
CS:4980	
Founda/ons	of	Embedded	Systems	

Copyright 20014-16, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

Safety	Requirements	
Part	I	

Requirements	

q  Desirable	proper/es	of	the	execu/ons	of	the	system	
§  Informal:	either	implicit,	or	stated	in	natural	language	

§  Formal:	stated	explicitly	in	a	mathema/cally	precise	way	

q  Model/design/system	meets	the	requirements	if	every	
execu/on	sa/sfies	them	all	

q  Clear	separa/on	between		
§  requirements,	what	needs	to	be	implemented,	and		
§  system,	how	it	is	implemented	

Requirements	

q  High	assurance	/	safety-cri/cal		systems:		
Typically	provided	with	formal	requirements	

q  Verifica/on	problem:		

Given	a	requirement	R	and	a	system/model	C,	prove	or	
disprove	that	the	C	sa/sfies	R	

Safety	and	Liveness	Requirements	

q  A	safety	requirement	states	that	a	system	always	stays	within	good	
states	(i.e.,	nothing	bad	ever	happens)	

§  Leader	elec/on:	it	is	never	the	case	that	two	nodes	consider	them	to	
be	leaders	

§  Collision	avoidance:	Distance	between	two	cars	is	always	greater	
than	some	minimum	threshold	

q  A	liveness	requirement	states	that	a	system	eventually	achieves	its	goal	
(i.e.,	something	good	eventually	happens)	

§  Leader	elec/on:	Each	node	eventually	makes	a	decision	

§  Cruise	controller:	Actual	speed	eventually	equals	desired	speed	

q  Formaliza/on	and	analysis	techniques	for	safety	and	liveness	differ	
significantly.	We	will	focus	on	safety	

Transi/on	Systems	

State	space		+		Ini/al	states		+	Transi/ons	between	states		

Defini/on	of	Transi/on	System	

Syntax:	a	transi/on	system	T	has	

1.  A	set	S	of	(typed)	state	variables	
2.  Ini/aliza/on	Init	for	state	variables	

3.  A	descrip/on	Trans	of	how	to	move	from	one	state	to	the	next	

Seman*cs:		

1.  Set	QS	of	states	

2.  Set	[Init]	of	ini/al	states,	a	subset	of	QS	
3.  Set	[Trans]	of	transi/ons,	a	subset	of	QS	x	QS	

Synchronous	reac/ve	components,	programs,	and	more	generally	
systems,	all	have	an	underlying	transi/on	system	

Switch	Transi/on	System	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(press	=	0		&		x	<	10)		->		x	:=	x+1	

(press	=	1	|	x	>=	10)		->		x	:=	0	

State	variables:		
	{off,	on}	mode,	int	x	

(off,	0)	

(off,	17)	

(on,	2)	

(on,	56)	

Ini/aliza/on:		
	mode	:=	off	;	x	:=	0	

Transi/ons:	
	(off,	n)	->	(off,	n)	;		
	(off,	n)	->	(on,	n)	;		
	(on,	n)	->	(on,	n+1)	if	n	<	10	;	
	(on,	n)	->	(off,	0)		

(on,	3)	

(on,	0)	

(on,	17)	
•  Input/output	variables	become	local	
•  Values	for	input	vars	chosen	

nondeterminis/cally	

Euclid’s	GCD	Algorithm	

loop	 stop	
nat		x	:=	m	;	y	:=	n	

(x	>	0		&		y	>	0)	->	
					if	(x	>	y)	then	x	:=	x-y	else	y	:=	y-x	

~(x		>	0		&		y	>	0)	->	
						if	(x	=	0)	then	x	:=	y	

Classical	program	to	compute	greatest	common	divisor	of		
(non-nega/ve)	input	numbers	m	and	n	
	

Reachable	States	

off	 on	
int	x	:=	0	

(press	=	0)	?	

(press	=	1)	?	

