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Hybrid	Systems
Part	I



Models	of	Reactive	Computation

q Continuous-time	model for	dynamical	system
§ Synchronous,	where	time	evolves	continuously
§ Execution	of	system:	Solution	to	algebraic	/	differential	equations

q Timed	model
§ Like	asynchronous	for	communication	of	information
§ Clocks	evolve	continuously,	and	constraints	on	delays	allow	

synchronous/global	coordination

q Hybrid	systems
§ Generalization	of	timed	processes
§ During	timed	transitions,	evolution	of	state/output	variables	

specified	using	differential	equations	as	in	dynamical	systems



Self-Regulating	Switching	Thermostat

off on

State	machine	with	two	modes:	on and	off

State	variable	T of	type	cont (continuous),	to	model	temperature

T can	be	tested	and	updated	during	mode-switches

Invariants	(as	in	timed	model)	constrain	how	long	can	a	timed	transition	be

cont 60	<=	T	<=	70 (T	<=	62)	?

(T	>=	68)	?

dT =	–k2 dT =	k1(70	– T)

T changes	continuously	during	timed	transitions	given	by	differential	equations

T	>=	60 T	<=	70



Executions	of	Thermostat

Initial	state	=	(off,	T0)	with	T0 in	the	interval	[60,70]

During	a	timed	transition,	T decreases	continuously:	T(t)	=	T0 – k2 t

Mode-switch	to	on enabled	when	T	<=	62,	and	must	happen	before	T reaches	60	

As	time	elapses	in	mode	on,	T increases	according	to	T(t)	=	70	– (70	– T*)	e	–k1(t-t*)
t*,	T* :	time	and	temperature	upon	entry	to	mode	on

Mode-switch	to	off enabled	when	T >=	68,	and	must	happen	before	T reaches	70	

off on

cont 60	<=	T	<=	70 (T	<=	62)	?

(T	>=	68)	?

dT =	–k2 dT =	k1(70	– T)

T	>=	60 T	<=	70



Simulation	Plot	of	an	Execution



Modeling	a	Bouncing	Ball

q Ball	dropped	from	an	initial	height	h0 with	an	initial	velocity	v0

q Velocity	changes	according	to	the	differential	equation	dv/dt =	-g

q When	the	ball	hits	the	ground,	that	is,	when	height	h	=	0,	velocity	
changes	discretely:	v	:=	- a	v,	where	0	<	a	<	1	is	dampening constant

q Modeled	as	a	hybrid	system:	mix	of	discrete	and	continuous	
behaviors!



Hybrid	Process	for	Bouncing	Ball

Fall

cont h	:=	h0,	v	:=	v0 dh	=	v;		dv	=	–g	

h	>=	0

h	=	0	->	bump	!	;	v	:=	–a	v



Execution	of	the	Bouncing	Ball	Process

h0 =	5
v0		=	0



Definition	of	Hybrid	Process:	Syntax

A	hybrid	process	HP consists	of

1. An	asynchronous	process	P,	with	continuous	(Ic)	and	discrete	(Id)	
input	variables	I,	continuous	(Sc)	and	discrete	(Sd)	state	variables	
S,	and	continuous	(Oc)	and	discrete	(Od)	output	variables	O

2. A	continuous-time	invariant	CI,	a	Boolean	expression	over	Sc

3. For	every	continuous	output	variable	y,	a	Lipschitz-continuous	
real-valued	expression	hy(Sc,	Ic)	defining y

4. For	every	continuous	state	variable	x,	a	Lipschitz-continuous	
real-valued	expression	fx(Sc,	Ic)	defining	the	rate	of	change	of	x

5. Input,	output,	internal	and	timed actions



Definition	of	Hybrid	Process:	Semantics

q Inputs,	outputs,	states,	initial	states,	internal	actions,	input	actions,	
output	actions:	defined	exactly	the	same	as	the	asynchronous	model

q Timed	actions:	Given	a	state s	and	real-valued	time	δ >	0	and	a	
continuous	input	signal	I(t) giving	values	for	Ic over	time	interval	[0,	δ],	
the	corresponding	state	signal	S(t) and	output	signal	O(t)	over	[0,	δ]	is	
uniquely	defined	so	that
1. The	initial	state	S(0)	equals s
2. For	each	output	variable	y	in	Oc,	Oy(t)	=	hy(S(t),	I(t))	
3. For	each	state	variable	x in	Oc,	dSx(t)/dt =	fx(S(t),	I(t))
4. At	all	times	t in	[0,	δ],		S(t)	satisfies	the	invariant	CI
Note: At	all	times	t in	[0,	δ],	discrete	state	variables	stay	unchanged



Executions	of	Hybrid	Processes

Starting	from	an	initial	state,	execute	
either	
§ a	discrete,	instantaneous	step	(input,	

or	output	or	internal	action)	or	
§ a	timed	step	of	some	duration	δ >	0	

(need	to	solve	system	of	ODEs)

