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Dynamical	Systems	
Part	III	



Control	Design	Problem	

Plant	model	as	
Con/nuous-/me	
Component	H	

Uncontrolled	Inputs	 Observable	Outputs		

q We	want	to	design	a	controller	C	so	that	C	||	H	is	stable	
q  Is	there	a	mathema/cal	way	to	check	when	a	system	is	stable?	

q  Is	there	in	fact	a	way	to	design	C	so	that	C	||	H	is	stable	?	
q  Yes,	if	the	plant	model	is	linear	

Controller	C	

Controllable	Inputs	



Linear	Component	

A	linear	expression	over	variables	x1,	x2,	…	xn	is	of	the	form		
a1	x1	+	a2x2	+	…	+	an	xn	

where	a1,	a2,	…	are	ra/onal	constants	
	

A	con/nuous-/me	component	H	with	state	variables	S,	input	
variables	I,	and	output	variables	O	is	linear	if	

§  for	every	state	variable	x,	the	dynamics	is	given	by	dx	=	fx(S,I),	
where	fx	is	a	linear	expression	

§  for	every	output	variable	y,	y	is	defined	by	y	=	hy(S,I),	where	hy	
is	a	linear	expression	

	

Examples	

§  linear:	heaYlow,	car,	helicopter	
§  nonlinear:	pendulum	



Con/nuous-/me	Component	Car2	

v	

F	

	dx	=	v	
	dv	=	(F	–	kv	–	m	g	sin(θ))	/	m	

	real	xL	<=	x	<=	xU	
									vL	<=	v	<=	vU	

q  Right-hand	side	of	dv	equa/on	not	linear	

q  Easy	fix:	replace	disturbance	θ	by	another	variable	sθ	=	sin	θ	

real	[–π/6,	π/6]		θ



Con/nuous-/me	Component	Car2	

v	

F	

	dx	=	v	
	dv	=	(F	–	kv	–	m	g	sθ)	/	m	

	real	xL	<=	x	<=	xU	
									vL	<=	v	<=	vU	

real	[sin(–π/6),	sin(π/6)]	sθ

Rewri/ng	to	normal	form:	

		dx/dt	=	0x	+	1v	+	0F	+	0sθ	
		dv/dt	=	0x	+	(–k/m)v	+	(1/m)F	+(–g)sθ	

									v		=	0x	+	1v	+	0F	+	0sθ

Matrix-based	representa/on:	

		S	=	(x		v)T					I	=	(F		sθ)T				O	=	(v)	
	

dS/dt		=	A	S	+	B	I	

								O	=	C	S	+	D	I	
	

A	=			0					1									B	=				0								0	
									0		-k/m															1/m		-g	
	

C		=		(0		1)										D	=	(0		0)	



(A,B,C,D)	Representa/on	of	Linear	Components	

Suppose	a	linear	con/nuous-/me	component	has		
§  n	state	variables	S	=	{x1,	x2,	…	xn	}		
§  m	input	variables	I	=	{u1,	u2,	…	um}	
§  k	output	variables	O	=	{y1,	y2,	…	yk	}		

Then	the	dynamics	is	given	by		

	 	dS/dt		=	A	S	+	B	I				and				O	=	C	S	+	D	I	
where	

	 	A	is	an	n	×	n	matrix 	C	is	a	k	×	n	matrix	

	 	B	is	an	n	×	m	matrix 	D	is	a	k	×	m	matrix		
	

The	rate	of	change	of	i-th	state	variable	and	the	value	of	j-th	output	are	

	dxi/dt	=	Ai,1	x1	+	Ai,2x2	+	…	+	Ai,n	xn	+	Bi,1	u1	+	Bi,2u2	+	…	+	Bi,m	um	

								yj		=	Cj,1	x1	+	Cj,2x2	+	…	+	Cj,n	xn	+	Dj,1	u1	+	Dj,2u2	+	…	+	Dj,m	um	

	



Input-Output	Linearity	

Con/nuous-/me		
Component	H	

Inputs	I	 Outputs	O	

With	a	fixed	ini/al	state,	a	con/nuous-/me	component	H	maps	
input	signals	I(t)	to	output	signals	O(t)		
	

Theorem:	If	H	is	linear,	then	both	of	the	following	hold.	
§  Scaling:	If	the	output	response	of	H	to	the	input	signal	I(t)	is	

O(t),	then	for	every	constant	α,	the	output	response	of	H	to	the	
input	signal	α	I(t)	is	α	O(t)	

§  Addi,vity:	If	the	output	responses	of	H	to	the	input	signals	I1(t)	
and	I2(t)	are	O1(t)	and	O2(t),	then	the	output	response	of	H	to	
the	input	signal	(I1	+	I2)(t)	is	(O1	+	O2)(t)	



Response	of	Linear	Systems	

Consider	a	one-dimensional	linear	system	with	no	inputs:	
dx/dt	=	ax		;	ini/al	state	x0	

	

Its	execu/on	is	given	by	the	signal		
x(t)	=	x0	eat	

§  Recall	that	ea	=	1	+	∑n>0
	an/n!		

