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The	Asynchronous	Model	
Part	III	



Consensus	

q  Each	process	starts	with	an	ini/al	preference	value,	known	only	to	itself	

q  Goal	of	coordina/on:	exchange	informa/on	and	arrive	at	a	common	
decision	value	

q  Classical	example:	Byzan/ne	Generals	Problem	communica/ng	by	
messengers	to	decide	on	whether	or	not	to	aLack	

q  Our	focus:	Two	processes	with	Boolean	preferences,	and	
communica/ng	by	shared	memory	

q  Processes	P1	and	P2	start	with	ini/al	Boolean	preferences	v1	and	v2,	
and	arrive	at	Boolean	decisions	d1	and	d2	so	that	

1.  Agreement:	d1	must	equal	d2	

2.  Validity:	The	decision	value	must	equal	either	v1	or	v2	
3.  Wait-freedom:	At	any	/me,	if	only	one	process	is	executed	

repeatedly,	it	eventually	reaches	a	decision	(does	not	have	to	wait	
for	the	other,	and	thus,	tolerant	to	failures)	



First	ALempt	at	Solving	Consensus	

x1	:=	pref1	

y1	:=	x2	

AtomicReg	{	0,	1,	null	}	x1	:=	null	;	x2	:=	null	

Process	P1	

bool	pref1,	dec1	

y1	:=	null	

if	y1	!=	null	
then	dec1	:=	(pref1	|	y1)	
else	dec1	:=	pref1	

Process	P2	

bool	pref2,	dec2	

x2	:=	pref2	

y2	:=	x1	

y2	:=	null	

if	y2	!=	null	
then	dec2	:=	(pref2	|	y2)	
else	dec2	:=	pref2	

Write	your	value	in	a	
shared	var,	read	
other’s	value,	decide	
on	OR	of	the	values;	
but	if	the	other	has	
not	wriLen	yet,	
choose	your	own	
ini/al	value	

Agreement?	

Validity?	
Wait-freedom?	



Second	ALempt	at	Solving	Consensus	

x1	:=	pref1	

y1	:=	x2	

AtomicReg	{	0,	1,	null	}	x1	:=	null	;	x2	:=	null	

Process	P1	

bool	pref1,	dec1	

y1	:=	null	

y1	!=	null	->	
dec1	:=	(pref1	|	y1)	

Write	your	value	in	a	
shared	var,	read	
other’s	value,	decide	
on	OR	of	the	values;	
but	if	the	other	has	
not	wriLen	yet,	read	
again	

Agreement?	

Validity?	
Wait-freedom?	

else	

Process	P2	

bool	pref2,	dec2	

x2	:=	pref2	

y2	:=	x1	

y2	:=	null	

y2	!=	null	->	
dec2	:=	(pref2	|	y2)	

else	



Solving	Consensus	

q  Solving	consensus	using	only	atomic	registers	is	impossible!	
§  Primi/ves	of	read	and	write	are	too	weak	to	achieve	desired	

coordina/on	while	sa/sfying	all	3	requirements	

q  Intui/ve	difficulty:	
§  When	a	process	writes	a	shared	variable,	it	does	not	know	

whether	the	other	process	has	read	this	value,	so	cannot	decide	
right	away	

§  When	a	process	reads	a	shared	variable,	it	needs	to	communicate	
to	other	process	that	it	has	seen	this	value,	so	needs	to	con/nue	

q  Solu/on:	Use	stronger	primi/ves:	Test&Set	registers	

q  Byzan/ne	Generals	Problem:	Coordina/on	is	impossible	
§  Sending	a	message,	and	receiving	a	message	are	similar	to	write	

and	read	opera/ons	



Consensus	using	Test&Set	Register	

x1	:=	pref1	

y1	:=	test&set(y)	

AtomicReg	bool	x1,	x2	;	Test&SetReg	y	:=	0	

Process	P1	

bool	pref1,	dec1	

y1	:=	0	

if	y1	=0	
then	dec1	:=	pref1	
else	dec1	:=	x2	

Write	your	value	in	a	
shared	var;		execute	
test&set;	if	you	win,	
choose	your	own	
ini/al	value,	else	read	
other’s	preference	as	
decision	value	

Agreement?	