Concepts	based	on	transition	systems	such	as	reachable	states,	safety	and	
liveness requirements,	all	apply	to	hybrid	systems	

(off,	66)	-2.5-> (off,	61)	->	(on,	61)	-3.7->	(on,69.02)	->	(off,	69.02)	-4.4->	
(off,	60.22)	->	(on,	60.22)	-7.6->	(on,	69.9)	->	(off,	69.9)	-4.1->	(off,	61.7)	->	
(on,	61.7)	…



Block	Diagrams

q Component	processes	can	now	be	hybrid	processes
§ Need	to	define	instantiation,	composition,	output	hiding

q Channels	connecting	processes	of	two	types
1. Sender/receiver	communication	during	discrete	steps:	

as	in	the	asynchronous	model
2. Continuously	evolving	signals	during	timed	steps:									

as	in	the	model	of	continuous-time	dynamical	systems



Composition	of	Hybrid	Processes
q Instantiation,	variable	renaming	and	output	hiding:

§ Defined	as	usual

q Composition:
§ Compose	discrete	parts	together	as	in	the	asynchronous	

model
§ Compose	continuous	parts	of	internal	actions	together	as	in	

dynamical	systems	
§ Generate	continuous-time	invariants	of	merged	action	a	

conjunction	of	original	ones

q Compatibility	of	two	hybrid	processes:
§ State	variables	are	disjoint	and	output	variables	are	disjoint
§ No	cyclic	await	dependencies	among	shared	input/output	

variables



Nuclear	Reactor	Example

ReactorPlant ReactorControl

cont x

{add1,	add2,	rem1,	rem2}	u



Reactor	Plant

PlantNoRod

dx	=	x/10	– 50

x	:=	510

(u	=	add1)	?

PlantRod2

dx	=	x/10	– 60

PlantRod1

dx	=	x/10	– 56

(u	= add2)	?

(u	=	rem1)	?

(u	=	rem2)	?



Reactor	Controller

ConNoRod

dy1	=	dy2	=	1
x <=	550

y1	:=	c
y2	:=	c

(550	<=	x		&		c	<=	y1		&		y2	<	c)		->		u	:=	add1

(550	<=	x	&	c	<=	y2)		->		u	:=	add2

(x	<=	510)		->		u	:=	rem1	;	y1	:=	0	

(x	<=	550)		->		u	:=	rem2	;	y2	:=	0

ConRod1

dy1	=	dy2	=	1
510	<=	x

ConRod2

dy1	=	dy2	=	1
510	<=	x



Summary	of	the	Model
q Generalizes	timed	model

§ Variables	evolving	continuously	during	a	timed	action	can	have	
complex	dynamics,	clocks	being	a	very	special	case

q Generalizes	continuous-time	dynamical	systems
§ Discontinuous	changes	to	system	state	now	can	be	modeled

q Generalizes	asynchronous	model
§ Distributed/multi-agent	systems	can	be	modeled

q Suitable	for	modeling	of	cyber-physical	systems	(in	full	generality)

q Existing	commercial	tool	support:	Modelica,	Stateflow/Simulink

q Challenge	for	analysis
§ Even	if	dynamics	in	individual	modes	is	linear,	due	to	discrete	

changes	it	is	not	possible	to	obtain	closed-form	solutions,	or	
general	theorems	about	stability



Analysis	of	Bouncing	Ball	Model

Fall

cont h	:=	h0,	v	:=	0 dh	=	v	;		dv	=	–g	

h	>=	0

h	=	0	à bump	!	;	v	:=	–a	v

Change	in	height	during	first	bounce:	 h(t)	 =		h0 – gt2/2	
Time	at	which	first	bump	occurs:	 t1 =	Sqrtr (2	h0	/	g)	
Velocity	just	before	first	bump	occurs:	 –Sqrt (2	g	h0)	 =		–v1
Velocity	just	after	first	bump	:	 v2 =		a	v1
Evolution	of	height	during	second	bounce:	 h(t)	 =		v2	t	– gt2/2
Time	between	first	and	second	bump:	 t2 =		2	v2	/	g
Velocity	just	before	second	bump	occurs:			 –v2 and	after	2nd bump		v3 =		a	v2



Modeling	a	Bouncing	Ball

q Velocity	after	k bumps:	ak v1

q Duration	between	kth and	following	bump:		ak v1 /	g

q Sum	of	durations	between	successive	bumps	converges	to									
v1 (1	+	a)	/	(1	– a)

q Infinitely	many	discrete	actions	in	finite	time:	Zeno	behavior!



