived from Sj�1 by an
application of Coll1, Coll2, or NIdent.32 We show below that Sj is an abstraction
system even when it is derived by Shar1 or by Shar2.

30Recall that we may assume, without loss of generality, that the variables in Var(s) n Var(t) do
not occur in the abstraction system (cf. the remark after De�nition 26). Thus, the equations in
�y � �r are in fact successors of x � t.

31Note that this proposition also holds if the signatures �1 and �2 are not disjoint.
32To reuse the proof in Lemma 11 for the NIdent case, we appeal to the fact that x 6= y and

h(x � s) � h(y � t) imply (y � t) 6�� (x � s).
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Shar1. We know that Sj�1 and Sj have the following form:

Sj�1 = T [ fu 6� vg [ fx � tg [ f�y1 � �r1g
Sj = T [x=s(�y; �z)[�y1=�r1]] [ �z � �r [ fu 6� vg [ fx � s(�y; �r)g [ f�y1 � �r1g

To see that Sj satis�es Condition (1) of De�nition 8, �rst notice that s(�y; �r) is not
a variable by precondition (b) of the rule, and that the terms in �r are also non-
variable terms. Because Sj�1 is assumed to be an abstraction system, it satis�es
the alternating signature assumption, and thus the terms in �r1 are ��-terms for
� 2 f1; 2g n fig. Since s(�y; �z) is a �-term, we know that s(�y; �z)[�y1=�r1] is also a ��-
term. The alternating signature assumption for Sj�1 also implies that any term in
T containing x is a ��-term, and so the replacement of x by s(�y; �z)[�y1=�r1] does not
generate mixed terms.

Condition (3a) is satis�ed because �z consists of fresh variables with no repetitions.
Condition (3b) is satis�ed because

� the replacement of x by s(�y; �z)[�y1=�r1] in T does not change the signature of
any equations there, nor does it change the top symbol of any term;

� the elements of �r are members of GEi
(�; V ) nV , and thus do no start with a

�-symbol;

� �r has the same signature as t, and every immediate �-predecessor of an equa-
tion in �z � �r has the signature of the immediate predecessors of x � t in
Sj�1;

� x � s(�y; �r), which possibly starts with a shared symbol, has no �-predecessors
in Sj n fu 6� vg since x has been replaced;

� all the immediate successors of x � s(�y; �r) are inherited from x � t be-
cause, by our assumptions on the variables of normal forms, the variables in
Var(s(�y; �r)) nVar(t) do not occur in Sj�1;

� s(�y; �r) is not a shared term because the tuple �r is assumed to be non-empty;

� if an equation x0 � t0[x] in T is replaced by x0 � t0[s(�y; �z)[�y1=�r1]], then any
new successor of such an equation is an equation in �z � �r or a successor of an
equation in �y1 � �r1.

To show that Condition (2) is satis�ed, we �rst prove that Tj := Sj n f�z � �rg gives
rise to an acyclic graph. This graph has essentially the same nodes (i.e., equations) as
Sj�1, although the right-hand sides of the equations may have changed. Even if there
are possibly new edges, it is easy to see that there are no new connections between
nodes, since any connection achieved by such a new edge in Tj can be achieved by a
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path in Sj�1. Since Sj�1 gives rise to an acyclic graph by assumption, this implies
that the graph corresponding to Tj is acyclic as well. The additional nodes in Sj
(i.e., the equations in �z � �r) cannot cause a cycle either since any path through
such a node comes from a predecessor of x � t[�y] in Sj�1 and goes to a successor of
x � t[�y] in Sj�1. Thus, the cycle would have already been present in Sj�1.

Shar2. We know that Sj�1 and Sj have the following form:

Sj�1 = T [ fu 6� vg [ fx � t[�y]g [ �y � �r
Sj = T [x=s[�y=�r]] [ fu 6� vg [ fx � s[�y=�r]g [ �y � �r

We can show that Sj satis�es Conditions (1), (2), (3a), and (3b) of De�nition 8
essentially in the same way as in the Shar1 case. For Condition (3b), additionally
observe that we cannot use x � s in Sj since s is a shared term. In fact, x � s together
with an equation in �y � �r would violate the alternating signature assumption. By
using x � s[�y=�r] instead, we make sure that any successors of this equation is a
successor of an equation in �y � �r. Since every equation in �y � �r is a successor of
x � t in Sj�1,33 and Sj�1 satis�es Condition (3b) by induction, all the equations
in �y � �r have the same signature, which is also the signature of x � s[�y=�r]. Thus,
Condition (3b) for x � s[�y=�r] and its successors in Sj is satis�ed since it is satis�ed
for the equations in �y � �r and their successors in Sj�1. ut

In the lemma below we show that the combination procedure halts on all inputs.
For that we will make use of a well-founded ordering34 on abstraction systems, de�ned
in the following.

Let >l denote the lexicographic ordering over the set P := N � f0; 1g obtained
from the standard strict ordering over N and its restriction to f0; 1g. Where M(P )
denotes the set of all �nite multisets of elements of P , we will denote by A the
multiset ordering induced by >l, that is, the relation on M(P ) de�ned as follows|
where 2;�;=; n ;[ are to be interpreted as multiset operators (see [DM79] for more
details).

