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Roadmap for Today

e Strings
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Motivation: Symbolic Execution

Symbolic Execution

® fnumerate program paths that end in a bad state
® (e.g., invalid memory access)

Represent program inputs as SMT variables

Translate statements in the path into constraints on the variables

Constraints represent all possible executions along the path

Solving the constraints determines whether the path is feasible
|

—

Symbolic o, SMT

Cod — ]
ode Execution Formula

—

Safe
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Example: Symbolic Execution for Security

Security
Policies

Code

Security
Policy

Symbolic

Execution

Security Vulnerabilities
® Input: code and security policy
e Symbolic execution: generates formula
satisfiable iff code can violate security
policy
e SMT solver: returns a solution or
proves that none exists

.
SMT
Formula

—

Safe
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String Analysis

Strings in Symbolic Execution

¢ |Input code may manipulate strings

Security

Security Policy

Policies

—

Symbolic SMT

f —> —>
Execution Formula

Code —

—

Safe
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Basic Theory of Strings

Alphabet
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Basic Theory of Strings

Alphabet
Constants
Empty string €
Character string ¢ for all

Integer numeral n forall
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Basic Theory of Strings

Alphabet

Constants
Empty string
Character string
Integer numeral

Operators

Concatenation
Length
Membership
Addition
Comparison

€
c
n

r

Challenge: complexity

concatenation + equality:
® Decidable in PSPACE
+length

® Decidability open
+ replace (all instances of some substring)

® Undecidable
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Basic Theory of Strings

Alphabet
Pragmatic approach
Constants ¢ Rule-based proof system
Empty string € ® Use existing arithmetic theory solver
Character string ¢ e Embrace incompleteness

Integer numeral n “roTo

Operators
Concatenation _ - _ (i.e.,
Length | _|
Membership =
Addition _+

Comparison >
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Satisfiability Proof System for Strings

Proof States
A is either:
® One of the distinguished states sAT,

* Apair , Where S contains constraints and A contains
constraints

Assumptions

e All literals are flat
® For every string variable x in S, there exists a variable /,, such that

® |gnore regular expression membership for now
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Notation

Definitions
o denotes all terms in
o means that o follows from S using the rules of
o means that o follows from A in the theory of linear integer arithmetic

Normalization function for length

o forall
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Core Rules

A-CONF M A-PROP AEpms=t S".t e T(S)
UNSAT S:=8s=t
S-CONF S‘:iL S-PrOP S ‘: s=t S, te T(S) .Sg tare ZL/A-termS
UNSAT A=As=t

X,yeT(S)nT(A) x,y:lInt

S-A A::Avxiy A::A,X:y

seT(S ) s : String L VALID xeT(S) x: String

L-INTRO S — ‘ ‘ ‘SH S -= 57)(:( A:A(X>O

SEc=d ce A de A\{c}
UNSAT

CoNST-CONF

no other rule applies
SAT

SAT
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Example Derivation

Let
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Example Derivation

Let

For each derivation step, we show only the difference between the derived state and the
previous one
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Concatenation Rules

If x is a variable of S, we can recursively expand x by substituting using equalities from
whose right-hand sides are concatenation terms until this is no longer possible
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Concatenation Rules

If x is a variable of S, we can recursively expand x by substituting using equalities from
whose right-hand sides are concatenation terms until this is no longer possible

If £ is the result, we write

We write z as a short-hand for a concatenation of zero or more variables
( , with when )

C-EQ

C-SPLIT

Note: k is a fresh variable
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Example of C-Split

SE*x=w-u-z SE*x=w-v-2Z

A=A/l,>"0,S:=Su=v-k
A=A/, <Vl,;,S:=Sv=u-k
A=A/l =0,;,S:=Su=v

C-SPLIT
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Core and Concat Rules

AbFwm L AbEms=t steT(S)

A-CoNF Unenr A-ProOP S—sSsot
S-CONE SEL S-PROP SEs=t s teT(S) s tare X, 4-terms
UNSAT A=As=t
CONST-CONF SEc=d ce A de A\{c} gp NVE T(S.> NTA) x,y: I.nt
UNSAT A=AXx=y A=Ax=y
seT(S) s:String xeT(S) x:String
LINTRO S 1T = Is[] LVALD o s X = A=Al >0
gar _N° other rule applies C-Eq SE*x=z S \: y=1z
SAT S=5Sx=y