(pres	s=	0		&		x	<	10)	->	x	:=	x+1	

(press	=	1		|		x	>=	10)	->	x	:=	0	

(off,	17)	

(on,	1)	

(on,	56)	

(on,	10)	

(off,	0)	

(on,	0)	

(on,	17)	

Reachable	States	of	Transi/on	Systems	

A	state	s	of	a	transi/on	system	T	is	reachable	if	there	is	an	execu/on	
star/ng	in	an	ini/al	state	of	T	and	ending	in	s	

Invariants	

(off,	17)	

(on,	1)	

(on,	56)	

(on,	10)	

(off,	0)	

(on,	0)	

(on,	17)	

(off,	10)	

§  A	property	of	a	transi/on	system	T	is	a	Boolean-valued	expression	P	over	
state	variables	

§  Property	P	is	an	invariant	of	T	if	every	reachable	state	sa/sfies	P			

§  Some	invariants	for	T	above:										x	<=	10,			x	<=	50,			mode	=	off		=>		x	=	0	

§  Some	non-invariants	for	T	above:		x	<	10,			mode	=	off		

state	space	of	T	

reachable	states	of	T	

Invariants	

q  We	express	safety	requirements	for	a	transi/on	system	T	as	
proper/es	P	of	T’s	state	variables	
§  If	P	is	invariant	then	T	is	safe	

§  If	P	is	not	invariant,	then	some	bad	state,	sa/sfying	¬P	is	
reachable		
(the	execu/on	leading	to	such	a	state	is	a	counterexample)	

q  Leader	elec/on:		
	 	(rn	=	N)	=>	(idn	=	max	I)						I	:	set	of	iden/fiers	of	all	nodes	

	

q  Euclid’s	GCD	Program:	
	 	(mode	=	stop)	=>	(x	=	gcd(m,	n))	

	

Formal	Verifica/on	

Model/Program	

Requirements	

yes/proof	

no/cex	
Verifier	

Grand	challenge:	automate	verifica/on	as	much	as	possible!		

Analysis	Techniques	

q  Dynamic	Analysis	(run/me)	

§  Execute	the	system,	possibly	mul/ple	/mes	with	different	inputs	
§  Check	if	every	execu/on	meets	the	desired	requirement	

q  Sta/c	Analysis	(design	/me)	

§  Analyze	the	source	code	or	the	model	for	possible	bugs	

q  Trade-offs	

§  Dynamic	analysis	is	incomplete,	but	accurate	(checks	real	system,	
and	bugs	discovered	are	real	bugs	

§  Sta/c	analysis	can	be	complete	and	can	catch	design	bugs	early	

§  Many	sta/c	analysis	techniques	are	not	scalable	(solu/on:	
analyze	approximate	versions,	can	lead	to	false	warnings)	

Invariant	Verifica/on	

Simula*on	

§  Simulate	the	model,	possibly	mul/ple	/mes	with	different	inputs	
§  Easy	to	implement,	scalable,	but	no	correctness	guarantees	

Deduc*ve	verifica*on	

§  Construct	a	proof	that	system	sa/sfies	the	invariant	

§  Usually	requires	manual	effort	(but	par/al	automa/on	osen	possible)	

Model	checking	

§  Automa/cally	explores	all	reachable	states	to	check	invariants	

§  Not	scalable,	but	current	tools	can	analyze	many	real-world	designs	
(relies	on	many	interes/ng	theore/cal	advances)	

Note:	Newer	techniques	are	blurring	the	differences	between	deduc/ve	
verifica/on	and	model	checking	

Proving	Invariants	

q  Given	a	transi/on	system	T	=	(S,	Init,	Trans),	and	a	property	P,	
prove	that	all	reachable	states	of	T	sa/sfy	P	

q  Induc/ve	defini/on	of	reachable	states	
§  All	ini/al	states	are	reachable	using	0	transi/ons	