De�nition 44 (A) For all M;N 2 M(P ), M A N i� there exist X;Y 2 M(S)
such that

� ; 6= X �M ,

� N = (M nX) [ Y , and

� for all y 2 Y there is an x 2 X such that x >l y.

33Recall again that the variables in Var(s) n Var(t) do not occur in Sj�1.
34A strict ordering > is well-founded if there are no in�nitely decreasing chains a1 > a2 > a3 >

� � � .

47



It is possible to show that A is a well-founded total ordering on M(P ) [DM79].
Intuitively, this ordering says that a multiset M is reduced by removing one or more
elements from M , and replacing them by a �nite number of >l-smaller elements. As
customary, we will denote by w the re
exive closure of A.

Now, given a run of the combination procedure, let hj and rj be the height and
reducibility functions on the nodes of the dag induced by Sj , for j � 0. These
functions can be used to associate a �nite multiset to the abstraction system Sj:
the multiset Mj consisting of the pairs (hj(a); rj(a)) for every (dis)equation a in Sj.
Notice that Mj is indeed a multiset: if Sj contains m irreducible nodes with height
n, Mj contains m occurrences of the pair (n; 0). Similarly, if Sj contains m reducible
nodes with height n, Mj contains m occurrences of the pair (n; 0).

The next lemma shows that each application of a derivation rule decreases the
multiset associated to the current abstraction system with respect to the ordering
A.

Lemma 45 For all j � 0, Mj A Mj+1 whenever Sj+1 is generated from Sj by an
application of Coll1 or Coll2 or Simpl or NIdent or Shar.

Proof. We consider only the application of Coll1, NIdent, Shar1, and Shar2. The
proof for Coll2 is very similar to that for Coll1, and the proof for Simpl is trivial.

Coll1. We can think of Sj+1 as being derived from Sj by applying the interme-
diate steps below.

Sj = T [ fu 6� vg [ fv1 � s1[v2]g [ fv2 � s2g
S = T [ fu 6� vg[v1=v2] [ fv1 � s1[v2]g [ fv2 � s2g
S0 = T [v1=s2] [ fu 6� vg[v1=v2] [ fv1 � s1[v2]g [ fv2 � s2g

Sj+1 = T [v1=s2] [ fu 6� vg[v1=v2] [ fv2 � s2g

As in the proof of Lemma 11 we can easily show that S and S0 are abstraction
systems as well. Then, where M and M 0 are the multisets associated to S and S0,
respectively, we show that Mj wM wM 0

AMj+1:

(Mj w M) If v1 does not occur in u 6� v then Mj =M , as Sj and S coincide. If
v1 occurs in u 6� v, then we know that, since the height of u 6� v in Sj is 0, the height
of v2 � s2 is at least 2. Now, the replacement of v1 by v2 turns the dag induced by
Sj into the dag induced by S essentially by adding an edge from u 6� v to v2 � s2
and removing the edge from u 6� v to the equation v1 � s1. By points 2 and 3 of
Lemma 41, some nodes in S may have a smaller height than they had in Sj, but no
node in S has a greater height. It is obvious that all the nodes have in S the same
reducibility they had in Sj. Thus, when going fromMj to M , the �rst component of
some pairs may decrease, but no pair increases. By de�nition of A (De�nition 44),
we can then conclude that Mj wM .
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(M w M 0) If v1 does not occur in T then M = M 0, as S and S0 coincide. If
v1 occurs in T , since S is an abstraction system, it will necessarily occur in the
right-hand side of some equations of T . Let v0 � s0 be any such equation. Since

(v0 � s0[v1]) � (v1 � s1[v2]) � (v2 � s2) (6)

we know from Lemma 41(1) that every v � t in S such that (v2 � s2) � (v � t)
has a higher height in S than v0 � s0. The replacement of v1 by s2 adds an edge
from v0 � s0 only to nodes v � t like the one above. This means that, going from
S to S0, the only new edges are from a node of S to one that is already higher. By
Lemma 41(2) then no node in S moves to a greater height in S0 because of such
edge additions. Now, v0 � s0[v1] above becomes v0 � s0[v1=s2] in S0, hence it may
become reducible even if it was irreducible before. If n is the height of v0 � s0 in S,
then a pair of the form (n; 0) may be replaced by the larger pair (n; 1) when going
from M to M 0. This, however, is not a problem because at least one greater pair,
(n + 1; r(v1 � s1)), is replaced by a smaller one as well. To see this observe that,
since v1 does not occur in S0 n fv1 � s1g, the height of v1 � s1 in S0 is 0. However,
because of (v0 � s0) � (v1 � s1) it was greater than 0 in S. By de�nition of A, we
can conclude that M AM 0.

(M 0
A Mj+1) As Sj+1 is obtained from S0 by removing the node v1 � s1, we

can use Lemma 41(4) to show that the pairs corresponding to the remaining nodes
do not increase. Since one pair (the one corresponding to v1 � s1) is removed, this
implies M 0

AMj+1.
NIdent. We have Sj = T [ fx � s; y � tg and Sj+1 = T [x=y] [ fy � tg, where

h(x � s) � h(y � t) in Sj.
The graph induced by Sj+1 can be obtained from the one induced by Sj as follows.

