
CS:4420 Artificial Intelligence
Spring 2017

Propositional Logic

Cesare Tinelli

The University of Iowa

Copyright 2004–17, Cesare Tinelli and Stuart Russell a

a
These notes were originally developed by Stuart Russell and are used with permission. They are

copyrighted material and may not be used in other course settings outside of the University of Iowa in their

current or modified form without the express written consent of the copyright holders.

CS:4420 Spring 2017 – p.1/49

Readings

• Chap. 7 of [Russell and Norvig, 2012]

CS:4420 Spring 2017 – p.2/49

Logics

A logic is a triple 〈L,S,R〉 where

• L, the logic’s language, is a class of sentences described by a
formal grammar

• S, the logic’s semantics is a formal specification of how to assign
meaning in the“real world” to the elements of L

• R, the logic’s inference system, is a set of formal derivation rules

over L

There are several logics: propositional, first-order, higher-order, modal,
temporal, intuitionistic, linear, equational, non-monotonic, fuzzy, . . .

We will concentrate on propositional logic and first-order logic

CS:4420 Spring 2017 – p.3/49

Propositional Logic

Each sentence is made of

• propositional variables (A,B, . . . , P,Q, . . .)

• logical constants (True,False)

• logical connectives (∧,∨,⇒, . . .)

Every propositional variable stands for a basic fact

Examples: I’m hungry, Apples are red, Joe and Jill are married

CS:4420 Spring 2017 – p.4/49

Propositional Logic

Ontological Commitments
Propositional Logic is about facts in the world that are either true or
false, nothing else

Semantics of Propositional Logic
Since each propositional variable stands for a fact about the world, its
meaning ranges over the Boolean values {true, false}

Note: Do note confuse

• true, false, which are values (i.e., semantical entities) here with

• True, False, which are logical constants (i.e., symbols of the
language)

CS:4420 Spring 2017 – p.5/49

Propositional Logic

The Language

• Each propositional variable (A,B, . . . , P,Q, . . .) is a sentence

• Each logical constant (True,False) is a sentence

• If ϕ and ψ are sentences, all of the following are also sentences

(ϕ) ¬ϕ ϕ ∧ ψ ϕ ∨ ψ ϕ⇒ ψ ϕ⇔ ψ

• Nothing else is a sentence

CS:4420 Spring 2017 – p.6/49

The Language of Propositional Logic

More formally, it is the language generated by the following grammar

Symbols:

• Propositional variables: A,B, . . . , P,Q, . . .

• Logical constants:

True (true) ∧ (and) ⇒ (implies) ¬ (not)

False (false) ∨ (or) ⇔ (equivalent)

Grammar Rules:

Sentence ::= AtomicS | ComplexS

AtomicS ::= True | False | A | B | . . . | P | Q | . . .

ComplexS ::= (Sentence) | Sentence Connective Sentence | ¬Sentence

Connective ::= ∧ | ∨ | ⇒ | ⇔

CS:4420 Spring 2017 – p.7/49

Wumpus world sentences

Let Pi,j be true if there is a pit in [i, j]

Let Bi,j be true if there is a breeze in [i, j]

“Pits cause breezes in adjacent squares”

¬P1,1

¬A

B2,1

CS:4420 Spring 2017 – p.8/49

Wumpus world sentences

Let Pi,j be true if there is a pit in [i, j]

Let Bi,j be true if there is a breeze in [i, j]

“Pits cause breezes in adjacent squares”

¬P1,1

¬A

B2,1

“A square is breezy if and only if there is an adjacent pit”

A ⇔ (B ∨ C)

B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)

CS:4420 Spring 2017 – p.8/49

Semantics of Propositional Logic

The meaning of True is always true
The meaning of False is always false

The meaning of the other sentences depends on the meaning of the
propositional variables

• Base cases: truth tables

P Q ¬P P ∧Q P ∨Q P⇒Q P⇔Q

false false true false false true true

false true true false true true false

true false false false true false false

true true false true true true true

• Non-base Cases: given by reduction to the base cases

Ex: the meaning of (P ∨Q) ∧R is the same as the meaning of
A ∧R where A has the same meaning as P ∨Q

CS:4420 Spring 2017 – p.9/49

Semantics of Propositional Logic

An assignment of Boolean values to the propositional variables of a
sentence is an interpretation of the sentence

P H P _H (P _H) ^:H ((P _H) ^ :H)) P

False False False False True
False True True False True
True False True True True
True True True False True

Interpretations: {P 7→ false, H 7→ false}, {P 7→ false, H 7→ true}, . . .