SE*x=w-u-z SE*xX=w-v-Z
A=ALl,>0,;,S =S u=v-k
A=A, <l,;S:=Sv=u-k

A=Al =0,;,S =S u=v

C-SpLIT
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Properties of the proof system

Is the proof system sound? terminating?
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Properties of the proof system

The proof system is

e refutation sound
® easily checkable by examining each proof rule

® solution sound
¢ proving this is highly non-trivial
® not terminating

¢ for pathological unsat cases, C-SPLIT can be applied infinitely often

® incomplete
® aconsequence of non-termination
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Iterating to Improve the Solver

The first version of the proof system was implemented in 2014

Based on requests and feedback from users,
a number of iterative improvements have been made
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More String Operators

SMT user: That’s great but | need more operators!
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More String Operators

SMT user: That’s great but | need more operators!

Iterate and Improve

1. Extend the theory by adding new operators

. , the maximal substring of x, starting at position 1, with
length at most

. , true iff x contains y as a substring

. , position of the first occurrence of y in x, starting from position

. , the result of replacing the first occurrence of x in y by
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More String Operators

SMT user: That’s great but | need more operators!

Iterate and Improve

1. Extend the theory by adding

. , the maximal substring of x, starting at position 1, with
length at most

. , true iff x contains y as a substring
. , position of the first occurrence of y in x, starting from position
. , the result of replacing the first occurrence of x in y by

2. Implement them by reduction to the core theory
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New Operators as Macros
XYy

X = substr(y,n, m)
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New Operators as Macros
XYy

X = substr(y,n, m)

contains(y, z)
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New Operators as Macros

x=-y = max(x—y,0)
x =substr(y,n,m) = ite(0<n<|y|An0<m,
y=2z1-X-2p Al|za] =n A |za] = |y| = (m + n),
X=c¢)
contains(y,z) = Jk.0<k<|y|—|z| nsubstr(y. k. |z|) =z
x = index_of(y,z,n) = ite(0<n < |y| A contains(y’.z),

substr(y’, X', |z|) = z A —contains(substr(y’,0,x" + |z| — 1), 2),
x=-1)

with y’ = substr(y,n,|y| —n)andx’ =x —n
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New Operators as Macros

X=Yy

X = substr(y,n, m)

contains(y, z)

x = index_of(y, z,n)

x = replace(y,z,w)

max(x — y,0)

ite(0<n<|y| A0 <m,
yEzx-zalal=nalzl =yl = (m+n),
X=¢€)

Fk.0 < k < |y| — |z| A substr(y,k,|z|) =z

ite(0 < n < |y| A contains(y’, z),

substr(y’, X', |z|) = z A —contains(substr(y’,0,x" + |z| — 1), 2),

x=-1)
with y’ = substr(y,n,|y| —n)andx’ =x —n
ite( contains(y,z) A z = ¢,

X=2Z1-W-Z3 ANy =21-2 -2, nindex_of(y,z,0) = |z1],
X=y)
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Reasoning about New Operators

SMT user: That’s great but now it’s too slow!
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Reasoning about New Operators

SMT user: That’s great but now it’s too slow!

Iterate and Improve
¢ Extend the implementation to reason directly on the new operators

* How?
® Keep formulas with original new operators

® Periodically try to simplify them based on new knowledge
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Simplification rules for New Operators

Example: (/1, [> denote string constants)
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Example: (/1, [> denote string constants)
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Simplification rules for New Operators

Example: contains
contains(ly, [,
contains(ly, [,

contains(ly, [, - t

)
)
)
contains(ly, 5 - t)
contains(/y,x - t)
contains(l; - t, [5)
contains(x - t,s)
)

contains(t-s,t-u

~H 4 A

(/1,1 denote string constants)
if [; contains [,
if [; does not contain [,
if [ does not contain [,
if contains(l1\lh, t) —™* L
if contains(/y,t) —* L
if {; contains [,
if contains(t,s) —* T

if contains(s,u) —* T
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Simplification rules for New Operators

