
D
R

A
FT

An Investigation of the MaxCut Problem∗

John W. Wheeler

Computer Science Department

The University of Iowa

Iowa City, IA 52242

wheeer@cs.uiowa.edu

April 27, 2004

Abstract

The MaxCut problem seeks to partition the vertices of a graph into two sets such that

the weight of the edges joining those sets is maximized. The MaxCut problem has been

of continued research interest and has developed an extensive literature. After reviewing of a

small portion of that literature, this article discusses an approach to the solution of this problem

based on a branch and bound algorithm composed with a divide and conquer preprocessing

phase. Preliminary results are given and several directions for further research are outlined.

1 Introduction

Given a weighted undirected graph, the MaxCut problem seeks to partition the vertices of the

graph into two sets such that the sum of the weights of the edges that join the two sets is

maximized. Though simple to state, the MaxCut problem is among those that are known to

be computationally intractable, i.e., it is an NP-complete problem. Despite this difficulty, the
∗Partially supported by funding from the U.S. Army Materiel Systems Analysis Activity.

1

D
R

A
FT

MaxCut problem has many applications and has been reformulated in a multitude of ways. That

the MaxCut problem deserves further study is evidenced by the continuing active research in this

and related areas.

Applications of MaxCut come from diverse areas, including layout of electronic circuitry, state

problems in statistical physics, and combinatorial optimization. Several of these applications will

be described in more detail in Section 3.3. Many methods have been applied to the solution of the

MaxCut problem, ranging from random selection schemes to exhaustive search. These methods

of attack vary in approach and rigor. A selection of these methods are categorized and discussed

in Section 4.

This report is organized as follows. The next section provides some terminology and formally

defines the MaxCut problem. Sections 3 and 4 then review some of the literature about the compu-

tational complexity, applications, and solution methods of the MaxCut problem. The remainder

of the report discusses the approach we are developing for the MaxCut question, describes of our

preliminary results, and outlines several directions for future work.

2 Preliminaries

We define an undirected simple graph G = (V,E) to be composed of a finite set of n vertices,

Vn = {1, 2, . . . , n}, and a set of m edges each identified by the vertices it joins, Em = {(i, j) : 1 ≤
i < j ≤ n}. To denote an individual edge we use e, eij or ij, alternatively. The degree of a vertex,

dv, is the number of edges connected to it. By the notation Kn we will denote the complete simple

graph on n vertices, i.e. the graph containing an edge between every pair of vertices.

A path from vertex i to vertex j is a graph composed of a series of vertices and the edges that

join them,

V (P) = {x0, x1, . . . , xl} E(P) = {x1x2, x2x3, . . . , xl−1xl}.

A path is usually denoted by x0, x1, . . . , xl. When a path exists between two vertices, we say they

2

D
R

A
FT

are connected. A cycle is a path in which l ≥ 3, x0 = xl, and xi �= xj for all i, j ∈ {0, 1, . . . , l− 1}
such that i �= j.

The subgraph induced by a subset S ⊆ V is denoted GS and consists of the vertices in S and

only those edges of the graph G which join vertices in S. A component is the subgraph induced

by a maximal set of connected vertices. Finally, a biconnected component is the subgraph induced

by a maximal set of vertices such that every pair of vertices is in at least one cycle. The reader

is referred to a reference text, such as Bollobás [3], for further information on graph theory.

Given a subset of the vertices of a graph, S ⊆ Vn, we define a cut induced by S as the set of

edges with one end in S and the other in V − S. Equivalently, the cut, δG(S), is defined as,

δG(S) := {ij | |S ∩ {i, j}| = 1}.

When the graph G is understood from the context, we write simply δ(S). It is often convenient to

speak of the set of edges that do not participate in a cut. We call these dropped edges and denote

the set of dropped edges in a cut induced by set S as DG(S), or D(S) when G is understood.

This set is defined by,

DG(S) := {ij | |S ∩ {i, j}| = 2} ∪ {ij | |(V − S) ∩ {i, j}| = 2}.

When we discuss bounding functions, we will denote the set of edges dropped by partial assignment

of vertices i, . . . , j to either S or V − S by Dj
i (S). Thus, Di−1

0 (S) is the set of edges dropped by

the assignment of the first i − 1 vertices, while Dn
i (S) are the set of edges that will be dropped

by assignment of the remaining vertices, i, . . . , n.

The incidence vector of the cut δ(S), or cut vector, is that member of the
(n
2

)
-dimensional

Cartesian binary space {0, 1}(n
2) where δ(S)ij = 1 iff |S ∩ {i, j}| = 1. The cut vector is also

denoted δ(S), by an abuse of notation, and is used as a basis for developing the polyhedral theory

of the MaxCut problem, a subject we will discuss briefly in Section 4.

3

D
R

A
FT

Let weight c be a function assigning to each edge a non-negative real value, c : E → R+, c(eij) = cij .

Given a cut δ(S), the weight of the cut is the sum of the weights of the edges in the cut.

c(δ(S)) :=
∑

ij∈δ(S)

cij

The MaxCut problem has two forms: a general form and a simple form. The general MaxCut

problem asks to find the maximum cut weight taken over all possible cuts of the weighted graph

G.

mc(G) = max{c(δ(S)) | S ⊆ G}

The simple MaxCut problem restricts the weighting function to take on only the values 0 or 1.

Thus, the simple MaxCut problem asks only for the number of edges in the largest cut.

3 A Few Facts about the MaxCut Problem

We list here a few useful facts about the complexity of the MaxCut problem and mention some

of the many applications in which the problem has found use.