First, add edges from the immediate predecessors in Sj of x � s to y � t. Since the
height of y � t is at least the height of x � s, and thus larger than the height of
these predecessors, Lemma 41(2) shows that this does not change the height of any
node. Second, remove the edges that go from the immediate predecessors in Sj of
x � s to x � s. By Lemma 41(3), this does not increase the height of any node.
Third, remove the node x � s. By Lemma 41(4), this does not increase the height
of any of the remaining nodes.

By applying the substitution [x=y] to the equations in T , the reducibility of a
node containing x may change from 0 to 1. However, these nodes have a height that
is smaller than the height of x � s. Thus, an increase in the pair associated to such
a node in the multiset is compensated by the fact that the pair associated to x � s
is removed. This shows that Mj AMj+1.

Shar1. We know that Sj and Sj+1 have the following form:

Sj = T [ fu 6� vg [ fx � tg [ f�y1 � �r1g
Sj+1 = T [x=s(�y; �z)[�y1=�r1]] [ �z � �r [ fu 6� vg [ fx � s(�y; �r)g [ f�y1 � �r1g
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Observe that there may be more nodes in Sj+1 than Sj : those corresponding to
equations in �z � �r. Let n be the height of x � t in Sj. We start by showing that
the height of the new nodes in Sj+1 cannot be greater than n.

Going from Sj to Sj+1, the new equations �z � �r are introduced while each
occurrence of x in the right-hand side of an equation is replaced by s(�y; �z)[�y1=�r1].
Consider any equation z � r in �z � �r. Observing that z occurs in the tuple �z we
then obtain

'[x=s(�y; �z)[�y1=�r1]] �j+1 (z � r)

for all equations ' (and only those) such that

' �j (x � t):

Using the fact that �j is acyclic, it is easy to see that no such equation ' changes its
height when going from Sj to Sj+1. As a consequence, z � r has in Sj+1 the height
that x � t had in Sj, namely, n.

The new node z � r may also have outgoing edges. Since the variables in
Var(s(�y; �r)) nVar(t) do not occur in Sj , however, these edges will go only into old
nodes  such that x � t �j  . In other words, all the edges out of z � r will end in
nodes whose height was already > n in Sj.

Similarly, the replacement of x by s(�y; �r)[�y1=�r1] in T may introduce new edges
in Sj+1 between old nodes,35 but it is again easy to see that each of these edges will
go from a node to one with already greater height. Finally, and again because the
variables in Var(s(�y; �r)) nVar(t) do not occur in Sj, the replacement of t by s(�y; �r)
in the node x � t will possibly remove some edges from Sj+1, but will not introduce
new ones.

By Points 1 and 3 of Lemma 41 then some old nodes may move to a lower height
in Sj+1 but none will move to a higher height because of the mentioned replacements.
In conclusion, we can say that the number of nodes at heights > n will not increase
from Sj to Sj+1. In addition, the reducibility value of these nodes will not change
(since their right-hand sides are not modi�ed).

Now, if some node with height > n in Sj moves to a smaller height in Sj+1, we
can already conclude that Mj A Mj+1. If, on the contrary, all the nodes at height
> n keep the same height, to prove that Mj A Mj+1 we argue that some of the
nodes at height n change their reducibility from 1 to 0. To see that, it is enough
to make the following three observations. First, it is possible that the replacement
of x by s(�y; �z) alters the reducibility of some nodes to 1, but as shown above this
will happen only at heights < n. Second, when no old node at height > n moves

35Speci�cally, between a node of the form x0 � t0[x] and a successor node of one of the equations
in �y1 � �r1.
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to a smaller height, the number of nodes at height n increases only because of the
presence of the new nodes in �z � �r, whose reducibility is 0, as each r 2 �r is already
in normal form. Third, the node x � t in Sj, which by assumption had height n
and was reducible, may or may not move to a lower height in Sj+1, but it certainly
becomes irreducible for being changed to x � s(�y; �r) where s(�y; �r) is in normal form.

Shar2. We know that Sj and Sj+1 have the following form:

Sj = T [ fu 6� vg [ fx � t[�y]g [ �y � �r
Sj+1 = T [x=s[�y=�r]] [ fu 6� vg [ fx � s[�y=�r]g [ �y � �r

Let n be the height of x � t in Sj. As in the Shar1 case we can show that the
number of nodes at height > n does not increase going from Sj to Sj+1, and that
the reducibility value of these nodes does not change. It is enough to show then that
the number of reducible nodes at height n decreases by one. Now, the node x � t
in Sj changes to x � s[�y=�r] in Sj+1. Because Sj is an abstraction system, we know
that the elements of �r are all �i-terms for i = 1 or i = 2. Moreover, each of them is
irreducible by assumption and so has the form s0(�r0) where s0 is a �-term and all the
terms in �r0 are in GEi

(�; V ). It is easy to see that s[�y=�r] too is a �i-term in normal
form, which means that x � s[�y=�r] is irreducible. ut

Proposition 46 (Termination) The combination procedure halts on all inputs.

Proof. Consider any run of the combination procedure. Since, for i = 1; 2, NFEi

�

is computable by assumption and the Ei-irreducibility of �i-terms is decidable by
Proposition 27, it is immediate that Shar1, Shar2 are applicable in �nite time. We
already know that the other derivation rules are applicable in �nite time as well. As
in the proof of Proposition 14 then all we need to show is that the procedure applies
the various rules only �nitely many times. But this is immediate by Lemma 45 and
the well-foundedness of A. ut

The next lemma shows that the derivation rules preserve satis�ability.

