
CS:4980	
Founda/ons	of	Embedded	Systems	

Copyright 20014-16, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

Synchronous	Model	
Part	II	

Block	Diagrams	

Structured	modeling	
§  How	do	we	build	complex	models	from	simpler	ones?	
§  What	are	basic	opera/ons	on	components?	

DoubleDelay	

Design	a	component	with		
§  Input:	bool	in	
§  Output:	bool	out	
§  Output	in	round	n	should	equal	input	in	round	n-2	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	

bool	in	 bool	out	

Delay	

DoubleDelay	

q  	Instan/a/on:	Create	two	instances	of	Delay	
§  	Output	of	Delay1	=	Input	of	Delay2	=	Variable	temp	

q  	Parallel	composi/on:	Concurrent	execu/on	of	Delay1	and	Delay2	
q  	Encapsula/on/Hiding:	Hide	variable	temp	

bool	in	 bool		temp	

Delay1	

bool	out	

Delay2	

Instan/a/on	/	Renaming	

q  Delay1	=	Delay[out	↦	temp]		
§  Explicit	renaming	of	input/output	variables		
§  Implicit	renaming	of	state	variables		
§  Components	(I,	O,	S,	Init,	React)	of	Delay1	derived	from	Delay	

q  Delay2	=	Delay[in	↦	temp]	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	
bool	in	 bool	x1	:=	0	

temp	:=	x1	;	x1	:=	in	

bool	temp	

Delay1	

bool	temp	 bool	x2	:=	0	

temp	:=	x2	;	x2	:=	in	

bool	out	

Delay2	

Parallel	Composi/on	

q  DoubleDelay	=	Delay1	||	Delay2	
§  Execute	both	concurrently	

q  When	can	two	components	be	composed?	
q  How	to	define	parallel	composi/on	precisely?	

§  Input/output/state	variables,	ini/aliza/on,	and	reac/on	
descrip/on	of	composite	defined	in	terms	of	components	

§  Can	be	viewed	as	an	algorithm	for	compila/on	

bool	in	 bool		temp	

Delay1	

bool	out	

Delay2	

DoubleDelay	

Compa/bility	of	components	C1	and	C2	

Allowed:	
q  input	variables	in	common	
q  output	variable	of	one	is	input	variable	of	the	other	

Disallowed:	
q  common	output	variables	

§  a	unique	component	must	be	responsible	for	values	of	any	given	variable	

q  common	state	variables		
§  state	variables	can	be	implicitly	renamed	to	avoid	conflicts	

Outputs	of	Product	

q  Output	variables	of	Delay1	||	Delay2	are		{temp,	out}	
§  Note:	by	default,	every	output	is	available	to	outside	world	

q  If	C1	has	output	vars	O1	and	C2	has	output	vars	O2	then	the	product	
C1	||	C2	has	output	vars	O1	∪	O2		

	

bool	in	 bool		temp	

Delay1	

bool	out	

Delay2	

bool	x1	:=	0	

temp	:=	x1	;	x1	:=	in	

bool	x2	:=	0	

out	:=	x2	;	x2	:=	temp	

Delay1	||	Delay2	

Inputs	of	Product	

q  Input	variables	of	Delay1	||	Delay2	are	{in}	
§  Even	though	temp	is	input	of	Delay2,	it	is	not	an	input	of	product	

q  If	C1	has	input	vars	I1	and	C2	has	input	vars	I2	then	C1	||	C2	has	input	vars	
(I1	∪	I2)	\	(O1	∪	O2)	
§  A	variable	is	an	input	of	the	product	if	it	is	an	input	of	one	of	the	

components,	and	not	an	output	of	the	other	
	

bool	in	 bool		temp	

Delay1	

bool	out	

Delay2	

bool	x1	:=	0	

temp	:=	x1	;	x1	:=	in	

bool	x2	:=	0	

out	:=	x2	;	x2	:=	temp	

Delay1	||	Delay2	

States	of	Product	

q  State	variables	of	Delay1	||	Delay2	are	{x1,	x2}	
q  If	C1	has	state	vars	S1	and	C2	has	state	vars	S2	then	C1	||	C2	has	state	vars		

