
CS:4980
Foundations	of	Embedded	Systems

Copyright 20014-16, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

Timed	Model

Models	of	Reactive	Computation
q Synchronous	model

§ Components	execute	in	a	sequence	of	discrete	rounds	in	lock-step
§ Computation	within	a	round:	Execute	all	tasks	in	an	order	consistent	

with	precedence	constraints
q Asynchronous	model

§ Speeds	at	which	different	components	execute	are	independent
§ Computation	within	a	step:	Execute	a	single	task	that	is	enabled

q Continuous-time	model	for	dynamical	system
§ Synchronous,	but	now	time	evolves	continuously
§ Execution	of	system:	Solution	to	differential	equations

q Timed	model
§ Like	asynchronous	for	communication	of	information
§ Can	rely	on	global	time	for	coordination

Example	Timed	Model

clock	x	:=	0
off

press	?	–>		x	:=	0
dim bright

press	?

(press		&		x	>=	1)	?
(press		&		x	<=	1)	?

Initial	state: (mode	=	off,	x	=	0)
Timed	transition:(off,	0)		–0.5–>		(off,	0.5)
Input	transition: (off,	0.5)		–press?–> (dim,	0)
Timed	transition:(dim,	0)		–0.8–>	 (dim,	0.8)
Input	transition: (dim,	0.8)		–press?–>	 (bright,		0.8)
Timed	transition:(dim,	0.8)		–1–>	 (dim,	1.8)
Input	transition: (dim,	1.8)		–press?–>	 (off,		1.8)

Example	Timed	Model

q Clock	variables
§ Tests	and	updates	in	mode-switches	like	other	variables
§ New: During	a	timed	transition	of	duration	d,	the	value	of	

clock	variables	increases	by	an	amount	equal	to	d
q Timing	constraint:	Setting	x to	0 for	off	–>	dim	and	guard	x	<=	1	

for	dim	–>	bright specifies	that	timing	of	these	two	transitions	
is	<=	1 apart

clock	x	:=	0
off

press	?	–>		x	:=	0
dim bright

press	?

(press		&		x	>=	1)	?
(press		&		x	<=	1)	?

Example:	Timed	Buffer

bool in bool out

q Buffer	with	a	bounded	delay

q Behavior:	Input	received	on	channel	in	is	transmitted	on	
output	channel	out	after	a	delay	of	d,	with	LB	<=	d	<=	UB	
(i.e.	we	know	lower	and	upper	bounds	on	this	delay)

Modeling	Timed	Buffer

clock	y	:=	0

in	?		–>		x	:=	in	;	y	:=	0

in	?

q Mode	indicates	whether	the	buffer	is	full	or	not
q State	variable	x remembers	the	last	input	value	when	buffer	is	full
q Clock	variable	y tracks	the	time	elapsed	since	buffer	filled	up
q When	buffer	is	full,	input	events	are	ignored
q Guard	y	>=	1	ensures	that	at	least	1 time	unit	elapses	in	mode	Full

How	to	ensure	that	mode-switch	from	Full to	Empty is	executed	before	
clock	y exceeds	the	upper	bound	1?

FullEmpty

y	>=	1		–>		out	:=	x

Clock	Invariants

q The	constraint	y	<=	1	associated	with	mode	Full is	a	clock	invariant

q A	timed	transition	of	duration	d is	allowed	only	if	the	clock	invariant	
is	satisfied	for	the	entire	duration	of	the	transition
§ (Full,	x,	0.8)		–0.7–>	 (Full,	x,	1.5)	 allowed
§ (Full,	x,	0.8)		–1.4–> (Full,	x,	2.2) disallowed

q Clock	invariants	to	limit	how	long	a	process	stays	in	a	mode

clock	y	:=	0

in	?		–>		x	:=	in	;	y	:=	0

in	?

