
CS:4420 Artificial Intelligence
Spring 2017

Problem Solving by Search

Cesare Tinelli

The University of Iowa

Copyright 2004–17, Cesare Tinelli and Stuart Russell a

a
These notes were originally developed by Stuart Russell and are used with permission. They are

copyrighted material and may not be used in other course settings outside of the University of Iowa in their

current or modified form without the express written consent of the copyright holders.

CS:4420 Spring 2017 – p.1/34

Readings

• Chap. 3 of [Russell and Norvig, 2012]

CS:4420 Spring 2017 – p.2/34

Example: Romania

Problem: On holiday in Romania; currently in Arad. Flight leaves
tomorrow from Bucharest. Find a short route to drive to Bucharest.

Formulate problem:

states: various cities

actions: drive between cities

Formulate goal:

be in Bucarest

Formulate solution:

sequence of cities (eg, Arad, Sibiu, Fagaras, Bucharest)

CS:4420 Spring 2017 – p.3/34

Romania’s map

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

CS:4420 Spring 2017 – p.4/34

Problem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent(percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state←Update-State(state, percept)

if seq is empty then

goal←Formulate-Goal(state)

problem←Formulate-Problem(state, goal)

seq←Search(problem)

action←Recommendation(seq, state)

seq←Remainder(seq, state)

return action

CS:4420 Spring 2017 – p.5/34

Problem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent(percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state←Update-State(state, percept)

if seq is empty then

goal←Formulate-Goal(state)

problem←Formulate-Problem(state, goal)

seq←Search(problem)

action←Recommendation(seq, state)

seq←Remainder(seq, state)

return action

Note: this is offline problem solving; solution executed“eyes closed.”
Online problem solving involves acting without complete knowledge.

CS:4420 Spring 2017 – p.5/34

Problem Types
• Deterministic, fully observable environment =⇒ single-state

problem
• Agent knows exactly which state it will be in.

• Solution is a sequence of actions.

• Non-observable environment =⇒ conformant problem
• Agent know it may be in any of a number of states.

• Solution, if any, is a sequence of actions.

• Nondeterministic and/or partially observable environment =⇒
contingency problem
• Percepts provide new information about current state.

• Solution is a tree or policy.

• Often interleave search and execution.

CS:4420 Spring 2017 – p.6/34

Problem Types (cont.)

• Unknown state space =⇒ exploration problem (“online”)

CS:4420 Spring 2017 – p.7/34

Example: Vacuum World

Single-state problem
initial state = 5
goal states = {7, 8}

Solution?

1 2

3 4

5 6

7 8

CS:4420 Spring 2017 – p.8/34

Example: Vacuum World

Single-state problem
initial state = 5
goal states = {7, 8}

Solution? [Right, Suck]

1 2

3 4

5 6

7 8

CS:4420 Spring 2017 – p.8/34

Example: Vacuum World

Conformant problem, initial state = {1, 2, 3, 4, 5, 6, 7, 8}

Right =⇒ {2, 4, 6, 8}, Left =⇒ {1, 3, 5, 7}, Suck =⇒ {5, 4, 7, 8}

Solution?

1 2

3 4

5 6

7 8

CS:4420 Spring 2017 – p.9/34

Example: Vacuum World

Conformant problem, initial state = {1, 2, 3, 4, 5, 6, 7, 8}

Right =⇒ {2, 4, 6, 8}, Left =⇒ {1, 3, 5, 7}, Suck =⇒ {5, 4, 7, 8}

Solution? [Right, Suck, Left, Suck]

1 2

3 4

5 6

7 8

CS:4420 Spring 2017 – p.9/34

Example: Vacuum World

Contingency problem, initial state = 5

Suck occasionally fails. Local sensing: dirt, location.

Solution?

1 2

3 4

5 6

7 8

CS:4420 Spring 2017 – p.10/34

Example: Vacuum World

Contingency problem, initial state = 5

Suck occasionally fails. Local sensing: dirt, location.

Solution? [Right, if dirt then Suck]

1 2

3 4

5 6

7 8

CS:4420 Spring 2017 – p.10/34

Problem Solving

We start by considering the simpler cases in which the environment is

fully observable, static and deterministic.

In such environments the following holds for an agent A:

• A’s world is representable by a discrete set of states.

• A’s actions are representable by a discrete set of operators.

• the next world state is completely determined by the current
state and A’s actions.

• the world’s state transitions are caused exclusively by A’s actions

CS:4420 Spring 2017 – p.11/34

Single-state Problem Formulation

Formally, a problem is defined by four components:

• An initial state (eg, In(Arad))

• A successor function S returning sets of action–state pairs
(eg, S(Arad) = {〈GoTo(Zerind), In(Zerind)〉, . . .})

• A goal test, explicit (eg, x = In(Bucharest)) or
implicit, (eg, NoDirt(x))

• A path cost
(eg, sum of distances, number of actions executed, . . .) Usually
additive and given as c(x, a, y), the step cost from x to y by
action a, assumed to be ≥ 0.

