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Safety	Requirements	
Part	I	



Requirements	

q  Desirable	proper/es	of	the	execu/ons	of	the	system	
§  Informal:	either	implicit,	or	stated	in	natural	language	

§  Formal:	stated	explicitly	in	a	mathema/cally	precise	way	

q  Model/design/system	meets	the	requirements	if	every	
execu/on	sa/sfies	them	all	

q  Clear	separa/on	between		
§  requirements,	what	needs	to	be	implemented,	and		
§  system,	how	it	is	implemented	



Requirements	

q  High	assurance	/	safety-cri/cal		systems:		
Typically	provided	with	formal	requirements	

q  Verifica/on	problem:		

Given	a	requirement	R	and	a	system/model	C,	prove	or	
disprove	that	the	C	sa/sfies	R	



Safety	and	Liveness	Requirements	

q  A	safety	requirement	states	that	a	system	always	stays	within	good	
states	(i.e.,	nothing	bad	ever	happens)	

§  Leader	elec/on:	it	is	never	the	case	that	two	nodes	consider	them	to	
be	leaders	

§  Collision	avoidance:	Distance	between	two	cars	is	always	greater	
than	some	minimum	threshold	

q  A	liveness	requirement	states	that	a	system	eventually	achieves	its	goal	
(i.e.,	something	good	eventually	happens)	

§  Leader	elec/on:	Each	node	eventually	makes	a	decision	

§  Cruise	controller:	Actual	speed	eventually	equals	desired	speed	

q  Formaliza/on	and	analysis	techniques	for	safety	and	liveness	differ	
significantly.	We	will	focus	on	safety	



Transi/on	Systems	

State	space		+		Ini/al	states		+	Transi/ons	between	states		



Defini/on	of	Transi/on	System	

Syntax:	a	transi/on	system	T	has	

1.  A	set	S	of	(typed)	state	variables	
2.  Ini/aliza/on	Init	for	state	variables	

3.  A	descrip/on	Trans	of	how	to	move	from	one	state	to	the	next	

Seman*cs:		

1.  Set	QS	of	states	

2.  Set	[Init]	of	ini/al	states,	a	subset	of	QS	
3.  Set	[Trans]	of	transi/ons,	a	subset	of	QS	x	QS	

Synchronous	reac/ve	components,	programs,	and	more	generally	
systems,	all	have	an	underlying	transi/on	system	



Switch	Transi/on	System	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0		&		x	<	10)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	

State	variables:		
	{off,	on}	mode,	int	x	

(off,	0)	

(off,	17)	

(on,	2)	

(on,	56)	

Ini/aliza/on:		
	mode	:=	off	;	x	:=	0	

Transi/ons:	
	(off,	n)	->	(off,	n)	;		
	(off,	n)	->	(on,	n)	;		
	(on,	n)	->	(on,	n+1)	if	n	<	10	;	
	(on,	n)	->	(off,	0)		

(on,	3)	

(on,	0)	

(on,	17)	
•  Input/output	variables	become	local	
•  Values	for	input	vars	chosen	

nondeterminis/cally	



Euclid’s	GCD	Algorithm	

loop	 stop	
nat		x	:=	m	;	y	:=	n	

(x	>	0		&		y	>	0)	->	
					if	(x	>	y)	then	x	:=	x-y	else	y	:=	y-x	

~(x		>	0		&		y	>	0)	->	
						if	(x	=	0)	then	x	:=	y	

Classical	program	to	compute	greatest	common	divisor	of		
(non-nega/ve)	input	numbers	m	and	n	
	



Reachable	States	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(pres	s=	0		&		x	<	10)	->	x	:=	x+1	

(press	=	1		|		x	>=	10)	->	x	:=	0	

(off,	17)	

(on,	1)	

(on,	56)	

(on,	10)	

(off,	0)	

(on,	0)	

(on,	17)	



Reachable	States	of	Transi/on	Systems	

A	state	s	of	a	transi/on	system	T	is	reachable	if	there	is	an	execu/on	
star/ng	in	an	ini/al	state	of	T	and	ending	in	s	



Invariants	

(off,	17)	

(on,	1)	

(on,	56)	

(on,	10)	

(off,	0)	

(on,	0)	

(on,	17)	

(off,	10)	

§  A	property	of	a	transi/on	system	T	is	a	Boolean-valued	expression	P	over	
state	variables	

