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Readings

• Chap. 3 of [Russell and Norvig, 2012]
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Example: Romania

Problem: On holiday in Romania; currently in Arad. Flight leaves
tomorrow from Bucharest. Find a short route to drive to Bucharest.

Formulate problem:

states: various cities

actions: drive between cities

Formulate goal:

be in Bucarest

Formulate solution:

sequence of cities (eg, Arad, Sibiu, Fagaras, Bucharest)
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Romania’s map
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Problem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent( percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state←Update-State(state, percept)

if seq is empty then

goal←Formulate-Goal(state)

problem←Formulate-Problem(state, goal)

seq←Search( problem)

action←Recommendation(seq, state)

seq←Remainder(seq, state)

return action
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Problem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent( percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state←Update-State(state, percept)

if seq is empty then

goal←Formulate-Goal(state)

problem←Formulate-Problem(state, goal)

seq←Search( problem)

action←Recommendation(seq, state)

seq←Remainder(seq, state)

return action

Note: this is offline problem solving; solution executed“eyes closed.”
Online problem solving involves acting without complete knowledge.
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Problem Types
• Deterministic, fully observable environment =⇒ single-state

problem
• Agent knows exactly which state it will be in.

• Solution is a sequence of actions.

• Non-observable environment =⇒ conformant problem
• Agent know it may be in any of a number of states.

• Solution, if any, is a sequence of actions.

• Nondeterministic and/or partially observable environment =⇒
contingency problem
• Percepts provide new information about current state.

• Solution is a tree or policy.

• Often interleave search and execution.
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Problem Types (cont.)

• Unknown state space =⇒ exploration problem (“online”)
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Example: Vacuum World

Single-state problem
initial state = 5
goal states = {7, 8}

Solution?

1 2

3 4

5 6

7 8
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Example: Vacuum World

Single-state problem
initial state = 5
goal states = {7, 8}

Solution? [Right, Suck]

1 2

3 4

5 6

7 8
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Example: Vacuum World

Conformant problem, initial state = {1, 2, 3, 4, 5, 6, 7, 8}

Right =⇒ {2, 4, 6, 8}, Left =⇒ {1, 3, 5, 7}, Suck =⇒ {5, 4, 7, 8}

Solution?

1 2

3 4

5 6

7 8
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Example: Vacuum World

Conformant problem, initial state = {1, 2, 3, 4, 5, 6, 7, 8}

Right =⇒ {2, 4, 6, 8}, Left =⇒ {1, 3, 5, 7}, Suck =⇒ {5, 4, 7, 8}

Solution? [Right, Suck, Left, Suck]

1 2

3 4

5 6

7 8
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Example: Vacuum World

Contingency problem, initial state = 5

Suck occasionally fails. Local sensing: dirt, location.

Solution?

1 2

3 4

5 6

7 8
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Example: Vacuum World

Contingency problem, initial state = 5

Suck occasionally fails. Local sensing: dirt, location.

Solution? [Right, if dirt then Suck]

1 2

3 4

5 6

7 8
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Problem Solving

We start by considering the simpler cases in which the environment is

fully observable, static and deterministic.

In such environments the following holds for an agent A:

• A’s world is representable by a discrete set of states.

• A’s actions are representable by a discrete set of operators.

• the next world state is completely determined by the current
state and A’s actions.

• the world’s state transitions are caused exclusively by A’s actions
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Single-state Problem Formulation

Formally, a problem is defined by four components:

• An initial state (eg, In(Arad))

• A successor function S returning sets of action–state pairs
(eg, S(Arad) = {〈GoTo(Zerind), In(Zerind)〉, . . .})

• A goal test, explicit (eg, x = In(Bucharest)) or
implicit, (eg, NoDirt(x))

• A path cost
(eg, sum of distances, number of actions executed, . . . ) Usually
additive and given as c(x, a, y), the step cost from x to y by
action a, assumed to be ≥ 0.

A solution is a sequence of actions leading from the initial state to a
goal state
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Selecting a State Space

Since the real world is absurdly complex the state space must be
abstracted for problem solving.

• Abstract state = set of real states.

• (Abstract) action = complex combination of real actions eg,
GoTo(Zerind) from Arad represents a complex set of possible
routes, detours, rest stops, etc.

• For guaranteed realizability, any real state corresponding to
In(Arad) must get to some real state corresponding to
In(Zerind).

• Each abstract action should be“easier” than the original
problem!

• (Abstract) solution = set of real paths that are solutions in the
real world
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Example: vacuum world state space graph
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Actions?

Goal test?

Path cost?
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Example: vacuum world state space graph
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States? 〈dirt flag, robot location〉 (ignore dirt amount)

Actions? Left, Right, Suck, NoOp

Goal test? ¬dirty

Path cost? 1 per action (0 for NoOp)
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Formulating Problem as a Labeled Graph

In the graph

• each node represents a possible state;

• a node is designated as the initial state;

• one or more nodes represent goal states, states in which the
agent’s goal is considered accomplished.

• each edge represents a state transition caused by a specific agent
action;

• associated to each edge is the cost of performing that transition.
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Search Graph

How do we reach a goal state?
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There may be several possible ways. Or none!

Factors to consider:

• cost of finding a path;

• cost of traversing a path.
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Problem Solving as Search

Search space: set of states reachable from an initial state S0 via a
(possibly empty/finite/infinite) sequence of state transitions.

To achieve the problem’s goal

• search the space for a (possibly optimal) sequence of transitions
starting from S0 and leading to a goal state;

• execute (in order) the actions associated to each transition in the
identified sequence.