Zeno’s	Paradox
q Described	by	Greek	philosopher	Zeno	in	context	

of	a	race	between	Achilles	and	a	tortoise
q Tortoise	has	a	head	start	over	Achilles,	but	is	

much	slower
q In	each	discrete	round,	suppose	Achilles	is	d	

meters	behind	at	the	beginning	of	the	round

q During	the	round,	Achilles	runs	dmeters,	but	by	then,	tortoise	has	
moved	a	little	bit	further

q At	the	beginning	of	the	next	round,	Achilles	is	still	behind,	by	a	distance	
of	a	d meters,	with	0	<	a	<	1

q By	induction,	if	we	repeat	this	for	infinitely	many	rounds,	Achilles	will	
never	catch	up!

q If	the	sum	of	durations	between	successive	discrete	actions	converges	
to	a	constant	K,	then	an	execution	with	infinitely	many	discrete	actions	
describes	behavior	only	up	to	time	K (and	does	not	tell	us	the	state	of	
the	system	at	time	K and	beyond)



Formalization

q An	infinite	execution	of	a	hybrid	process	HP is	of	the	form	s0 -t1->	
s1 -t2-> s2 -t3->	s3 …,	where	ti is	the	duration	of	ith step	
§ Input/output/internal	actions	are	instantaneous	(duration	0)

q An	infinite	execution	is	called	
§ Zeno if	the	infinite	sum	of	all	the	durations	is	bounded	above	

by	a	constant,	and	
§ non-Zeno if	the	sum	diverges

q A	state s of	the	process	HP is	called	
§ Zeno if	every	execution	starting	in	state	s is	Zeno
§ Non-Zeno if	there	is	some	non-Zeno	execution	starting	in	s



Formalization

q A	hybrid	process	HP is	called	non-Zeno if	every	reachable	state	
of	HP is	non-Zeno
§ At	every	point	during	an	execution	it	is	possible	for	time	to	

diverge

q Zeno	system:	Could	end	up	in	a	state	from	which	duration	
between	successive	steps	must	get	smaller	and	smaller

q Examples
§ Thermostat:	non-Zeno
§ Bouncing	ball:	Zeno



Zeno	vs	Non-Zeno
clock	x	:=	0	;	
real	d	:=	1	

x	<=	d x	=	d	 ->		a!	;	d	:=	d/2	;	x	:=	0

Zeno!		Every	possible	execution	is	Zeno	

clock	x	:=	0	
x	<=	1 x	>	0		->		a!	;	x	:=	0

Non-Zeno!		Some	executions	are	Zeno	and	some	are	non-Zeno	

Zeno!		System	may	end	up	in	a	state	from	which	only	Zeno	executions	are	possible	

clock	x	:=	0	;	
real	d	:=	1	 x	<=	d x	=	d	 ->

a!	;	d	:=	d/2	;	x	:=	0

x	<=	1 x	>	0		->		a!	;	x	:=	0



Zeno	Processes	and	Reachability

q How	does	existence	of	Zeno	processes	influence	analysis?

q Recall:	
§ A	state	s of	a	system	H is	reachable if	there	exists	a	finite	

execution	starting	in	an	initial	state	and	ending	in	state	s
§ A	property	P is	invariant for	H all	reachable	states	satisfy	P

clock	x	:=	0	
x	<=	3

x	=	3	?
A B

Is	mode	B reachable	?	



Zeno	Processes	and	Reachability

clock	x	:=	0	
x	<=	3

x	=	3	?
A B

Is	mode	B reachable	?	

clock	y	:=	0	;	
real	d	:=	1	

y	<=	d

y	=	d	->	
d	:=	d/2	;	y	:=	0

clock	x,	y	:=	0
real	d	:=	1	

x	<=		3	&
y	<=	d

x	=	3	?
A B

y	=	d	->	
d	:=	d/2;	y	:=	0

Presence	of	a	Zeno	process	in	the	
system	can	stop	time	from	
advancing,	and	make	states	of	
other	processes	unreachable	!	



Making		Bouncing	Ball	Non-Zeno

cont h	:=	h0,	v	:=	v0

Fall

dh	=	v		
dv	=	–g	

h	>=	0

h	=	0		->		bump	!	;	v	:=	–a	v

Stop

dh	=	0
dv	=	0	

h	=	0		&	v	<	ε ->		bump	!	;	v	:=	0

If	velocity	is	too	small,	stop	modeling	dynamics	accurately	

In	this	model,	there	is	a	lower	bound	on	duration	between	
successive	bumps	



Stability	of	Hybrid	Systems

Is	the	dynamics	in	mode	A stable?

(s2	=– 0.2s1)	?

(s2	=	5s1)	?

A

ds1	=	–s1	– 100s2

S2	>=	–0.2s1

ds2	=	10s1	– s2

B

ds1	=	– s1	+	10s2

S2	>=	5s1

ds2	=	–100s1 – s2

Is	the	dynamics	in	mode	B stable?

Each	mode	has	stable	dynamics,	but	switching	causes	instability!



Stability	of	Hybrid	Systems
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