§  Property	P	is	an	invariant	of	T	if	every	reachable	state	sa/sfies	P			

§  Some	invariants	for	T	above:										x	<=	10,			x	<=	50,			mode	=	off		=>		x	=	0	

§  Some	non-invariants	for	T	above:		x	<	10,			mode	=	off		

state	space	of	T	

reachable	states	of	T	



Invariants	

q  We	express	safety	requirements	for	a	transi/on	system	T	as	
proper/es	P	of	T’s	state	variables	
§  If	P	is	invariant	then	T	is	safe	

§  If	P	is	not	invariant,	then	some	bad	state,	sa/sfying	¬P	is	
reachable		
(the	execu/on	leading	to	such	a	state	is	a	counterexample)	

q  Leader	elec/on:		
	 	(rn	=	N)	=>	(idn	=	max	I)						I	:	set	of	iden/fiers	of	all	nodes	

	

q  Euclid’s	GCD	Program:	
	 	(mode	=	stop)	=>	(x	=	gcd(m,	n))	

	



Formal	Verifica/on	

Model/Program	

Requirements	

yes/proof	

no/cex	
Verifier	

Grand	challenge:	automate	verifica/on	as	much	as	possible!		



Analysis	Techniques	

q  Dynamic	Analysis	(run/me)	

§  Execute	the	system,	possibly	mul/ple	/mes	with	different	inputs	
§  Check	if	every	execu/on	meets	the	desired	requirement	

q  Sta/c	Analysis	(design	/me)	

§  Analyze	the	source	code	or	the	model	for	possible	bugs	

q  Trade-offs	

§  Dynamic	analysis	is	incomplete,	but	accurate	(checks	real	system,	
and	bugs	discovered	are	real	bugs	

§  Sta/c	analysis	can	be	complete	and	can	catch	design	bugs	early	

§  Many	sta/c	analysis	techniques	are	not	scalable	(solu/on:	
analyze	approximate	versions,	can	lead	to	false	warnings)	



Invariant	Verifica/on	

Simula*on	

§  Simulate	the	model,	possibly	mul/ple	/mes	with	different	inputs	
§  Easy	to	implement,	scalable,	but	no	correctness	guarantees	

Deduc*ve	verifica*on	

§  Construct	a	proof	that	system	sa/sfies	the	invariant	

§  Usually	requires	manual	effort	(but	par/al	automa/on	osen	possible)	

Model	checking	

§  Automa/cally	explores	all	reachable	states	to	check	invariants	

§  Not	scalable,	but	current	tools	can	analyze	many	real-world	designs	
(relies	on	many	interes/ng	theore/cal	advances)	

Note:	Newer	techniques	are	blurring	the	differences	between	deduc/ve	
verifica/on	and	model	checking	



Proving	Invariants	

q  Given	a	transi/on	system	T	=	(S,	Init,	Trans),	and	a	property	P,	
prove	that	all	reachable	states	of	T	sa/sfy	P	

q  Induc/ve	defini/on	of	reachable	states	
§  All	ini/al	states	are	reachable	using	0	transi/ons	

§  If	a	state	s	is	reachable	in	k	transi/ons	and	s	->	t	is	a	transi/on,	
then	the	state	t	is	reachable	in	k+1	transi/ons	

§  Reachable	=	Reachable	in	n	transi/ons,	for	some	n	

q  Prove:	for	all	n,	states	reachable	in	n	transi/ons	sa/sfy	P	
§  Base	case:	Show	that	all	ini/al	states	sa/sfy	P		

§  Induc9ve	case:	
1.  Assume	that	a	state	s	sa/sfies	P	

2.  Show	that	if	s	->	t	is	a	transi/on	then	t	must	sa/sfy	P	



Recall:	Induc/ve	Proofs	in	Arithme/c	

	
q  To	show	that	a	statement	P	holds	for	all	natural	numbers	n,		

§  Base	case:	Prove	that	P	holds	for	n=0	
§  Assume	that	P	holds	for	an	arbitrary	natural	k	