The semantics of Propositional Logic is compositional:
the meaning of a sentence is defined recursively in terms of the
meaning of the sentence’s components

CS:4420 Spring 2017 – p.10/49

Semantics of Propositional Logic

The meaning of a sentence in general depends on its interpretation

Some sentences, however, have always the same meaning

P H P _H (P _H) ^:H ((P _H) ^ :H)) P

False False False False True
False True True False True
True False True True True
True True True False True

A sentence is

• satisfiable if it is true in some interpretation

• unsatisfiable if it is true in no interpretation

• valid if it is true in every possible interpretation

• invalid if it is false in some possible interpretation

CS:4420 Spring 2017 – p.11/49

A Warning

Disjunction

• A ∨B is true when A or B or or both are true (inclusive or)

• A⊕B is sometimes used to mean“either A or B but not both”
(exclusive or)

Implication

• A⇒ B does not require a causal connection between A and B
Ex: Sky-is-blue ⇒ Snow-is-white

• When A is false, A⇒ B is always true regardless of B
Ex: Two-equals-four ⇒ Apples-are-red

• Beware of negations in implications
Ex: Is-a-female-bird ⇒ Lays-eggs

¬Is-a-female-bird ⇒ ¬lays-eggs

CS:4420 Spring 2017 – p.12/49

Entailment in Propositional Logic

Given

• a set Γ of sentences and

• a sentence ϕ,

we write

Γ |= ϕ

iff every interpretation that makes all sentences in Γ true makes ϕ also
true

Γ |= ϕ is read as“Γ entails ϕ”or“ϕ logically follows from Γ”

CS:4420 Spring 2017 – p.13/49

Entailment in Propositional Logic

Examples

{A,A⇒ B} |= B

{A} |= A ∨B

{A,B} |= A ∧B

{} |= A ∨ ¬A

{A} 6|= A ∧B

{A ∨ ¬A} 6|= A

A B A⇒ B A ∨B A ∧B A ∨ ¬A

1. false false true false false true

2. false true true true false true

3. true false false true false true

4. true true true true true true

CS:4420 Spring 2017 – p.14/49

Properties of Entailment

• Γ |= ϕ, for all ϕ ∈ Γ (inclusion property of PL)

• if Γ |= ϕ, then Γ′ |= ϕ for all Γ′ ⊇ Γ (monotonicity of PL)

• ϕ is valid iff { } |= ϕ (also written as |= ϕ)

• ϕ is unsatisfiable iff ϕ |= False

• Γ |= ϕ iff the set Γ ∪ {¬ϕ} is unsatisfiable

CS:4420 Spring 2017 – p.15/49

Logical Equivalence

Two sentences ϕ1 and ϕ2 are logically equivalent, written

ϕ1 ≡ ϕ2

if ϕ1 |= ϕ2 and ϕ2 |= ϕ1

Note:

• ϕ1 ≡ ϕ2 if and only if every interpretation assigns the same
Boolean value to ϕ1 and ϕ2

• Implication and equivalence (⇒, ⇔), which are syntactical
entities, are intimately related to entailment and logical
equivalence (|=, ≡), which are semantical notions:

ϕ1 |= ϕ2 iff |= ϕ1 ⇒ ϕ2

ϕ1 ≡ ϕ2 iff |= ϕ1 ⇔ ϕ2

CS:4420 Spring 2017 – p.16/49

Properties of Logical Connectives

• ∧ and ∨ are commutative
ϕ1 ∧ ϕ2 ≡ ϕ2 ∧ ϕ1

ϕ1 ∨ ϕ2 ≡ ϕ2 ∨ ϕ1

• ∧ and ∨ are associative

ϕ1 ∧ (ϕ2 ∧ ϕ3) ≡ (ϕ1 ∧ ϕ2) ∧ ϕ3

ϕ1 ∨ (ϕ2 ∨ ϕ3) ≡ (ϕ1 ∨ ϕ2) ∨ ϕ3

• ∧ and ∨ are mutually distributive

ϕ1 ∧ (ϕ2 ∨ ϕ3) ≡ (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3)

ϕ1 ∨ (ϕ2 ∧ ϕ3) ≡ (ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)

• ∧ and ∨ are related by ¬ (DeMorgan’s Laws)

¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2

CS:4420 Spring 2017 – p.17/49

Properties of Logical Connectives

∧, ⇒, and ⇔ are actually redundant:

ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2

ϕ1 ⇔ ϕ2 ≡ (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

We keep them all mainly for convenience

Exercise Use the truth tables to verify all the logical equivalences seen
so far

CS:4420 Spring 2017 – p.18/49

Inference Systems for Propositional Logic

An inference system I for PL is a procedure that

given a set Γ = {α1, . . . , αm} of sentences and a sentence ϕ,
may reply“yes”,“no”, or run forever

If I replies positively to input (Γ, ϕ), we say that Γ derives ϕ in I (or,
I derives ϕ from Γ, or, ϕ derives from Γ in I) and write

Γ ⊢I ϕ

Intuitively, I should be such that it replies“yes”on input (Γ, ϕ)
only if ϕ is in fact entailed by Γ

CS:4420 Spring 2017 – p.19/49

All These Fancy Symbols!

Note:

A ∧B ⇒ C is a sentence, a bunch of symbols manipulated by an
inference system I

A∧B |= C is a mathematical abbreviation standing for the statement:
“every interpretation that makes A ∧B true, makes C also true”

A ∧B ⊢I C is a mathematical abbreviation standing for the
statement: “I derives C from A ∧B”

In other words,

⇒ is a formal symbol of the logic, which is used by the inference
system

|= is a shorthand we use to talk about the meaning of formal
sentences

⊢I is a shorthand we use to talk about the output of the inference
system I

CS:4420 Spring 2017 – p.20/49

All These Fancy Symbols!

The connective ⇒ and the shorthand |= are related as follows

The sentence ϕ1 ⇒ ϕ2 is valid (always true) if and only if ϕ1 |= ϕ2

Example: A⇒ (A ∨B) is valid and A |= (A ∨B)

A B A ∨B A⇒ (A ∨B)

1. false false false true

2. false true true true

3. true false true true

4. true true true true

CS:4420 Spring 2017 – p.21/49

All These Fancy Symbols!

The shorthands |= and ⊢I are related as follows

• A sound inference system can derive only sentences that logically
follow from a given set of sentences:

if Γ ⊢I ϕ then Γ |= ϕ

• A complete inference system can derive all sentences that
logically follow from a given set of sentences:

if Γ |= ϕ then Γ ⊢I ϕ

CS:4420 Spring 2017 – p.22/49

Inference systems for PL

Divided into (roughly) two kinds:

Rule-based

• Sound generation of new sentences from old

• Proof = a sequence of inference rule applications
Can use inference rules as operators as in a standard search
procedures

• Typically require translation of sentences into some normal form

Model-based

• Truth table enumeration (always exponential in n)

• Improved backtracking, e.g., Davis–Putnam–Logemann–Loveland

• Heuristic search in model space (incomplete)
e.g., min-conflicts-like hill-climbing algorithms

CS:4420 Spring 2017 – p.23/49

Truth table enumeration

The proof system T T is specified as follows:

{α1, . . . , αm} ⊢T T ϕ iff all the values in the truth table of

(α1 ∧ · · · ∧ αm)⇒ ϕ are true

CS:4420 Spring 2017 – p.24/49

Inference by Truth Tables
• The truth-tables-based inference system is sound:

α1, . . . , αm ⊢T T ϕ implies truth table of (α1 ∧ · · · ∧ αm) ⇒ ϕ all true

implies (α1 ∧ · · · ∧ αm) ⇒ ϕ is valid

implies |= (α1 ∧ · · · ∧ αm) ⇒ ϕ

implies (α1 ∧ · · · ∧ αm) |= ϕ

implies α1, . . . , αm |= ϕ

• It is also complete (exercise: prove it)

• Its time complexity is O(2n) where n is the number of
propositional variables in α1, . . . , αm, ϕ

• We cannot hope to do better in general because the dual
problem: determining the satisfiability of a sentence, is
NP-complete

• However, really hard cases of propositional inference are
somewhat rare in practice

CS:4420 Spring 2017 – p.25/49

Rule-Based Inference in PL

An inference system in Propositional Logic can also be specified as a
set R of inference (or derivation) rules

• Each rule is just a pattern premises/conclusion

• A rule applies to Γ and derives ϕ if
• some of the sentences in Γ match with the premises of the

rule and

• ϕ matches with the conclusion

• A rule is sound it the set of its premises entails its conclusion

CS:4420 Spring 2017 – p.26/49

Some Inference Rules

• And-Introduction

α β

α ∧ β

• And-Elimination
α ∧ β

α

α ∧ β

β

• Or-Introduction
α

α ∨ β

α

β ∨ α

CS:4420 Spring 2017 – p.27/49

Some Inference Rules (cont’d)