Example: contains
contains(ly, [,
contains(ly, [,

contains(ly, [, - t
contains(ly, [, - t

contains(l; - t, [,
contains(x - t, s
contains(t-s,t-u

)
)
)
)
contains(/y, x - t)
)
)
)
)

contains(ly - t, [,

~H 4 A

contains(t, )

(/1,1 denote string constants)
if [; contains [,
if [; does not contain [,
if [ does not contain [,
if contains(l1\lh, t) —™* L
if contains(/y,t) —* L
if {; contains [,
if contains(t,s) —* T
if contains(s,u) —* T

If/l I_l/lz = €
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Simplification rules for New Operators

Example: contains
contains(ly, [,
contains(ly, [,

contains(ly, [, - t
contains(ly, [, - t

contains(l; - t, [,
contains(x - t, s
contains(t-s,t-u
contains(l; - t, [

)
)
)
)
contains(/y, x - t)
)
)
)
)
)

contains(t - [1, [,

~H 4 A

contains(t, )
contains(t, [,)

(/1,1 denote string constants)
if [; contains [,
if [; does not contain [,
if [ does not contain [,
if contains(l1\lh, t) —™* L
if contains(/y,t) —* L
if {; contains [,
if contains(t,s) —* T
if contains(s,u) —* T
iflbu b =c¢

If[]_ Ly [2 = €
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Simplification rules for New Operators

Example: contains
contains(ly, [,
contains(ly, [,

contains(ly, [, - t
contains(ly, [, - t

contains(l; - t, [,
-t,s
contains(t-s,t-u

contains(x -

contains(l; - t, [

)
)
)
)
contains(ly, x - t)
)
)
)
)
)

contains(t - [1, [,

contains(e, t)

—

—_—

~H 4 A

contains(t, )
contains(t, [,)

=T —

(/1,1 denote string constants)

if [; contains [,

if [; does not contain [,

if [ does not contain [,

if contains(l,\lr, t) —* L
if contains(/y,t) —* L

if {; contains [,

—* T
_LET

if contains(t,s)
if contains(s, u)
iflbu b =c¢
ifly U, lhp =€
e=t
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Simplification rules for New Operators

Example: contains
contains(ly, [,
contains(ly, [,

contains(ly, [, - t
contains(ly, [, - t

contains(l; - t, [,
-t,s
contains(t-s,t-u

contains(x -

contains(l; - t, [

)
)
)
)
contains(ly, x - t)
)
)
)
)
)

contains(t - [1, [,

contains(e, t)

—

—_—

~H 4 A

contains(t, )
contains(t, [,)

=T —

(/1,1 denote string constants)

if [; contains [,

if [; does not contain [,

if [ does not contain [,
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_LET
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Reasoning about New Operators

SMT user: That’s great but | have a few really hard problems!
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Iterate and Improve
e Supercharge the simplifier
e Many simplifications are conditional

¢ Build a mini-inference engine inside the simplifier to verify
simplification conditions
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Reasoning about New Operators
SMT user: That’s great but | have a few really hard problems!
Iterate and Improve

e Supercharge the simplifier

e Many simplifications are conditional

¢ Build a mini-inference engine inside the simplifier to verify
simplification conditions

Notation: states that simplifier can prove simplification condition
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Conditional Simplifications based on String Length
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Conditional Simplifications based on String Length
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Too Domain-Specific?
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Too Domain-Specific?

SMT user: Wow! - but after all that, | bet you really overfit to that one
symbolic execution domain, right?
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Too Domain-Specific?

SMT user: Wow! - but after all that, | bet you really overfit to that one
symbolic execution domain, right?