3.1 NP-completeness

The MaxCut problem, even in its restricted simple form, was shown by Karp [17] to be an NP-

complete problem. He did this by reducing the Partition problem, one of a collection of problems

which he proved be intractable in the same paper, to the MaxCut problem. Additional proofs of

the NP-completeness of the MaxCut problem can be found in [20].

Given that the general problem is NP-complete, a polynomial time approximation algorithm

becomes an attractive alternative. We will mention several positive results on such algorithms

in Section 4. However, H̊astad has shown there are also limits to this approach. In [14] he

demonstrated that even approximating the value of the MaxCut to a performance guarantee of

4

D
R

A
FT

any thing better than 16/17 = .94117 is itself an NP-hard problem.

3.2 Classes of graphs for which polynomial time algorithms are known

Another approach to the MaxCut problem asks whether there are restricted classes of the general

unweighted graphs for which the problem becomes tractable. Again, some progress has been made

in this direction. Three related classes of graphs have been found that admit polynomial time

solutions for the MaxCut problem. These are the planar graphs, the graphs not reducible to K5,

and the weakly bipartite graphs [6, 20]. While the planar graphs and the graphs not reducible to

K5 admit an intuitive understanding, the weakly bipartite graphs are not so easily characterized.

Guenin, [13], defines a graph as weakly bipartite “if the polyhedron Q is integral (i.e., all its

extreme points are integral):

Q = {x ∈ R
|E|
+ | ∑

i∈C xi ≥ 1, for all odd cycles C of G}.”

He notes that if x̂ is a {0, 1} extreme point of this polyhedron, then x̂ is an incidence vector which

intersects every odd cycle in G. This being the case, 1− x̂, where 1 is the vector of all 1’s, is the

incidence vector of a bipartite subgraph of G. In particular, if x̂ is the solution of

min{cx | x ∈ Q ∩ {0, 1}|E|}

then 1 − x̂ is a solution to the general MaxCut problem. He notes that others have shown that

both planar graphs and graphs not reducible to K5 are weakly bipartite graphs. Poljak and Tuza

[20] give other classes of graphs that are also weakly bipartite. For instance, a graph G with a

vertex v ∈ V such that the graph G − {v} is bipartite is a weakly bipartite graph. Both sources

warn, however, that the weakly bipartite graphs have not been completely characterized.

5

D
R

A
FT

3.3 Applications of MaxCut

The MaxCut problems has many applications in diverse fields. One of the more commonly cited

examples comes from the field of design of very large scale integrated (VLSI) circuits. This

problem asks for the minimization of the number of vias, or cross-layer connections, in a circuit

design subject to pin assignments and layout constraints. Another very commonly mentioned

application is in statistical physics where the ground states of spin glasses in the presence of an

external magnetic field are sought.

Other applications can be found in the area of combinatorial optimization where many geo-

metric reformulations of the MaxCut problem are possible based on the incidence vector repre-

sentation. Examples here include linear programming over the cut polytope and unconstrained

quadratic 0-1 programming. The interested reader is referred to the extensive surveys of Deza and

Laurent [5, 6] and Poljak and Tuza [20] for more information on the applications of the MaxCut

problem.

4 Solution Methods

4.1 Classification of methods

Approaches to the solution of the MaxCut problem can be characterized in a number of ways.

Two characteristics will be used in this article as a framework within which to discuss several

of these approaches. These two characteristics are (1) whether the method admits an exact

solution, an approximate solution with some performance guarantee, or simply a solution without

performance guarantee and (2) whether the method attacks the problem directly, manipulating a

representation of a graph, or indirectly through reformulating the problem into another problem

domain.

6

D
R

A
FT

4.2 Methods examples

4.2.1 Exact methods

The naive approach to an exact solution for the MaxCut problem enumerates the 2n possible

cuts of the graph, calculates the weight of each, and records the value of the cut that provides

the greatest weight. While this approach will find the maximum weight cut, it will require time

O(m2n) to examine all of the cuts.

The process of enumerating the cuts in the naive approach can be conceptualized as a complete

traversal of the binary decision tree in which each branch is split based on the decision of whether

to include each vertex in the cut set S. A natural way to reduce the time required to traverse this

tree is to apply a heuristic function to estimate the value of the MaxCut that can be achieved

based on the current state of the search. Such heuristics are of two types: upper bounds and

lower bounds. Both are useful, although in different ways, to limit the traversal of the decision

tree. In both cases, the best currently known cut weight is compared to the bound value. If

the currently known value is greater than the upper bound achievable given the present state of

the search, the current branch of the search tree can be abandoned. If, on the other hand, the

currently known value is below the lower bound of that achievable given the current state of the

search, the known value may be updated to the bound value. While in this case the remaining

subtree must still be traversed, portions of that subtree may be avoided based on the improved

known value. Examples of this approach and a variety of bounds used to limit search in this way

are found in [22, 23].

Another way to reduce problem complexity is to divide the problem into smaller component

problems, solve these smaller problems, and aggregate their solutions. Fedin and Kulikov [9]

discuss one example of this approach. Their approach systematically decomposes the problem

graph by removing vertices of low degree while preserving the implications of the removed vertices

by modifying the characteristics of the remaining vertices. When no further simplifications are

7

D
R

A
FT

applicable, an arbitrary vertex is selected and the problem is split on the assignment of that

vertex to one or the other partition. These two subproblems are then each submitted to the full

algorithm for solution and the best solution is returned. They report that their algorithm runs

in time poly(m) · 2m/4 improving the running time of poly(m) · 2m/3 reported by Gramm, Hirsch,

Niedermeier, and Rossmanith in [12].

4.2.2 Approximation methods with performance guarantees

Relaxing the requirement for an exact solution leads to the study of p-approximation algorithms,

or polynomial time algorithms that provide a solution that is at least p times the optimal value.