Lemma 47 For all j > 0 and all models A of E = E1 [ E2, the abstraction system
Sj is satis�able in A i� Sj�1 is satis�able in A.

Proof. As before, we can index all the possible cases by the derivation rule applied
to Sj�1 to obtain Sj. The cases Coll1, Coll2, NIdent, Simpl are proved exactly as
in Lemma 12. Below we give a proof only of the Shar1 case, as the proof for Shar2
is almost identical.

When Sj is generated by an application of Shar1, Sj�1 and Sj have the form

Sj�1 = T [ fu 6� vg [ fx � tg [ f�y1 � �r1g
Sj = T [x=s(�y; �z)[�y1=�r1]] [ �z � �r [ fu 6� vg [ fx � s(�y; �r)g [ f�y1 � �r1g
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Since no variable in �z also occurs in T [ fu 6� vg, it is easy to see that Sj is
equisatis�able with the set

T [x=s(�y; �r)] [ fu 6� vg [ fx � s(�y; �r)g [ f�y1 � �r1g

The claim then follows from the fact that A is a model of E and t =E s(�y; �r) (because
t =Ei

s(�y; �r) for i = 1 or i = 2 and Ei � E). ut

Exactly as we did in Section 4.3 we can now prove that the extended combination
procedure is sound.

Proposition 48 (Soundness) If the combination procedure succeeds on an input
(s0; t0), then s0 =E t0.

The completeness proof will be simpli�ed by appealing to the following lemma.

Lemma 49 The �nal abstraction system Sn generated by a failed execution of the
combination procedure can be partitioned into the sets

D := fx 6� yg T1 := fuj � rjgj2J T2 := fvk � tkgk2K

where

1. x an y are distinct and J and K are �nite;

2. each rj 2 T (�1; V ) nV and each tk 2 T (�2; V ) nV ;

3. each uj occurs only once in T1 and each vk occurs only once in T2;

4. for all v 2 Var(T1) \ Var(T2),

(a) if v = uj for some j 2 J then v 2 Var(tk) for some k 2 K,

if v = vk for some k 2 K then v 2 Var(rj) for some j 2 J ,

(b) if v = uj for some j 2 J then rj 2 GE1
(�; V ),

if v = vk for some k 2 K then tk 2 GE2
(�; V ).

Proof. Since the procedure has failed, we know that x 6= y, and thus point 1 is trivial.
Points 2, 3, 4a are an immediate consequence of the fact that Sn is an abstraction
system.

To prove (4b), let v = uj for some j 2 J (if v = vk the argument is analogous). We
claim that rj is in normal form (i.e., irreducible). In fact, if we assume otherwise we
can also assume with no loss of generality, since� is acyclic and Sn is �nite, that there
are no equations vk � tk in Sn such that tk is reducible and (uj � rj) � (vk � tk).36

36Otherwise we can consider the case in which v = vk since vk is also a shared variable.
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But then, one of Coll1, Coll2, Shar1, Shar2 applies to uj � rj, against the
assumption that Sn is the �nal abstraction system.

Now, from (4a) above we know that there is an equation vk � tk in T2 such
that (vk � tk) � (uj � rj). By De�nition 8(3b), the top symbol of rj cannot be a
�2-symbol and so, in particular, cannot be a �-symbol. But the only �1-terms in
normal form that do not start with a �-symbol are the terms of GE1

(�; V ). ut

To prove that the procedure is complete for the word problem in E := E1 [ E2

we make the additional assumption that

E1
� = E2

�:

In this case, we have the following.

Proposition 50 (Completeness) The combination procedure succeeds on input
(t1; t2) if t1 =E t2.

Proof. As before, we can prove the claim by proving that, if the procedure fails on
input (t1; t2), then t1 6=E t2. Suppose then, that the procedure fails and Sn is the
�nal abstraction system. Given Lemma 47 and the construction of S0, it is enough
to show that Sn is satis�able in E.

From Lemma 49 we know that Sn is an abstraction system with an initial formula
of the form x 6� y, where x and y are distinct. Furthermore, Sn n fx 6� yg can be
partitioned into the sets

T1 := fuj � rjgj2J and T2 := fvk � tkgk2K;

where T1 and T2 satisfy Lemma 49(1{4b). For i = 1; 2, let Ai be an Ei-free �i-algebra
with a countably in�nite set Xi of generators and let

Yi := f[[r]]Ai
�i
j r 2 GEi

(�; V )g

where �i is any bijective valuation of V onto Xi as in the proof of Theorem 24. By
Corollary 25, Ai

� is Ei
�-free with generators Yi and Xi � Yi.