S1	∪	S2		(recall	that		S1	∩	S2	=	∅)	
§  A	state	of	the	product	is	a	pair	(s1,	s2),	where	s1	is	a	state	of	C1	and	s2	

is	a	state	of	C2	
§  If	C1	has	n1	states	and	C2	has	n2	states	then	C1	||	C2	has	n1	⋅	n2	states	

bool	in	 bool		temp	

Delay1	

bool	out	

Delay2	

bool	x1	:=	0	

temp	:=	x1	;	x1	:=	in	

bool	x2	:=	0	

out	:=	x2	;	x2	:=	temp	

Delay1	||	Delay2	

Ini/al	States	of	Product	

q  The	ini/aliza/on	code	Init	for	Delay1	||	Delay2	is		x1	:=	0	;	x2	:=	0	
§  Ini/al	states	are	{(0,0)}	

q  If	C1	has	ini/aliza/on	Init1	and	C2	has	ini/aliza/on	Init2	then	C1	||	C2	has	
ini/aliza/on	Init1	;	Init2	(or	Init2	;	Init1)	

q  Order	does	not	mader	
§  [Init]	is	the	Cartesian	product	[Init1]	×	[Init2]	
	

bool	in	 bool		temp	

Delay1	

bool	out	

Delay2	

bool	x1	:=	0	

temp	:=	x1	;	x1	:=	in	

bool	x2	:=	0	

out	:=	x2	;	x2	:=	temp	

Delay1	||	Delay2	

Reac/ons	of	Product	

Execu/on	of	Delay1	||	Delay2	within	a	round	
§  Environment	provides	input	value	for	variable	in	
§  Execute	code	temp	:=	x1	;	x1	:=	in	of	Delay1	
§  Execute	code	out	:=	x2	;	x2	:=	temp	of	Delay2	

	

bool	in	 bool		temp	

Delay1	

bool	out	

Delay2	

bool	x1	:=	0	

temp	:=	x1	;	x1	:=	in	

bool	x2	:=	0	

out	:=	x2	;	x2	:=	temp	

Delay1	||	Delay2	

Final	Composi/on	

§  	Instan/a/on:	 	Delay[out	↦	temp]		and		Delay[in	↦	temp]	
§  	Parallel	composi/on: 	Delay[out	↦	temp]	||	Delay[in	↦	temp]	
§  	Output	hiding: 	(Delay[out	↦	temp]	||	Delay[in	↦	temp])	\	temp	

bool	in	 bool		temp	

Delay1	

bool	out	

Delay2	

bool	x1	:=	0	

temp	:=	x1	;	x1	:=	in	

bool	x2	:=	0	

out	:=	x2	;	x2	:=	temp	

(Delay[out	↦	temp]	||	Delay[in	↦	temp])	\	temp	

Feedback	Composi/on	

q  When		
§  some	output	of	C1	is	an	input	of	C2,	and		
§  some	output	of	C2	is	an	input	of	C1,		
how	do	we	order	the	execu/ons	of	reac/on	React1	and	React2?	
	

q  Should	such	composi/on	be	allowed	at	all?	