The constant p is called the the performance guarantee of the algorithm. Goemans and Williamson

[10] cite five algorithms with improving performance guarantees before discussing their own algo-

rithm. Here we only mention the first of these and the contribution of Goemans and Williamson.

In 1976, Sahni and Gonzales [21] presented a .5-approximation algorithm for the MaxCut problem.

Their algorithm iterates through the vertices and assigns each vertex to maximize the partial cut

that has resulted from the assignment of the preceding vertices. Their algorithm essentially corre-

sponds to a randomized algorithm in which each vertex is assigned to a partition based on the flip

of an unbiased coin. In 1994, Goemans and Williamson became the first to apply semidefinite pro-

gramming to the solution of the MaxCut problem. Their algorithm uses a randomized rounding

of the solution to a non-linear relaxation of the MaxCut problem to give a .878-approximation.

4.2.3 Inexact methods without performance guarantees

Many of the solution methods that have been developed in the study of artificial intelligence have

been also applied to the solution of the MaxCut problem. Such methods include random selection,

restarting local search, simulated annealing, and genetic programming in its many forms. Most

of these approaches rely on some form of random selection process and while the the solution

they provide generally improves as the algorithm is allowed to continue to run, they cannot

8

D
R

A
FT

guarantee any better performance than the .5-approximation algorithm described by Sahni and

Gonzales. These approaches are not without appeal and continue to attract research attention.

Two examples of studies involving these approaches are found in [11, 7].

In [11], Gosti, Nguren, Wan, and Zhou consider the value of performing a local search in

the vicinity of the solution returned by the Goemans and Williamson algorithm as a method for

improving that solution. They compared this composite approach with a Metropolis search, with

Simulated annealing, and with local search alone. They concluded the Metropolis, the Simulating

Annealing and the Goemans and Williamson algorithm followed by local search were all effective

for graphs up to 100 vertices. For larger problems, however, they recommend simulated annealing

as the method of choice.

In [7], Dolezal, Hofmeister, and Lefmann discuss an empirical study comparing a similar

set of solution methods for the MaxCut problem. Specifically, they compared five methods:

an application of the Goemans and Williamson semidefinite programming approach, a random

strategy, a genetic algorithm, two combinatorial algorithms, and a divide and conquer strategy.

Based on their sampling of randomly created graphs, they concluded the approach that randomly

selected candidate cuts for a preset time and kept the maximum cut value gave the best trade off

between runtime and accuracy of the result.

4.2.4 Reformulation into different problem space

The MaxCut problem can be reformulated in numerous ways. For example, it is well known that

by the following theorem the MaxCut problem may be mapped into an equivalent Max-2-Sat

problem. A Max-2-Sat problem takes a set of clauses in conjunctive normal form each containing

at most 2 literals and asks for the maximum number of clause that can be simultaneously satisfied.

Theorem 1 ([4, 18]). Given graph G = (V,E), where |V | = n, |E| = m, assume weight w(i, j) = 1

for each (i, j) ∈ E. Construct an instance of MAX-2-SAT as follows: Let V be the set of proposi-

tional variables and for each edge (i, j) ∈ E create exactly two binary clauses: (i ∨ j) and (i ∨ j).

9

D
R

A
FT

Let F be the collection of such binary clauses, then the MaxCut problem on the graph G has a

cut of weight k iff the constructed MAX-2-SAT problem has an assignment under which m + k

clauses are true.

It is interesting to note here that Alber, Gramm, and Niedermeier [1] have observed that

while the MaxCut problem is thus theoretically equivalent to the Max-2-Sat problem, in practice,

random MaxCut problems reformulated as Max-2-Sat problems are generally harder to solve than

random Max-2-Sat problems owing to the special structure of the transformed problem.

Another example of a reformulation that can be applied to the MaxCut problem is that of

transforming graphs into points in |V |-dimensional Cartesian space by the use of incidence vectors.

This approach allows to apply the very large array of tools that have been developed in the areas

of combinatorial optimization, convex programming, and polyhedral theory. The approximation

method of Goemans and Williamson falls into this category. A more complete introduction to

these areas is well beyond the scope of the current work. Again, the interested reader is referred

to the articles [5, 6] and [20] for further information.

5 Current Work

Based on the recent success of Shen and Zhang with the Max-2-Sat problem [22, 23], we have

mounted a direct attack on the MaxCut problem. Our approach combines a preprocessing phase

with a branch and bound algorithm. The preprocessing step we have implemented identifies

and separates certain subgraphs that are easily shown to be bipartite. In our case, the selected

subgraphs are the graphs composed of only edges that participate in no cycle and the biconnected

components that contain no cycle of odd length. Once identified, these subgraphs are removed

from the problem graph and all edges in them are included in the MaxCut solution. The remainder

of the problem graph is then submitted to a branch and bound algorithm that closely models that

used by Shen and Zhang for the Max-2-Sat problem. In Figure 1, the function bcc max cut

10

D
R

A
FT

illustrates the top level of a decision version of our program. In the following subsections, we

address first the algorithm used in the preprocessing phase and then that used in the branch and

bound phase.

5.1 Biconnected component algorithm

Using a divide and conquer approach one first seeks to divide a problem into smaller subproblems

that are easier to solve. As all edges in any bipartite graph trivially participate in its MaxCut

solution, we identify and characterize two classes of bipartite subgraphs of the problem graph.

These subgraphs are the collection of edges that participate in no cycle and the biconnected

components that contain no cycles of odd length.