§  Verify	that	solu/on	x(t)	sa/sfies	the	differen/al	equa/on	
§  See	textbook	on	how	solu/on	is	found	



Response	of	Linear	Systems	

General	Case	(no	inputs)	

q  State	set	S		

q  Dynamics	is	given	by	
	 	dS/dt	=	A	S	

	 	ini/al	state	s0	

q  For	each	input	signal	I(t),	execu/on	is	given	by	the	signal		
	 	S(t)	=	eAt	s0	

§  	At	=	scalar	product	of	A	and	t	
§  	eM	=	I	+	∑n>0	Mn/n!		
§  	I	=	iden/ty	matrix		(Ii,j	=		if	(i	=	j)	then	1	else	0)	



General	Case	(with	inputs)	

q  State	set	S,	input	set	I			

q  Dynamics	is	given	by	
	 	dS/dt	=	A	S	+	B	I	

	 	ini/al	state	s0	

q  For	each	input	signal	I(t),	execu/on	is	given	by	the	signal		
	 	S(t)	=	eAt	s0	+	∫0t	(eA(t	–	τ)	B	I(τ)	dτ)	

	

Response	of	Linear	Systems	



Matrix	Exponen/al	

q Matrix	exponen/al	eA	=	I	+	A	+	A2/2	+	A3/3!	+	A4/4!	+	…				

q  Each	term	in	the	sum	is	an	n	×	n	matrix	

q  How	do	we	compute	eA?	

q  If	Ak	=	0	for	some	k,	the	sum	is	finite	and	can	be	computed	directly	

q  If	A	is	a	diagonal	matrix	D(a1,	a2,	…,	an)	(Aij	=	if	(i	=	j)	then	ai	else	0),	
then	eA	=	D(ea1,	ea2	,	…,	ean	)		

q  In	general,	the	sum	of	the	first	k	terms	will	give	an	approxima/on	
(whose	quality	is	propor/onal	to	k)	

q Otherwise,	we	can	use	analy/cal	methods	based	on	eigenvalues	
and	similarity	transforma/ons	



Eigenvalues	and	Eigenvectors	

q  Let	A	be	an	n	×	n	matrix,	λ a	scalar	value	and	x	an	n-
dimensional	non-zero	vector.		
If	the	equa/on	A	x	=	λ	x	holds,	then	x	is	an	eigenvector	of	A,	
and	λ	is	the	corresponding	eigenvalue	

q  How	to	compute	eigenvalues	and	eigenvectors?	

q We	solve	the	characteris,c	equa,on	of	A:	

	 	 	det(A	–	λI )	=	0	
	

q  Recall:	the	determinant	det(M)	of	a	2	×	2	matrix	M	is																
M1,1M2,2	–	M1,2M2,1	



The	eigenvalues	of	an	n	×	n	matrix	A	are	the	roots	of	the	
characteris/c	polynomial	p	=	det(A	–	λ	I)	
	

Note:	

q  The	mul/plicity	of	an	eigenvalue	(as	a	root	of	p)	can	be	>	1	

q  An	eigenvalue	can	be	a	complex	number	
q  If	A	is	a	diagonal	matrix	then	the	diagonal	entries	are	the	

eigenvalues	
q  For	a	given	eigenvalue	λ,	we	can	compute	the	corresponding	

eigenvector(s)	by	solving	the	linear	system	A	x	=	λ x,	with	
unknown	vector	x	

q  If	all	eigenvalues	of	are	A	dis/nct,	then	the	set	of	corresponding	
eigenvectors	is	linearly	independent	

	

Eigenvalues	and	Eigenvectors	



Similarity	Transforma/on	

q  Consider	dynamical	system	H	with	dynamics	given	by:	

	 	dS/dt	=	A	S	;		ini/al	state	s0	
q  Let	P	be	an	inver/ble	n	×	n	matrix	

q  Consider	system	H’	with	state	vector	S’	=	P-1	S	and	dynamics	

								d/dt	S’		=		d/dt	(P-1	S)		=		P-1	dS/dt		=		P-1	A	S		=		P-1	A	P	S’		=		J	S’	

q  The	matrix	J	=	P-1	A	P	is	said	to	be	similar	to	A	

q  The	ini/al	state	of	transformed	system	H’	is		S’(0)	=	P-1	s0	

q  The	response	of	the	transformed	system	H’	is	given	by	

	 	S’(t)	=	eJt		P-1	s0		

q  The	response	of	the	original	system	is	S(t)	=	P	eJt	P-1	s0		

q When	is	all	this	useful?	

q When	we	can	choose	P	so	that	J	is	diagonal!	



