
Copyright 20014-16, Rajeev Alur and Cesare Tinelli.
Created by Cesare Tinelli at the University of Iowa from notes originally developed by Rajeev Alur at the University of
Pennsylvania. These notes are copyrighted materials and may not be used in other course settings outside of the
University of Iowa in their current form or modified form without the express written permission of one of the copyright
holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or
commercial firm without the express written permission of one of the copyright holders.

CS:4980	
Founda/ons	of	Embedded	Systems	

Introduc/on	

Embedded	So;ware	Systems	Everywhere!	

So;ware	Inside	

From	Desktops	to	Cyber-Physical	Systems	

q  Tradi/onal	computers:	Stand-alone	device	running	so;ware	
applica/ons	(e.g.,	data	processing)	

q  Tradi/onal	controllers:	Devices	interac/ng	with	physical	world	
via	sensors	and	actuators	(e.g.,	thermostat)	

q  Embedded	(aka	Cyber-physical)	Systems	
§  Special-purpose	system	with	integrated	microcontroller/so;ware	
§  Cameras,	watches,	washing	machines,	…	

Cyber-Physical	Systems	

Driverless	Cars	 Medical	devices	

Coordina/ng	robots	

Cyber-Physical	Systems	

Control	
	

Monitor	and	influence		
physical	world	

Computa/on	
	

Process	informa/on	
to	make	decisions	

Communica/on	
	

Exchange	data		
to	collaborate	

Design	of	Cyber-Physical	Systems	

Systems	that	integrate	control,	computa/on,	and	communica/on	
can	do	cool	things	

and	useful	things	

	

Lots	of	promise	and	poten/al:	medicine,	transporta/on,	energy,	…	

So	what’s	the	main	challenge?		

		

Ariane	5	Explosion	

“It	took	the	European	Space	Agency	10	years	and	$7	billion	to	produce	Ariane	
5.	All	it	took	to	explode	that	rocket	less	than	a	minute	into	its	maiden	voyage	
last	June,	sca\ering	fiery	rubble	across	the	mangrove	swamps	of	French	
Guiana,	was	a	small	computer	program	trying	to	stuff	a	64-bit	number	into	a	
16-bit	space”	

		

	A	bug	and	a	crash,	J.	Gleick,	New	York	Times,	Dec	1996	

Prius	Brake	Problems	Blamed	on	So;ware	Glitches	

“Toyota	officials	described	the	problem	as	a	"disconnect"	in	the	vehicle's	
complex	an/-lock	brake	system	(ABS)	that	causes	less	than	a	one-second	lag.	
With	the	delay,	a	vehicle	going	60	mph	will	have	traveled	nearly	another	90	
feet	before	the	brakes	begin	to	take	hold”	

	CNN	Feb	4,	2010	

So;ware:	The	Achilles’	Heel	

So;ware	everywhere	means	bugs	everywhere	
	2002	study	by	NIST:		

	So;ware	bugs	cost	US	economy	$60	billion	annually	(0.6%	of	GDP)	

		

Lack	of	trust	in	so;ware	as	technology	barrier	

	Would	you	use	an	autonomous	so;ware-controlled	round-the-clock	monitoring	and	
drug-delivery	device?	

So;ware:	The	Achilles’	Heel	

So;ware	everywhere	means	bugs	everywhere	
	2002	study	by	NIST:		

	So;ware	bugs	cost	US	economy	$60	billion	annually	(0.6%	of	GDP)	

		

Lack	of	trust	in	so;ware	as	technology	barrier	

	Would	you	use	an	autonomous	so;ware-controlled	round-the-clock	monitoring	and	
drug-delivery	device?	

A	grand	challenge	for	computer	science:	
	

Technology	for	designing	reliable	cyber-physical	systems	

Designing	a	Cruise	Controller	

What’s	the	goal	of	a	cruise	controller?	

Automa/cally	adjust	the	speed	of	the	car	so	that	it	matches	the	speed	
desired	by	the	driver		

CruiseController	

Block	Diagrams	of	High-Level	Design	

How	does	this	component	interact	with	the	rest	of	the	world	?	

CruiseController	

Interfaces	for	Components:	Inputs	and	Outputs	

Driver	interacts	with	the	system	using	4	bu\ons:	

	Cruise	bu\on	to	turn	the	cruise	on	or	off	

	Pause	bu\on	to	suspend/restart	its	opera/on	

	Inc	and	Dec	bu\ons	to	increment	or	decrement	desired	speed	

cruise	

pause	

inc/dec	

Driver	

CruiseController	

Interfaces	for	Components:	Inputs	and	Outputs	

What	other	informa/on	does	the	cruise	controller	need	?	

	And	who	supplies	it?	

Tachometer	
speed	

cruise	

pause	

inc/dec	

Driver	

Interfaces	for	Components:	Inputs	and	Outputs	

What	should	be	the	outputs	of	the	cruise	controller?	

And	who	needs	these	outputs?	