The linear time algorithm we use to identify and characterize these subgraphs is similar to one

attributed to Hopcroft and Tarjan [15, 24] in Atallah [2]. Their algorithm uses a single depth first

pass over the problem graph to simply list the vertices contained in biconnected components. In

contrast, our algorithm uses two depth first passes to both identity and characterize all edges in

the graph. The algorithm, illustrated as BCC in Figure 1, is described in the following paragraphs.

The first depth first pass computes three values for each vertex: a discovery time v.dis, a value

v.low, and a boolean value v.odd. The algorithm uses a global variable time that is incremented

when each vertex is first visited. Time is initially 0 and is V when the first depth first pass

is completed. The value v.low depends on this vertex discovery time such that the following

constraint holds.

v.low = min(v.dis, w.dis | (u,w) is a back edge for some descendant u of v)

That is, v.low is the discovery time of the vertex closest to the root that can be reached from

the subtree rooted at v through at most one back edge. This value captures the concept of cycle

within the graph and allows to identify biconnected components.

The value v.odd for a vertex is determined by whether its depth in the search tree, i.e., the

11

D
R

A
FT

Figure 1: Decision and biconnected component algorithms.

function bcc max cut (G: graph, i: integer) return boolean
BCC (G); // identify and classify biconnected components in G
CurrentCut := 0;
foreach even biconnected component b or bridge b in G do

CurrentCut := CurrentCut + edgesIn(b);
end for
if CurrentCut≥ i return true;
else

foreach odd biconnected component bcc in G do
CurrentCut := CurrentCut + bcc max cut1(bcc);
if CurrentCut ≥ i return true;

end for
end if
return false;

end function

procedure BCC (G: graph)
// first pass
depthfirstsearch (G)

foreach vertex v visited
v.odd := odd(depth of v in search tree);
v.dis := discovery time ;
v.low := min(v.dis, w.dis :

(u, w) is a back edge for some descendant u of v);
end for

end depthfirstsearch
// second depth first search
depthfirstsearch (G)

foreach vertex v visited
foreach edge e = vu leaving v

if v.odd = u.odd then mark vu as a member of an odd length cycle; end if
if v.dis < u.low then mark vu as a bridge ;
else if v.dis = u.low then vu starts new biconnected component;
else vu continues current biconnected component ;
end if

end for
end for

end depthfirstsearch
end procedure

12

D
R

A
FT

distance between the vertex and the root vertex, is an even or odd value. When a back edge

is found during the first depth first pass, a comparison of the odd values of the vertices it joins

allows to determine whether this edge completes a cycle of even or odd length.

The second pass uses the values dis, low and odd to characterize each edge in the graph

into one of three categories. An edge that is not part of any cycle is identified as a bridge. All

other edges participate in one or more cycles and are separated based on whether they are in a

biconnected component that contains an odd length cycle or not. A biconnected component that

contains an odd cycle is called itself labeled odd, otherwise it is labeled even.

This segregation of edges and components allows the top level of the program to rapidly

dispose of the simple cases of bridge edges and even biconnected components before addressing

the remaining parts of the problem.

5.2 Branch and bound algorithm

The second phase of our approach consists of the recursive branch and bound algorithm that is

illustrated in Figure 2. The algorithm operates on three values that are initialized in the function

bcc max cut1 prior to function bcc max cut2 being called to perform a depth first search of the

solution space. This latter function uses several bounding heuristics to limit the solution space,

as will be explained.

In this algorithm, the vertices of the problem graph are identified with the integers in the

order they are considered for assignment by the algorithm. Thus vertex 1 is assigned to either

S or V − S before any higher numbered vertex and so on for the remaining vertices. For each

vertex, v, the algorithm maintains three values. The value v.N contains the set of neighbors of v

that have not been assigned when v is considered for assignment. That is,

v.N = {x | (v, x) ∈ E ∧ (v < x)}

13

D
R

A
FT

Figure 2: A decision algorithm for MaxCut of a biconnected component.

function bcc max cut1 (G: graph) return integer
// initialization
foreach vertex v in G do

compute v.N from G;
v.mb0 := v.mb1 := 0;

end for
return bcc max cut2(G, 1, |Eg|, 0);

end function

function bcc max cut2 (G: graph, i, d, g: integer) return integer
1 if (i > |VG|) return c(S); // end of branch in search tree
2 cut := 0;
3 if (lower bound c(Si) > g) then g := cut := lower bound c(Si); adjust(d); end if
4 if (upper bound c(Si) < g) return 0;
5 // decide if we want to assign vertex i to S
6 if (i.mb0 ≤ d) ∧ (i.mb0 < i.mb1 + |i.N |) then
7 record assignment implications(i, true);
8 new := bcc max cut2(G, i + 1, d − i.mb0, g)
9 if (new > cut) then cut := new; adjust(d); end if
10 undo assignment implications(i, true);
11 end if
12 // decide if we want to assign vertex i to V − S
13 if (i.mb1 ≤ d) ∧ (i.mb1 ≤ i.mb0 + |i.N |) then
14 record assignment implications(i, false);
15 new := bcc max cut2(G, i + 1, d − i.mb1, g)
16 if (new > cut) then cut := new; adjust(d); end if
17 undo assignment implications(i, false);
18 end if
19 return cut;
end function

procedure record assignment implications (v: vertex, b: boolean)
if b then for y ∈ N(x) do y.mb0 := y.mb0 + 1 end for;
else for y ∈ N(x) do y.mb1 := y.mb1 + 1 end for; end if

end procedure

procedure undo assignment implications (v: vertex, b: boolean)
if b then for y ∈ v.N do y.mb0 := y.mb0 − 1 end for;
else for y ∈ v.N do y.mb1 := y.mb1 − 1 end for; end if

end procedure

14

D
R

A
FT

The value of v.N is computed once on entering the algorithm and does not change. The values

v.mb0 and v.mb1 are integers that give the number of neighbors of v that have been assigned to

S and V − S, respectively. Thus, v.mb0 gives, based on the current assignment of vertices, the

number of edges in the problem graph that will be dropped if vertex v is assigned to the set S.