A solution is a sequence of actions leading from the initial state to a
goal state

CS:4420 Spring 2017 – p.12/34

Selecting a State Space

Since the real world is absurdly complex the state space must be
abstracted for problem solving.

• Abstract state = set of real states.

• (Abstract) action = complex combination of real actions eg,
GoTo(Zerind) from Arad represents a complex set of possible
routes, detours, rest stops, etc.

• For guaranteed realizability, any real state corresponding to
In(Arad) must get to some real state corresponding to
In(Zerind).

• Each abstract action should be“easier” than the original
problem!

• (Abstract) solution = set of real paths that are solutions in the
real world

CS:4420 Spring 2017 – p.13/34

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

States?

Actions?

Goal test?

Path cost?

CS:4420 Spring 2017 – p.14/34

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

States? 〈dirt flag, robot location〉 (ignore dirt amount)

Actions? Left, Right, Suck, NoOp

Goal test? ¬dirty

Path cost? 1 per action (0 for NoOp)

CS:4420 Spring 2017 – p.15/34

Formulating Problem as a Labeled Graph

In the graph

• each node represents a possible state;

• a node is designated as the initial state;

• one or more nodes represent goal states, states in which the
agent’s goal is considered accomplished.

• each edge represents a state transition caused by a specific agent
action;

• associated to each edge is the cost of performing that transition.

CS:4420 Spring 2017 – p.16/34

Search Graph

How do we reach a goal state?

4

3

3

5

7

4

2

5

4

2

B

F

A

S

G

C

D

initial state

goal states

E

There may be several possible ways. Or none!

Factors to consider:

• cost of finding a path;

• cost of traversing a path.

CS:4420 Spring 2017 – p.17/34

Problem Solving as Search

Search space: set of states reachable from an initial state S0 via a
(possibly empty/finite/infinite) sequence of state transitions.

To achieve the problem’s goal

• search the space for a (possibly optimal) sequence of transitions
starting from S0 and leading to a goal state;

• execute (in order) the actions associated to each transition in the
identified sequence.

For contingency problems, two steps above need to be interleaved.

CS:4420 Spring 2017 – p.18/34

Example: The 8-puzzle

2
1
7

6
8 3

4
5

CS:4420 Spring 2017 – p.19/34

Example: The 8-puzzle

Problem: Go from state S to state G.

(G)(S)

2 8 3
1 6 4
7 5

1 2 3

6
4
57

8

R

L

L

R
D U

D U
L

LR

R
DD U U

1 6 4
7 5

2 8 3

8 3
1 6 4

57

8 3
1 4
7 56

8 3
1 6 4
7 5

8 3
1 6
7 5 4

8 3
1
7 56

4
3

1 4
7 56

8
8 3

4
7 56

1
8 3
6 4

571

2

2 2

2 2

222

CS:4420 Spring 2017 – p.20/34

Example: The 8-puzzle

States: configurations of tiles

Operators: move one tile Up/Down/Left/Right

Note:

• There are 9! = 362, 880 possible states (all permutations of
{0, 1, 2, 3, 4, 5, 6, 7, 8} where 0 is the empty space).

• Not all states are directly reachable from a given state. (In fact,
exactly half of them are reachable from a given state.)

How can an artificial agent represent the states and the state space for
this problem?

CS:4420 Spring 2017 – p.21/34

Problem Formulation

1. Choose an appropriate data structure to represent the world
states.

2. Define each operator as a precondition/effects pair where the
• precondition holds exactly in the states the operator applies

to,

• effects describe how a state changes into a successor state
by the application of the operator.

3. Specify an initial state.

4. Provide a description of the goal (check if a reached state is a
goal state).

CS:4420 Spring 2017 – p.22/34

Formulating the 8-puzzle Problem

States: each represented by a 3× 3 array of numbers in [0 . . . 8],
where value 0 is for the empty cell.

2
1
7

6
8 3

4
5

becomes A =

2 8 3

1 6 4

7 0 5

CS:4420 Spring 2017 – p.23/34

Formulating the 8-puzzle Problem

• Operators: 24 operators of the form OPr,c,d

where r, c ∈ {1, 2, 3}, d ∈ {L,R,U,D}.

• If the empty space is at position (r, c), OPr,c,d moves it in
direction d.

Example:

2 8 3

1 6 4

7 0 5

OP3,2,L
=⇒

2 8 3

1 6 4

0 7 5

CS:4420 Spring 2017 – p.24/34

Preconditions and Effects

Example: OP3,2,R

2 8 3

1 6 4

7 0 5

OP3,2,R
=⇒

2 8 3

1 6 4

7 5 0

Preconditions: A[3, 2] = 0

Effects:

{

A[3, 2] ← A[3, 3]

A[3, 3] ← 0

We have 24 operators in this problem formulation . . .
20 too many!

