
CS:4980	
Founda/ons	of	Embedded	Systems	

Copyright 20014-16, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

The	Asynchronous	Model	
Part	III	

Consensus	

q  Each	process	starts	with	an	ini/al	preference	value,	known	only	to	itself	

q  Goal	of	coordina/on:	exchange	informa/on	and	arrive	at	a	common	
decision	value	

q  Classical	example:	Byzan/ne	Generals	Problem	communica/ng	by	
messengers	to	decide	on	whether	or	not	to	aLack	

q  Our	focus:	Two	processes	with	Boolean	preferences,	and	
communica/ng	by	shared	memory	

q  Processes	P1	and	P2	start	with	ini/al	Boolean	preferences	v1	and	v2,	
and	arrive	at	Boolean	decisions	d1	and	d2	so	that	

1.  Agreement:	d1	must	equal	d2	

2.  Validity:	The	decision	value	must	equal	either	v1	or	v2	
3.  Wait-freedom:	At	any	/me,	if	only	one	process	is	executed	

repeatedly,	it	eventually	reaches	a	decision	(does	not	have	to	wait	
for	the	other,	and	thus,	tolerant	to	failures)	

First	ALempt	at	Solving	Consensus	

x1	:=	pref1	

y1	:=	x2	

AtomicReg	{	0,	1,	null	}	x1	:=	null	;	x2	:=	null	

Process	P1	

bool	pref1,	dec1	

y1	:=	null	

if	y1	!=	null	
then	dec1	:=	(pref1	|	y1)	
else	dec1	:=	pref1	

Process	P2	

bool	pref2,	dec2	

x2	:=	pref2	

y2	:=	x1	

y2	:=	null	

if	y2	!=	null	
then	dec2	:=	(pref2	|	y2)	
else	dec2	:=	pref2	

Write	your	value	in	a	
shared	var,	read	
other’s	value,	decide	
on	OR	of	the	values;	
but	if	the	other	has	
not	wriLen	yet,	
choose	your	own	
ini/al	value	

Agreement?	

Validity?	
Wait-freedom?	

Second	ALempt	at	Solving	Consensus	

x1	:=	pref1	

y1	:=	x2	

AtomicReg	{	0,	1,	null	}	x1	:=	null	;	x2	:=	null	

Process	P1	

bool	pref1,	dec1	

y1	:=	null	

y1	!=	null	->	
dec1	:=	(pref1	|	y1)	

Write	your	value	in	a	
shared	var,	read	
other’s	value,	decide	
on	OR	of	the	values;	
but	if	the	other	has	
not	wriLen	yet,	read	
again	

Agreement?	

Validity?	
Wait-freedom?	

else	

Process	P2	

bool	pref2,	dec2	

x2	:=	pref2	

y2	:=	x1	

y2	:=	null	

y2	!=	null	->	
dec2	:=	(pref2	|	y2)	

else	

Solving	Consensus	

q  Solving	consensus	using	only	atomic	registers	is	impossible!	
§  Primi/ves	of	read	and	write	are	too	weak	to	achieve	desired	

coordina/on	while	sa/sfying	all	3	requirements	

q  Intui/ve	difficulty:	
§  When	a	process	writes	a	shared	variable,	it	does	not	know	

whether	the	other	process	has	read	this	value,	so	cannot	decide	
right	away	

§  When	a	process	reads	a	shared	variable,	it	needs	to	communicate	
to	other	process	that	it	has	seen	this	value,	so	needs	to	con/nue	

q  Solu/on:	Use	stronger	primi/ves:	Test&Set	registers	

q  Byzan/ne	Generals	Problem:	Coordina/on	is	impossible	
§  Sending	a	message,	and	receiving	a	message	are	similar	to	write	

and	read	opera/ons	

Consensus	using	Test&Set	Register	

x1	:=	pref1	

y1	:=	test&set(y)	

AtomicReg	bool	x1,	x2	;	Test&SetReg	y	:=	0	

Process	P1	

bool	pref1,	dec1	

y1	:=	0	

if	y1	=0	
then	dec1	:=	pref1	
else	dec1	:=	x2	

Write	your	value	in	a	
shared	var;		execute	
test&set;	if	you	win,	
choose	your	own	
ini/al	value,	else	read	
other’s	preference	as	
decision	value	

Agreement?	