• Implication-Elimination (aka Modus Ponens)

α⇒ β α

β

• Unit Resolution
α ∨ β ¬β

α

• Resolution
α ∨ β ¬β ∨ γ

α ∨ γ
or, equivalently,

¬α⇒ β, β ⇒ γ

¬α⇒ γ

CS:4420 Spring 2017 – p.28/49

Some Inference Rules (cont’d)

• Double-Negation-Elimination

¬¬α

α

• False-Introduction
α ∧ ¬α

False

• False-Elimination

False

β

CS:4420 Spring 2017 – p.29/49

Inference by Proof

We say there is a proof of ϕ from Γ in an inference system R if we
can derive ϕ by applying the rules of R repeatedly to Γ and its derived
sentences

Example: a proof of P from {(P ∨H) ∧ ¬H}

1. (P ∨H) ∧ ¬H by assumption

2. P ∨H by ∧-elimination applied to (1)

3. ¬H by ∧-elimination applied to (1)

4. P by unit resolution applied to (2),(3)

We can represent a proof more visually as a proof tree:

Example:

(P ∨H) ∧ ¬H

P ∨H

(P ∨H) ∧ ¬H

¬H

P

CS:4420 Spring 2017 – p.30/49

Rule-Based Inference in Propositional Logic

More precisely, there is a proof of ϕ from Γ in R if

1. ϕ ∈ Γ or,

2. there is a rule in R that applies to Γ and produces ϕ or,

3. there is a proof of each ϕ1, . . . , ϕm from Γ in R and
a rule that applies to {ϕ1, . . . , ϕm} and produces ϕ

Then, the inference system R is specified as follows:

Γ ⊢R ϕ iff there is a proof of ϕ from Γ in R

CS:4420 Spring 2017 – p.31/49

An Inference System R

α β

α ∧ β

α

α ∨ β

α

β ∨ α

α ∧ β

α

α ∧ β

β

α⇒ β α

β

α ∨ β ¬β

α

α ∨ β ¬β ∨ γ

α ∨ γ

¬¬α

α

α ∧ ¬α

False

False

β

CS:4420 Spring 2017 – p.32/49

Soundness of R

The given system R is sound because all of its rules are

Example: the Resolution rule
α ∨ β, ¬β ∨ γ

α ∨ γ

α β γ ¬β α ∨ β ¬β ∨ γ α ∨ γ

1. false false false true false true false

2. false false true true false true true

3. false true false false true false false

4. false true true false true true true

5. true false false true true true true

6. true false true true true true true

7. true true false false true false true

8. true true true false true true true

All the interpretations that satisfy both α ∨ β and ¬β ∨ γ (4,5,6,8) satisfy α ∨ γ as well

CS:4420 Spring 2017 – p.33/49

Soundness of R

The given system R is sound because all of its rules are

Exercise: prove that the other inference rules are sound as well

Is R also complete?

CS:4420 Spring 2017 – p.33/49

Resolution

Literal: prop. symbol (P) or negated prop. symbol (¬P)

Clause: set of literals {l1, . . . , lk} (understood as l1 ∨ · · · ∨ lk)

Conjunctive Normal Form: set of clauses {C1, . . . , Cn} (understood as
C1 ∧ · · · ∧ Cn)

Resolution rule for CNF:

l1 ∨ · · · ∨ lk ∨ P ¬P ∨m1 ∨ · · · ∨mn

l1 ∨ · · · ∨ lk ∨m1 ∨ · · · ∨mn

E.g.,

P ∨Q ¬Q

P

P ∨Q R ∨ ¬Q ∨ ¬S

P ∨R ∨ ¬S

P ∨Q ¬Q ∨ P ∨R

P ∨R

Resolution is sound and complete for CNF KBs

CS:4420 Spring 2017 – p.34/49

Conversion to CNF

Ex.: A⇔ (B ∨ C)

1. Eliminate ⇔, replacing α⇔ β with (α⇒ β) ∧ (β ⇒ α)

(A⇒ (B ∨ C)) ∧ ((B ∨ C)⇒ A)

2. Eliminate ⇒, replacing α⇒ β with ¬α ∨ β

(¬A ∨B ∨ C) ∧ (¬(B ∨ C) ∨ A)