§  Using	the	assump/on,	prove	that	P	holds	for	k+1	

q  Example	statement:	For	all	n,		

																										(0	+	1	+	2	+	…	+	n)		=		n(n+1)/2	



Induc/ve	Invariant	

	
q  A	property	P	is	an	induc9ve	invariant	of	transi/on	system	T	

if		
1.  Every	ini/al	state	of	T	sa/sfies	P	

2.  If	a	state	sa/sfies	P	and	s	->	t	is	a	transi/on	of	T,	then	t	
must	sa/sfy	P	

q  If	P	is	an	induc/ve	invariant	of	T,	then	all	reachable	states	
of	T	must	sa/sfy	P,	and	thus,	it	is	an	invariant	of	T	



Proving	Induc/ve	Invariant	Example	(1)	

q  Consider	transi/on	system	T	given	by		
§  State	variable	int	x,	ini/alized	to	0	
§  Transi/on	descrip/on	given	by			if	(x	<	m)	then	x	:=	x+1	

for	some	m	>=	0	

q  Is	the	property	P	:		0	<=	x	<=	m		an	induc/ve	invariant	of	T?	

q  Base	case:	Consider	ini/al	state	x	:=	0.		Check	that	it	sa/sfies	P	

q  Induc/ve	case:	

§  Consider	an	arbitrary	state	s,	suppose	s(x)	=	a	

§  Assume	that	s	sa/sfies	P,	that	is,	assume	0	<=	a	<=	m	

§  Consider	the	state	t	obtained	by	execu/ng	a	transi/on	from	s	
§  If	a	<	m	then	t(x)	=	a+1,	else	t(x)	=	a	

§  In	either	case,	0	<=	t(x)	<=	m	

§  So	t	sa/sfies	the	property	P,	and	the	proof	is	complete	



Proving	Induc/ve	Invariant	Example	(2)	

q  Consider	transi/on	system	T	given	by		
§  State	variables	int	x,	y;			ini/ally:		x	:=	0	;	y	:=	m			for	some	m	>	0	
§  Transi/on	descrip/on	given	by		if	(x	<	m)	then	{	x	:=	x+1	;	y	:=	y-1	}	

q  Is	the	property	P	:		0	<=	y	<=	m		an	induc/ve	invariant	of	T?	

q  Base	case:	Consider	ini/al	state	(x	:=	0,	y	:=	m).	Check	that	it	sa/sfies	P	

q  Induc/ve	case:	

§  Consider	an	arbitrary	state	s	with	x	=	a	and	y	=	b	
§  Assume	that	s	sa/sfies	P,	that	is,	assume	0	<=	b	<=	m	

§  Consider	the	state	t	obtained	by	execu/ng	a	transi/on	from	s	

§  If	a	<	m	then	t(y)	=	b-1,	else	t(y)	=	b	

§  Can	we	conclude	that	0	<=	t(y)	<=	m?	
§  No!	When	b	=	0,	t(y)	is	nega/ve.	

§  The	proof	fails.	In	fact,	P	is	not	an	induc/ve	invariant	of	T!	



Why	did	the	proof	fail?	

q  Consider	the	state	s	with	x	=	0	and	y	=	0		

§  State	s	sa/sfies	P:		0	<=	y	<=	m				
§  Execu/ng	a	transi/on	from	s	leads	to	state	t	with	x	=	1	and	y	=	-1	

§  State	t	does	not	sa/sfy	P	

q  However,	the	state	s	in	above	argument	is	not	reachable!	

q  Cause	of	failure:	The	property	P	did	not	capture	correla/on	between	
the	state	components	x	and	y	

	

q  Solu/on:	Induc9ve	Strengthening	
§  Consider	property	Q	:	(0	<=	y	<=	m)	&	(x	+	y	=	m)	

§  Property	Q	implies	property	P	

§  While	P	is	not	an	induc/ve	invariant,	Q	is!	

§  It	follows	that	all	reachable	states	must	sa/sfy	P	



Proving	Induc/ve	Invariant	Example	(3)	

q  Consider	transi/on	system	T	given	by		

§  State	variables	int	x,	y;			ini/ally:		x	:=	0	;	y	:=	m			for	some	m	>	0	
§  Transi/on	descrip/on	given	by	if	(x	<	m)	then	{	x	:=	x+1	;	y	:=	y-1	}	

q  Property	Q	:	(0	<=	y	<=	m)	&	(x	+	y	=	m)	