Validity?	
Wait-freedom?	

Process	P2	

bool	pref2,	dec2	

x2	:=	pref2	

y2	:=	test&set(y)	

y2	:=	0	

if	y2	=	0	
then	dec2	:=	pref2	
else	dec2	:=	x1	

Impossibility	of	Consensus	

Theorem.	There	is	no	protocol	for	two-process	consensus	such	that	

1.  Processes	communicate	using	only	shared	atomic	registers	
2.  Protocol	sa/sfies	agreement,	validity,	and	wait-freedom	

Proof.	By	contradic/on,	suppose	there	is	such	a	protocol.	
Let	us	look	at	the	underlying	transi/on	system	T	for	processes	P1	and	P2	

A	state	of	T	looks	like	

A	transi/on	of	T	can	be		
§  a	step	by	P1,	and	such	a	transi/on	depends	only	on	the	first	two	parts	

of	the	state,	or	

§  a	step	by	P2,	which	depends	only	on	the	last	two	parts	of	the	state	

P1’s	local	state	 P2’s	local	state	Shared	variables	

Execu/on	Tree	of	Transi/on	System	T	

P1	

Ver/ces	are	states	

Leg-child:	Step	by	P1	
Right-child:	Step	by	P2	

Protocol	execu/on	=	Path	in	this	tree	

P2	

0	 1	

Tree	must	be	finite	(why?)	

Leaf-vertex:	Protocol	has	terminated	
Label	leaf	with	0/1	based	on	decision	

0	 1	 0-commiLed	vertex:	

				All	paths	lead	to	0-labled	leaves	
1-commiLed	vertex:	

				All	paths	lead	to	1-labeled	leaves	

UncommiLed:		

					Both	decisions	s/ll	possible	

	

All	0’s	 All	1’s	

UncommiLedness	of	Ini/al	State	

P1	pref	=	0	 P2	pref	=	1	shared		

Ini/al	state	s	

P1	

P1	

P1	

P1	

?	

same	 P2	pref	=	0	same		

Ini/al	state	s’	=	Slight	variant	of	s	

P1	

P1	

P1	

P1	

0	
Decision	must	be	0	due	to	validity!	

These	two	execu/ons	are	iden/cal	from	P1’s	perspec/ve,	
So	these	two	decisions	must	be	the	same;	?	=	0	!	

By	symmetric	argument,	if	we	let	only	P2	execute	in	state	s,	it	must	decide	on	1	
This	means	the	ini/al	state	s	is	uncommiLed	

Existence	of	Cri/cal	Ver/ces	

P1	

1.  There	is	an	ini/al	uncommiLed	state	

2.  All	leaves	are	0-commiLed		or	1-commiLed	
3.  Tree	is	finite	

P2	

0	 1	

All	0’s	 All	1’s	

s	 It	follows	that	there	must	exist	a	“cri/cal”	
decision	vertex	s	such	that	leg-child	is	0-
commiLed	and	right-child	is	1-
commiLed	

	

Existence	of	Cri/cal	Ver/ces	

P1	 P2	

0	 1	

All	0’s	 All	1’s	

s	 Whether	P1	or	P2	takes	the	next	step	is	the	
deciding	factor	in	state	s:	what	can	
such	a	step	be?	

	
	

Possible	cases:	

		1.	P1’s	step	is	local	or	is	read	of	a	shared	var	
		2.	P2’s	step	is	local	or	is	read	of	a	shared	var	

		3.	Both	steps	are	writes	to	different	shared	vars	

		4.	Both	steps		are	writes	to	same	shared	var	

	

Proof	by	case	analysis:	in	each	case	show	that	such	steps	
cannot	be	decisive!	