C1		

C2	

Feedback	Composi/on	

For	Relay: 	its	output	b	awaits	its	input	a	
For	Inverter: 	its	output	a	awaits	its	input	b	

q  In	product,	cannot	order	the	execu/on	of	the	two	
q  In	the	presence	of	such	cyclic	dependency,	composi/on	is	disallowed	
q  Intui/on:	Combina/onal	cycles	should	be	avoided	

Relay	

b	:=	a	

Inverter	

a	:=	¬b	

bool	b	bool		a	

Feedback	Composi/on	

q  For	Delay,	possible	to	produce	output	without	wai/ng	for	its	input	by	
execu/ng	the	assignment		b	:=	x	

q  Reac/on	code	for	Delay	||	Inverter	could	be		b	:=	x	;	a	:=	¬b	;	x	:=	a	

q  Goal:	Refine	specifica/on	of	reac/on	descrip/on	so	that	await	
dependencies	among	output-input	variables	are	easy	to	detect	
§  Ordering	of	code-blocks	during	composi/on	should	be	easy	

Delay	

b	:=	x	;	x	:=	a	

Inverter	
bool	b	bool		a	

bool	x	:=	0	

a	:=	¬b	

Interfaces	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	

Interface	=	(input	variables,	output	variables,	await	dependencies)	

bool	in	 bool	x	:=	0	

out	:=	x	;	x	:=	in	

bool	out	

Delay	

A:	x,in	↦	out,x	

bool	in	 bool	out	awaits	in	

Delay	Interface	

Interface:	SplitDelay	

bool	in	 bool	out	

SplitDelay	Interface	

bool	in	

bool	x	:=	0	

out	:=	x		

bool	out	

SplitDelay	

A1:	x	↦	out	 A2:	in	↦	x	

x	:=	in		

Decomposing	the	reac/on	into	tasks	eliminates	in		
this	case	the	await	dependency	between	out	and	in	

Example	Interface	

in1	 out1	

A1:	x1,in1	->	y,x1	

in2	

out2	

out3	

x1,	x2		

local	y	

A2:	x2	->	out2	

A3:	x1,in1	->	out1,x1	

A4:	in2,y,out2	->	x2,out3	

awaits	in1	

awaits	in1,	in2	

Back	to	Parallel	Composi/on	

Relay	and	Inverter	are	not	compa/ble	since	there	is	
a	cycle	in	their	combined	await	dependencies	

Relay	

Inverter	
bool	b	awaits	a	bool		a	awaits	b	

Composing	SplitDelay	and	Inverter	

SplitDelay	

Inverter	
bool	b	bool		a	awaits	b	

Note:	Based	on	their	interfaces,	Delay	and	Inverter	are	not	compa/ble	

SplitDelay	and	Inverter	are	compa/ble	since	there	is	
no	cycle	in	their	combined	await	dependencies	

Component	Compa/bility	Defini/on	

q  Given	components	:	
§  C1	with	input	vars	I1,	output	vars	O1,	and	awaits-dep.	rela/on	>1	
§  C2	with	input	vars	I2,	output	vars	O2,	and	awaits-dep.	rela/on	>2	

q  C1	and	C2	are	compa/ble	if		
§  they	have	no	common	outputs:	sets	O1	and	O2	are	disjoint		
§  the	rela/on		>1	∪	>2		of	combined	await-dependencies	is	acyclic	