§  If	a	state	s	is	reachable	in	k	transi/ons	and	s	->	t	is	a	transi/on,	
then	the	state	t	is	reachable	in	k+1	transi/ons	

§  Reachable	=	Reachable	in	n	transi/ons,	for	some	n	

q  Prove:	for	all	n,	states	reachable	in	n	transi/ons	sa/sfy	P	
§  Base	case:	Show	that	all	ini/al	states	sa/sfy	P		

§  Induc9ve	case:	
1.  Assume	that	a	state	s	sa/sfies	P	

2.  Show	that	if	s	->	t	is	a	transi/on	then	t	must	sa/sfy	P	

Recall:	Induc/ve	Proofs	in	Arithme/c	

	
q  To	show	that	a	statement	P	holds	for	all	natural	numbers	n,		

§  Base	case:	Prove	that	P	holds	for	n=0	
§  Assume	that	P	holds	for	an	arbitrary	natural	k	

§  Using	the	assump/on,	prove	that	P	holds	for	k+1	

q  Example	statement:	For	all	n,		

																										(0	+	1	+	2	+	…	+	n)		=		n(n+1)/2	

Induc/ve	Invariant	

	
q  A	property	P	is	an	induc9ve	invariant	of	transi/on	system	T	

if		
1.  Every	ini/al	state	of	T	sa/sfies	P	

2.  If	a	state	sa/sfies	P	and	s	->	t	is	a	transi/on	of	T,	then	t	
must	sa/sfy	P	

q  If	P	is	an	induc/ve	invariant	of	T,	then	all	reachable	states	
of	T	must	sa/sfy	P,	and	thus,	it	is	an	invariant	of	T	

Proving	Induc/ve	Invariant	Example	(1)	

q  Consider	transi/on	system	T	given	by		
§  State	variable	int	x,	ini/alized	to	0	
§  Transi/on	descrip/on	given	by			if	(x	<	m)	then	x	:=	x+1	

for	some	m	>=	0	

q  Is	the	property	P	:		0	<=	x	<=	m		an	induc/ve	invariant	of	T?	

q  Base	case:	Consider	ini/al	state	x	:=	0.		Check	that	it	sa/sfies	P	

q  Induc/ve	case:	

§  Consider	an	arbitrary	state	s,	suppose	s(x)	=	a	

§  Assume	that	s	sa/sfies	P,	that	is,	assume	0	<=	a	<=	m	

§  Consider	the	state	t	obtained	by	execu/ng	a	transi/on	from	s	
§  If	a	<	m	then	t(x)	=	a+1,	else	t(x)	=	a	

§  In	either	case,	0	<=	t(x)	<=	m	

§  So	t	sa/sfies	the	property	P,	and	the	proof	is	complete	

Proving	Induc/ve	Invariant	Example	(2)	

q  Consider	transi/on	system	T	given	by		
§  State	variables	int	x,	y;			ini/ally:		x	:=	0	;	y	:=	m			for	some	m	>	0	
§  Transi/on	descrip/on	given	by		if	(x	<	m)	then	{	x	:=	x+1	;	y	:=	y-1	}	

q  Is	the	property	P	:		0	<=	y	<=	m		an	induc/ve	invariant	of	T?	

q  Base	case:	Consider	ini/al	state	(x	:=	0,	y	:=	m).	Check	that	it	sa/sfies	P	

q  Induc/ve	case:	

§  Consider	an	arbitrary	state	s	with	x	=	a	and	y	=	b	
§  Assume	that	s	sa/sfies	P,	that	is,	assume	0	<=	b	<=	m	

§  Consider	the	state	t	obtained	by	execu/ng	a	transi/on	from	s	

§  If	a	<	m	then	t(y)	=	b-1,	else	t(y)	=	b	

§  Can	we	conclude	that	0	<=	t(y)	<=	m?	
§  No!	When	b	=	0,	t(y)	is	nega/ve.	