Full
y	<=	2

Empty

y	>=	1		–>		out	:=	x

Example	with	Two	Clocks

clock	x,	y	:=	0

in	?		–>	 x	:=	0

q Input	event:	in
q Output	events:	out1,	out2
q Two	clock	variables:	x,	y
q As	time	passes,	both	clocks	increase	(and	at	the	same	rate)
q Sample	timed	transitions	from	state	(mode,	x,	y)	=	(Wait2,	0.8,	0)	:

(Wait2,	0.8,	0)		–0.3–>		(Wait2,	1.1,	0.3)		–0.72–>		(Wait2,	1.82,	1.02)

Wait1
x	<=	1

Idle

y	>=	1		–>	 out2!

out1!	; y	:=	0
Wait2
x	<=	2

Two	Clock	Example

q Clock	x tracks	time	elapsed	since	the	last	input	event
q Clock	y tracks	time	elapsed	since	the	output	event
q What	is	the	behavior	of	this	model?
q If	input	event	occurs	at	time	t,	the	process	issues	an	output	event	on	

channel	out1 at	time	t’ within	the	interval	[t,	t+1],	and	then	on	
channel	out2 at	time	t’’	within	the	interval	[t’+1,	t+2]

clock	x,	y	:=	0

in	?		–>	 x	:=	0
Wait1
x	<=	1

Idle

y	>=	1		–>	 out2!

out1!	; y	:=	0
Wait2
x	<=	2

Example	Specification

q Consider	a	timed	process	with
Input:	event	x Output:	event	y, event	z

q Desired	behavior
§ For	each	input,	produce	both	output	events
§ Time	delay	between	x? and	y! is	in	the	interval	[2,	4]
§ Time	delay	between	x? and	z! is	in	the	interval	[3,5]
§ Ignore	later	inputs	received	in	these	intervals

Definition	of	Timed	Process
q A	timed	process	TP consists	of

1. An	asynchronous	process	P,	where	some	of	the	state	variables	can	
be	of	type	clock (ranging	non-negative	reals)

2. A	clock	invariant	CI,	a	Boolean	expression	over	P’s	state	variables

q Inputs,	outputs,	states,	initial	states,	internal	actions,	input	actions,	
and	output	actions	exactly	as	in	the	asynchronous	model

q Notation:	For	a	state	s and	time	t,	let	s+t denote	the	state	such	that	
§ (s+t)(x)	=	s(x)+t for	every	clock	variable	x,	and
§ (s+t)(y)	=	s(y)		for	every	non-clock	variable	y

q Timed	actions:	Given	a	state	s and	a	time	d	>	0,				s	–d–>	s+d is	a	
transition	of	duration	d as	long	as	the	state	s+t satisfies	invariant	CI	
for	all	t in	[0,	d]
Note: If	a	clock-invariant	is	a	convex	constraint	then	it	is	sufficient	to	
check	that	the	end-states	s and	s+d satisfy	CI

Composition	of	Processes

bool in bool	out1

q How	to	construct	timed	process	corresponding	to	the	composition	of	
the	two	processes?

q What	are	the	possible	behaviors	of	the	composite	process?

bool	out2

TimedBuf1

TimedBuf2

Composition	of	Timed	Processes

clock	y1	:=	0

in	?		–>	 x1	:=	in	;	y1	:=	0

in	?

Full
y1	<=	UB1Empty

y1	>=	LB1		–>	 out1	:=	x1
TimedBuf1

clock	y2	:=	0

in	?		–>	 x2	:=	in	;	y2	:=	0

in	?

Full
y2	<=	UB2

Empty

y2	>=	LB2		–>	 out2	:=	x2
TimedBuf2

The	composite	process	has	four	modes:	(Empty,	Empty),	(Empty,	Full),	
(Full,	Empty),	(Full,	Full),

Composition	of	Timed	Processes

(mode	=	EF	=>	y2	<=	UB2)	&	(mode	=	FF	=>	y1	<=	UB1	&	y2	<=	UB2)	&
(mode	=	FE	=>	y1	<=	UB1)

Composition	of	Processes

q If	UB1	<	LB2	then	out1 guaranteed	to	occur	before	out2
§ Implicit	coordination	based	on	bounds	on	delays

q Is	it	possible	to	observe	two	out1events	without	an	intervening	out2
event?
§ Depends	on	relative	magnitudes	of	bounds	(need	timing	analysis!)

bool in bool	out1

bool	out2

TimedBuf1

TimedBuf2

Definition	of	Parallel	Composition
q Consider	timed	processes	TP1 =	(P1,	CI1)	and	TP2 =	(P2,	CI2)

q When	is	the	parallel	composition	TP1 |	TP2 defined?
§ Exactly	when	the	asynchronous	parallel	composition	P1 |	P2

is	defined	(that	is,	when	the	outputs	of	the	two	are	disjoint)

q TP1	|	TP2	=	(P1 |	P2,	CI1 &	CI2)
§ Asynchronous	composition	of	P1	and	P2 defines	the	internal,	

input	and	output	actions	of	the	composite
§ Conjunction	of	the	clock-invariants	defines	the	clock-

invariant	of	the	composite	

q Consequence:	The	composite	process	can	allow	a	timed	action	
of	duration	d exactly	when	both TP1 and	TP2 can	wait	for	time	d