q  Base	case:	Consider	ini/al	state	(x	:=	0,	y	:=	m).	Check	that	it	sa/sfies	Q	

q  Induc/ve	case:	
§  Consider	an	arbitrary	state	s	with	x	=	a	and	y	=	b	

§  Assume	that	s	sa/sfies	Q,	that	is,	assume	0	<=	b	<=	m	and	a+b	=	m	

§  Consider	the	state	t	obtained	by	execu/ng	a	transi/on	from	s	

§  If	a	<	m	then	t(x)	=	a+1	and	t(y)	=	b-1,	else	t(x)	=	a	and	t(y)	=	b	

§  But	if	a	<	m,	since	b	=	m-a,	then	b	>	0,	and	thus	b-1	>=	0	
§  In	either	case,	the	condi/on	(0	<=	t(y)	<=	m)		&		(t(x)+t(y)	=	m)	holds	

q  Conclusion:	Property	Q	is	an	induc/ve	invariant	



Proof	Rule	for	Proving	Invariants	

q  To	establish	that	a	property	P	is	an	invariant	of	transi/on	system	T	

q  Find	an	induc9ve	strengthening	of	P:	a	property	Q	such	that	
1.  Q	implies	P	(i.e.,	every	state	sa/sfying	Q	also	sa/sfies	P)	

2.  Q	is	an	induc/ve	invariant:	
§  all	ini/al	states	sa/sfies	Q	

§  For	any	states	s,	t	such	as	s	sa/sfies	Q	and	s	->	t	is	a	
transi/on,	t	sa/sfies	Q	

q  This	is	a	sound	and	complete	strategy	for	establishing	invariants	

Sound:	If	P	has	an	induc/ve	strengthening	Q	then	P	is	indeed	
invariant	
Complete:	If	P	is	an	invariant,	then	it	has	an	induc/ve	
strengthening	Q	



Induc/ve	Strengthening	

Ini*al	
States	

Reachable	
States	

Property	P

Strengthening	Q



Correctness	of	GCD	

q  Property	P	:	gcd(x,	y)	=	gcd(m,	n)			

q  Verify	that	P	is	an	induc/ve	invariant	(Exercise)	
q  Captures	the	core	logic	of	the	program:	even	though	x	and	y	

are	updated	at	every	step,	their	gcd	stays	unchanged	

q  When	switching	to	stop,	if	x	is	0,	then	gcd(x,	y)	is	y;	if	y	=	0,	then	
gcd(x,	y)	=	x,	and	thus	x	=	gcd(m,	n)	upon	switching	to	stop	

q  Note:	(mode	=	stop)	=>	(x	=	gcd(m,	n))	is	invariant,	but	not	
induc/ve	

loop	 stop	
nat		x	:=	m	;	y	:=	n	

(x	>	0	&	y	>	0)	->	
					if	(x	>	y)	then	x	:=	x-y	else	y	:=	y-x	

¬(x	>	0	&	y	>	0)	->	
						if	(x	=	0)	then	x	:=	y	



Transi/on	System	for	Leader	Elec/on	

	
q  Ini/al	state:	

§  For	each	node	n,			int	idn	:=	n	;		int	rn	:=	1	

q  Update	during	single	transi/on:	
§  Round	counters:	if	rn		<	N	then	rn		:=	rn	+1	
§  Iden/fiers:	idn	:=	max	{idn,	max	{idm|	m	is	connected	to	n}}		



Invariants	for	Leader	Elec/on	

q  Ini/al	state:	for	each	node	n,		int	idn	:=	n;	int	rn	:=	1	
q  Update	during	single	transi/on:	

§  if	rn		<	N	then	rn		:=	rn	+	1	
§  idn	:=	max	{idn,	max	{idm|	m	is	connected	to	n}}	

q  Consider:	idn	>=	n	(that	is,	for	node	n,	id	is	at	least	n)	
§  Obviously	an	invariant;	is	it	an	induc/ve	invariant?	

q  Let	ID	be	the	set	of	iden/fiers	of	all	nodes	and	consider	the	
property	:	“idn	belongs	to	ID”,	for	a	specific	node	n	
§  Not	an	induc/ve	invariant!		
§  During	a	transi/on	s	->	t,	value	of	idn	in	state	t	may	equal	

value	of	idm		in	state	s,	but	property	says	nothing	about	s(idm)	
q What	about:	“for	each	node	n,	idn	belongs	to	ID”	?	(Exercise)	

	
	



Correctness	of	Leader	Elec/on	

q  We	expect	idn	to	be	maximum	of	all	iden/fiers	aser	N	rounds	
q  Formal	property:	

