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CS:4980	
Founda/ons	of	Embedded	Systems	

Introduc/on	



Embedded	So;ware	Systems	Everywhere!	

So;ware	Inside	



From	Desktops	to	Cyber-Physical	Systems	

q  Tradi/onal	computers:	Stand-alone	device	running	so;ware	
applica/ons	(e.g.,	data	processing)	

q  Tradi/onal	controllers:	Devices	interac/ng	with	physical	world	
via	sensors	and	actuators	(e.g.,	thermostat)	

q  Embedded	(aka	Cyber-physical)	Systems	
§  Special-purpose	system	with	integrated	microcontroller/so;ware	
§  Cameras,	watches,	washing	machines,	…	



Cyber-Physical	Systems	

Driverless	Cars	 Medical	devices	

Coordina/ng	robots	



Cyber-Physical	Systems	

Control	
	

Monitor	and	influence		
physical	world	

Computa/on	
	

Process	informa/on	
to	make	decisions	

Communica/on	
	

Exchange	data		
to	collaborate	



Design	of	Cyber-Physical	Systems	

Systems	that	integrate	control,	computa/on,	and	communica/on	
can	do	cool	things	

and	useful	things	

	

Lots	of	promise	and	poten/al:	medicine,	transporta/on,	energy,	…	

So	what’s	the	main	challenge?		

		



Ariane	5	Explosion	

“It	took	the	European	Space	Agency	10	years	and	$7	billion	to	produce	Ariane	
5.	All	it	took	to	explode	that	rocket	less	than	a	minute	into	its	maiden	voyage	
last	June,	sca\ering	fiery	rubble	across	the	mangrove	swamps	of	French	
Guiana,	was	a	small	computer	program	trying	to	stuff	a	64-bit	number	into	a	
16-bit	space”	

		

	A	bug	and	a	crash,	J.	Gleick,	New	York	Times,	Dec	1996	



Prius	Brake	Problems	Blamed	on	So;ware	Glitches	

“Toyota	officials	described	the	problem	as	a	"disconnect"	in	the	vehicle's	
complex	an/-lock	brake	system	(ABS)	that	causes	less	than	a	one-second	lag.	
With	the	delay,	a	vehicle	going	60	mph	will	have	traveled	nearly	another	90	
feet	before	the	brakes	begin	to	take	hold”	

	CNN	Feb	4,	2010	



So;ware:	The	Achilles’	Heel	

So;ware	everywhere	means	bugs	everywhere	
	2002	study	by	NIST:		

	So;ware	bugs	cost	US	economy	$60	billion	annually	(0.6%	of	GDP)	

		

Lack	of	trust	in	so;ware	as	technology	barrier	

	Would	you	use	an	autonomous	so;ware-controlled	round-the-clock	monitoring	and	
drug-delivery	device?	



So;ware:	The	Achilles’	Heel	

So;ware	everywhere	means	bugs	everywhere	
	2002	study	by	NIST:		

	So;ware	bugs	cost	US	economy	$60	billion	annually	(0.6%	of	GDP)	

		

Lack	of	trust	in	so;ware	as	technology	barrier	

	Would	you	use	an	autonomous	so;ware-controlled	round-the-clock	monitoring	and	
drug-delivery	device?	

A	grand	challenge	for	computer	science:	
	

Technology	for	designing	reliable	cyber-physical	systems	



Designing	a	Cruise	Controller	

What’s	the	goal	of	a	cruise	controller?	

Automa/cally	adjust	the	speed	of	the	car	so	that	it	matches	the	speed	
desired	by	the	driver		



CruiseController	

Block	Diagrams	of	High-Level	Design	

How	does	this	component	interact	with	the	rest	of	the	world	?	



CruiseController	

Interfaces	for	Components:	Inputs	and	Outputs	

Driver	interacts	with	the	system	using	4	bu\ons:	

	Cruise	bu\on	to	turn	the	cruise	on	or	off	

	Pause	bu\on	to	suspend/restart	its	opera/on	

	Inc	and	Dec	bu\ons	to	increment	or	decrement	desired	speed	

cruise	

pause	

inc/dec	

Driver	



CruiseController	

Interfaces	for	Components:	Inputs	and	Outputs	

What	other	informa/on	does	the	cruise	controller	need	?	

	And	who	supplies	it?	

Tachometer	
speed	

cruise	

pause	

inc/dec	

Driver	



Interfaces	for	Components:	Inputs	and	Outputs	

What	should	be	the	outputs	of	the	cruise	controller?	

And	who	needs	these	outputs?	

CruiseController	Tachometer	
speed	

cruise	

pause	

inc/dec	

Driver	



CruiseController	 Driver	

cruise	

pause	

inc/dec	

Tachometer	
speed	

Display		

speed	DesiredSpeed	

Thro\le		

Force	



CruiseController	

cruise	

pause	

inc/dec	

speed	

speed	DesiredSpeed	

Force	

Composi/onal	Design	

How	to	break	up	the	computa/on	of	the	cruise	controller	into	subtasks?	



cruise	

pause	

inc/dec	

speed	

speed	DesiredSpeed	

Force	

Decomposing	the	Cruise	Controller	

SetSpeed	

ControlSpeed	



cruise	

pause	

inc/dec	

speed	

DesiredSpeed	

Designing	SetSpeed	Component	

SetSpeed	

Goal:	Compute	the	desired	cruising	speed	in	response	

											to	the	commands	from	the	driver	



Designing	SetSpeed:	State	Machines	

OFF	 ON	

PAUSED	

cruise:	r	:=	speed	

cruise	

pause	
pause	

pause,	
inc,	dec	

cruise	

inc:		r	:=	r+1	

	dec:	r	:=	r-1	

DesiredSpeed	corresponds	
to	the	variable	r	

inc,	dec	



	DesiredSpeed	
speed	

Force	

Designing	ControlSpeed	Component	

ControlSpeed	

Goal:	Determine	the	force	to	be	applied	to	thro\le	so	that	speed	
becomes	equal	to	DesiredSpeed	



	DesiredSpeed	
speed	

Force	

Capturing	Requirements	

ControlSpeed	

Requirements:	Mathema/cally	precise	descrip/on	of	what	a	system	is	
supposed	to	do.		

