
CS:4980	
Founda/ons	of	Embedded	Systems	

Copyright 20014-16, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

Synchronous	Model	
Part	III	

Synchronous	Design	

BoCom-Up	Design	

	
q  Design	basic	components	

q  Compose	exis/ng	components	in	block-diagrams	to	build	
new	components	

q  Maintain	a	library	of	components,	and	try	to	reuse	at	
every	step	

q  Canonical	example:	Synchronous	circuits	

Combina/onal	Circuits	

bool	in	
out	:=	¬in	

bool	out	
SyncNot	

in	 out	awaits	in	

SyncNot	

bool	in1	
out	:=	in1	&	in2	

bool	out	
SyncAnd	

bool	in2	

in1	 out	awaits	in1,	in2	

SyncAnd	

in2	

Design	OR	gate	

in1	
out	awaits	in1,	in2	

SyncOr	

in2	

Synchronous	Latch	

Latch	

reset	=	1		->		x	:=	0	

set	=	1		->		x	:=	1	

(set	=	0	&	reset	=	0)	?	

set	

reset	

out	

out	:=	x		

A1:	x	↦	out	

A2:	x,set,reset	↦	x	

bool	x	:=	choose	{0,	1}	

Determinis/c?	
Input-enabled?	

Designing	Counter	Circuit	(1)	

Are	await-dependencies	acyclic?	

1BitCounter	

Designing	Counter	Circuit	(2)	

3BitCounter	

Top-Down	Design	

	
q  Star/ng	point:	Inputs	and	outputs	of	desired	design	C	

q  Models/assump/ons	about	the	environment	C	operates	in	

q  Informal/formal	descrip/on	of	desired	behavior	of	C	

q  Example:	Cruise	Controller	

CruiseController	

event	second	

Driver	

event	cruise	

event	inc	

event	dec	

Clock	

Sensor	 		event	rotate	

Display	

nat	speed	 event(nat)	cruiseSpeed	

ThroCleController	

event(real)	F	

Top-Down	Design	of	a	Cruise	Controller	

Decomposing	CruiseController	

Tracking	Speed	

	
q  Inputs:	Events	rotate	and	second	

q  Output:	current	speed	

q  Computes		the	number	of	rotate	events	per	second	(see	notes)	

event	rotate	 nat	speed	
MeasureSpeed	

event	second	

Tracking	Speed	

event	rotate	
nat	speed	

MeasureSpeed	

event	second	

nat	c	:=	0,	s	:=	0	

if	rotate?	then	c	:=	c+1	;	
if	second?	then	{	
		s	:=	round(k*c)	;		
		c	:=	0	
}	;	
speed	:=	s	

Tracking	Cruise	Sebngs	

	
q  Inputs	from	the	driver:	Commands	to	turn	the	cruise-control	on/off	

and	increment/decrement	desired	cruising	speed	from	driver		
q  Input:	Current	speed		
q  Output:	Desired	cruising	speed	
q  What	assump/ons	can	we	make	about	simultaneity	of	events?		
q  Should	we	include	safety	checks	to	keep	desired	speed	within	

bounds?	

event	cruise	
event(nat)	cruiseSpeed	

SetSpeed	

nat	speed	
event	inc	
event	dec	

Tracking	Cruise	Sebngs	

event	cruise	

event(nat)	cruiseSpeed	

SetSpeed	

nat	speed	

event	inc	

event	dec	

nat	s	:=	minS	;	bool	on	:=	0	

if	cruise?	then	{		
		on	:=	¬on;	
		if	(speed	<	minSpeed)	then	s	:=	minSpeed	
		else	if	(speed	>	maxSpeed)	then	s	:=	maxSpeed	
		else	s	:=	speed	
}	
else	if	(dec?	&	on	&	s	>	minSpeed)	then	s	:=	s-1	
else	if	(inc?	&	on	&	s	<	maxSpeed)	then	s	:=	s+1	;	
if	on	then	cruiseSpeed	:=	s	

Controlling	Speed	

	
q  Inputs:	Actual	speed	and	desired	speed	
q  Output:	Pressure	on	the	throCle	
q  Goal:	Make	actual	speed	equal	to	the	desired	speed	(while	

maintaining	key	physical	proper/es	such	as	stability)	
q  Design	relies	on	theory	of	dynamical	systems	(Chapter	6)	

nat	speed	 event(real)	F	

ControlSpeed	

event(nat)	cruiseSpeed	

Synchronous	Networks	

	
q  Time	divided	into	slots,	with	all	nodes	synchronized	
q  In	one	round,	each	node	can	get	a	message	from	each	neighbor	
q  Design	abstrac/on	for	simplicity	
q  Some	implementa/on	plajorms	directly	support	such	a	!me-

triggered	network:	WirelessHART	(control),	CAN	(automo/ve)	

1	 8	

5	 3	

Modeling	Synchronous	Networks	

	
q  Assume:	Each	link	is	directed	and	connects	two	nodes	

§  Alterna/ve:	Broadcast	communica/on	(everyone	can	listen)	
q  Assume:	Communica/on	is	reliable	

§  Alterna/ve:	Messages	may	be	lost,	collisions	in	broadcast	
q  Network	is	a	directed	graph	