§  The	proof	fails.	In	fact,	P	is	not	an	induc/ve	invariant	of	T!	

Why	did	the	proof	fail?	

q  Consider	the	state	s	with	x	=	0	and	y	=	0		

§  State	s	sa/sfies	P:		0	<=	y	<=	m				
§  Execu/ng	a	transi/on	from	s	leads	to	state	t	with	x	=	1	and	y	=	-1	

§  State	t	does	not	sa/sfy	P	

q  However,	the	state	s	in	above	argument	is	not	reachable!	

q  Cause	of	failure:	The	property	P	did	not	capture	correla/on	between	
the	state	components	x	and	y	

	

q  Solu/on:	Induc9ve	Strengthening	
§  Consider	property	Q	:	(0	<=	y	<=	m)	&	(x	+	y	=	m)	

§  Property	Q	implies	property	P	

§  While	P	is	not	an	induc/ve	invariant,	Q	is!	

§  It	follows	that	all	reachable	states	must	sa/sfy	P	

Proving	Induc/ve	Invariant	Example	(3)	

q  Consider	transi/on	system	T	given	by		

§  State	variables	int	x,	y;			ini/ally:		x	:=	0	;	y	:=	m			for	some	m	>	0	
§  Transi/on	descrip/on	given	by	if	(x	<	m)	then	{	x	:=	x+1	;	y	:=	y-1	}	

q  Property	Q	:	(0	<=	y	<=	m)	&	(x	+	y	=	m)	

q  Base	case:	Consider	ini/al	state	(x	:=	0,	y	:=	m).	Check	that	it	sa/sfies	Q	

q  Induc/ve	case:	
§  Consider	an	arbitrary	state	s	with	x	=	a	and	y	=	b	

§  Assume	that	s	sa/sfies	Q,	that	is,	assume	0	<=	b	<=	m	and	a+b	=	m	

§  Consider	the	state	t	obtained	by	execu/ng	a	transi/on	from	s	

§  If	a	<	m	then	t(x)	=	a+1	and	t(y)	=	b-1,	else	t(x)	=	a	and	t(y)	=	b	

§  But	if	a	<	m,	since	b	=	m-a,	then	b	>	0,	and	thus	b-1	>=	0	
§  In	either	case,	the	condi/on	(0	<=	t(y)	<=	m)		&		(t(x)+t(y)	=	m)	holds	

q  Conclusion:	Property	Q	is	an	induc/ve	invariant	

Proof	Rule	for	Proving	Invariants	

q  To	establish	that	a	property	P	is	an	invariant	of	transi/on	system	T	

q  Find	an	induc9ve	strengthening	of	P:	a	property	Q	such	that	
1.  Q	implies	P	(i.e.,	every	state	sa/sfying	Q	also	sa/sfies	P)	

2.  Q	is	an	induc/ve	invariant:	
§  all	ini/al	states	sa/sfies	Q	

§  For	any	states	s,	t	such	as	s	sa/sfies	Q	and	s	->	t	is	a	
transi/on,	t	sa/sfies	Q	

q  This	is	a	sound	and	complete	strategy	for	establishing	invariants	

Sound:	If	P	has	an	induc/ve	strengthening	Q	then	P	is	indeed	
invariant	
Complete:	If	P	is	an	invariant,	then	it	has	an	induc/ve	
strengthening	Q	