Similarity	Transforma/on	using	Eigenvectors	

q  Consider	system	H	with	dynamics	given	by:		
	 	dS/dt	=	A	S	;	ini/al	state	s0	

q  Calculate	eigenvalues	λ1,	…,	λn	and	suppose	they	are	all	dis/nct	

q  Calculate	corresponding	eigenvectors	x1,	…,	xn	(which	must	be	
linearly	independent)	

q  Consider	the	n	×	n	matrix	P	=	(x1			x2		…		xn)	

q  Find	its	inverse	P-1	(which	must	exist	in	this	case)	

q  Claim:	The	matrix	J	=	P-1	A	P	is	the	diagonal	matrix	D(λ1,	…,	λn)	

q  Execu/on	of	the	system	is	given	by		

	 	S(t)	=	P	D(e	λ1	t,	…,	eλn	t	)	P-1	s0		



Example:	Response	of	Linear	Systems	
Consider	2-dimensional	system	with	dynamics	given	by	

				 	ds1		=		4	s1		+	6	s2 	ini/al	state	(s1,	s2)	=	(1,	1)T	

				 	ds2		=					s1		+	3	s2	

1.  Compute	eigenvalues	λ1	and	λ2	of	A	=	((4		1)T		(6		3)T)	
§  λ1	=	6		and		λ2	=	1	

2.  Compute	eigenvectors	x1	and	x2			
§  x1	=	(3		1)T	and	x2	=	(2		-1)T	

3.  Choose	the	similarity	transforma/on	matrix	P	=	(x1		x2)	=	((3		1)T		(2		-1)T)		

4.  Compute	the	inverse	P-1	of	P	
§  P-1			=		((-1		-1)T		(-2		3)T)	/	(-3-2)		=		((1/5		1/5)T		(2/5		-3/5)T)		

5.  Verify	that	J	=	P-1	A	P		is	diagonal	matrix	D(λ1,	λ2)	=	((6		0)T		(0		1)T)	
§  J		=		P-1	A	P		=		((6/5		1/5)T		(12/5		-3/5)T)	((3		1)T		(2		-1)T)		=		((6		0)T		(0		1)T)	

6.  Desired	solu/on	is	S(t)	=	P	D(eλ1	t,	eλ2	t	)	P-1	(1,	1)T	
§  S(t)		=		((3		1)T		(2		-1)T)	((e6t		0)T		(0		et)T)	((1/5		1/5)T		(2/5		-3/5)T)	(1,	1)T	=	…	
	

	



Back	to	Equilibria	and	Stability	

q  Consider	a	closed	linear	system	H	with	dynamics	given	by:	
	 	 	dS/dt	=	A	S	

q  Recall:	a	state	s	is	an	equilibrium	state	of	H	if	A	s	=	0	

q  How	to	compute	equilibria:	solve	system	of	linear	equa/ons	

q  Claim	1:	State	0	is	an	equilibrium	

q  Claim	2:	If	A	is	inver/ble,	then	0	is	the	sole	equilibrium	

q  If	state	s	is	a	non-zero	equilibrium	of	H,	consider	the	
transformed	system	H’	with	state	S’	=	S	–	s	
§  The	equilibria	0	of	H’	and	s	of	H	have	the	same	proper/es	



Back	to	Equilibria	and	Stability	

Henceforth,	we	will	focus	on	closed	linear	systems	H	and	their	
equilibrium	state	0	
	

Defini;on:	

1.  H	is	stable	if	state	0	is	stable	
2.  H	is	asympto,cally	stable	if	state	0	is	asympto/cally	stable	



Stability:	One-Dimensional	System	

q  Consider	a	one-dimensional	linear	system	H	with	dynamics	given	
by:	dx/dt	=	a	x	with	some	ini/al	state	s0	

q  Recall:	H	is	asympto/cally	stable	iff		
1.  (Stable)	For	every	ε >	0,	there	is	a	δ >	0	such	that	for	all	ini/al	states	

s	with	||	s||	<	δ	and	for	all	/mes	t,	||	eat	s||	<	ε	

2.  (Asympto/cally)	There	is	a	δ >	0	such	that	for	all	ini/al	states	s	with	
||	s||	<	δ,	||	eat	s||		goes	to	0	as	t	goes	to	∞	

q  Case	a	<	0:		eat	s	converges	exponen/ally	to	0	as	t	goes	to	∞,	
regardless	of	s.	Asympto/cally	stable	

q  Case	a	=	0:	dynamics	is	dx/dt	=	0.	The	state	stays	equal	to	the	
ini/al	state	s.	Stable	but	not	asympto/cally	stable	

q  Case	a	>	0:	eat	s		grows	exponen/ally	as	t	increases,	and	thus,	
state	diverges	away	from	0.	Unstable!	