§  For	each	node	n,		(rn=	N)	=>	(idn	=	max	ID)	
q  Not	induc/ve	
q  Goal:	Find	induc/ve	strengthening	that	captures	co-rela/on	

among	all	variables	at	intermediate	steps	
q  Informal:	Aser	k	rounds,	each	rn	equals	k,	and	idn	is	max	of	

iden/fiers	of	nodes	that	are	<=	k	hops	away	from	node	n	
q  Formal	property:		

					P1	:	For	all	nodes	m	and	n,	rm	=	rn		
	&	P2	:	For	each	node	n,	idn	=	max	{	m	|	distance(m,	n)	<	rn	}	

q  Prove	that	P1	&	P2	is	an	induc/ve	invariant!	



Proof:	Base	Case	

§  Ini/al	state	s:	for	each	node	n,	s(idn)	=	n	and	s(rn)	=	1	

§  	Goal:	Show	that	the	following	both	hold	in	this	ini/al	state	s	
P1	:	For	each	m	and	n,	rm	=	rn		

P2	:	For	each	n,	idn	=	max	{	m	|	distance(m,	n)	<	rn	}	
	

P1	)	s(rm)	=	s(rn)	=	1;		so	P1	holds	
	

P2	)	Consider	a	node	n,	we	want	to	show	
s(idn)	=	max	{	m	|	distance(m,	n)	<	1	}	

The	only	node	m	with	distance(m,	n)	<	1	is	n	itself,	and	s(idn)	=	n,	
so	P2	holds	



Proof:	Induc/ve	Case	

§  Consider	an	arbitrary	state	s,	and	assume	both	P1	and	P2	hold	
§  Let	s(rn)	=	k,	for	each	node	n	

§  For	k	<	N,	consider	a	successor	state	t	of	s	
§  Goal:	Show	that	both	P1	and	P2	hold	in	state	t	

§  Consider	two	nodes	m	and	n	

§  t(rm)	=	s(rm)	+	1	=	k+1,	and	similarly,	t(rn)	=	k+1,	so	P1	holds	in	t	
§  To	show	P2,	consider	a	node	n,	we	want	to	show	

t(idn)	=	max	{	m	|	distance(m,	n)	<	k+1	}	

§  Assump/on	1	(from	induc/ve	hypothesis):	for	each	node	m	
s(idm)	=	max	{	l	|	distance(l,	m)	<	k}	

§  Assump/on	2	(from	the	transi/on	rela/on):	

t(idn)	=	max	{	s(idn),	max	{s(idm)	|	m	is	connected	to	n	}	}	



Proof:	Induc/ve	Case	(Con/nued)	

§  Let	l	be	the	node	with	highest	iden/fier	with	distance(l,	n)	<	k+1	
§  	Goal:	show	that	t(idn)	=	l	
§  	Let	distance(l,	n)	=	d.	We	know	d	<	k+1,	so	either	d	<	k	or	d	=	k	

Case	(d	<	k)	

§  By	Assump/on	1,	s(idn)	cannot	be	less	than	l,	so	must	be	l	

§  By	Assump/on	2,	t(idn)	cannot	be	less,	and	thus,	must	be	l	
Case	(d	=	k)	

§  By	basic	proper/es	of	graphs,	there	must	be	a	node	m	such	
that	distance(l,m)	=	k-1	and	m	is	connected	to	n	

§  By	Assump/on	1,	s(idm)	cannot	be	less	than	l,	so	must	be	l	

§  By	Assump/on	2,	t(idn)	cannot	be	less,	and	thus,	must	be	l	
§  The	proof	is	complete!	



Summary	of	Invariants	

q  General	way	to	formulate	and	prove	safety	proper/es	of	
programs/models/systems	

q  Induc/ve	invariant:	
§  Holds	in	ini/al	states	

§  Is	preserved	by	every	transi/on	
q  To	be	induc/ve,	property	needs	to	capture	relevant	rela/onships	

among	all	state	variables	
q  Benefit	of	finding	induc/ve	invariants:	

§  Correctness	reasoning	becomes	local	(one	needs	to	think	
about	what	happens	in	one	step)	

§  Tools	available	to	check	if	a	given	property	is	induc/ve	
invariant	

q  Area	of	ac/ve	research:	can	a	tool	discover	them	automa/cally?	