Induc/ve	Strengthening	

Ini*al	
States	

Reachable	
States	

Property	P

Strengthening	Q

Correctness	of	GCD	

q  Property	P	:	gcd(x,	y)	=	gcd(m,	n)			

q  Verify	that	P	is	an	induc/ve	invariant	(Exercise)	
q  Captures	the	core	logic	of	the	program:	even	though	x	and	y	

are	updated	at	every	step,	their	gcd	stays	unchanged	

q  When	switching	to	stop,	if	x	is	0,	then	gcd(x,	y)	is	y;	if	y	=	0,	then	
gcd(x,	y)	=	x,	and	thus	x	=	gcd(m,	n)	upon	switching	to	stop	

q  Note:	(mode	=	stop)	=>	(x	=	gcd(m,	n))	is	invariant,	but	not	
induc/ve	

loop	 stop	
nat		x	:=	m	;	y	:=	n	

(x	>	0	&	y	>	0)	->	
					if	(x	>	y)	then	x	:=	x-y	else	y	:=	y-x	

¬(x	>	0	&	y	>	0)	->	
						if	(x	=	0)	then	x	:=	y	

Transi/on	System	for	Leader	Elec/on	

	
q  Ini/al	state:	

§  For	each	node	n,			int	idn	:=	n	;		int	rn	:=	1	

q  Update	during	single	transi/on:	
§  Round	counters:	if	rn		<	N	then	rn		:=	rn	+1	
§  Iden/fiers:	idn	:=	max	{idn,	max	{idm|	m	is	connected	to	n}}		

Invariants	for	Leader	Elec/on	

q  Ini/al	state:	for	each	node	n,		int	idn	:=	n;	int	rn	:=	1	
q  Update	during	single	transi/on:	

§  if	rn		<	N	then	rn		:=	rn	+	1	
§  idn	:=	max	{idn,	max	{idm|	m	is	connected	to	n}}	

q  Consider:	idn	>=	n	(that	is,	for	node	n,	id	is	at	least	n)	
§  Obviously	an	invariant;	is	it	an	induc/ve	invariant?	

q  Let	ID	be	the	set	of	iden/fiers	of	all	nodes	and	consider	the	
property	:	“idn	belongs	to	ID”,	for	a	specific	node	n	
§  Not	an	induc/ve	invariant!		
§  During	a	transi/on	s	->	t,	value	of	idn	in	state	t	may	equal	

value	of	idm		in	state	s,	but	property	says	nothing	about	s(idm)	
q What	about:	“for	each	node	n,	idn	belongs	to	ID”	?	(Exercise)	

	
	

Correctness	of	Leader	Elec/on	

q  We	expect	idn	to	be	maximum	of	all	iden/fiers	aser	N	rounds	
q  Formal	property:	

§  For	each	node	n,		(rn=	N)	=>	(idn	=	max	ID)	
q  Not	induc/ve	
q  Goal:	Find	induc/ve	strengthening	that	captures	co-rela/on	

among	all	variables	at	intermediate	steps	
q  Informal:	Aser	k	rounds,	each	rn	equals	k,	and	idn	is	max	of	

iden/fiers	of	nodes	that	are	<=	k	hops	away	from	node	n	
q  Formal	property:		

					P1	:	For	all	nodes	m	and	n,	rm	=	rn		
	&	P2	:	For	each	node	n,	idn	=	max	{	m	|	distance(m,	n)	<	rn	}	

q  Prove	that	P1	&	P2	is	an	induc/ve	invariant!	

Proof:	Base	Case	

§  Ini/al	state	s:	for	each	node	n,	s(idn)	=	n	and	s(rn)	=	1	

§  	Goal:	Show	that	the	following	both	hold	in	this	ini/al	state	s	
P1	:	For	each	m	and	n,	rm	=	rn		

P2	:	For	each	n,	idn	=	max	{	m	|	distance(m,	n)	<	rn	}	
	

P1)	s(rm)	=	s(rn)	=	1;		so	P1	holds	
	

P2)	Consider	a	node	n,	we	want	to	show	
s(idn)	=	max	{	m	|	distance(m,	n)	<	1	}	

The	only	node	m	with	distance(m,	n)	<	1	is	n	itself,	and	s(idn)	=	n,	
so	P2	holds	

Proof:	Induc/ve	Case	

§  Consider	an	arbitrary	state	s,	and	assume	both	P1	and	P2	hold	
§  Let	s(rn)	=	k,	for	each	node	n	