Similarly, v.mb1 gives the number of edges that will be dropped if vertex v is assigned to the set

V − S. These values are maintained during the execution of the algorithms by the procedures

record assignment implications and undo assignment implications.

Once these values are initialized, function bcc max cut2 is called to search the solution space.

The parameters to this function, i and g, are the vertex to be considered for assignment and the

goal cut value, respectively. The parameter d is the number of edges that may be dropped by

the remaining vertex assignments before no further solution on this branch of the search tree will

improve the best currently known solution.

The core of the algorithm is expressed in lines 1, 2, 7–10, 14–17, and 19 of the function

bcc max cut2 in Figure 2. Together, these lines simply enumerate the cuts of the problem graph

and record the best solution. The following theorem concerning this core algorithm is easily

proven:

Theorem 2. The time complexity of the core bcc max cut2 algorithm is O(n2n).

Because m = O(n2), this result is better in the worst case than the latest result of Fedin and

Kulikov [9] who proposed an algorithm of complexity poly(m) · 2m/4.

The remaining lines in the algorithm apply bounding heuristics to improve this performance.

In line 3, the following value gives a lower bound on the MaxCut for the current branch prior to

the assignment of vertex i,

|E| − (Di−1
0 (S) +

n∑

j=i

max(j.mb0, j.mb1) +
n∑

j=i

|j.N |).

In words, the bound is the the total number edges in the graph less 1) those edges already dropped,

15

D
R

A
FT

2) the maximum number edges for which one vertex has been assigned that could be dropped by

a continuation of the current assignment, and 3) all other remaining edges. As no continuation

of the current assignment can ever cut fewer edges than this value, it is a valid lower bound on

the value of the MaxCut. This bound is used to improve the known cut value as discussed in

Section 4.2.1.

The bounds in lines 6 and 13, e.g., (i.mb0 ≤ d) and (i.mb0 < j.mb1 + |i.N |), have a scope

which is local to the current vertex and prevent the algorithm from proceeding further with an

assignment if that assignment will drop more edges than the limit d, or will drop more edges than

it could possibly add, respectively. Shen and Zhang have attributed the second of these bounds

to Niedermeier and Rossmanith [19]. The remaining bound is applied in line 4 in Figure 3.

Inspired by the Max-2-Sat lower bounds discussed in Shen and Zhang [22], we have developed

several similar bounds for use in line 4 of our algorithm. While these bounds are used as upper

bounds on the achievable MaxCut value, they are computed as lower bounds on the number of

edges that must be dropped in any continuation of the current solution. For this reason, we refer

to these bounds as lower bounds LB0, LB1, and LB2.

The first two of these are defined by the following relations,

LB0 = Di−1
0 (S) LB1 = Di−1

0 (S) +
n∑

j=i

min(j.mb0, j.mb1)

The first, LB0, simply counts the number of edges dropped by the current partial assignment. The

second, LB1, adds to that the minimum number of edges that will be dropped by any assignment

that completes the current partial assignment. A lower bound is said to be admissible if it never

exceeds the value it bounds. To ensure the completeness of a branch and bound algorithm, any

lower bound must be admissible. It is easy to see that LB0 is admissible as, clearly, no continuation

of the current assignment will drop fewer edges than have already been dropped.

To see that LB1 is also admissible, consider the set of edges, E(i), that could still be dropped

16

D
R

A
FT

by the assignment of vertices i, . . . , n. Taking the vertex i as a boundary vertex between the

assigned and unassigned vertices, we segregate the set E(i) into three groups: edges that join i

to an assigned vertex, edges that join i to an unassigned vertex, and edges that join unassigned

vertices. The number of edges in the first of these groups is given by the values i.mb0 and i.mb1.

Let i.mb0 represent the edges from i to vertices in S and i.mb1 represent the edges from i to

vertices in V − S. The second group of edges consists of those neighbors of i that are contained

in i.N . We identify the third group of edges as E(i + i). Finally, let D∗(E(i)) be the number of

edges in E(i) that will be dropped in the continuation of the current assignment; D∗(E(i)i∈S) be

the number of edges that will be dropped in any continuation based on the assignment of i to set

S; and D∗(E(i)i∈(V −S)) be the number of edges that will be dropped in any continuation based

on the assignment of i to set V − S.

With these definitions, we can calculate a relation that supports the claim that LB1 is admis-

sible. First note that,

E(i) = i.mb0 ∪ i.mb1 ∪ i.N ∪ E(i + 1) and

D∗(E(i)) = D∗(i.mb0 ∪ i.mb1 ∪ i.N ∪ E(i + 1))

For any MaxCut assignment, the relation D∗(E(i)) = min(D∗(E(i)i∈S),D∗(E(i)i∈(V −S)) must

hold. Continuing, we have,

D∗(E(i)i∈S) = i.mb0 + D∗(i.N ∪ E(i + 1))

D∗(E(i)i∈(V −S)) = i.mb1 + D∗(i.N ∪ E(i + 1))

D∗(E(i)) = min(i.mb0 + D∗(i.N ∪ E(i + 1)), i.mb1 + D∗(i.N ∪ E(i + 1))

D∗(E(i)) = min(i.mb0, i.mb1) + D∗(i.N ∪ E(i + 1))

17

D
R

A
FT

Note that, for any set Xi,

D∗(E(i + 1)) ≤ D∗(Xi ∪ E(i + 1)). (1)

From this, we have the following result, which may be used to show by induction on i that lower

bound LB1 is admissible.

min(i.mb0, i.mb1) + D∗(E(i + 1)) ≤ D∗(E(i)) (2)

Notice that lower bound LB0 accounts for all edges where both of the joined vertices have

been assigned and that LB1 further accounts for all edges for which only one of the joined vertices

have been assigned. Consideration of whether some portion of the set Xi in equation (1) that was

omitted from LB1 could, in fact, be incorporated in the lower bound requires to reason about the

edges for which neither of the joined vertex has been assigned. For this the following lemmata

are useful.