CruiseController	Tachometer	
speed	

cruise	

pause	

inc/dec	

Driver	

CruiseController	 Driver	

cruise	

pause	

inc/dec	

Tachometer	
speed	

Display		

speed	DesiredSpeed	

Thro\le		

Force	

CruiseController	

cruise	

pause	

inc/dec	

speed	

speed	DesiredSpeed	

Force	

Composi/onal	Design	

How	to	break	up	the	computa/on	of	the	cruise	controller	into	subtasks?	

cruise	

pause	

inc/dec	

speed	

speed	DesiredSpeed	

Force	

Decomposing	the	Cruise	Controller	

SetSpeed	

ControlSpeed	

cruise	

pause	

inc/dec	

speed	

DesiredSpeed	

Designing	SetSpeed	Component	

SetSpeed	

Goal:	Compute	the	desired	cruising	speed	in	response	

											to	the	commands	from	the	driver	

Designing	SetSpeed:	State	Machines	

OFF	 ON	

PAUSED	

cruise:	r	:=	speed	

cruise	

pause	
pause	

pause,	
inc,	dec	

cruise	

inc:		r	:=	r+1	

	dec:	r	:=	r-1	

DesiredSpeed	corresponds	
to	the	variable	r	

inc,	dec	

	DesiredSpeed	
speed	

Force	

Designing	ControlSpeed	Component	

ControlSpeed	

Goal:	Determine	the	force	to	be	applied	to	thro\le	so	that	speed	
becomes	equal	to	DesiredSpeed	

	DesiredSpeed	
speed	

Force	

Capturing	Requirements	

ControlSpeed	

Requirements:	Mathema/cally	precise	descrip/on	of	what	a	system	is	
supposed	to	do.		

Wri/ng	requirements	is	key	to	ensuring	reliability	of	systems	

Requirement	1:	Actual	speed	eventually	converges	to	desired	speed	

Requirement	2:	Speed	of	the	car	stays	stable	

A	bit	of	Physics:	Modeling	a	car	

Velocity	v

Force	F

Fric/on	k�v

Newton’s	law	of	mo/on	gives		
	

	F – k�v – m�g�sin	θ =	m�a
 a = v

Angle	θ

Weight	m�g

�	

	DesiredSpeed	r

Force	F

ControlSpeed	Component	

ControlSpeed	

Control	Theory:	Mathema/cal	techniques	to	compute	force	(F)	as	a	
func/on	of	velocity	(v)	and	desired	speed	(r)	

Car	

Angle	θ	of	the	road	with	
horizontal	(disturbance)	

	Velocity	v

		F – k�v – m�g�sin	θ = m�a
a = v

	F = KP�(v – r)

�	

	r

Force	F

Does	our	controller	work	?	

ControlSpeed	

Car	

	θ		

	Velocity	v

		

Verifica/on	Tools:	Allow	you	to	check	if	system	model	indeed	works	as	
expected,	that	is,	sa/sfies	requirements	

	F = KP�(v – r)

F – k�v – m�g�sin	θ = m�a
a = v �	

Model-based	design	!=	Coding	

Design	using	high-level	block	diagrams	and	state	machines	gets	
automa/cally	compiled	into	low-level	code!		

Models	not	only	of	system	being	designed,	but	also	of	its	environment		

Verifica/on	!=	Simula/on/Tes/ng	

Model/Program	

Requirement	

yes/proof	

no/bug	
Verifier	

Program	tes/ng	can	be	used	to	show	the	presence	
	of	bugs,	but	never	their	absence!	

	
Edsger	W.	Dijkstra	

Formal	Verifica/on	

q  Goal:	Establish	that	model	sa/sfies	requirements	under	all	
possible	scenarios	

q  First	challenge:	Need	formal	defini/ons	of	model	and	
requirement	to	make	the	problem	mathema/cally	precise	

q  Second	challenge:	Need	verifica/on	techniques	and	tools	

Model/Program	

Requirement	

yes/proof	

no/bug	
Verifier	

Course	Topics	

q  Goal:	Introduc/on	to	principles	of	design,	specifica/on,	analysis	
and	implementa/on	of	CPS	

q  Disciplines	
§  Model-based	design	
§  Concurrency	theory	
§  Distributed	algorithms	
§  Formal	specifica/on	
§  Verifica/on		techniques	and	tools	
§  Control	theory	
§  Real-/me	systems	
§  Hybrid	systems	

q  Emphasis	on	mathema/cal	concepts	

Theme	1:	Formal	Models	

q Mathema/cal	abstrac/ons	to	describe	system	designs	
q Modeling	formalisms	

§  Synchronous	models	 	 	 	 	(Chapter	2	of	textbook)	
§  Asynchronous	models	 	 	 	 	(Chapter	4)	
§  Con/nuous-/me	dynamical	systems 	(Chapter	5)	
§  Timed	models 	 	 	 	 	 	(Chapter	7)	
§  Hybrid	systems 	 	 	 	 	(Chapter	9)	

q Modeling	concepts	
§  Syntax	vs.	seman/cs	
§  Composi/on	
§  Input/output	interfaces	
§  Nondeterminism,	fairness,	…	

Theme	2:	Specifica/on	and	Analysis	

q  Formal	techniques	to	ensure	correctness	at	design	/me	
q  Requirements	

§  Safety	(invariants,	monitors)	
§  Liveness		(temporal	logic,	automata	over	infinite	sequences)	
§  Stability	
§  Schedulability	

q  Analysis	techniques	
§  Deduc/ve:	Induc/ve	invariants	and	ranking	func/ons	
§  Enumera/ve	and	symbolic	search	for	state-space	explora/on	
§  Model	checking	
§  Linear-algebra-based	analysis	of	dynamical	systems	
§  Verifica/on	of	/med	and	hybrid	systems	

Theme	3:	Model-based	Design	

q  Design	and	analysis	of	illustra/ve	compu/ng	problems	
q  Design	methodology	

§  Structured	modeling	(bo\om-up,	top-down)	
§  Requirements-based	design	and	design-space	explora/on	

q  Case	studies	
§  Distributed	coordina/on:	mutual	exclusion,	consensus,	leader	elec/on	
§  Communica/on:	Reliable	transmission,	synchroniza/on	
§  Control	design:	PID,	cruise	controller	
§  CPS:	Pacemaker,	obstacle	avoidance	for	robots,	mul/-hop	control	

network	