Validity?	
Wait-freedom?	

Process	P2	

bool	pref2,	dec2	

x2	:=	pref2	

y2	:=	test&set(y)	

y2	:=	0	

if	y2	=	0	
then	dec2	:=	pref2	
else	dec2	:=	x1	



Impossibility	of	Consensus	

Theorem.	There	is	no	protocol	for	two-process	consensus	such	that	

1.  Processes	communicate	using	only	shared	atomic	registers	
2.  Protocol	sa/sfies	agreement,	validity,	and	wait-freedom	

Proof.	By	contradic/on,	suppose	there	is	such	a	protocol.	
Let	us	look	at	the	underlying	transi/on	system	T	for	processes	P1	and	P2	

A	state	of	T	looks	like	

A	transi/on	of	T	can	be		
§  a	step	by	P1,	and	such	a	transi/on	depends	only	on	the	first	two	parts	

of	the	state,	or	

§  a	step	by	P2,	which	depends	only	on	the	last	two	parts	of	the	state	

P1’s	local	state	 P2’s	local	state	Shared	variables	



Execu/on	Tree	of	Transi/on	System	T	

P1	

Ver/ces	are	states	

Leg-child:	Step	by	P1	
Right-child:	Step	by	P2	

Protocol	execu/on	=	Path	in	this	tree	

P2	

0	 1	

Tree	must	be	finite	(why?)	

Leaf-vertex:	Protocol	has	terminated	
Label	leaf	with	0/1	based	on	decision	

0	 1	 0-commiLed	vertex:	

				All	paths	lead	to	0-labled	leaves	
1-commiLed	vertex:	

				All	paths	lead	to	1-labeled	leaves	

UncommiLed:		

					Both	decisions	s/ll	possible	

	

All	0’s	 All	1’s	



UncommiLedness	of	Ini/al	State	

P1	pref	=	0	 P2	pref	=	1	shared		

Ini/al	state	s	

P1	

P1	

P1	

P1	

?	

same	 P2	pref	=	0	same		

Ini/al	state	s’	=	Slight	variant	of	s	

P1	

P1	

P1	

P1	

0	
Decision	must	be	0	due	to	validity!	

These	two	execu/ons	are	iden/cal	from	P1’s	perspec/ve,	
So	these	two	decisions	must	be	the	same;	?	=	0	!	

By	symmetric	argument,	if	we	let	only	P2	execute	in	state	s,	it	must	decide	on	1	
This	means	the	ini/al	state	s	is	uncommiLed	



Existence	of	Cri/cal	Ver/ces	

P1	

1.  There	is	an	ini/al	uncommiLed	state	

2.  All	leaves	are	0-commiLed		or	1-commiLed	
3.  Tree	is	finite	

P2	

0	 1	

All	0’s	 All	1’s	

s	 It	follows	that	there	must	exist	a	“cri/cal”	
decision	vertex	s	such	that	leg-child	is	0-
commiLed	and	right-child	is	1-
commiLed	

	



Existence	of	Cri/cal	Ver/ces	

P1	 P2	

0	 1	

All	0’s	 All	1’s	

s	 Whether	P1	or	P2	takes	the	next	step	is	the	
deciding	factor	in	state	s:	what	can	
such	a	step	be?	

	
	

Possible	cases:	

		1.	P1’s	step	is	local	or	is	read	of	a	shared	var	
		2.	P2’s	step	is	local	or	is	read	of	a	shared	var	

		3.	Both	steps	are	writes	to	different	shared	vars	

		4.	Both	steps		are	writes	to	same	shared	var	

	

Proof	by	case	analysis:	in	each	case	show	that	such	steps	
cannot	be	decisive!	