Lemma 3. In a partial cut assignment S on graph G, if there is an edge ij such that i.mb0 < i.mb1

and j.mb0 < j.mb1, then LB1 + 1 ≤ DG(S).

Proof. Given an edge ij for which i.mb0 < i.mb1 and j.mb0 < j.mb1, first note that LB1 includes

both min(i.mb0, i.mb1) = i.mb0 and min(j.mb0, j.mb1) = j.mb0. Now, if vertex i is assigned to

set S, then j.mb0, the smallest number of edges to be dropped by the assignment of vertex j will

increase by 1. On the other hand, if vertex i is assigned to set V − S, then i.mb1 edges will be

dropped by the assignment. Finally, recall that i.mb1 is at least 1 larger than i.mb0. A similar

argument holds for the assignment of vertex j.

A mirror of this lemma for an edge ij where i.mb1 < i.mb0 and j.mb1 < j.mb0 can be proven

by a similar argument. Lemma 3 and its mirror serve to identify edges joining as yet unassigned

vertices for which the lower bound LB1 may be incremented. The following lemma limits number

18

D
R

A
FT

of such edges that may be used to improve this lower bound.

Lemma 4. For any subset Xi ⊆ i.N , if |Xi| ≤ (i.mb0 − i.mb1), then

min(i.mb0, i.mb1) + D∗(Xi ∪ E(i + 1)) ≤ D∗(E(i)) (3)

Proof. The case in which |Xi| = 0 has already been shown in (2) above. When |Xi| > 0,

(i.mb0 > i.mb1) and (3) becomes,

i.mb1 + D∗(Xi ∪ E(i + 1)) ≤ D∗(E(i)) (4)

There are two sub-cases to consider: i is either assigned to S, or to (V − S) in the final MaxCut

assignment.

Case 1: (i ∈ S). If i ∈ S in the final MaxCut assignment, then

D∗(E(i)i∈S) ≤ D∗(E(i)i∈(V −S)).

Therefore we have,

D∗(E(i)) = D∗(E(i)i∈S) = i.mb0 + D∗(i.N ∪ E(i + 1))

Now, by the condition of the lemma |Xi| ≤ (i.mb0 − i.mb1), so i.mb1 + |Xi| ≤ i.mb0. Also, by

Equation (1) above, D∗(Xi ∪ E(i + 1)) − |Xi| ≤ D∗(E(i + 1)) ≤ D∗(i.N ∪ E(i + 1)). Then,

i.mb1 + D∗(Xi ∪ E(i + 1)) = i.mb1 + |Xi| + D∗(Xi ∪ E(i + 1)) − |Xi| ≤ D∗(E(i)).

Case 2: (i ∈ (V − S)). If i ∈ (V − S) in the final MaxCut assignment, then

D∗(E(i)i∈(V −S)) ≤ D∗(E(i)i∈S).

19

D
R

A
FT

Therefore we have,

D∗(E(i)) = D∗(E(i)i∈(V −S) = i.mb1 + D∗(i.N ∪ E(i + 1)).

As Xi is a subset of i.N , D∗(Xi ∪ E(i + 1)) ≤ D∗(i.N ∪ E(i + 1)). So we have,

i.mb1 + D∗(Xi ∪ E(i + 1)) ≤ i.mb1 + D∗(i.N ∪ E(i + 1)) ≤ D∗(E(i)).

In either case, the lemma holds. A mirror of this lemma for the case in which |Xi| ≤ (i.mb1−
i.mb0) can be proven by a similar argument .

Figure 3 shows an algorithm that exploits the preceding results to compute our lower bound

LB2. The algorithm functions as follows: Lines 1–4 create a local copy of the mb0 and mb1 values

for the unassigned vertices. The for loop in lines 6, 7, and 24 alone would simply accumulate

LB1. For each iteration of this outer for loop, however, the inner foreach loops, lines 10–15

and 17–23, increase the values of mb1 or mb0 of the neighbors of the current vertex, i. Following

the logic of the the case where i.mb0s > i.mb1s, lines 10–15 increase v.mb1s for each neighbor v

of i. This effectively records the first half of the condition required by Lemma 3 for LB1 to be

incremented by 1. When a later iteration of the outer loop reaches vertex v, if v.mb0s > v.mb1s,

line 7 selects the incremented v.mb1s. This selection completes the recognition of the Lemma 3

condition and accumulates the incremented lower bound value. At each iteration, only the first

n = abs(i.mb0s− i.mb1s) neighbors are marked as Lemma 4 limits to this number the edges that

may increase LB1. Because the algorithm marks the first n neighbors and not necessarily the

n neighbors that will be dropped in a MaxCut solution, it will always compute a lower bound

that is less than or equal to the bound allowed by Lemma 4. It is simple to prove the following

theorem on the time complexity of this algorithm:

Theorem 5. The time complexity for the lower bound LB2 algorithm is O((n− i) +
∑n

j=i |j.N |).