§  For	k	<	N,	consider	a	successor	state	t	of	s	
§  Goal:	Show	that	both	P1	and	P2	hold	in	state	t	

§  Consider	two	nodes	m	and	n	

§  t(rm)	=	s(rm)	+	1	=	k+1,	and	similarly,	t(rn)	=	k+1,	so	P1	holds	in	t	
§  To	show	P2,	consider	a	node	n,	we	want	to	show	

t(idn)	=	max	{	m	|	distance(m,	n)	<	k+1	}	

§  Assump/on	1	(from	induc/ve	hypothesis):	for	each	node	m	
s(idm)	=	max	{	l	|	distance(l,	m)	<	k}	

§  Assump/on	2	(from	the	transi/on	rela/on):	

t(idn)	=	max	{	s(idn),	max	{s(idm)	|	m	is	connected	to	n	}	}	

Proof:	Induc/ve	Case	(Con/nued)	

§  Let	l	be	the	node	with	highest	iden/fier	with	distance(l,	n)	<	k+1	
§  	Goal:	show	that	t(idn)	=	l	
§  	Let	distance(l,	n)	=	d.	We	know	d	<	k+1,	so	either	d	<	k	or	d	=	k	

Case	(d	<	k)	

§  By	Assump/on	1,	s(idn)	cannot	be	less	than	l,	so	must	be	l	

§  By	Assump/on	2,	t(idn)	cannot	be	less,	and	thus,	must	be	l	
Case	(d	=	k)	

§  By	basic	proper/es	of	graphs,	there	must	be	a	node	m	such	
that	distance(l,m)	=	k-1	and	m	is	connected	to	n	

§  By	Assump/on	1,	s(idm)	cannot	be	less	than	l,	so	must	be	l	

§  By	Assump/on	2,	t(idn)	cannot	be	less,	and	thus,	must	be	l	
§  The	proof	is	complete!	

Summary	of	Invariants	

q  General	way	to	formulate	and	prove	safety	proper/es	of	
programs/models/systems	

q  Induc/ve	invariant:	
§  Holds	in	ini/al	states	

§  Is	preserved	by	every	transi/on	
q  To	be	induc/ve,	property	needs	to	capture	relevant	rela/onships	

among	all	state	variables	
q  Benefit	of	finding	induc/ve	invariants:	

§  Correctness	reasoning	becomes	local	(one	needs	to	think	
about	what	happens	in	one	step)	

§  Tools	available	to	check	if	a	given	property	is	induc/ve	
invariant	

q  Area	of	ac/ve	research:	can	a	tool	discover	them	automa/cally?	

Automated	Invariant	Verifica/on	

Transi/on	System	T	

Property	P

yes	

no/bug	
Verifier	

Is	P	an	invariant	of	T?	

	Can	such	a	verifier	exist?		
	If	so,	what	is	the	computa/onal	complexity	of	the	verifica/on	
problem?		

A	Brief	Detour	into	Computa/onal	Complexity	

q  Goal:	Classify	computa/onal	problems	in	terms	of	(roughly)	how	many	
basic	opera/ons	it	takes	to	solve	the	problem,	as	func/on	of	input	size	

q  Example	1:	Finding	maximum	of	a	list	of	numbers	

§  Time	complexity	is	linear:	O(n)	

q  Example	2:	Sor/ng	a	list	of	numbers	

§  Algorithm	(e.g.	selec/on-sort)	with	doubly-nested	loop:	O(n2)	

§  More	efficient	algorithm	(e.g.	quicksort)	possible:	O(n	log	n)	

q  Example	3:	Expression	evalua/on:	Given	an	expression	e	(with	not/or/	
and	as	opera/ons)	over	Boolean	vars,	and	an	assignment	a	of	0/1	values	
to	vars,	determine	whether	e	evaluates	to	1	or	0.	Linear-/me	O(n)	

q  Example	4:	Boolean	sa/sfiability:	Given	an	expression	e,	determine	if	
there	exists	an	assignment	a	to	vars	that	makes	the	expression	1	