Stability:	Diagonal	State	Dynamics	

q  Consider	n-dimensional	linear	system	H	with	dynamics	given	by	
dS/dt	=	A	S,	where	A	is	the	diagonal	matrix	D(a1,	…,	an)	

q  Each	dimension	evolves	independently:	the	i-th	component	of	
S(t)	is	eai	t	s0i			where	s0	is	the	ini/al	state	vector	

q  All	coefficients	ai	<	0:	State	converges	to	the	equilibrium	0	no	
maser	the	ini/al	state.	Asympto/cally	stable	

q  All	coefficients	ai		<=	0:	Stable	but	not	asympto/cally	stable	if	
some	coefficient	aj	=	0	(j-th	state	component	stays	unchanged)	

q  Some	coefficient	ai	>	0:	Some	state	component	grows	
unboundedly	away	from	equilibrium	0.	Unstable!	



Similarity	Transforma/ons	and	Stability	

q  Consider	system	H	with	dynamics	given	by:	dS/dt	=	A	S	
q  Let	P	be	an	inver/ble	n	×	n	matrix,	and	consider	J	=	P-1	A	P	

q  Consider	system	H’	with	state	S’	=	P-1	S	(and	note	that	S	=	P	S’)	

q  Response	signal	of	transformed	system	H’: 	S’(t)	=	eJt	P-1	s0		
q  Response	signal	of	original										system	H: 	S(t)	=	P	eJt	P-1	s0		

q  Note:	response	of	H’	is	a	linear	transforma/on	of	response	of	H	

q If	a	signal	is	bounded,	so	is	its	linear	transforma/on	

q If	a	signal	converges	to	0,	so	does	its	linear	transforma/on	

q  Claim:	H	is	stable	iff	H’	is	stable	

q  Claim:	H	is	asympto/cally	stable	iff	H’	is	asympto/cally	stable	



Eigenvalues	and	Stability	

q  Consider	H	with	dynamics	is	given	by:	dS/dt	=	A	S	
q  Suppose	all	eigenvalues	λ1,	…,	λn	are	real	and	dis/nct	
q  Then	the	set	of	eigenvectors,	x1,	…,	xn	is	guaranteed	to	be	

linearly	independent	

q  Choose	n	×	n	matrix	P	=	(x1			x2		…		xn)	for	similarity	
transforma/on	

q  The	matrix	J	=	P-1	A	P	is	the	diagonal	matrix	D(λ1,…,	λn)	

q  If	all	eigenvalues	are	nega/ve,	then	the	transformed	system	H’	
is	asympto/cally	stable,	and	so	is	H	

q  If	all	eigenvalues	are	non-posi/ve,	then	H’	is	stable,	and	so	is	H	

Theorem:	A	linear	system	H	with	dynamics	dS/dt	=	A	S	is	asymptot-
ically	stable	iff	each	eigenvalue	of	A	has	a	nega/ve	real	part	



Con/nuous-/me	Component	Car	

v	F	 	dx	=	v	

	dv	=	(F	–	k	v)	/	m	

q  Let	S	=	(x		v)T		
q  The	matrix	A	is		(	(0		0)T		(1		-k/m)T	)	

q  Eigenvalues:	0	and	-k/m	
q  Stable	but	not	asympto/cally	stable	

q  If	we	consider	only	the	dimension	v,	then	asympto/cally	stable	

Exercise:	Set	F(t)	=	0	for	all	t,	and	analyze	what	happens	if	we	
perturb	the	system	from	the	equilibrium	(0		0)T		



Lyapunov	Stability	vs	BIBO	Stability	

q  Consider	linear	component	H	with	dynamics	given	by	
	 	dS/dt	=	A	S	+	B	I							O	=	C	S	+	D	I	

	

q  BIBO	stability:	Star/ng	from	ini/al	state	0,	if	the	input	is	a	
bounded	signal,	output	must	be	a	bounded	signal	

q  Theorem:	For	linear	components,	asympto/c	stability	implies	
BIBO	stability	

q Note:	Asympto/c	stability	depends	only	on	the	proper/es	of	
matrix	A	

q  Proof	of	the	theorem	relies	of	analysis	of	dynamical	systems	
using	transfer	func/ons	
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