20

D
R

A
FT

Figure 3: The algorithm for lower bound LB2.

function LB2 (k: integer) return integer
1 for i = k to |VG| do
2 i.mb0s = i.mb0;
3 i.mb1s = i.mb1;
4 end for
5 lower bound := 0;
6 for i = k to |VG| do
7 lower bound := lower bound + min(i.mb0s, i.mb1s);
8 t = abs(i.mb0s− i.mb1s);
9 if (i.mb0s > i.mb1s) then
10 foreach v ∈ i.N do
11 if (t > 0) then
12 t := t − 1;
13 v.mb1s := v.mb1s + 1;
14 end if
15 end for
16 else
17 foreach v ∈ i.N do
18 if (t > 0) then
19 t := t − 1;
20 v.mb0s := v.mb0s + 1;
21 end if
22 end for
23 end if
24 end for
25 return lower bound;
end function

To show that the lower bound LB2 computed by this algorithm is admissible, we use Lemma 4

or its mirror at each step of the iteration on i giving the following theorem.

Theorem 6. Lower bound LB2 is admissible, that is, LB2(i) ≤ D∗(i).

6 Experimental results

The current implementation grew out of a project that originated simply as a demonstration of a

branch and bound algorithm for the MaxCut problem. The original demonstration was conducted

21

D
R

A
FT

to compare the performance of a variety of algorithms on randomly constructed MaxCut problems.

As a result of this heritage, testing of the current approach has been limited to the same class of

random problems as used in the original study.

Many methods have been reported in the literature for generating random graphs with a

variety of characteristics. In the current case, we adopt the method used by Erdös and Rényi [8]

in which an undirected, simple graph of n vertices is generated by randomly selecting, without

replacement, m edges from the n(n − 1) possible edges.

Four configurations of our implementation were run on problems sets each composed of 50

randomly generated graphs containing a varying number of vertices and edges as shown in the

table. The four configurations of the algorithm are identified here as BB, BB LB2, BCC, and

BCC LB2. Configuration BB served as a control. It did not include the preprocessing phase

and used our lower bound LB1. Configurations BB LB2 and and BCC added our bound LB2

and the preprocessing phase to the base configuration, respectively. Configuration BCC LB2

added both of these changes. The average number of branches taken during problem solution was

selected as the measure on which to compare the performance of these configurations. This is

a valid comparison method as all configurations were built on the same core branch and bound

algorithm.

Table 1 shows the results of this preliminary comparison. Each row reports the average

branches taken by each configuration as it was run on the same set of problems. The best entry

in each row, i.e., the lowest average number of branches taken, is displayed in bold font.

The data shown supports several interesting observations. A comparison of the results for

the BB and BB LB2 configurations clearly shows the superiority of the lower bound LB2 over

our lower bound LB1. A comparison of the results for the BB LB2 and BCC configurations

shows that for graphs of low edge to vertex ratio the preprocessing step alone dominates the

improved lower bound. However, as that ratio rises the superiority rapidly declines. Finally, the

improvements demonstrated by the LB2 lower bound and the addition of the preprocessing phase

22

D
R

A
FT

Table 1: Performance comparison for four configurations (average branches taken).

Problem BB BB LB2 BCC BCC LB2
#var #edges #branches #branches #branches #branches
20 18 1.02E+02 4.66E+01 4.20E+00 3.32E+00

20 1.87E+02 9.06E+01 4.98E+00 3.94E+00
25 3.90E+02 1.28E+02 6.41E+01 4.75E+01
50 2.04E+03 4.84E+02 1.66E+03 5.11E+02
75 4.63E+03 9.92E+02 3.92E+03 9.32E+02
100 8.87E+03 1.92E+03 8.85E+03 1.98E+03
125 1.56E+04 3.25E+03 1.64E+04 3.66E+03
150 3.05E+04 6.66E+03 3.05E+04 6.92E+03
325 7.84E+04 1.92E+04 7.80E+04 1.91E+04

50 49 3.34E+04 4.31E+03 3.30E+01 2.42E+01
50 3.67E+04 3.52E+03 4.02E+01 3.17E+01
75 1.49E+06 6.80E+04 7.34E+04 1.80E+04
100 5.22E+06 2.31E+05 1.25E+06 1.36E+05
150 3.03E+07 1.01E+06 1.70E+07 1.10E+06

100 100 1.19E+08 5.17E+06 1.43E+03 7.35E+02
125 2.99E+08 3.14E+07 2.65E+06 9.42E+05

appear additive. Again, as the edge to vertex ratio of the problem graph rises, the preprocessing

step appears to become ineffective in reducing the search space. Further tests will be required to

clarify these observations.

We note that the effectiveness of our preprocessing phase conforms to current knowledge

about the differences in the structure of random graphs that depend on the ratio of graph edges

to vertices. Janson [16] has noted that, for fixed δ > 0, that a unique giant component appears

when m = (1 − δ)n/2. Our results confirm there is a rapidly increasing probability that this

unique component contains an odd length cycle as the ratio of edges to vertices increase past this

point.

23

D
R

A
FT

7 Conclusion and Directions for Future Work

While strong conclusions can not be drawn from the preliminary results we have presented, these

results do support two observations. First, we have added some support to the claim that our

lower bound bound LB2 is an effective bounding mechanism in this application. Second, we have

begun to demonstrate that the effectiveness of our preprocessing mirrors current knowledge about

the structure of random graphs as it depends on the ratio of edges to vertices in the graph. That

our preprocessing step appears effective only for graphs with low edge to vertex ratio recommends

more robust simplification methods be sought.

Though it is very likely unreasonable to hope for a fast general solution to the MaxCut problem,

the search for improved methods of attack should continue. Several areas related to the current

work that appear promising are developing tighter heuristic bounding functions, identifying better

problem-simplifying graph transformations, and extending the current algorithm to handle the

more general weighted form of the MaxCut problem.