Block	Diagrams

q Components	can	be	timed	processes	now
§ Operation:	instantiation	(input/output	variable	renaming),	parallel	

composition,	and	variable	hiding

q A	step	of	the	composite	system	is	either
1. An	internal	step	of	one	of	components
2. A	communication	(input/output)	step	involving	relevant	sender	

and	receivers
3. A	timed	step	involving	all	the	components

Timed	Model

q Timed	model	is	sometimes	called	the	semi-synchronousmodel	
(mix	of	asynchronous	and	synchronous)

q Definitions/concepts	that	carry	over	naturally	from	those	
models:
§ Executions	of	a	timed	process
§ Transition	system	associated	with	a	timed	process
§ Safety/liveness requirements

q Distributed	coordination	problems:	how	can	we	exploit	the	
knowledge	of	timing	delays	to	design	protocols?

Recall:	Shared	Memory	Asynchronous	Processes

q Processes	P1	and	P2	communicate	by	reading/writing	shared	variables

q Each	shared	variable	can	be	modeled	as	an	asynchronous	process
§ State	of	each	such	process	is	the	value	of	corresponding	variable
§ In	implementation,	shared	memory	can	be	a	separate	subsystem

q Read	and	write	channel	between	each	process	and	each	shared	variable
§ To	write	x,	P1	synchronizes	with	x	on	x.write1	channel
§ To	read	x,	P2	synchronizes	with	x on	x.read2	channel

x.write1

P1

x

y

P2
y.write1

y.read2

y.write2

x.read2

x.write2

y.read1

x.read1

Shared	Memory	Programs	with	Atomic	Registers

AtomicReg nat x	:=	0

Process	P1

nat y1	:=	0

y1	:=	x

x	:=	y1	+	1

Process	P2

nat y2	:=	0

y2	:=	x

x	:=	y2	+	1

Declaration	of	shared	variables
+	code	for	each	process

Key	restriction:	Each	statement	of	a	
process	either

changes	local	variables,
reads	a	single	shared	var,	or
writes	a	single	shared	var

Execution	model:	execute	one	step	
of	one	of	the	processes

What	if	we	knew	lower	and	upper	bounds	on	how	long	a	read	or	a	write	
takes?	Could	we	solve	coordination	problems	better?

Asynchronous	Execution	Model

nat x	:=	0	;	y	:=	0

Ax	:		x	:=	x	+	1

Ay	:		y	:=	y	+	1

q Tasks	Ax and	Ay execute	in	an	arbitrary	order

q For	every	possible	choice	of	numbers	m and	n,	the	state	(m,	n)	is	
reachable

q Recall:	Fairness	assumptions	can	be	used	to	rule	out	executions	where	
one	of	the	tasks	is	ignored	forever	(although	this	does	not	affect	the	
set	of	reachable	states)

q What	if	we	know	how	long	each	of	these	increments	take?

(x,	y)

Timed	Increments

q Task	Ax increments	x,	and	this	takes	between	1 to	2 time	units

q Task	Ay increments	y,	and	this	also	takes	between	1 to	2 time	units
q Two	tasks	execute	in	parallel,	asynchronously,	but	timing	introduces	

loose	coordination
q Which	states	are	reachable?	What	is	the	relationship	between	mand	

n so	that	the	state	(m,	n)	is	reachable?

clock	u	:=	0
nat x	:=	0

u	>=	1		–>		x	:=	x+1	;	u	:=	0

u	<=	2

clock	v	:=0
nat y	:=0

v	>=	1		–>	 y	:=	y+1	;	v	:=	0

v	<=	2

q Safety	requirement:	processes	should	not	both	be	in	critical	section	
simultaneously	(can	be	formalized	using	invariants)

q Absence	of	deadlocks:		if	any	process	is	trying	to	enter,	then	some	
process	should	be	able	to	enter

Process	P1

Entry	Code

Critical	Section

To	be	designed

Process	P2

Entry	Code

Critical	Section

Mutual	Exclusion	Problem

Mutual	Exclusion:	Incorrect	Solution
AtomicReg {0,	1,	2}	Turn	:=	0

What	is	the	problem?

Process	P1

Idle Try1
Turn	=	0	?