Wri/ng	requirements	is	key	to	ensuring	reliability	of	systems	

Requirement	1:	Actual	speed	eventually	converges	to	desired	speed	

Requirement	2:	Speed	of	the	car	stays	stable	



A	bit	of	Physics:	Modeling	a	car	

Velocity	v 

Force	F 

Fric/on	k�v 

Newton’s	law	of	mo/on	gives		
	

	F – k�v – m�g�sin	θ =	m�a 
               a = v 

Angle	θ

Weight	m�g 

�	



	DesiredSpeed	r 

Force	F 

ControlSpeed	Component	

ControlSpeed	

Control	Theory:	Mathema/cal	techniques	to	compute	force	(F)	as	a	
func/on	of	velocity	(v)	and	desired	speed	(r)	

Car	

Angle	θ	of	the	road	with	
horizontal	(disturbance)	

	Velocity	v 

		F – k�v – m�g�sin	θ = m�a 
a = v 

	F  = KP�(v – r) 

�	



	r 

Force	F 

Does	our	controller	work	?	

ControlSpeed	

Car	

	θ		

	Velocity	v 

		

Verifica/on	Tools:	Allow	you	to	check	if	system	model	indeed	works	as	
expected,	that	is,	sa/sfies	requirements	

	F  = KP�(v – r) 

F – k�v – m�g�sin	θ = m�a 
a = v �	



Model-based	design	!=	Coding	

Design	using	high-level	block	diagrams	and	state	machines	gets	
automa/cally	compiled	into	low-level	code!		

Models	not	only	of	system	being	designed,	but	also	of	its	environment		



Verifica/on	!=	Simula/on/Tes/ng	

Model/Program	

Requirement	

yes/proof	

no/bug	
Verifier	

Program	tes/ng	can	be	used	to	show	the	presence	
	of	bugs,	but	never	their	absence!	

	
Edsger	W.	Dijkstra	



Formal	Verifica/on	

q  Goal:	Establish	that	model	sa/sfies	requirements	under	all	
possible	scenarios	

q  First	challenge:	Need	formal	defini/ons	of	model	and	
requirement	to	make	the	problem	mathema/cally	precise	

q  Second	challenge:	Need	verifica/on	techniques	and	tools	

Model/Program	

Requirement	

yes/proof	

no/bug	
Verifier	



Course	Topics	

q  Goal:	Introduc/on	to	principles	of	design,	specifica/on,	analysis	
and	implementa/on	of	CPS	

q  Disciplines	
§  Model-based	design	
§  Concurrency	theory	
§  Distributed	algorithms	
§  Formal	specifica/on	
§  Verifica/on		techniques	and	tools	
§  Control	theory	
§  Real-/me	systems	
§  Hybrid	systems	

q  Emphasis	on	mathema/cal	concepts	



Theme	1:	Formal	Models	

q Mathema/cal	abstrac/ons	to	describe	system	designs	
q Modeling	formalisms	

§  Synchronous	models	 	 	 	 	(Chapter	2	of	textbook)	
§  Asynchronous	models	 	 	 	 	(Chapter	4)	
§  Con/nuous-/me	dynamical	systems 	(Chapter	5)	
§  Timed	models 	 	 	 	 	 	(Chapter	7)	
§  Hybrid	systems 	 	 	 	 	(Chapter	9)	

q Modeling	concepts	
§  Syntax	vs.	seman/cs	
§  Composi/on	
§  Input/output	interfaces	
§  Nondeterminism,	fairness,	…	



Theme	2:	Specifica/on	and	Analysis	

q  Formal	techniques	to	ensure	correctness	at	design	/me	
q  Requirements	

§  Safety	(invariants,	monitors)	
§  Liveness		(temporal	logic,	automata	over	infinite	sequences)	
§  Stability	
§  Schedulability	

q  Analysis	techniques	
§  Deduc/ve:	Induc/ve	invariants	and	ranking	func/ons	
§  Enumera/ve	and	symbolic	search	for	state-space	explora/on	
§  Model	checking	
§  Linear-algebra-based	analysis	of	dynamical	systems	
§  Verifica/on	of	/med	and	hybrid	systems	



Theme	3:	Model-based	Design	

q  Design	and	analysis	of	illustra/ve	compu/ng	problems	
q  Design	methodology	

§  Structured	modeling	(bo\om-up,	top-down)	
§  Requirements-based	design	and	design-space	explora/on	

q  Case	studies	
§  Distributed	coordina/on:	mutual	exclusion,	consensus,	leader	elec/on	
§  Communica/on:	Reliable	transmission,	synchroniza/on	
§  Control	design:	PID,	cruise	controller	
§  CPS:	Pacemaker,	obstacle	avoidance	for	robots,	mul/-hop	control	

network	