3. Move ¬ inwards using de Morgan’s rules and double-negation

(¬A ∨B ∨ C) ∧ ((¬B ∧ ¬C) ∨ A)

4. Apply distributivity law (∨ over ∧) and flatten

(¬A ∨B ∨ C) ∧ (¬B ∨A) ∧ (¬C ∨A)

CS:4420 Spring 2017 – p.35/49

Resolution Procedure

Proof by contradiction, i.e., show KB ∧ ¬α unsatisfiable

function PL-Resolution(KB,α) returns true or false

clauses← the set of clauses in the CNF representation of KB ∧ ¬α

new←{}

loop do

for each Ci, Cj in clauses do

resolvents←PL-Resolve(Ci,Cj)

if resolvents contains the empty clause then return true

new←new ∪ resolvents

if new ⊆ clauses then return false

clauses← clauses ∪ new

CS:4420 Spring 2017 – p.36/49

Resolution example

KB = { B1,1 ⇔ (P1,2 ∨ P2,1), ¬B1,1 }

α = ¬P1,2

CNF = { ¬P1,2 ∨B1,1, ¬B1,1 ∨ P1,2 ∨ P2,1, ¬P1,2 ∨B1,1,

¬B1,1, P1,2}

P1,2

P1,2

P2,1

P1,2 B1,1

B1,1 P2,1 B1,1 P1,2 P2,1 P2,1
P1,2B1,1 B1,1

P1,2B1,1 P2,1B1,1P2,1 B1,1

P1,2 P2,1 P1,2

CS:4420 Spring 2017 – p.37/49

Forward and backward chaining

Horn clause: prop. symbol (p) or implication p1 ∧ · · · ∧ pn ⇒ p

Horm Form: set of Horn clauses {C1, . . . , Cn} (understood as
C1 ∧ · · · ∧ Cn)

E.g., { C, B ⇒ A, C ∧D ⇒ B }

Modus Ponens for Horn Form

α1 · · · αn α1 ∧ · · · ∧ αn ⇒ β

β

Sound and complete for Horn Form KBs

Can be used with forward chaining or backward chaining

These algorithms are very natural and run in linear time

CS:4420 Spring 2017 – p.38/49

Forward chaining

Idea:
Fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

Ex.:

P =⇒ Q

L ∧M =⇒ P

B ∧ L =⇒ M

A ∧ P =⇒ L

A ∧B =⇒ L

A

B

Q

P

M

L

BA

CS:4420 Spring 2017 – p.39/49

Forward chaining algorithm

function PL-FC-Entails?(KB, q) returns true or false

count, a table, indexed by clause, initially the number of premises

inferred, a table, indexed by symbol, each entry initially false

agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do

p←Pop(agenda)

unless inferred[p] do

inferred[p]← true

for each Horn clause c in whose premise p appears do

decrement count[c]

if count[c] = 0 then do

if Head[c] = q then return true

Push(Head[c],agenda)

return false

CS:4420 Spring 2017 – p.40/49

Forward chaining example

Q

P

M

L

BA

2 2

2

2

1

CS:4420 Spring 2017 – p.41/49

Forward chaining example

Q

P

M

L

B

2

1

A

1 1

2

CS:4420 Spring 2017 – p.41/49

Forward chaining example

Q

P

M

2

1

A

1

B

0

1
L

CS:4420 Spring 2017 – p.41/49

Forward chaining example

Q

P

M

1

A

1

B

0

L
0

1

CS:4420 Spring 2017 – p.41/49

Forward chaining example

Q

1

A

1

B

0

L
0

M

0

P

CS:4420 Spring 2017 – p.41/49

Forward chaining example

Q

A B

0

L
0

M

0

P

0

0

CS:4420 Spring 2017 – p.41/49

Proof of completeness

FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic sentences
(prop. symbols) are inferred

2. Consider the final state as a model m, assigning true to the
inferred symbols and false to the other symbols

3. Claim: Every clause in the original KB is satisfied by m

Proof: Suppose a clause a1 ∧ . . . ∧ ak ⇒ b is falsified by m
Then a1 ∧ . . . ∧ ak is satisfied by m while b is not
But then b what not inferred, contradicting the assumption that
the algorithm had reached a fixed point!