	

	

Example	Proof:	Case	2	

P1	local		 P2	local	shared		

Cri/cal	state	s	

P1	

P1	

P1	

P1	

unchanged	 	changed	unchanged		

P2	takes	internal	step	or		
reads	a	shared	variable	

P1	

P1	

P1	

P1	

These	two	execu/ons	are	iden/cal	from	P1’s	perspec/ve,	
So	these	two	decisions	must	be	the	same!	

Contradic/on	!		
P1	 P2	

0	 1	

All	0’s	 All	1’s	

s	

Leader	Elec/on	

	

q  Classical	coordina/on	problem:	Elect	a	unique	node	as	a	leader	
§  Exchange	messages	to	find	out	which	nodes	are	in	network	

§  Output	the	decision	using	the	variable	status	

q  Requirements	
§  Eventually	every	node	sets	status	to	either	leader	or	follower	

§  Only	one	node	sets	status	to	leader	

msg		in	 nat	id	:=	myID	

NetworkNode	

msg	out	

{unknown,	leader,	follower}		status	

Asynchronous	Leader	Elec/on	

q  Asynchronous	network	
§  Channel	models	directed	network	link	

§  If	there	is	a	channel/link	between	nodes	M	and	N,	then	
synchroniza/on	on	this	channel	allows	M	to	send	a	message	to	N	

q  Key	challenge	compared	to	the	synchronous	case	
§  There	is	no	no/on	of	a	global	round	
§  Synchronous	solu/on	strategy	(execu/ng	protocol	for	k	rounds	

implies	that	message	has	traveled	k	hops)	does	not	work	here!	

q  	Assume:	Processes	are	connected	in	a	unidirec/onal	ring	
§  Protocols	for	general	topologies	exist,	but	are	more	complex	

Sample	Asynchronous	Ring	Network	

Seong:	
§  Each	process	has	a	unique	iden/fier	

§  A	process	does	not	know	the	size	of	the	ring	(number	of	
processes)		

§  Execu/on	model	is	asynchronous	

§  No	failures:	each	process	executes	its	protocol	faithfully	

3	 8	 7	

10	1	5	

Asynchronous	Execu/on	in	a	Ring	

One	step	in	the	execu/on	of	the	system	is	either	
§  A	step	local	to	one	process,	or	

§  A	communica/on	step	that	transfers	the	message	at	front	of	
the	output	queue	y	of	a	process	to	back	of	the	input	queue	x	
of	its	right	neighbor	

	

msg		in	 msg	out	

A	i:	Enqueue(in,	x)	

queue	x	 queue	y	

Ao	:	¬Empty(y)	->	out	:=	Dequeue(y)	

Adop/ng	Synchronous	Algorithm	

q  Set	variable	id	to	MyID,	and	ini/alize	output	queue	y	to	contain			

q  Local	step/task	

§  Remove	a	value	v	from	queue	x	

§  If	v	>	id,	then	change	id	to	v,	and	enqueue	this	value	in	queue	y	

q  When	should	a	process	stop	and	decide?	

§  If	v	equals	id	!	
§  This	would	imply	that	the	value	has	traversed	the	en/re	ring	

q  What	is	an	upper	bound	on	the	number	of	messages	exchanged?	

§  Quadra/c,	O(N2),	where	N	is	number	of	processes	

	

Improved	Algorithm	

q  Set	variable	id	to	MyID,	and	ini/alize	output	queue	y	to	contain	id,	
which	will	be	communicated	to	right	neighbor	

q  When	you	receive	a	value	from	leg	neighbor,	store	it	in	state	variable	
id1,	and	also	relay	it	right	neighbor	(add	it	to	output	queue)	

q  Receive	another	value	from	leg	neighbor,	call	it	id2	

§  id	=	your	value,	id1	=	leg	neighbor,	id2	=	leg-leg	neighbor	

q  If	id1	is	the	max	of	these	three	values,	set	id	to	id1,	and	repeat	the	
above	steps		

