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Dynamical	Systems	
Part	II	



Proper/es	of	Dynamical	Systems	

Correctness	requirements	for	dynamical	systems:	
§  	Safety	
§  	Liveness	
§  	Stability	

Cruise	controller	example:	
§  Safety:	speed	should	always	be	within	certain	bounds	
§  Liveness:	actual	speed	should	eventually	converge	to	desired	speed	
§  Stability:	as	the	road	grade	changes,	speed	should	change	gradually	



Stability	of	Dynamical	Systems	

Intui/vely,	a	dynamical	system	is	stable	if	small	perturba/ons	in	
the	input	values	cause	propor/onately	small	changes	in	the	
output	values	

	
Classical	mathema/cal	formaliza/on	of	stability:	

§  Lyapunov	stability	of	equilibria	
§  Bounded-Input-Bounded-Output	stability	of	response	
	

Stability	is	studied	for	closed	con/nuous-/me	components,	i.e.,	
components	with	with	no	inputs	

§  If	H	has	inputs,	then	we	can	analyze	it	by	seNng	them	to	a	
fixed	value	

	



Equilibria	of	Dynamical	Systems	

Consider	a	closed	con/nuous-/me	component	H	
§  Assume	state	x	is	n-dimensional,	and	its	dynamics	is	
Lipschitz-con/nuous	and	given	by	dx/dt	=	f(x)	

A	state	xe	is	an	equilibrium	of	H	if	f(xe)	=	0	
	
Note:	if	a	component	H	starts	in	an	equilibrium	state	xe,	it	stays	in	
this	state	at	all	/mes	



Pendulum	Equilibria	

Dynamics	when	u(t)	=	0	
	dϕ	=	ν					

	 	dν	=	–	g	sin(ϕ)	/	l	

Length	l	

Torque	u	

Weight	m	g	

Displacement	ϕ

m	g	sin(ϕ)

Equilibrium	states	are	solu/ons	of:		
ν =	0		
sin(ϕ)	=	0	
–π <=	ϕ < π	

Equilibrium	state	1:		ν =	0;	ϕ	=	0						Pendulum	is	ver/cally	downwards	

Equilibrium	state	2:		ν =	0;	ϕ	=	–π				Pendulum	is	ver/cally	upwards	



Lyapunov	Stability	

q  Consider	a	closed	con/nuous-/me	component	H	with	Lipschitz-
con/nuous	dynamics	dx/dt	=	f(x)	

q  Given	an	ini/al	state	s,	let	x[s]	denote	the	response	signal,	the	
unique	solu/on	for	the	ini/al	value	problem		

x(0)	=	s	;		dx/dt	=	f(x)	

q  Stability	of	an	equilibrium:	if	the	system	is	in	an	equilibrium	state	
and	we	perturb	its	state	slightly,	as	/me	passes,	
§  will	the	state	stay	close	to	the	equilibrium	state	?	
§  will	the	system	eventually	return	to	that	equilibrium	state?	



Lyapunov	Stability	Condi/ons	

Recall:	if	an	ini/al	state	se	is	an	equilibrium	state	then	x[se](t)	=	se		
for	all	/mes	t	(i.e.,	it	is	a	constant	func/on)	
	

Suppose	another	ini/al	state	s	is	close	to	se,	do	the	states	along	the	
signal	x[s]	stay	close	to	se	as	well?	If	so,	se	is	said	to	be	stable	
	

Formally,	se	is	stable	if	for	every	ε >	0,	there	exists	a	δ >	0	such	that		
for	all	states	s	with	||	se	–	s||		<	δ	and	/mes	t,	||	x[s](t)	–	se||		<	ε	

 

se	

s	 x[s]	

Time	

εδ



Lyapunov	Stability	Condi/ons	

If,	in	addi/on,	the	response	signal	x[s]	converges	to	the	
equilibrium	state	se,	then	se	is	asympto4cally	stable	
	

Formally,	se	is	asympto4cally	stable	if	it	is	stable	and	there	exists	a	
δ >	0	such	that	for	all	states	s	with||	se	–	s||		<	δ,	limt->indy	x[s](t)	
exists	and	equals	se	

Time	

se	

s	 x[s]	
δ



Pendulum	Equilibria	

Length	l	

Torque	u	

Weight	m	g	

Displacement	ϕ

m	g	sin(ϕ)

Equilibrium	state	1:		ν =	0;	ϕ	=	0	
Pendulum	is	ver/cally	downwards	

Equilibrium	state	2:		ν =	0;	ϕ	=	–π		
Pendulum	is	ver/cally	upwards	

Stable,	but	not	asympto/cally	stable	

Unstable	!	



Input-Output	Stability	

Con/nuous-/me		
Component	H	

Inputs	I	 Outputs	O	

q  A	con/nuous-/me	component	H	maps	input	signals	I(t)	to	
output	signals	O(t)	

q  Input-output	stability:	If	we	change	the	input	signal	slightly,	the	
output	signal	should	change	only	slightly	

q  Suffices	to	focus	on	bounded	signals	



Input-Output	Stability	

A	signal	x(t)	is	bounded	if	there	exists	constant	Δ	such	that		
||	x(t)||		<=	Δ	at	all	/mes	t	
	

Examples	
§  Constant	signal	x(t)	=	a:	bounded	
§  Linearly	increasing	signal	x(t)	=	a	+	bt	with	b	!=	0:	not	bounded	
§  Exponen/al	signal	x(t)	=	a	+	ebt	with	b	<=	0:	bounded	
§  Sinusoidal	signals	x(t)	=	a	sin(bt):	bounded	
	
A	con/nuous-/me	component	H	with	Lipschitz-con/nuous	dynamics	
is	Bounded-Input-Bounded-Output	(BIBO)	stable	if		
for	every	bounded	input	signal	I(t),	the	output	response	signal	O(t)	
from	ini/al	state	x(0)	=	0	is	bounded	



Helicopter	Model	(Simplified)	

Design	problem:	What	torque	
should	the	tail	rotor	apply	to	keep	
the	helicopter	from	spinning?	

Spin	(dθ/dt):	s	
Moment	of	iner/a:	I	

X	axis	

Y	axis	

Z	axis	

Yaw	(rota/on	around	Z)	θ	

Equa/on	of	mo/on:	
	ds/dt	=	T	/	I	

Torque	T	



Stability	of	Helicopter	Model	

ds	=	T	/	I	

Torque	T	 Spin	s	

§  Is	the	system	BIBO	stable?	
§  Consider	bounded	constant	input	signal	T(t)	=	T0	
§  Output	response	from	ini/al	state	0	not	bounded:	s(t)	=		T0	t	/	I	
§  Not	BIBO	stable!	
§  What	are	the	equilibria?	

§  Set	input	torque	to	0.	If	ini/al	spin	is	c,	it	will	stay	c.	Thus	
every	ini/al	state	is	an	equilibrium	state	

§  Each	such	state	c	is	stable	but	not	asympto/cally	stable!	

real	sL	<=	s	<	sU	
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