Now, for i = 1; 2, we will construct a valuation �i of Var(Ti) into Ai that as-
signs with a distinct element of Yi each variable shared by fx 6� yg [ T1 and T2.
Furthermore, �1 and �2 will be such that

A1; �1 j= fx 6� yg [ T1 and A2; �2 j= T2:

By Proposition 31 then, this will entail that fx 6� yg [ T1 [ T2 (that is, Sn) is
satis�able in E. Again, we can restrict our attention to the case in which i = 1, as
the other case (which is even simpler) can be treated analogously.
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Let �1 be the valuation of Var(T1) de�ned as follows:

�1(v) :=

�
�1(v) for all v 2

S
j Var(rj)

[[rj]]A1

�1
for all v 2

S
j fujg

Such a valuation is well-de�ned because all the variables uj are distinct and none
of them belongs to V1 :=

S
j Var(rj), as shown in Lemma 49. By construction, �1

satis�es T1 in A1. We prove below that �1 is injective.
Let u; v 2 Var(T1), u 6= v. If both u and v are in V1, then �1(u) 6= �1(v) by

construction of �1. Hence, let u = uj for some j 2 J and assume by contradiction
that �1(uj) = �1(v).

If v = u` for some ` 2 J , then A1; �1 j= rj � r` by construction of �1. As �1
evaluates the variables in the equation ri � rj by distinct generators of A1, and
A1 is E1-free, we obtain that rj =E1

r` by Proposition 1; but then, since either
h(u` � r`) � h(uj � rj) or h(uj � rj) � h(u` � r`), NIdent applies to Sn against
the assumption that Sn is the �nal abstraction system.

If v 2 V1, similarly to the previous case, we can show that v =E1
rj and (since E1

is non-trivial) that v occurs in rj. Therefore, either Coll1 or Coll2 applies, again
against the assumption that Sn is the �nal abstraction system. In conclusion, �1 is
injective.

We now show that �1(v) 2 Y1 for every variable v that T1 shares with T2. Let
v 2 Var(T1) \ Var(T2). If v 2 V1, then �1(v) = �1(v) 2 X1 � Y1 by construction. If
v = uj for some j 2 J , we know from Lemma 49(4b) that rj 2 GE1

(�; V ). Observing
that �1 assigns the variables of rj with elements of X1 and recalling the de�nition of
Y1, we can conclude that �1(v), which is the same as [[rj]]A1

�1
, is an element of Y1.

To complete the proof we �nally need to make sure that �1 is properly de�ned
for x and y as well. If both x and y occur in T1, we know by the above that �1 is
already de�ned for them and that �1(x) 6= �1(y), as x and y are distinct. If x occurs
in T2 as well, we also know that �1(x) 2 Y1 (similarly for y). If x or y (or both)
does not occur in T1, let Z := fx; yg nVar(T1). Since Y1 is in�nite, we can extend
�1 arbitrarily to Var(T1)[Z so that, for all z 2 Z, �1(z) 2 Y1 and �1(z) 6= �1(v) for
all v 2 Var(T1) [ Z n fzg.

In conclusion, we have constructed a valuation �1 of Var(T1) [ fx; yg which
satis�es fx 6� yg [ T1 in A1 and maps the variables shared by fx � yg [ T1 and T2
to distinct elements of Y1. ut

The results of this section, which show the total correctness of the extended
procedure, are indeed a lifting of the correctness results in Section 4.3. In fact,
whenever the set � of symbols shared by E1 and E2 is empty, it is a set of constructors
for both E1 and E2, provided that each of them is non-trivial. Furthermore, E1

�

and E2
� are the same because they both coincide with the set fv � v j v 2 V g.
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Combining the results of this section then we obtain the following modularity result
for the decidability of the word problem, which properly extends Theorem 16.

Theorem 51 Let E1; E2 be two non-trivial equational theories of signature �1;�2,
respectively, such that � := �1 \�2 is a set of constructors for both E1 and E2, and
E1

� = E2
�. If for i = 1; 2,

� normal forms are computable for � and Ei, and

� the word problem in Ei is decidable,

then the word problem in E1 [ E2 is also decidable.

In contrast to the termination proof in the disjoint case, the termination argument
employed in Lemma 45 does not provide us with an upper-bound on the complexity
of the combination procedure. The actual complexity of the procedure will crucially
depend on the normal forms computed by the functions NFEi

� .
From Theorem 39 it follows that, given the right conditions, the combination

procedure applies immediately by recursion to more than two component theories.
For instance, to obtain a decision procedure for the word problem in E1 [ E2 [ E3

one �rst applies the combination procedure for E1 and E2, and then for E1[E2 and
E3. The next corollary states what the \right conditions" are.

Corollary 52 Let � be a functional signature and E1; : : : ; En be n equational theo-
ries of signature �1; : : : ;�n, respectively, such that � = �i \ �j and Ei

� = Ej
� for

all distinct i; j 2 f1; : : : ; ng. Also, assume that � is a set of constructors for every
Ei. If for all i 2 f1; : : : ; ng,

� normal forms are computable for � and Ei, and

� the word problem in Ei is decidable,

then the word problem in E1 [ � � � [ En is also decidable.

Alternatively, one could prove this corollary by directly extending the combi-
nation procedure to handle the union of n > 2 theories pairwise sharing the same
constructors.

7 Related work

In this section, we investigate the connection between our notion of a constructor
and the one introduced in [DKR94]. We will show that their notion is a special case
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of ours, and that their combination result for the word problem in theories sharing
constructors (Theorem 14 in [DKR94]) can be obtained as a corollary of Theorem 51.