4. Hence m is a model of KB

5. 5. If KB |= q, q is true in every model of KB, including m

CS:4420 Spring 2017 – p.42/49

Backward chaining

Idea: work backwards from the query q

to infer q by BC,
check if q is known already, or
infer by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

1. has already been inferred, or

2. has already failed

CS:4420 Spring 2017 – p.43/49

Backward chaining example

Q

P

M

L

A B

CS:4420 Spring 2017 – p.44/49

Backward chaining example

P

M

L

A

Q

B

CS:4420 Spring 2017 – p.44/49

Backward chaining example

M

L

A

Q

P

B

CS:4420 Spring 2017 – p.44/49

Backward chaining example

M

A

Q

P

L

B

CS:4420 Spring 2017 – p.44/49

Backward chaining example

M

A

Q

P

L

B

CS:4420 Spring 2017 – p.44/49

Backward chaining example

M

A

Q

P

L

B

CS:4420 Spring 2017 – p.44/49

Backward chaining example

A

Q

P

L

B

M

CS:4420 Spring 2017 – p.44/49

Backward chaining example

A

Q

P

L

B

M

CS:4420 Spring 2017 – p.44/49

Backward chaining example

A

Q

P

L

B

M

CS:4420 Spring 2017 – p.44/49

Backward chaining example

A

Q

P

L

B

M

CS:4420 Spring 2017 – p.44/49

Forward vs. Backward Chaining

FC is data-driven, cf. automatic, unconscious processing

e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,

e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB

CS:4420 Spring 2017 – p.45/49

Model Checking methods

The most effective procedures for propositional satisfiability are based
on CSP techniques

Variable domain: {true, false}

Constraints: sets of clauses

Heuristic Improvements:

• unit propagation

• variable and value ordering

• intelligent backtracking

• clause learning

• random restarts

• clever indexing

• subproblem decomposition

CS:4420 Spring 2017 – p.46/49

DPLL Procedure

function DPLL-Satisfiable?(s) returns true or false

inputs: s, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of s

symbols← a list of the proposition symbols in s

return DPLL(clauses, symbols, [])

CS:4420 Spring 2017 – p.47/49

DPLL Procedure (cont.)

function DPLL(clauses, symbols,model) returns true or false

if every clause in clauses is satisfied by model then return true

if some clause in clauses is falsified by model then return false

P, value←Find-Pure-Symbol(symbols, clauses,model)

if P is non-null then

return DPLL(clauses, symbols - P, (P 7→ value) :: model)

P, value←Find-Unit-Clause(clauses,model)

if P is non-null then

return DPLL(clauses, symbols - P, (P 7→ value) :: model)

P←First(symbols)

rest←Rest(symbols)

return DPLL(clauses, rest, (P 7→ true) :: model) or

DPLL(clauses, rest, (P 7→ false) :: model)

CS:4420 Spring 2017 – p.48/49

DPLL Exercise

(1) ¬p1 ∨ p2 (2) ¬p3 ∨ p4 (3) ¬p6 ∨ ¬p5 ∨ ¬p2

(4) ¬p5 ∨ p6 (5) p5 ∨ p7 (6) ¬p1 ∨ p5 ∨ ¬p7

CS:4420 Spring 2017 – p.49/49

	Readings
	Logics
	Propositional Logic
	Propositional Logic
	Propositional Logic
	The Language of Propositional Logic
	Wumpus world sentences
	Semantics of Propositional Logic
	Semantics of Propositional Logic
	Semantics of Propositional Logic
	A Warning
	Entailment in Propositional Logic
	Entailment in Propositional Logic
	Properties of Entailment
	Logical Equivalence
	Properties of Logical Connectives
	Properties of Logical Connectives
	Inference Systems for Propositional Logic
	All These Fancy Symbols!
	All These Fancy Symbols!
	All These Fancy Symbols!
	Inference systems for PL
	Truth table enumeration
	Inference by Truth Tables
	Rule-Based Inference in PL
	Some Inference Rules
	Some Inference Rules (cont'd)
	Some Inference Rules (cont'd)
	Inference by Proof
	Rule-Based Inference in Propositional Logic
	An Inference System mat {$
ul $}
	Soundness of mat {$
ul $}
	Resolution
	Conversion to CNF
	Resolution Procedure
	Resolution example
	Forward and backward chaining
	Forward chaining
	Forward chaining algorithm
	Forward chaining example
	Proof of completeness
	Backward chaining
	Backward chaining example
	Forward vs.~Backward Chaining
	Model Checking methods
	DPLL Procedure
	DPLL Procedure (cont.)
	DPLL Exercise