§  Con/nue	to	next	phase	as	ac/ve,	but	with	different	iden/fier	

q  If	not,	then	decide	to	be	a	follower:	con/nue	as	a	passive	par/cipant	

§  Does	not	generate	any	new	messages,	just	transmits	messages	
in	input	queue	to	output	queue	

	

Example	Execu/on	

3	 8	 7	

10	1	5	

id	=	3	 id	=	8	 id	=	7	

id	=	5	 id	=	1	 id	=	10	

3	 8	

7	

10	1	

5	

id1	=	5	 id1	=	3	 id1	=	8	

id1	=	1	 id1=	10	 id1	=	7	

5	 3	

8	

7	10	

1	

id2	=	1	 id2	=	5	 id2	=	3	

id2	=	10	 id2	=	7	 id2	=	8	

Example	Execu/on	

3	 8	 7	

10	1	5	

id	=	5	 id	=	8	

id	=	10	

5	 5	

8	

8	10	

10	

id1	=	10	 id1	=	5	

id1	=	8	

10	 10	

5	

5	8	

8	

id2	=	8	 id2	=	10	

id2	=	5	

3		5	 7		8	

1		10	

Example	Execu/on	

3	 8	 7	

10	1	5	

id	=	10	

10	

10	

10	

10	 10	

10	

If	first	message	from	leg	neighbor	equals	id,	stop	and	become	the	leader!	

3		5	10	

Algorithm	Proper/es	

q  Actual	execu/on	proceeds	asynchronously	

§  Messages	are	processed	at	arbitrary	/mes	
§  Different	processes	may	be	execu/ng	different	phase	

q  The	process	that	becomes	leader	doesn’t	have	highest	(original)	iden/fier	

q  In	each	phase,	each	process	sends	only	2	messages	

q  Among	processes	ac/ve	during	a	phase,	if	a	process	con/nues	to	next	
phase	as	ac/ve,	then	its	leg	neighbor	cannot	stay	ac/ve	(why?)	

q  At	least	one	and	at	most	half	processes	con/nue	to	next	phase		
§  Construct	scenarios	for	these	two	extremes	

§  For	a	ring	of	N	processes,	at	most	log	N	phases,	so	a	total	of												
O(N	log	N)	messages	

§  Matching	lower	bound:	cannot	solve	leader	elec/on	in	a	ring	while	
exchanging	fewer	messages	

	

Unreliable	FIFO	

Models	a	link	that	may	lose	messages	and/or	duplicate	messages	

msg	in	 msg	out	

queue(msg)	x	:=	null	

A:		Enqueue(in,	x)	

B1:	¬Empty(x)		->		out	:=	Dequeue(x)	

B2:	¬Empty(x)		->		Dequeue(x)	

B3:	¬Empty(x)		->		out	:=	Front(x)	

How	to	implement	a	reliable	FIFO	link	using	unreliable	ones?	

Reliable	Transmission	Problem	

msg		in	 msg	out			UnrelFIFO1	
x1	

		UnrelFIFO2	

y1	

x2	 y2	

RS	

Design	Asynchronous	processes	S	and	R	so	that	the	sequence	of		

messages	received	on	the	channel	in	coincides	with	the	sequence		
of	messages	delivered	on	the	channel	out	

Alterna/ng	Bit	Protocol	

q  How	can	the	sender	S	be	sure	that	receiver	R	got	a	copy	of	the	
message	in	presence	of	message	losses?	

§  S	must	repeatedly	send	a	message	
§  R	must	send	back	an	acknowledgement,	and	do	so	repeatedly	

q  How	can	the	receiver	R	dis/nguish	between	a	duplicated/repeated	
copy	and	a	fresh	message?	