CS:4420 Spring 2017 – p.25/34

A Better Formulation

States: each represented by a pair (A, (i, j)) where:

• A is a 3× 3 array of numbers in [0 . . . 8]

• (i, j) is the position of the empty space (0) in the array.

2
1
7

6
8 3

4
5

becomes (

2 8 3

1 6 4

7 0 5

, (3, 2))

CS:4420 Spring 2017 – p.26/34

A Better Formulation

Operators: 4 operators of the form OPd where d ∈ {L,R,U,D}.

OPd moves the empty space in the direction d.

Example:

(

2 8 3

1 6 4

7 0 5

, (3, 2))
OPL=⇒ (

2 8 3

1 6 4

0 7 5

, (3, 1))

CS:4420 Spring 2017 – p.27/34

Preconditions and Effects

Example: OPL

(

2 8 3

1 6 4

7 0 5

, (3, 2))
OPL=⇒ (

2 8 3

1 6 4

0 7 5

, (3, 1))

Let (r0, c0) be the position of 0 in A.

Preconditions: c0 > 1

Effects:

A[r0, c0] ← A[r0, c0 − 1]

A[r0, c0 − 1] ← 0

(r0, c0) ← (r0, c0 − 1)

CS:4420 Spring 2017 – p.28/34

The Water Jugs Problem

3gl 4gl

Get exactly 2 gallons of water into the 4gl jug.

CS:4420 Spring 2017 – p.29/34

The Water Jugs Problem

States: Determined by the amount of water in each jug.

State Representation: Two real-valued variables, J3, J4, indicating

the amount of water in the two jugs, with the constraints:

0 ≤ J3 ≤ 3, 0 ≤ J4 ≤ 4

Initial State Description

J3 = 0, J4 = 0

Goal State Description:

J4 = 2 (non exhaustive description)

CS:4420 Spring 2017 – p.30/34

The Water Jugs Problem: Operators

E4: empty jug4 on the ground.

precond: J4 > 0 effect: J ′

4 = 0

E4-3: pour water from jug4 into jug3 until jug3 is full.

precond: J3 < 3, effect: J ′

3 = 3,

J4 ≥ 3− J3 J ′

4 = J4 − (3− J3)

P3-4: pour water from jug3 into jug4 until jug4 is full.

precond: J4 < 4, effect: J ′

4 = 4,

J3 ≥ 4− J4 J ′

3 = J3 − (4− J4)

E3-4: pour water from jug3 into jug4 until jug3 is empty.

precond: J3 + J4 < 4, effect: J ′

4 = J3 + J4,

J3 > 0 J ′

3 = 0
...

CS:4420 Spring 2017 – p.31/34

The Water Jugs Problem

J_3 = 2
J_4 = 4

J_3 = 2
J_4 = 0

J_3 = 0
J_4 = 2

J_3 = 0
J_4 = 4

J_3 = 3
J_4 = 0

J_3 = 0
J_4 = 0

J_3 = 3
J_4 = 4

J_3 = 0
J_4 = 4

J_3 = 0
J_4 = 3

J_3 = 3
J_4 = 3

J_3 = 3
J_4 = 1

.

. . .

F3

E3-4

F3 P4-3

F4

E3-4F4

F3

P3-4

E4

J_3 = 0
J_4 = 0 J_4 = 2

Problem Search Graph

CS:4420 Spring 2017 – p.32/34

Real-World Search Problems

• Route Finding
(computer networks, airline travel planning system, . . .)

• Travelling Salesman Optimization Problem
(package delivery, automatic drills, . . .)

• Layout Problems
(VLSI layout, furniture layout, packaging, . . .)

• Assembly Sequencing
(assembly of electric motors, . . .)

• Task Scheduling
(manufacturing, timetables, . . .)

CS:4420 Spring 2017 – p.33/34

Problem Solution

Typically, a problem’s solution is a description of how to reach a goal
state from the initial state:

Examples:

• n-puzzle

• route-finding problem

• assembly sequencing

Occasionally, a problem’s solution is simply a description of the goal
state itself:

Examples:

• 8-queen problem

• scheduling problems

• layout problems

CS:4420 Spring 2017 – p.34/34

	Readings
	Example: Romania
	Romania's map
	Problem-solving agents
	Problem Types
	Problem Types (cont.)
	Example: Vacuum World
	Example: Vacuum World
	Example: Vacuum World
	Problem Solving
	Single-state Problem Formulation
	Selecting a State Space
	Example: vacuum world state space graph
	Example: vacuum world state space graph
	Formulating Problem as a Labeled Graph
	Search Graph
	Problem Solving as Search
	Example: The 8-puzzle
	Example: The 8-puzzle
	Example: The 8-puzzle
	Problem Formulation
	Formulating the 8-puzzle Problem
	Formulating the 8-puzzle Problem
	Preconditions and Effects
	A Better Formulation
	A Better Formulation
	Preconditions and Effects
	The Water Jugs Problem
	The Water Jugs Problem
	The Water Jugs Problem: Operators
	The Water Jugs Problem
	Real-World Search Problems
	Problem Solution