Before we can de�ne the notion of constructors according to [DKR94], called
dkr-constructors in the following, we need to introduce some notation. An ordering
on T (
; V ) is called monotonic if s > t implies f(: : : ; s; : : : ) > f(: : : ; t; : : : ) for all
s; t 2 T (
; V ) and all function symbols f 2 
. Notice that it is always possible to
construct a (total,) well-founded, monotonic ordering on T (
; V ) for any functional
signature 
.37

In the rest of the section, we will consider a non-trivial equational theory E of
signature 
 and a subsignature � of 
.

De�nition 53 Let > be a well-founded and monotonic ordering on T (
; V ). The
signature � is a set of dkr-constructors for E w.r.t. > if

1. the =E congruence class of any term t 2 T (
; V ) contains a least element
w.r.t. >, which we denote by t#>E, and

2. f(t1; : : : ; tn)#
>
E = f(t1#

>
E; : : : ; tn#

>
E) for all f 2 � and 
-terms t1; : : : ; tn.

We will call t#>E the dkr-normal form of t, and then say that t is in dkr-normal
form whenever t = t#>E. The following are some easy consequences of De�nition 53.

Lemma 54 Let � be set of dkr-constructors for E w.r.t. >.

1. For all s; t 2 T (
; V ), s =E t i� s#>E = t#>E.

2. For all s; t 2 T (�; V ), s =E t i� s = t,

i.e., E� is the theory of syntactic equality on �-terms.

3. If t is in dkr-normal form, then all its subterms are also in dkr-normal form.

4. If f(s1; : : : ; sm) =E g(t1; : : : ; tn) for some constructors f; g 2 � and terms
s1; : : : ; sm; t1; : : : ; tn 2 T (
; V ) then f = g (and thus n = m) and si =E ti for
all i 2 f1; : : : ;mg.

For the theories E1 and E2 in Examples 28 and 29, the signature � is set of
dkr-constructors for Ei (i = 1; 2) w.r.t. an appropriate well-founded and monotonic
ordering >i:

37For instance, one can take the lexicographic path ordering induced by a total well-founded
precedence on 
[V (see [BN98]), where the variables are treated as constants|which is admissible
since the ordering is not required to be closed under substitutions.
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� In Example 29 we have seen that orienting the equations of E2 from left to
right yields a canonical term rewriting system R2 for E2. Consequently, the

transitive closure
+
!R2

of the rewrite relation induced by R2 is monotonic and
well-founded, and every E2-equivalence class contains a unique R2-irreducible

element. The second point shows that the ordering >2 :=
+
!R2

satis�es De�ni-
tion 53(1). That (2) of De�nition 53 is satis�ed is an easy consequence of the
fact that no element of � occurs on the top of a left-hand side in R2.

� In Example 28 we cannot simply take the transitive closure of the rewrite
relation !R;AC as monotonic and well-founded ordering >1. The problem is
that normal forms are unique only modulo AC, i.e., an E1-equivalence class
may contain di�erent normal forms, although they can be transformed into
each other using equations from AC. We can, however, take an arbitrary total,
monotonic, and well-founded ordering > on �1-terms, and de�ne >1 to be the

lexicographic product of
+
!R;AC with >. The e�ect of this that the ordering

> \picks" a least representative out of the AC-equivalent!R;AC-normal forms
in each E1-equivalence class. Therefore, De�nition 53(1) is satis�ed. That
De�nition 53(2) is also satis�ed is again an easy consequence of the fact that
no element of � occurs on the top of a left-hand side in R, and that the same
is true both for left- and right-hand sides of equations in AC.

In contrast, the signature �0 is not a set of dkr-constructors for the theory E3 of
Example 30 since the restriction E3

�0

of E3 to �0 is not the theory of syntactic
equality on �0-terms. Hence, a set of constructors in our sense need not be a set of
dkr-constructors.

To show that the notion of dkr-constructors is a special case of our notion of
constructors, we need a representation of the set GE(�; V ).

Lemma 55 Let � be a set of dkr-constructors for E w.r.t. >. Then GE(�; V ) =
fr 2 T (
; V ) j r#>E(�) 62 �g:

Proof. If r#>E(�) 2 � then r 62 GE(�; V ) since r =E r#
>
E by de�nition of dkr-normal

forms. Conversely, assume that r 62 GE(�; V ), i.e., r =E f(�t) for some function
symbol f 2 � and tuple �t of 
-terms. By de�nition of dkr-constructors, the dkr-
normal form f(�t)#>E of f(�t) has top symbol f , and by Lemma 54(1) it is also the
dkr-normal form of r. It follows that r#>E 62 �. ut

Proposition 56 If � is a set of dkr-constructors for E w.r.t. >, then � is a set
of constructors for E according to De�nition 22.

Proof. We show that the three conditions of Theorem 24 are satis�ed.
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(1) It is suÆcient to show that v#>E = v for all variables v 2 V . Thus, assume
that v#>E = t 6= v. Since E is consistent, the term t must contain v. However, then
v > v#>E = t contradicts our assumption that > is well-founded and monotonic.

(2) Let t be an arbitrary 
-term. Then its dkr-normal form t#>E can be repre-
sented as s(�r), where s(�v) is a �-term and all terms r in the tuple �r have top symbols
not in �. Since these terms r are subterms of a term in dkr-normal form, they are
also in dkr-normal form, and thus belong to GE(�; V ) by Lemma 55.