§  Naïve	algorithm:	Evaluate	e	on	every	possible	assignment	a	

§  Exponen/ally	many	choices	for	a	:	Algorithm	is	O(2k),	k	=	no.	of	vars	

The	Class	P	

q  Polynomial-9me	algorithm	means	an	algorithm	with	/me	complexity	
such	as	O(n),	O(n	log	n),	O(n2),	O(n3),	or	O(nc),	for	constant	c	

q  A	problem	is	in	P	if	there	is	a	polynomial-/me	algorithm	to	solve	it	

q  Examples:	

§  Finding	maximum	

§  Sor/ng	

§  Expression	evalua/on	

§  Finding	shortest	path	in	a	graph	

q  P	is	the	class	of	tractable	(i.e.	efficiently	solvable)	problems	

§  Problem	can	be	solved	exactly		
§  Solu/on	will	scale	reasonably	well	as	input	size	grows	

§  In	principle,	O(n)	is	bezer	than	O(n2)	

NP-Complete	Problems	
q  SAT:	Given	an	expression	e	over	Boolean	variables,	check	if	there	exists	

an	assignment	of	0/1	values	to	vars	for	which	e	evaluates	to	1	
§  No	proof	that	SAT	is	in	P	(no	known	polynomial-/me	algorithm)	
§  No	proof	that	SAT	is	not	in	P	

q  Cook	(1972):	SAT	is	NP-complete	

q  Hundreds	of	problems	equivalent	to	SAT	
§  Hamiltonian	Path:	Is	there	a	path	in	a	graph	from	source	to	

des/na/on	that	visits	each	vertex	exactly	once	
§  Max	Clique:	Given	a	graph,	find	largest	subset	of	ver/ces	such	

that	there	is	an	edge	between	every	pair	of	ver/ces	in	this	set	

q  Grand	Challenge	Open	Problem	:	Is	P	=	NP?	
§  If	you	find	a	polynomial-/me	algorithm	for	SAT,	then	P	=	NP,	and	

many	other	problems	will	have	polynomial-/me	algorithms	
§  If	you	prove	SAT	is	not	in	P,	then	P	!=	NP,	and	many	other	

problems	then	provably	don’t	have	efficient	algorithms		

NP-Completeness	Con/nued	

q  Known	algorithms	for	SAT	are	exponen/al-/me	in	the	worst-case,	but	

§  Highly	efficient	implementa/ons,	SAT	solvers,	exist	
§  Can	handle	millions	of	variables	

§  Many	prac/cal	problems	solved	by	encoding	into	SAT	

q  Key	feature	of	NP	problems	such	as	SAT:	suffices	to	find	one	sa/sfying	
assignment	

q  This	does	not	hold	for	all	intractable	problems	

§  Validity:	Given	a	Boolean	expression	e,	is	it	the	case	that	e	evaluates	
to	1	no	mazer	what	values	we	give	to	its	variables	

q  Many	complexity	classes	beyond	NP:	coNP,	PSPACE,	Exp/me,	…	

§  Problems	may	require	exponen/al-/me	(or	more)	to	solve	
§  Not	all	exponen/al-/me	problems	are	equal…	

(Un)Decidability	

q  Some	problems	cannot	be	solved	by	a	computer	at	all!	

q  Fundamental	Theorem	of	CS:	Alan	Turing	(1936):	

§  The	Hal9ng	problem	for	Turing	machines	is	undecidable	

There	is	no	program	that	takes	as	its	input	an	arbitrary	program	C	
and	an	arbitrary	input	x,	and	determines	if	C	terminates	on	x	

q  Intui/on:	If	a	program	could	analyze	other	programs	exactly,	then	it	can	
analyze	itself,	and	this	suffices	to	set	up	a	logical	contradic/on!	