For contingency problems, two steps above need to be interleaved.
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Example: The 8-puzzle

2
1
7

6
8 3

4
5
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Example: The 8-puzzle

Problem: Go from state S to state G.
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Example: The 8-puzzle

States: configurations of tiles

Operators: move one tile Up/Down/Left/Right

Note:

• There are 9! = 362, 880 possible states (all permutations of
{0, 1, 2, 3, 4, 5, 6, 7, 8} where 0 is the empty space).

• Not all states are directly reachable from a given state. (In fact,
exactly half of them are reachable from a given state.)

How can an artificial agent represent the states and the state space for
this problem?
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Problem Formulation

1. Choose an appropriate data structure to represent the world
states.

2. Define each operator as a precondition/effects pair where the
• precondition holds exactly in the states the operator applies

to,

• effects describe how a state changes into a successor state
by the application of the operator.

3. Specify an initial state.

4. Provide a description of the goal (check if a reached state is a
goal state).
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Formulating the 8-puzzle Problem

States: each represented by a 3× 3 array of numbers in [0 . . . 8],
where value 0 is for the empty cell.

2
1
7

6
8 3

4
5

becomes A =

2 8 3

1 6 4

7 0 5
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Formulating the 8-puzzle Problem

• Operators: 24 operators of the form OPr,c,d

where r, c ∈ {1, 2, 3}, d ∈ {L,R,U,D}.

• If the empty space is at position (r, c), OPr,c,d moves it in
direction d.

Example:

2 8 3

1 6 4

7 0 5

OP3,2,L
=⇒

2 8 3

1 6 4

0 7 5
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Preconditions and Effects

Example: OP3,2,R

2 8 3

1 6 4

7 0 5

OP3,2,R
=⇒

2 8 3

1 6 4

7 5 0

Preconditions: A[3, 2] = 0

Effects:

{

A[3, 2] ← A[3, 3]

A[3, 3] ← 0

We have 24 operators in this problem formulation . . .
20 too many!

CS:4420 Spring 2017 – p.25/34



A Better Formulation

States: each represented by a pair (A, (i, j)) where:

• A is a 3× 3 array of numbers in [0 . . . 8]

• (i, j) is the position of the empty space (0) in the array.

2
1
7

6
8 3

4
5

becomes (

2 8 3

1 6 4

7 0 5

, (3, 2) )
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A Better Formulation

Operators: 4 operators of the form OPd where d ∈ {L,R,U,D}.

OPd moves the empty space in the direction d.

Example:

(

2 8 3

1 6 4

7 0 5

, (3, 2) )
OPL=⇒ (

2 8 3

1 6 4

0 7 5

, (3, 1) )
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Preconditions and Effects

Example: OPL

(

2 8 3

1 6 4

7 0 5

, (3, 2) )
OPL=⇒ (

2 8 3

1 6 4

0 7 5

, (3, 1) )

Let (r0, c0) be the position of 0 in A.

Preconditions: c0 > 1

Effects:











A[r0, c0] ← A[r0, c0 − 1]

A[r0, c0 − 1] ← 0

(r0, c0) ← (r0, c0 − 1)
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The Water Jugs Problem

3gl 4gl

Get exactly 2 gallons of water into the 4gl jug.
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The Water Jugs Problem

States: Determined by the amount of water in each jug.

State Representation: Two real-valued variables, J3, J4, indicating

the amount of water in the two jugs, with the constraints:

0 ≤ J3 ≤ 3, 0 ≤ J4 ≤ 4

Initial State Description

J3 = 0, J4 = 0

Goal State Description:

J4 = 2 (non exhaustive description)
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The Water Jugs Problem: Operators

E4: empty jug4 on the ground.

precond: J4 > 0 effect: J ′

4 = 0

E4-3: pour water from jug4 into jug3 until jug3 is full.

precond: J3 < 3, effect: J ′

3 = 3,

J4 ≥ 3− J3 J ′

4 = J4 − (3− J3)

P3-4: pour water from jug3 into jug4 until jug4 is full.

precond: J4 < 4, effect: J ′

4 = 4,

J3 ≥ 4− J4 J ′

3 = J3 − (4− J4)

E3-4: pour water from jug3 into jug4 until jug3 is empty.

precond: J3 + J4 < 4, effect: J ′

4 = J3 + J4,

J3 > 0 J ′

3 = 0
...
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The Water Jugs Problem

J_3 = 2
J_4 = 4

J_3 = 2
J_4 = 0

J_3 = 0
J_4 = 2
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J_4 = 4
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J_4 = 3

J_3 = 3
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J_4 = 1

. . . . . . . . .

. . .

F3

E3-4

F3 P4-3

F4

E3-4F4

F3

P3-4

E4

J_3 = 0
J_4 = 0 J_4 = 2

Problem Search Graph
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Real-World Search Problems

• Route Finding
(computer networks, airline travel planning system, . . . )

• Travelling Salesman Optimization Problem
(package delivery, automatic drills, . . . )

• Layout Problems
(VLSI layout, furniture layout, packaging, . . . )

• Assembly Sequencing
(assembly of electric motors, . . . )

• Task Scheduling
(manufacturing, timetables, . . . )
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Problem Solution

Typically, a problem’s solution is a description of how to reach a goal
state from the initial state:

Examples:

• n-puzzle

• route-finding problem

• assembly sequencing

Occasionally, a problem’s solution is simply a description of the goal
state itself:

Examples:

• 8-queen problem

• scheduling problems

• layout problems
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