Crit

else

Turn	:=	0

Try2
Turn	:	=	1

Process	P2

Idle Try1
Turn	=	0	?

Crit

else

Turn	:=	0

Try2
Turn	:	=	2

Timing-based	Mutual	Exclusion

1. Before	entering	critical	section,	read	the	shared	variable	Turn
2. If	Turn	!=	0	then	go	to	step	1	and	try	again
3. If	Turn	=	0	then	set	Turn to	your	ID

Proceeding	directly	to	critical	section	is	a	problem	(since	the	other	
process	may	also	have	concurrently	read	Turn to	be	0,	and	
updating	Turn to	its	own	ID).	Solution:	

4. Delay	and	wait	till	you	are	sure	that	concurrent	writes	are	
finished

5. Read	Turn again:	if	Turn equals	your	own	ID	then	proceed	to	
critical	section;	otherwise,	go	to	Step	1	and	try	again

6. When	done	with	critical	section,	set	Turn back	to	0

Fisher’s	Mutual	Exclusion	Protocol

AtomicReg Turn	:=	0

Idle
nat y,	clock	x

Test
y	:=	Turn Set

Delay

y	=	0		–>	 Turn	:=	myID

y	!=	0	?

;	x	:=	0
x	<=	Δ1

Timing	assumption:	
writing	Turn takes	at	most	Δ1

Check
x	>=	Δ2 –>	 y	:=	Turn x	:=	0

Crit

y	=	myID ?

y	!=	myID ?Turn	:=	0

Why	does	this	work	?

Wait	for	at	least	Δ2 time	units,
and	read	Turn again

Properties	of	Timed	Fisher’s	Protocol
q Assuming	Δ2 >	Δ1,	the	algorithm	satisfies:

§ Mutual	exclusion:	Two	processes	cannot	be	in	critical	
section	simultaneously

§ Deadlock	freedom:	If	a	process	wants	to	enter	critical	
section	then	some	process	will	enter	critical	section

q Protocol	works	for	arbitrarily	manyprocesses	(not	just	2)
§ In	contrast,	in	the	asynchronous	model,	mutual	exclusion	

protocol	for	N processes	is	lot	more	complex	than	
Peterson’s	algorithm

q Exercise:	Does	the	protocol	satisfy	the	stronger	property	of	
starvation	freedom	(if	a	process	wants	to	enter	critical	section	
then	it	eventually	will)?

q Exercise:	If	Δ2 <=	Δ1 does	mutual	exclusion	hold?	Deadlock	
freedom?

Timed	Communication

q Suppose	a	sender	wants	to	transmit	a	sequence	of	bits	to	a	
receiver	connected	by	a	communication	bus

q Natural	strategy:	Divide	time	into	slots,	and	in	each	slot	
transmit	a	bit	using	high/low	voltage	values	to	encode	0/1

q Manchester	encoding:	0 encoded	as	a	falling	edge,	and	1
encoded	as	a	rising	edge

Timed	Communication	Challenges

q Sender	and	receiver	know	the	duration	of	each	time	slot,	but	…
q Receiver	does	not	know	when	the	communication	begins

§ When	idle,	the	voltage	is	set	to	low
q Receiver	cannot reliably	detect	falling	edges
q Sender	and	receiver	clocks	are	synchronized	imperfectly	due	to	drift

§ When	a	clock	x is	1,	actual	elapsed	time	is	in	interval	[1-ε,	1+ε]
§ Since	in	the	timed	model	clocks	are	considered	to	be	perfect,	

we	can	capture	this	error	by	using	x	<=	1+ε instead	of	x	<=	1,	and	
1-ε <=	x	instead	of	1	<=	x

q Addressing	the	challenges:
§ All	messages	start	with	1 and	end	with	00
§ Processes	use	timing	information	to	transmit	0s

Audio	Control	Protocol

q Protocol	developed	by	Philips	to	reliably	transmit	messages	in	
presence	of	imperfect	clocks

q Design	logic	for	receiver	to	map	measured	delays	between	
successive	raising	edges	to	sequence	of	bits

q Verification:	Prove	that	message	transmission	is	reliable	for	a	given	
drift	rate	ε

q Optimization:	Find	the	largest	skew	value	that	the	protocol	tolerates

Audio	Control	System

Sender	Process

Receiver	Process

Execution	Example

Credits

Notes	based	on	Chapter	7	of

Principles	of	Cyber-Physical	Systems
by	Rajeev	Alur
MIT	Press,	2015