§  Each	link	can	carry	one	message	in	each	slot	

1	 8	

5	 3	

Component	for	a	Network	Node	

	
q  A	node	does	not	know	network	topology	

§  Each	node	has	unique	iden/fier,	myID	
§  Does	not	know	which	nodes	it	is	connected	to	
§  Useful	for	network	iden!fica!on	problems	

q  Interface	for	each	node	
§  Output	is	an	event	carrying	msg	(may	be	absent	is	some	rounds)	
§  Input	is	a	set	of	messages	(delivered	by	the	network)	
§  Output	should	not	await	input	

set(msg)		in	 nat	id	:=	myID	 event(msg)	out	

NetworkNode	

Modeling	Synchronous	Networks	

q  Descrip/on	of	each	node	does	not	depend	on	the	network	

q  Network	itself	is	modeled	as	a	synchronous	component	

q  Descrip/on	of	Network	depends	on	the	network	graph	

q  Input	variables:	for	each	node	n,	outn	of	type	event(msg)	

q  Output	variables:	for	each	node	n,	inn	of	type	set(msg)	

q  Network	is	a	combina/onal	component	(simply	routes	messages)	

1	 8	

5	 3	

set(msg)		in5	

nat	id	:=	5	 event(msg)	out5	

set(msg)		in1	

nat	id	:=	1	 event(msg)	out1	

set(msg)		in3	

nat	id	:=	3	 event(msg)	out3	

set(msg)		in8	

nat	id	:=	8	 event(msg)	out8	

Network				

set(msg)		in5	

event(msg)	out5	

set(msg)		in1	

event(msg)	out1	

set(msg)		in3	

event(msg)	out3	

set(msg)		in8	

event(msg)	out8	

Network	

1	 8	

5	 3	

	
q  Value	of	in1	should	equal	the	set	

of	messages	sent	on	links	
incoming	to	node	1	

q  Sample	code:	
		in1	:=	EmptySet	;	
		if	out5?	then	Insert(out5,	in1)	;	
		if	out8?	then	Insert(out8,	in1)	;	

q  Update	of	in5,	in3,	in8	similar	

Leader	Elec/on	

	
q  Classical	coordina/on	problem:	Elect	a	unique	node	as	a	leader	

§  Exchange	messages	to	find	out	which	nodes	are	in	network	
§  Output	the	decision	using	the	variable	status	

q  Requirements	
1.  Eventually	every	node	sets	status	to	either	leader	or	follower	
2.  Only	one	node	sets	status	to	leader	

set(msg)		in	 nat	id	:=	myID	

NetworkNode	

event(msg)	out	

{unknown,	leader,	follower}		status	

Leader	Elec/on:	Flooding	Algorithm	

	
q  Goal:	Elect	the	node	with	highest	iden/fier	as	the	leader	

q  Strategy:	Transmit	to	your	neighbors	highest	id	you	have	
encountered	so	far	

q  Implementa/on:	
§  Maintain	a	state	variable,	id,	ini/alized	to	your	own	iden/fier	
§  In	each	round,	transmit	value	of	id	on	output	
§  Receive	input	values	from	the	network	
§  If	a	value	higher	than	id	received,	then	update	id	

Execu/on	of	Leader	Elec/on	

1	 8	

5	 3	 3	

8	1	

5	

Ini,ally	 A1er	first	round	

A1er	second	round	 A1er	third	round	

1	 8	

5	 3	 5	

8	8	

5	

8	

5	
3	

3	
1	

5	

1/8	 8	

5	 3/5	 8	

8	8	

5	

5	

8	

8	5	

5	

5	

1/8	 8	

5	 3/8	 8	

8	8	

8	

8	

8	8	
8	

5	

5	

Leader	Elec/on	

	
q  When	should	a	node	stop	and	make	a	decision?	
q  When	it	knows	that	enough	rounds	have	elapsed	for	message	from	

every	node	to	reach	every	other	node	
q  Correctness	depends	on	following	assump/ons:	

1.  Network	is	strongly	connected:	for	every	pair	of	nodes	m	and	n,	
there	is	a	directed	path	from	node	m	to	node	n	

2.  Each	node	knows	an	upper	bound	N	on	total	number	of	nodes	
q  Implementa/on	of	decision	rule:	

§  Maintain	a	state	variable	r	to	count	rounds,	ini/ally	1	
§  In	each	round,	r	is	incremented	
§  When	r	=	N,	decide	

q  What	should	the	decision	be?	

Node	Component	for	Leader	Elec/on	

if	(r	<	N)	then	
						{	out	:=	id	;	r	:=	r+1	}		

A1:	r,	id	↦	r,	out	

A2:	r,id,in	↦	id,	status	

nat	id	:=	myID	;	r	:=	1	

set(msg)		in	

event(msg)	out	

{	unknown,	
			leader,	
			follower	}			
	status	

if	(in	!=	Empty)	then	id	:=	max	(id,	max	in)	;		

if	(r	<	N)	then	status	:=	unknown	
else	if	(id	=	myID)	then	status	:=	leader	
									else	status	:=	follower		

Leader	Elec/on	

	
q  Does	a	node	really	have	to	wait	for	N	rounds?	

q  If	a	node	receives	a	value	higher	than	its	own	iden/fier,	can	it	
stop	par/cipa/ng	(i.e.	transmit	no	more	messages)?	

q  Does	a	node	have	to	transmit	in	each	round?	When	can	it	
choose	to	skip	a	round	without	affec/ng	correctness?	

Credits	

Notes	based	on	Chapter	2	of	
	
Principles	of	Cyber-Physical	Systems	
by	Rajeev	Alur	
MIT	Press,	2015	
	