q  Parallel	Composi/on	is	allowed	only	for	compa/ble	components	

Defining	the	Product	

bool	in	 bool		temp	

Delay1	

bool	out	

Delay2	

bool	x1	:=	0	

temp	:=	x1	;	x1	:=	in	

Delay1	||	Delay2	

bool	in	

bool	out	

bool	temp	

bool	x1	:=	0	;	x2	:=0	

temp:=x1	;	x1:=	in	

A1	:	in,	x1	↦	temp,	x1	

out:=x2	;	x2:=	temp	

A2	:	temp,	x2	↦	out,	x2	

A1	:	in,	x1	↦	temp,	x1	

bool	x1	:=	0	

temp	:=	x1	;	x1	:=	in	

A1	:	in,	x1	↦	temp,	x1	

Composing	SplitDelay	and	Inverter	

bool	in	awaits	out	

bool	x	:=	0	

out	:=	x		

bool	out	

SplitDelay	

A1:	x	↦	out	 A2:	in	↦	x	

x	:=	in		

A:	out	↦	in	

in	:=	~out		

Inverter	

SplitDelay	||	Inverter	

bool	out	

bool	in	

bool	x	:=	0	

out	:=	x	

A1	:	x	↦	out	

x	:=	in	

A2	:	in	↦	x	

A:	out	->	in	

in	:=	¬out		

Parallel	Composi/on	Defini/on	

q  Given	compa/ble	components		
§  C1	=	(I1,	O1,	S1,	Init1,	React1)	and				
§  C2	=	(I2,	O2,	S2,	Init2,	React2),		
what’s	the	defini/on	of	product	C	=	C1	||	C2?	
	

q  Suppose	React1	and	React2	are	specified	using	resp.	
§  local	vars	L1,	set	of	tasks	P1,	and	precedence	<1,	and		
§  local	vars	L1,	set	of	tasks	P2,	and	precedence	<2			

q  Reac/on	descrip/on	for	product	C	has	
§  local	variables	L1	∪	L2	
§  set	of	tasks	P1	∪	P2		
§  precedence	edges	<1	∪	<2	∪	{edges	between	tasks	A1	and	A2	of	

different	components	if	A2	reads	a	var	wriden	by	A1}	

Parallel	Composi/on	Defini/on	

q  Why	is	the	parallel	composi/on	opera/on	well-defined?	
§  Can	the	new	edges	make	task	graph	of	the	product	cyclic?	

q  Recall:	Await-dependencies	among	I/O	variables	of	compa/ble	
components	must	be	acyclic	

q  Proposi/on	2.1:	Awaits	compa/bility	implies	acyclicity	of	product	task	
graph	

q  Bodom	line:	Interfaces	capture	enough	informa/on	to	define	parallel	
composi/on	in	a	consistent	manner	

q  Aside:	possible	to	define	more	flexible	(but	more	complex)	no/ons	of	
awaits	dependencies	

Proper/es	of	Parallel	Composi/on	

q  Commuta/ve:	C1	||	C2		=		C2	||	C1	

q  Associa/ve:	(C1	||	C2)	||	C3		=		C1	||	(C2	||	C3)	

§  If	compa/bility	check	fails	in	one	case,	will	also	fail	in	others	

q  Bodom	line:	order	of	composi/on	does	not	mader	

q  If	C1	has	n1	states	and	C2	has	n2	states	then	C1	||	C2	has	n1	⋅	n2	states	

q  If	both	C1	and	C2	are	determinis/c,	so	is	C1	||	C2		

q  If	both	C1	and	C2	are	event-triggered,	is	C1	||	C2	guaranteed	to	be	
event-triggered?	

Output	Hiding	

q  Let	C	be	a	component	and	y	one	of	its	output	vars	
§  The	result	of	hiding	y	in	C,	wriden	as	C	\	y,	is	a	component	

iden/cal	to	C	except	that	y	is	no	longer	an	output	variable	but	
a	local	variable	

q  This	is	useful	for	limi/ng	the	scope	or	a	component	
(encapsula/on)	

DoubleDelay	

bool	in	
bool		temp	

Delay1	

bool	out	

Delay2	

bool	x1	:=	0	

temp	:=	x1	;	x1	:=	in	

bool	x2	:=	0	

out	:=	x2	;	x2	:=	temp	

(Delay1	||	Delay2)	\	temp	

bool	in	 bool	out	

bool	x1	:=	0	;	x2	:=	0	

temp	:=	x1	;	x1	:=	in	

A1	:	in,	x1	↦	temp,	x1	

out	:=	x2	;	x2:=	temp	

A2	:	temp,	x2	↦	out,	x2	

A1	:	in,	x1	↦	temp,	x1	 A2	:	temp,	x2	↦	out,	x2	

local	bool	temp	

Credits	

Notes	based	on	Chapter	2	of	
	
Principles	of	Cyber-Physical	Systems	
by	Rajeev	Alur	
MIT	Press,	2015	
	