Automated	Invariant	Verifica/on	

Transi/on	System	T	

Property	P

yes	

no/bug	
Verifier	

Is	P	an	invariant	of	T?	

	Can	such	a	verifier	exist?		
	If	so,	what	is	the	computa/onal	complexity	of	the	verifica/on	
problem?		



A	Brief	Detour	into	Computa/onal	Complexity	

q  Goal:	Classify	computa/onal	problems	in	terms	of	(roughly)	how	many	
basic	opera/ons	it	takes	to	solve	the	problem,	as	func/on	of	input	size	

q  Example	1:	Finding	maximum	of	a	list	of	numbers	

§  Time	complexity	is	linear:	O(n)	

q  Example	2:	Sor/ng	a	list	of	numbers	

§  Algorithm	(e.g.	selec/on-sort)	with	doubly-nested	loop:	O(n2)	

§  More	efficient	algorithm	(e.g.	quicksort)	possible:	O(n	log	n)	

q  Example	3:	Expression	evalua/on:	Given	an	expression	e	(with	not/or/	
and	as	opera/ons)	over	Boolean	vars,	and	an	assignment	a	of	0/1	values	
to	vars,	determine	whether	e	evaluates	to	1	or	0.	Linear-/me	O(n)	

q  Example	4:	Boolean	sa/sfiability:	Given	an	expression	e,	determine	if	
there	exists	an	assignment	a	to	vars	that	makes	the	expression	1	

§  Naïve	algorithm:	Evaluate	e	on	every	possible	assignment	a	

§  Exponen/ally	many	choices	for	a	:	Algorithm	is	O(2k),	k	=	no.	of	vars	



The	Class	P	

q  Polynomial-9me	algorithm	means	an	algorithm	with	/me	complexity	
such	as	O(n),	O(n	log	n),	O(n2),	O(n3),	or	O(nc),	for	constant	c	

q  A	problem	is	in	P	if	there	is	a	polynomial-/me	algorithm	to	solve	it	

q  Examples:	

§  Finding	maximum	

§  Sor/ng	

§  Expression	evalua/on	

§  Finding	shortest	path	in	a	graph	

q  P	is	the	class	of	tractable	(i.e.	efficiently	solvable)	problems	

§  Problem	can	be	solved	exactly		
§  Solu/on	will	scale	reasonably	well	as	input	size	grows	

§  In	principle,	O(n)	is	bezer	than	O(n2)	



NP-Complete	Problems	
q  SAT:	Given	an	expression	e	over	Boolean	variables,	check	if	there	exists	

an	assignment	of	0/1	values	to	vars	for	which	e	evaluates	to	1	
§  No	proof	that	SAT	is	in	P	(no	known	polynomial-/me	algorithm)	
§  No	proof	that	SAT	is	not	in	P	

q  Cook	(1972):	SAT	is	NP-complete	

q  Hundreds	of	problems	equivalent	to	SAT	
§  Hamiltonian	Path:	Is	there	a	path	in	a	graph	from	source	to	

des/na/on	that	visits	each	vertex	exactly	once	
§  Max	Clique:	Given	a	graph,	find	largest	subset	of	ver/ces	such	

that	there	is	an	edge	between	every	pair	of	ver/ces	in	this	set	

q  Grand	Challenge	Open	Problem	:	Is	P	=	NP?	
§  If	you	find	a	polynomial-/me	algorithm	for	SAT,	then	P	=	NP,	and	

many	other	problems	will	have	polynomial-/me	algorithms	
§  If	you	prove	SAT	is	not	in	P,	then	P	!=	NP,	and	many	other	

problems	then	provably	don’t	have	efficient	algorithms		



NP-Completeness	Con/nued	

q  Known	algorithms	for	SAT	are	exponen/al-/me	in	the	worst-case,	but	

§  Highly	efficient	implementa/ons,	SAT	solvers,	exist	
§  Can	handle	millions	of	variables	

§  Many	prac/cal	problems	solved	by	encoding	into	SAT	

q  Key	feature	of	NP	problems	such	as	SAT:	suffices	to	find	one	sa/sfying	
assignment	

q  This	does	not	hold	for	all	intractable	problems	

§  Validity:	Given	a	Boolean	expression	e,	is	it	the	case	that	e	evaluates	
to	1	no	mazer	what	values	we	give	to	its	variables	

q  Many	complexity	classes	beyond	NP:	coNP,	PSPACE,	Exp/me,	…	

§  Problems	may	require	exponen/al-/me	(or	more)	to	solve	
§  Not	all	exponen/al-/me	problems	are	equal…	