	

	



Example	Proof:	Case	2	

P1	local		 P2	local	shared		

Cri/cal	state	s	

P1	

P1	

P1	

P1	

unchanged	 	changed	unchanged		

P2	takes	internal	step	or		
reads	a	shared	variable	

P1	

P1	

P1	

P1	

These	two	execu/ons	are	iden/cal	from	P1’s	perspec/ve,	
So	these	two	decisions	must	be	the	same!	

Contradic/on	!		
P1	 P2	

0	 1	

All	0’s	 All	1’s	

s	



Leader	Elec/on	

	

q  Classical	coordina/on	problem:	Elect	a	unique	node	as	a	leader	
§  Exchange	messages	to	find	out	which	nodes	are	in	network	

§  Output	the	decision	using	the	variable	status	

q  Requirements	
§  Eventually	every	node	sets	status	to	either	leader	or	follower	

§  Only	one	node	sets	status	to	leader	

msg		in	 nat	id	:=	myID	

NetworkNode	

msg	out	

{unknown,	leader,	follower}		status	



Asynchronous	Leader	Elec/on	

q  Asynchronous	network	
§  Channel	models	directed	network	link	

§  If	there	is	a	channel/link	between	nodes	M	and	N,	then	
synchroniza/on	on	this	channel	allows	M	to	send	a	message	to	N	

q  Key	challenge	compared	to	the	synchronous	case	
§  There	is	no	no/on	of	a	global	round	
§  Synchronous	solu/on	strategy	(execu/ng	protocol	for	k	rounds	

implies	that	message	has	traveled	k	hops)	does	not	work	here!	

q  	Assume:	Processes	are	connected	in	a	unidirec/onal	ring	
§  Protocols	for	general	topologies	exist,	but	are	more	complex	



Sample	Asynchronous	Ring	Network	

Seong:	
§  Each	process	has	a	unique	iden/fier	

§  A	process	does	not	know	the	size	of	the	ring	(number	of	
processes)		

§  Execu/on	model	is	asynchronous	

§  No	failures:	each	process	executes	its	protocol	faithfully	

3	 8	 7	

10	1	5	



Asynchronous	Execu/on	in	a	Ring	

One	step	in	the	execu/on	of	the	system	is	either	
§  A	step	local	to	one	process,	or	

§  A	communica/on	step	that	transfers	the	message	at	front	of	
the	output	queue	y	of	a	process	to	back	of	the	input	queue	x	
of	its	right	neighbor	

	

msg		in	 msg	out	

A	i:	Enqueue(in,	x)	

queue	x	 queue	y	

Ao	:	¬Empty(y)	->	out	:=	Dequeue(y)	



Adop/ng	Synchronous	Algorithm	

q  Set	variable	id	to	MyID,	and	ini/alize	output	queue	y	to	contain			

q  Local	step/task	

§  Remove	a	value	v	from	queue	x	

§  If	v	>	id,	then	change	id	to	v,	and	enqueue	this	value	in	queue	y	

q  When	should	a	process	stop	and	decide?	

§  If	v	equals	id	!	
§  This	would	imply	that	the	value	has	traversed	the	en/re	ring	

q  What	is	an	upper	bound	on	the	number	of	messages	exchanged?	