§  Each	message	must	be	tagged	with	extra	bits	

q  Alterna/ng	bit	protocol:	
§  Key	insight:	tagging	each	message	as	well	as	acknowledgement	

with	a	single	bit	suffices	

§  Both	S	and	R	keep	a	local	tag	bit	

§  if	the	tag	of	incoming	message	matches	with	the	local	tag,	
message	is	considered	fresh,	and	local	tag	is	toggled	

	

ABP	Sender	

msg	in	

(msg,	bool)	x1	

queue(msg)	x	:=	null	;	bool	tag	:=	1	

A:		Enqueue(in,	x)	

B:	¬Empty(x)		->		x1	:=	(Front(x),	tag)	

C:	if	(x2	=	tag	&	Empty(x))	
					then	{	tag	:=	¬tag	;	Dequeue(x)	}	

bool	x2	

Task	A:	Store	incoming	messages	in	queue	x	

Task	B:	Transmit	message	at	front	of	queue	x	tagged	with	local	tag	

	Do	not	remove	the	message:	this	ensures	it	is	transmiLed	repeatedly	

Task	C:	If	ack	matches	tag,	then	message	successfully	delivered;	so	remove	
it	from	x,	and	flip	tag	

ABP	Receiver	

(msg,	bool)		y1	

msg	out	

queue(msg)	y	:=	null	;	bool	tag	:=	0	

A:	¬Empty(y)		->		out	:=	Dequeue(y)	

B:		y2	!	tag	

C:	if		Second(y1)	!=	tag	then	
					{	tag	:=	¬tag	;	Enqueue(First(y1),	y)	}	

bool	y2	

Task	A:	Transmit	outgoing	messages	from	queue	y	to	output	channel	out	

Task	B:	Transmit	local	tag	as	acknowledgement	on	channel	y2	

	Note:	Same	ack	is	poten/ally	transmiLed	repeatedly	

Task	C:	If	tag	of	incoming	message	matches	local	tag,	then	message	is	
new;	so	add	it	to	y	and	flip	tag	

ABP	Sample	Execu/on	

q  Ini/ally	S.tag	=	1	and	R.tag	=	0	

q  Suppose	S	receives	a	message	m	to	be	delivered	
q  S	repeatedly	sends	(m,1)	over	unreliable	link	

q  Eventually,	R	gets	at	least	one,	maybe	mul/ple,	copies	of	(m,1)	

q  Meanwhile,	R	is	sending	0,	possibly	mul/ple	/mes,	as	
acknowledgement,	but	all	these	acks	are	simply	ignored	by	S	

q  When	R	gets	(m,1)	the	first	/me,	it	stores	m	in	queue	y	(and	this	
message	will	then	eventually	be	transmiLed	on	out),	and	sets	tag	to	1	

q  Duplicate	versions	of	(m,1)	are	ignored	by	R	
q  R	repeatedly	send	the	acknowledgment	1	over	unreliable	link	

q  Eventually,	S	gets	at	least	one	ack	=	1,	and	then,	it	removes	m	from	
input	queue,	and	sets	its	tag	to	0	

q  Duplicate	versions	of	ack	=	1	are	ignored	by	S	

q  Messages	received	as	input	are	queued	up	in	x,	and	S	will	now	repeat	
the	whole	cycle	by	sending	next	message	m’	along	with	tag	0	

ABP	Varia/ons	

q  Suppose	unreliable	link	can	lose	messages,	but	is	guaranteed	not	to	
duplicate	a	message,	can	we	simplify	the	protocol?	

q  Suppose	unreliable	link	can	also	reorder	messages	(in	addi/on	to	
losing	and	duplica/ng	messages),	how	should	we	modify	the	protocol	
to	ensure	reliable	transmission?	

	

msg		in	 msg	out			UnrelFIFO1	
x1	

		UnrelFIFO2	

y1	

x2	 y2	

RS	

Credits	

Notes	based	on	Chapter	4	of	
	
Principles	of	Cyber-Physical	Systems	
by	Rajeev	Alur	
MIT	Press,	2015	
	