(Un)Decidability	

q  Some	problems	cannot	be	solved	by	a	computer	at	all!	

q  Fundamental	Theorem	of	CS:	Alan	Turing	(1936):	

§  The	Hal9ng	problem	for	Turing	machines	is	undecidable	

There	is	no	program	that	takes	as	its	input	an	arbitrary	program	C	
and	an	arbitrary	input	x,	and	determines	if	C	terminates	on	x	

q  Intui/on:	If	a	program	could	analyze	other	programs	exactly,	then	it	can	
analyze	itself,	and	this	suffices	to	set	up	a	logical	contradic/on!	

q  A	surprisingly	undecidable	problem:	Does	a	given	a	polynomial			

(e.g.	x3	+	2xy2	-	15xy	+	156)	have	integer	roots?	

q  Decidable	Problems:	There	exists	a	program	(or	Turing	machine)	that	
solves	the	problem	correctly	(gives	the	right	answer	and	stops)	

§  Includes	problems	in	P	as	well	as	intractable	classes	such	as	NP,	
Exp/me,	etc.	



Back	To	Invariant	Verifica/on	Problem	

Theorem:	The	invariant	verifica/on	problem	is	undecidable.		
	Proof	idea:	undecidable	problems	for	Turing	machines	can	be	recast	as	
invariant	verifica/on	problems	for	transi/on	systems	with	integer	state	
variables		

Transi/on	System	T	

Property	P

yes	

no/bug	
Verifier	

Is	P	an	invariant	of	T?	



Finite-State	Invariant	Verifica/on	Problem	

Theorem:	The	invariant	verifica/on	problem	for	finite-state	systems	is	
decidable	

	

	Proof	sketch:	If	T	has	k	Boolean	state	vars,	then	total	number	of	states	is	2k.	
	Verifier	can	systema/cally	search	through	all	possible	states.	
	Complexity	is	exponen/al.	More	precisely,	it	is	PSPACE,	a	class	of	
problems	harder	than	NP-complete	problems	such	as	SAT.	

Finite-State	
Transi/on	System	T	

Property	P

yes	

no/bug	
Verifier	

Is	P	an	invariant	of	T?	



P	

§ 	Sor/ng	
§ 	Expression	Evalua/on	
§ 	Shortest	Paths	..	

NP	
§ 	SAT	
§ 	Hamiltonian	Path	
§ 	Max	Clique	..	

PSPACE	

Invariant	
verifica/on	
for	finite-
state	
systems	

Decidable	

Invariant	
verifica/on	



Solving	Invariant	Verifica/on	

q  Establishing	that	the	system	is	safe	is	important,	but	there	is	no	
generally	efficient	procedure	to	solve	the	verifica/on	problem	

q  Solu/on	1:	Use	Simula/on-based	analysis	
§  Simulate	the	model	mul/ple	/mes,	and	check	that	each	state	

encountered	on	each	execu/on	sa/sfies	desired	safety	property	

§  Useful,	prac/cal	in	real-world,	but	gives	only	par/al	guarantee	
(and	is	known	to	miss	hard-to-find	bugs)	

q  Solu/on	2:	Write	a	formal	proof	using	induc/ve	invariants	

§  Only	par/al	tool	support	possible,	so	requires	considerable	effort	

§  Recent	successes:	verified	microprocessor,	web	browser,	JVM		
q  Solu/on	3:	Exhaus/ve	search	through	state-space	

§  Fully	automated,	but	has	scalability	limita/ons	(may	not	work!)	

§  Complementary	to	simula/on,	increasingly	used	in	industry	

§  Two	approaches:	On-the-fly	enumera/ve	search,	Symbolic	search	



Compu/ng	Reachable	States	

q  Search	algorithm	can	start	with	ini/al	states,	and	explore	transi/ons	
out	of	ini/al	states	systema/cally	

q  Example:	state	vars	are	integers	x,	y;	we	know	that	ini/ally	0	<=	x	<=	2	
and	1	<	y	<=	2,	and	a	single	transi/on	increments	x	and	decrements	y	

Enumera9ve:		
				Consider	individual	states	

x

y

Symbolic:		
				Consider	set	of	states	

x

y
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