§  Quadra/c,	O(N2),	where	N	is	number	of	processes	

	



Improved	Algorithm	

q  Set	variable	id	to	MyID,	and	ini/alize	output	queue	y	to	contain	id,	
which	will	be	communicated	to	right	neighbor	

q  When	you	receive	a	value	from	leg	neighbor,	store	it	in	state	variable	
id1,	and	also	relay	it	right	neighbor	(add	it	to	output	queue)	

q  Receive	another	value	from	leg	neighbor,	call	it	id2	

§  id	=	your	value,	id1	=	leg	neighbor,	id2	=	leg-leg	neighbor	

q  If	id1	is	the	max	of	these	three	values,	set	id	to	id1,	and	repeat	the	
above	steps		

§  Con/nue	to	next	phase	as	ac/ve,	but	with	different	iden/fier	

q  If	not,	then	decide	to	be	a	follower:	con/nue	as	a	passive	par/cipant	

§  Does	not	generate	any	new	messages,	just	transmits	messages	
in	input	queue	to	output	queue	

	



Example	Execu/on	

3	 8	 7	

10	1	5	

id	=	3	 id	=	8	 id	=	7	

id	=	5	 id	=	1	 id	=	10	

3	 8	

7	

10	1	

5	

id1	=	5	 id1	=	3	 id1	=	8	

id1	=	1	 id1=	10	 id1	=	7	

5	 3	

8	

7	10	

1	

id2	=	1	 id2	=	5	 id2	=	3	

id2	=	10	 id2	=	7	 id2	=	8	



Example	Execu/on	

3	 8	 7	

10	1	5	

id	=	5	 id	=	8	

id	=	10	

5	 5	

8	

8	10	

10	

id1	=	10	 id1	=	5	

id1	=	8	

10	 10	

5	

5	8	

8	

id2	=	8	 id2	=	10	

id2	=	5	

3		5	 7		8	

1		10	



Example	Execu/on	

3	 8	 7	

10	1	5	

id	=	10	

10	

10	

10	

10	 10	

10	

If	first	message	from	leg	neighbor	equals	id,	stop	and	become	the	leader!	

3		5	10	



Algorithm	Proper/es	

q  Actual	execu/on	proceeds	asynchronously	

§  Messages	are	processed	at	arbitrary	/mes	
§  Different	processes	may	be	execu/ng	different	phase	

q  The	process	that	becomes	leader	doesn’t	have	highest	(original)	iden/fier	

q  In	each	phase,	each	process	sends	only	2	messages	

q  Among	processes	ac/ve	during	a	phase,	if	a	process	con/nues	to	next	
phase	as	ac/ve,	then	its	leg	neighbor	cannot	stay	ac/ve	(why?)	

q  At	least	one	and	at	most	half	processes	con/nue	to	next	phase		
§  Construct	scenarios	for	these	two	extremes	

§  For	a	ring	of	N	processes,	at	most	log	N	phases,	so	a	total	of												
O(N	log	N)	messages	

§  Matching	lower	bound:	cannot	solve	leader	elec/on	in	a	ring	while	
exchanging	fewer	messages	

	



Unreliable	FIFO	

Models	a	link	that	may	lose	messages	and/or	duplicate	messages	

msg	in	 msg	out	

queue(msg)	x	:=	null	

A:		Enqueue(in,	x)	

B1:	¬Empty(x)		->		out	:=	Dequeue(	x)	

B2:	¬Empty(x)		->		Dequeue(x)	

B3:	¬Empty(x)		->		out	:=	Front(x)	

How	to	implement	a	reliable	FIFO	link	using	unreliable	ones?	



Reliable	Transmission	Problem	

msg		in	 msg	out			UnrelFIFO1	
x1	

		UnrelFIFO2	

y1	

x2	 y2	

RS	

Design	Asynchronous	processes	S	and	R	so	that	the	sequence	of		

messages	received	on	the	channel	in	coincides	with	the	sequence		
of	messages	delivered	on	the	channel	out	



Alterna/ng	Bit	Protocol	

q  How	can	the	sender	S	be	sure	that	receiver	R	got	a	copy	of	the	
message	in	presence	of	message	losses?	

§  S	must	repeatedly	send	a	message	
§  R	must	send	back	an	acknowledgement,	and	do	so	repeatedly	

q  How	can	the	receiver	R	dis/nguish	between	a	duplicated/repeated	
copy	and	a	fresh	message?	