q  A	surprisingly	undecidable	problem:	Does	a	given	a	polynomial			

(e.g.	x3	+	2xy2	-	15xy	+	156)	have	integer	roots?	

q  Decidable	Problems:	There	exists	a	program	(or	Turing	machine)	that	
solves	the	problem	correctly	(gives	the	right	answer	and	stops)	

§  Includes	problems	in	P	as	well	as	intractable	classes	such	as	NP,	
Exp/me,	etc.	

Back	To	Invariant	Verifica/on	Problem	

Theorem:	The	invariant	verifica/on	problem	is	undecidable.		
	Proof	idea:	undecidable	problems	for	Turing	machines	can	be	recast	as	
invariant	verifica/on	problems	for	transi/on	systems	with	integer	state	
variables		

Transi/on	System	T	

Property	P

yes	

no/bug	
Verifier	

Is	P	an	invariant	of	T?	

Finite-State	Invariant	Verifica/on	Problem	

Theorem:	The	invariant	verifica/on	problem	for	finite-state	systems	is	
decidable	

	

	Proof	sketch:	If	T	has	k	Boolean	state	vars,	then	total	number	of	states	is	2k.	
	Verifier	can	systema/cally	search	through	all	possible	states.	
	Complexity	is	exponen/al.	More	precisely,	it	is	PSPACE,	a	class	of	
problems	harder	than	NP-complete	problems	such	as	SAT.	

Finite-State	
Transi/on	System	T	

Property	P

yes	

no/bug	
Verifier	

Is	P	an	invariant	of	T?	

P	

§ 	Sor/ng	
§ 	Expression	Evalua/on	
§ 	Shortest	Paths	..	

NP	
§ 	SAT	
§ 	Hamiltonian	Path	
§ 	Max	Clique	..	

PSPACE	

Invariant	
verifica/on	
for	finite-
state	
systems	

Decidable	

Invariant	
verifica/on	

Solving	Invariant	Verifica/on	

q  Establishing	that	the	system	is	safe	is	important,	but	there	is	no	
generally	efficient	procedure	to	solve	the	verifica/on	problem	

q  Solu/on	1:	Use	Simula/on-based	analysis	
§  Simulate	the	model	mul/ple	/mes,	and	check	that	each	state	

encountered	on	each	execu/on	sa/sfies	desired	safety	property	

§  Useful,	prac/cal	in	real-world,	but	gives	only	par/al	guarantee	
(and	is	known	to	miss	hard-to-find	bugs)	

q  Solu/on	2:	Write	a	formal	proof	using	induc/ve	invariants	

§  Only	par/al	tool	support	possible,	so	requires	considerable	effort	

§  Recent	successes:	verified	microprocessor,	web	browser,	JVM		
q  Solu/on	3:	Exhaus/ve	search	through	state-space	

§  Fully	automated,	but	has	scalability	limita/ons	(may	not	work!)	

§  Complementary	to	simula/on,	increasingly	used	in	industry	

§  Two	approaches:	On-the-fly	enumera/ve	search,	Symbolic	search	

Compu/ng	Reachable	States	

q  Search	algorithm	can	start	with	ini/al	states,	and	explore	transi/ons	
out	of	ini/al	states	systema/cally	

q  Example:	state	vars	are	integers	x,	y;	we	know	that	ini/ally	0	<=	x	<=	2	
and	1	<	y	<=	2,	and	a	single	transi/on	increments	x	and	decrements	y	

Enumera9ve:		
				Consider	individual	states	

x

y

Symbolic:		
				Consider	set	of	states	

x

y

Credits	

Notes	based	on	Chapter	3	of	
	
Principles	of	Cyber-Physical	Systems	
by	Rajeev	Alur	
MIT	Press,	2015	
	