Taken to the extreme, the best bounding algorithm would solve the original problem. On the

one hand, H̊astad’s results remind that this extreme will be as difficult to solve as that original

problem. On the other hand, the application of LB2 to the MaxCut problem has demonstrated

that progress in this area is still being made and points out that further improvements may be

still found.

The graph simplifying preprocessing phase of the current algorithm removes an easily iden-

tifiable class of bipartite graphs from the problem search space. The success of this approach

suggests that further improvements might be available by developing fast methods for identifying

larger classes of graphs that admit polynomial-time solution. Another facet of the same “simply

first” approach, is the search for substructure in the problem graph that can be removed and

accounted for, as is seen in Fedin and Kulikov’s algorithm [9]. Further work in this area may also

prove fruitful.

24

D
R

A
FT

As mentioned earlier, the current work grew out of a simple demonstration of a branch and

bound algorithm. As such, it was developed only to address the simple unweighted version of the

MaxCut problem. Extending this approach to address the more general weighted problem would

increase the utility of the algorithm and may allow further improvement in the preceding two

areas to be achieved.

In this report, we have introduced and defined the MaxCut problem, reviewed some of the

extensive literature associated with this problem, mentioned a few of its application, and discussed

some of the methods that have been applied to its solution. We then reviewed an approach we

have taken to its solution that incorporates a preprocessing step which separated the problem

graph into biconnected components with a branch and bound algorithm for the core problem. We

sketched our preliminary experimental results which begin to support a claim for the effectiveness

of our lower bound LB2 and to demonstrate the range of effectiveness of the preprocessing step we

implemented. Finally, we have suggested several areas in which further work appears promising.

8 Acknowledgments

We would like to thank Hantao Zhang and Haiou Shen for their continued interest and support

of our work in this area. We also wish to acknowledge the U.S. Army Materiel Systems Analysis

Activity for their generous funding of this work.

References

[1] J. Alber, J. Gramm, and R. Niedermeier. Faster exact algorithms for hard problems: a
parameterized point of view. Discrete Mathematics, 229(1):3–27, 2001.

[2] Mikhail J. Atallah, editor. Algorithms and theory of computation handbook, chapter 6, pages
6.6–6.8. CRC Press, Boca Raton, 1999.

[3] Béla Bollobás. Modern Graph Theory. Number 184 in Graduate Texts in Mathematics.
Springer-Verlag, New York, NY, 2000.

25

D
R

A
FT

[4] J. Cheriyan, W. H. Cunningnham, L. Tuncel, and Y. Wang. A linear programming and
rounding approach to Max-2-Sat. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 26:395–414, 1996.

[5] Michel Deza and Monique Laurent. Applications of cut polyhedra I. J. Comput. Appl. Math.,
55(2):191–216, 1994.

[6] Michel Deza and Monique Laurent. Applications of cut polyhedra II. J. Comput. Appl.
Math., 55(2):217–247, 1994.

[7] Oliver Dolezal, Thomas Hofmeister, and Hanno Lefmann. A comparison of approximation
algorithms for the MaxCut-problem. Technical Report CI–57/99, Universität Dortmund,
Dortmund, Germany, Fachbereich Informatik, Universität Dortmund, 44221 Dortmund, 1999.

[8] P. Erdös and A. Rényi. On the evolution of random graphs. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 5:17–61, 1960.

[9] Sergey S. Fedin and Alexander S. Kulikov. A 2|E|/4-time algorithm for Max-Cut. Zapiski
nauchnyh seminarov POMI, (293):129–138, 2002.

[10] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42(6):1115–1145, November 1995.

[11] Wilsin Gosti, Giao Nguyen, Marlene Wan, and Min Zhou. Approximation algorithm for the
Max-Cut problem. URL: http://citeseer.ist.psu.edu/489604.html.

[12] Jens Gramm, Edward A. Hirsch, Rolf Niedermeier, and Peter Rossmanith. New worst-case
upper bounds for MAX-2-SAT with application to MAX-CUT. Electronic Colloquium on
Computational Complexity (ECCC), 037, 2000.

[13] Bertrand Guenin. A characterization of weakly bipartite graphs. Preprint, Submitted to
Elsevier Preprint, May 2000.

[14] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[15] John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph manipulation.
Commnications of the ACM, 16:372–378, 1973.

[16] Svante Janson. Festschrift in honour of Lennart Carleson and Yngve Domar (Uppsala 1993).
Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ Hist. 58, pages 185–190, 1995.

[17] Richard Manning Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press,
New York, N.Y., 1972.

[18] M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and MaxCut.
Journal of Algorithms, 31:335–354, 1999.

26

D
R

A
FT

[19] Rolf Niedermeier and Peter Rossmanith. New upper bounds for MaxSat. Lecture Notes in
Computer Science, 1644:575–??, 1999.

[20] Svatopluk Poljak and Ssolt Tuza. Maximum cuts and largest bipartite subgraphs. Combi-
natorial Optimization, DIMACS series in Discrete Mathematics and Theoretical Computer
Science, 20(1052-1798):181–244, 1995. American Mathematical Society, Providence, R.I.

[21] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–
565, 1976.

[22] Haiou Shen and Hantao Zhang. Improving exact algorithms for MAX-2-SAT. Proc. of
International Symposium on AI and Math (AIM’04), Ft. Lauderdale, FL, April 2004.

[23] Haiou Shen and Hantao Zhang. Study of lower bound functions for MAX-2-SAT. Proceedings
of the American Association for Artificial Intelligence, April 2004.

[24] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1(2):146–
160, Jun 1972.

27