(3) Let s1(�r1); s2(�r2) 2 T (�;GE(�; V )), and assume that s1(�v1), s2(�v2) are ob-
tained from s1(�r1), s2(�r2) by abstracting �r1; �r2 so that two terms in �r1; �r2 are ab-
stracted by the same variable i� they are equivalent in E. We must show that
s1(�r1) =E s2(�r2) implies s1(�v1) =E s2(�v2) (since the converse is trivial).

If s1(�v1) is a variable, then s1(�r1) = r for an element r of GE(�; V ). By de�nition
of GE(�; V ), this implies that s2(�v2) is also a variable. In addition, since E-equivalent
terms are abstracted by the same variable, these two variables coincide, and thus
s1(�v1) = s2(�v2). The same argument applies if s2(�v2) is a variable.

Therefore, assume that s1(�v1) and s2(�v2) are both nonvariable �-terms. By
Lemma 54(4), they have the same top symbol and their respective subterms are
E-equivalent. Thus, we can easily show the claim by structural induction. ut

Point (2) of the above proof may seem to entail that normal forms for E and �
are computable in the sense of De�nition 26. This is not the case, however, because
the argument in (2) relies on dkr-normal forms, whereas the computability of such
normal forms is not assured by the sole assumption that � is a set of dkr-constructors
for E w.r.t >. In [DKR94], dkr-normal forms are shown to be computable by also
assuming that the so-called symbol matching problem is decidable.

De�nition 57 We say that the symbol matching problem on � modulo E is decid-
able in T (
; V ) if there exists an algorithm that decides, for all t 2 T (
; V ), whether
there exists a function symbol f 2 � and a tuple of 
-terms �t such that t =E f(�t).
We say that t matches onto � modulo E if t =E f(�t) for some f 2 � and some tuple
�t of 
-terms.

For the theories E1 and E2 of Examples 28 and 29, it is easy to see that the
symbol matching problem on � is decidable. In fact, given a �i-term t, one simply
computes the normal form bt of t w.r.t. the corresponding rewrite relation (i.e.,!R;AC

if i = 1, and !R2
if i = 2). If bt starts with a symbol f 2 �, then bt = f(�t) for some

tuple of 
-terms �t, and thus t matches onto � modulo E. Otherwise, it is easy to
see that t does not match onto � modulo E. This is again a consequence of the fact
that no symbol from � appears at the top of a left-hand side of a rewrite rule.

As pointed out in [DKR94], if the symbol matching problem and the word prob-
lem are decidable for E, then a symbol f 2 � and a tuple of terms �t satisfying
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t =E f(�t) can be e�ectively computed, whenever it exists. In fact, once we know
that an appropriate function symbol in � and a tuple of 
-terms exists, we can
simply enumerate all pairs consisting of a symbol f 2 � and a tuple �t of 
-terms,38

and test whether t =E f(�t). We call an algorithm that realizes such a computa-
tion a symbol matching algorithm on � modulo E. Using such a symbol matching
algorithm, we can de�ne a function NFE

� for E and � with the following recursive
de�nition.

De�nition 58 Assume that � is set of dkr-constructors for E w.r.t. >, the word
problem for E and the symbol matching problem on � modulo E are decidable. and
let M be any symbol matching algorithm on � modulo E. Then, let NFE

� be the
function de�ned as follows: For every t 2 T (
; V ),

1. NFE
�(t) := f(NFE

�(t1); : : : ;NF
E
�(tn)) if t matches onto � modulo E and f is

the �-symbol and (t1; : : : ; tn) the tuple of 
-terms returned by M on input t.

2. NFE
�(t) := t, otherwise.

Lemma 59 Under the assumptions of De�nition 58 the function NFE
� is well-de�ned

and satis�es the requirements of De�nition 26.

Proof. To show that NFE
� is well-de�ned, it is suÆcient to �nd a well-founded

ordering on terms such that, in the �rst case of the de�nition, the terms t1; : : : ; tn
are smaller than t w.r.t. this ordering.

We de�ne this ordering using a mapping � from T (
; V ) into the nonnegative
integers. For any 
-term s, its dkr-normal form can be uniquely represented in
the form s#>E = s0(�r), where s0(�v) is a �-term and all terms r in the tuple �r have
top symbols that do not belong to �. Let �(s) be the size of the term s0(�v). If we
de�ne s1 � s2 i� �(s1) > �(s2), then � is a well-founded ordering on 
-terms. It
remains to be shown that, if t =E f(t1; : : : ; tn) for some f 2 �, then �(t) > �(ti)
for all i 2 f1; : : : ; ng. But this is an easy consequence of the fact that t#>E =
f(t1; : : : ; tn)#

>
E = f(t1#

>
E; : : : ; tn#

>
E): In conclusion, we have shown that NFE

� is well-
de�ned.

By our assumptions, the case distinction in the de�nition is e�ective and a sym-
bol matching algorithm on � modulo E exists. Therefore, the function NFE

� is
computable as well.

Now we prove by well-founded induction on � that NFE
�(t) is a normal form of t.