§  Each	message	must	be	tagged	with	extra	bits	

q  Alterna/ng	bit	protocol:	
§  Key	insight:	tagging	each	message	as	well	as	acknowledgement	

with	a	single	bit	suffices	

§  Both	S	and	R	keep	a	local	tag	bit	

§  if	the	tag	of	incoming	message	matches	with	the	local	tag,	
message	is	considered	fresh,	and	local	tag	is	toggled	

	



ABP	Sender	

msg	in	

(msg,	bool)	x1	

queue(msg)	x	:=	null	;	bool	tag	:=	1	

A:		Enqueue(in,	x)	

B:	¬Empty(x)		->		x1	:=	(Front(x),	tag)	

C:	if	(	x2	=	tag	&	Empty(x))	
					then	{	tag	:=	¬tag	;	Dequeue(x)	}	

bool	x2	

Task	A:	Store	incoming	messages	in	queue	x	

Task	B:	Transmit	message	at	front	of	queue	x	tagged	with	local	tag	

	Do	not	remove	the	message:	this	ensures	it	is	transmiLed	repeatedly	

Task	C:	If	ack	matches	tag,	then	message	successfully	delivered;	so	remove	
it	from	x,	and	flip	tag	



ABP	Receiver	

(msg,	bool)		y1	

msg	out	

queue(msg)	y	:=	null	;	bool	tag	:=	0	

A:	¬Empty(y)		->		out	:=	Dequeue(y)	

B:		y2	!	tag	

C:	if		Second(y1)	!=	tag	then	
					{	tag	:=	¬tag	;	Enqueue(First(y1),	y)	}	

bool	y2	

Task	A:	Transmit	outgoing	messages	from	queue	y	to	output	channel	out	

Task	B:	Transmit	local	tag	as	acknowledgement	on	channel	y2	

	Note:	Same	ack	is	poten/ally	transmiLed	repeatedly	

Task	C:	If	tag	of	incoming	message	matches	local	tag,	then	message	is	
new;	so	add	it	to	y	and	flip	tag	



ABP	Sample	Execu/on	

q  Ini/ally	S.tag	=	1	and	R.tag	=	0	

q  Suppose	S	receives	a	message	m	to	be	delivered	
q  S	repeatedly	sends	(m,1)	over	unreliable	link	

q  Eventually,	R	gets	at	least	one,	maybe	mul/ple,	copies	of	(m,1)	

q  Meanwhile,	R	is	sending	0,	possibly	mul/ple	/mes,	as	
acknowledgement,	but	all	these	acks	are	simply	ignored	by	S	

q  When	R	gets	(m,1)	the	first	/me,	it	stores	m	in	queue	y	(and	this	
message	will	then	eventually	be	transmiLed	on	out),	and	sets	tag	to	1	

q  Duplicate	versions	of	(m,1)	are	ignored	by	R	
q  R	repeatedly	send	the	acknowledgment	1	over	unreliable	link	

q  Eventually,	S	gets	at	least	one	ack	=	1,	and	then,	it	removes	m	from	
input	queue,	and	sets	its	tag	to	0	

q  Duplicate	versions	of	ack	=	1	are	ignored	by	S	

q  Messages	received	as	input	are	queued	up	in	x,	and	S	will	now	repeat	
the	whole	cycle	by	sending	next	message	m’	along	with	tag	0	



ABP	Varia/ons	

q  Suppose	unreliable	link	can	lose	messages,	but	is	guaranteed	not	to	
duplicate	a	message,	can	we	simplify	the	protocol?	

q  Suppose	unreliable	link	can	also	reorder	messages	(in	addi/on	to	
losing	and	duplica/ng	messages),	how	should	we	modify	the	protocol	
to	ensure	reliable	transmission?	

	

msg		in	 msg	out			UnrelFIFO1	
x1	

		UnrelFIFO2	

y1	

x2	 y2	

RS	
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