Amazon Automated Reasoning Group:
¢ We really like your string solver
¢ and we are calling it a few billion times a day

¢ to secure access control policies in the cloud for our customers!
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Zelkova

(allow,

. . i
Security Policy acton

principal

resource
condition

-k

: getObject,
: cs240/%,

: (StringEquals, aws:sourceVpc, vpc- | | 1bbb222)

(StringLike, s3:prefix, cs240/Exam*))

¥

SMT Encoding

a =“getObject” A r = “cs240/*” A vpcExists A

vpc =“vpc-111bbb222” A s3PrefixExists A
“cs240/Exam” prefixOf s3Prefix

¥

Strings and RegExp

SMT Solvers (cve5 and z3)

Bitvectors

Arithmetic
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One More Thing
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One More Thing

Amazon Automated Reasoning Group:
¢ Just one small thing though...
¢ We use a lot of membership queries

¢ | don’t suppose you could speed those up a bit?
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Reasoning about Regular Expressions

Regular Expression Membership Example

Automata-based approach
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Reasoning about Regular Expressions

Regular Expression Membership Example

Automata-based approach

Problem: Complement and intersection are expensive
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Reasoning about Regular Expressions

Regular Expression Membership Example

Automata-based approach

Problem: Membership constraints may lead to non-terminating unfolding:

Example: is equivalent to

v e [0..9]*
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Reasoning about Regular Expressions

Regular Expression Membership Example

Word-based approach with incomplete procedures

e Use fast, incomplete procedure to verify

Notation: denotes the language generated by regex
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Proving £(R,) = L(R,)

forallx € L(R), |x| =1
(1) L(R) < L(R) @) L(e) < L(R¥) @) L(R) = L(A)
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Proving £(R,) = L(R,)

forallx € L(R), |x| =1
O Zmecrm @ rzoccmr O T ez

L(Ry) <
Wrmecay ) rImeorr e c

L(Ry)
L(R3)
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Proving L(R,) = L(R,)

forallx e L(R), x| =1

O Zwczm @) Zeci® @) L(R) < L(A)

L(Ry) <
@z © Zemccry © Zer)c

L(Ry)
L(R3)

L(R) € L(S1) L(Ry) <

(8) S2) G3<C <
E(Rl . R2> - E(Sl . 52

©) Zleal) € £Ga

I O

¢ = diff cequals d or precedes d lexicographically (¢, d € A)
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Exercise

Using the proof rules above, prove that
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Exercise

Using the proof rules above, prove that

L([0..1]* - A* - "br - A¥) < £(][0..9]* - A¥)

0<0 1<9 9)
L([o.1]) = £(o-9) " “
L([0-1]") < £([0..9]") LA o L) S L0 o
L([0.1]" - A* - "b" - A%) < £([0.9]F - A¥)

29/30



More Information
Strmgs Papers

“ADPLL(T) Theory Solver for a Theory of Strings and Regular Expressions” by Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. In

Proceedings of the International Conference on Computer Aided Verification (CAV ’14), (Armin Biere and Roderick Bloem, eds.), July 2014, pp. 646-662. Vienna,
Austria.

® “An Efficient SMT Solver for String Constraints” by Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark Barrett, and Morgan Deters. Formal
Methods in System Design, vol. 48, no. 3, June 2016, pp. 206-234, Springer US.

® “Scaling up DPLL(T) String Solvers Using Context-Dependent Simplification” by Andrew Reynolds, Maverick Woo, Clark Barrett, David Brumley, Tianyi Liang, and

Cesare Tinelli. In Proceedings of the International Conference on Computer Aided Verification (CAV ’17), (Rupak Majumdar and Viktor Kuncak, eds.), July 2017,
pp. 453-474. Heidelberg, Germany.

®  “High-Level Abstractions for Simplifying Extended String Constraints in SMT” by Andrew Reynolds, Andres Notzli, Clark Barrett, and Cesare Tinelli. In Proceedings of
the International Conference on Computer Aided Verification (CAV °19), (Isil Dillig and Serdar Tasiran, eds.), July 2019, pp. 23-42. New York, New York.

® “Even Faster Conflicts and Lazier Reductions for String Solvers” by Andres Notzli, Andrew Reynolds, Haniel Barbosa, Clark Barrett, and Cesare Tinelli. In Proceedings
of the International Conference on Computer Aided Verification (CAV ’22), (Sharon Shoham and Yakir Vizel, eds.), Aug. 2022, pp. 205-226. Haifa, Israel.

Amazon’s Zelkova Tool

® J.Backes et al., “Semantic-based Automated Reasoning for AWS Access Policies using SMT,” 2018 Formal Methods in Computer Aided Design (FMCAD), Austin, TX,
2018.
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