When the second case of De�nition 58 applies, t belongs to GE(�; V ) by de�nition,
which entails immediately that NFE

�(t) := t is in normal form. When the �rst case

38Recall that our signatures are assumed to be countable, and thus the sets of terms are countable
as well.
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applies, we know that NFE
�(t) = f(NFE

�(t1); : : : ;NF
E
�(tn)) for some �-symbol f and

tuple (t1; : : : ; tn) such that t =E f(t1; : : : ; tn). As we have seen above, t � ti for all
i 2 f1; : : : ; ng, which entails by induction that NFE

�(ti) is a normal form of ti for
each i 2 f1; : : : ; ng. Since f 2 �, it is immediate that f(NF E

�(t1); : : : ;NF
E
�(tn)) is

in normal form as well. To see that NFE
�(t) is indeed a normal form of t, it is now

enough to observe that t =E f(t1; : : : ; tn) =E f(NFE
�(t1); : : : ;NF

E
�(tn)); where the

last equivalence is a consequence of the induction assumption that ti =E NFE
�(ti)

for each i 2 f1; : : : ; ng. ut

We are now ready to show that Theorem 14 in [DKR94] can be obtained as a
corollary of our Theorem 51.

Corollary 60 Let E1; E2 be non-trivial equational theories of signature �1;�2, re-
spectively, such that � := �1 \ �2 is a set of dkr-constructors for both E1 and E2.
If for i = 1; 2,

� the symbol matching problem on � modulo Ei is decidable, and

� the word problem in Ei is decidable,

then the word problem in E1 [ E2 is also decidable.

Proof. We show that the prerequisites of Theorem 51 are satis�ed. By Proposi-
tion 56, � is a set of constructors according to De�nition 22 for both E1 and E2. By
Lemma 54(2), E1

� = E2
� since both coincide with the syntactic equality on �-terms.

Finally, normal forms are computable for � and Ei (i = 1; 2) by Lemma 59. ut

We believe that our de�nition of constructor has several advantages over the one
introduced in [DKR94]. First, it is more general since we only require E� to be
collapse-free whereas [DKR94] requires E� to be equal to the theory of syntactic
equality on �-terms. Second, the de�nition of dkr-constructors is rather technical
and depends strongly on the chosen ordering >. In contrast, our de�nition uses
only abstract algebraic properties. Finally, the combination algorithm described in
[DKR94] is not rule-based, since it is a straightforward extension of the algorithms for
the disjoint case described in [SS89, Nip89, KR94], and thus shares the disadvantages
of these algorithms, as mentioned in the introduction.

8 Conclusion and Open Questions

In this report, we have introduced a new, rule-based procedure that combines in a
modular fashion decision procedures for the word problem. The procedure's main
idea, propagation of equality constraints between the component decision procedures,

60



is similar in spirit to the Nelson-Oppen combination method, a general method for
combining decision procedures for the validity of quanti�er-free formulae in theories
over disjoint signatures. Its speci�cs, however, are essentially di�erent because the
word problem is a rather restricted kind of validity problem. As a matter of fact,
and contrary to common belief, the Nelson-Oppen method cannot be used for the
purpose of combining decision procedures for the world problem, as we have shown
in Section 3.

We have �rst presented (in Section 4) a procedure that can deal with equational
theories over disjoint signatures, and then extended this procedure (in Section 6) so
that it can also treat theories sharing symbols that we called constructors. Essen-
tially, this extension was achieved by adding two more rules that handle the shared
constructors. The reasons for choosing this two-step approach were mainly of a
didactic nature. The proof of correctness of the procedure for the disjoint case is
simpler than the one for the extended procedure, but has a very similar structure.
Thus, it prepares the reader for the more complex proof in the general case.

As mentioned in the introduction, the modularity result for the disjoint case has
been known for quite some time [Pig74, Tid86, SS89, Nip89, KR94]. Our main goal
in Section 4 was to develop a rule-based combination procedure, which is more trans-
parent and more 
exible than the known ones, and uses deterministic rules that can
be applied in arbitrary order. Another distinguishing feature of our approach is that
the proof of completeness of the procedure is based solely on algebraic arguments.
This not only provides for a simpler proof, as we think we have demonstrated, but
it also leads to a rather general extension of the procedure to the non-disjoint case.

The only combination procedure we are aware of for the case of component de-
cision procedures whose theories have symbols in common is described in [DKR94].
We have shown that our approach applies to a more general class of theories than
the one considered in [DKR94]. In addition, we believe that our algebraic method
yields a less technical, and thus more transparent, de�nition of this class. It should
be noted, however, that [DKR94] also contains combination results for uni�cation
and matching, whereas the present report is concerned only with the word problem.
Thus, one direction for future research is to extend our approach to the combination
of decision procedures for the matching and the uni�cation problem as well.

Another direction would be to extend the class of theories even further by relaxing
the restriction that the equational theory over the constructors be collapse-free. A
crucial artifact to our completeness proof is the set GE(�; V ), which is used to
obtain the (countably in�nite) set of generators of a certain free algebra. When the
equational theory over the constructors is not collapse-free, GE(�; V ) is empty, and
thus cannot be used to describe this set of generators. An appropriate alternative
characterization of the set of generators might allow us to remove altogether the
restriction that the equational theory over the constructors be collapse-free.

A further generalization would be to extend our results to the case of many-sorted
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equational logic. This should not be very hard, but from a practical point of view
it would considerably increase the class of theories to which our approach applies.
For instance, many examples from algebraic speci�cation (such as lists of natural
numbers, etc.) make sense only in a sorted environment.
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