### CS:4420 Artificial Intelligence Spring 2017

#### **Neural Networks**

Cesare Tinelli

#### The University of Iowa

Copyright 2004–17, Cesare Tinelli and Stuart Russell $^{a}$ 

<sup>&</sup>lt;sup>a</sup> These notes were originally developed by Stuart Russell and are used with permission. They are copyrighted material and may not be used in other course settings outside of the University of Iowa in their current or modified form without the express written consent of the copyright holders.

# Readings

• Chap. 18 of [Russell and Norvig, 2012]

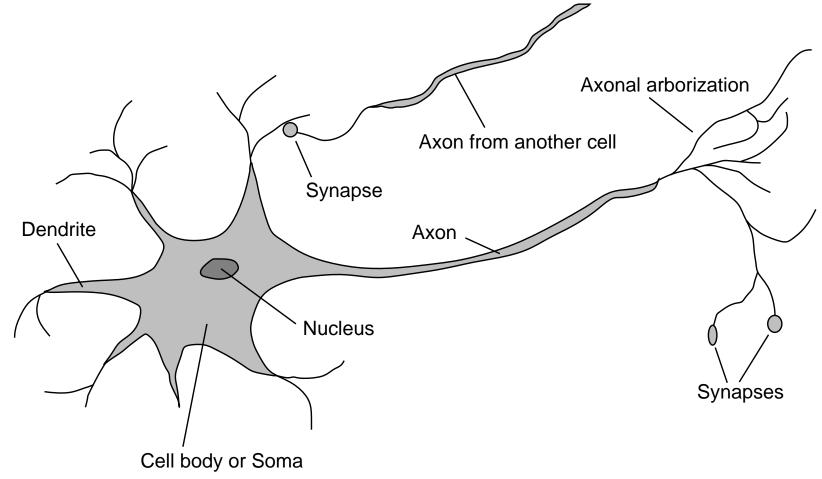
# **Brains as Computational Devices**

Brains advantages with respect to digital computers:

- Massively parallel
- Fault-tolerant
- Reliable
- Graceful degradation

### **Brains and Neurons**

 $10^{11}$  neurons of > 20 types,  $10^{14}$  synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential



# **Artificial Neural Network**

Artificial neural networks are inspired by brains and neurons

A neural network is a graph with nodes, or units, connected by links

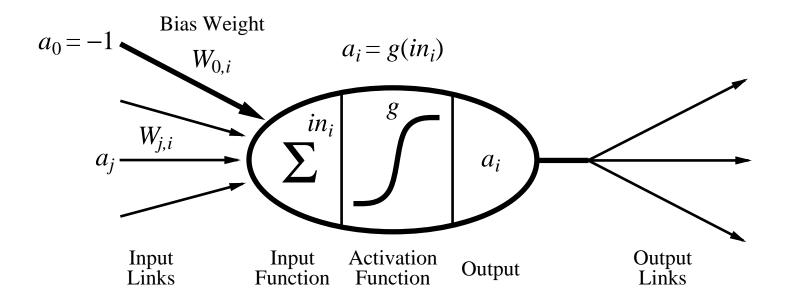
Each link has an associated weight, a real number

Typically, each node i outputs a real number, which is fed as input to the nodes connected to i

The output of a note is a function of the weighted sum of the node's inputs

## **A Neural Network Unit**

McCulloch & Pitts model:

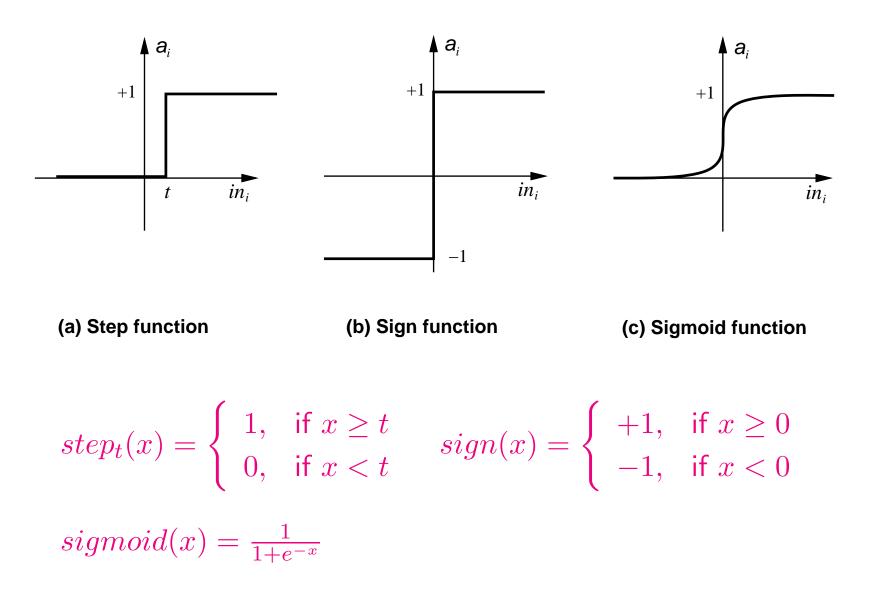


Output is a "squashed" linear function of the inputs:

$$a_i \leftarrow g(in_i) = g\left(\sum_j W_{j,i}a_j\right)$$

This is a gross oversimplification of real neurons, but is meant to develop understanding of what networks of simple units can do

#### **Possible Activation Functions**



# Normalizing Unit Thresholds.

If t is the threshold value of the output unit, then

$$step_t(\sum_{j=1}^n W_j I_j) = step_0(\sum_{j=0}^n W_j I_j)$$

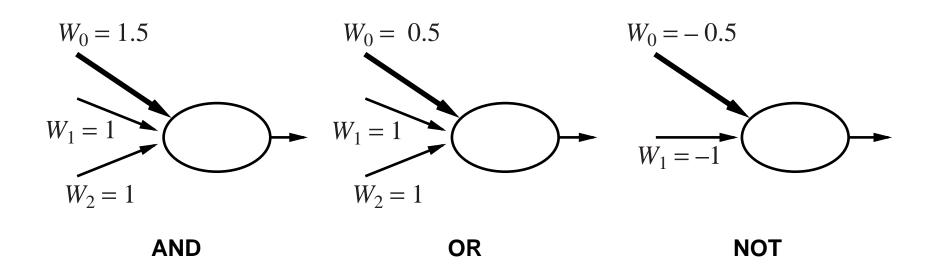
where  $W_0 = t$  and  $I_0 = -1$ 

So we can always assume that the unit's threshold is  $\boldsymbol{0}$ 

This allows thresholds to be learned like any other weight

Then, we can even allow output values in [0,1] by replacing  $step_0$  by the sigmoid function

### **Units as Logic Gates**



Activation function: step function

Since units can implement the  $\land, \lor, \neg$  boolean operators, neural nets are Turing-complete: they can implement any computable function

# **Computing with NNs**

Different functions are implemented by different network topologies and unit weights

The allure of NNs is that a network need not be explicitly programmed to compute a certain function f

Given enough nodes and links, a NN can learn the function by itself

It does so by

- looking at a training set of input/output pairs for f and
- modifying its topology and weights so that its own input/output behavior agrees with the training pairs

In other words, NNs too learn by induction

# Learning Network Structures

The structure of a NN is given by its nodes and links

The type of function a network can represent depends on the network structure

Fixing the network structure in advance can make the task of learning a certain function impossible

On the other hand, using a large network is also potentially problematic

If a network has too many parameters (i.e., weights), it will simply learn the examples by memorizing them in its weights (overfitting)

# Learning Network Structures

Two main ways to modify a network structure in accordance with the training set:

Optimal brain damage:

Start with a large, fully-connected network and remove connections that do not seem to matter

Tiling: Start with a very small network and increasingly add units to cover correctly more and more examples

Neither technique is completely satisfactory in practice

Often, the network structure is established manually by trial and error (using cross-validation, etc.)

Learning procedures are then used to learn the network weights only

### **Network structures**

Feed-forward networks:

- single-layer perceptrons
- multi-layer perceptrons

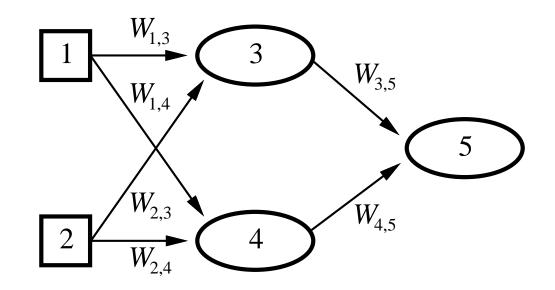
Feed-forward networks implement functions, have no internal state

Recurrent networks:

- Hopfield networks have symmetric weights  $(W_{i,j} = W_{j,i})$  $g(x) = \operatorname{sign}(x)$ ,  $a_i = \pm 1$ ; holographic associative memory
- Boltzmann machines use stochastic activation functions

Recurrent networks have directed cycles with delays, hence have internal state (like flip-flops), can oscillate etc.

#### **Feed-forward example**



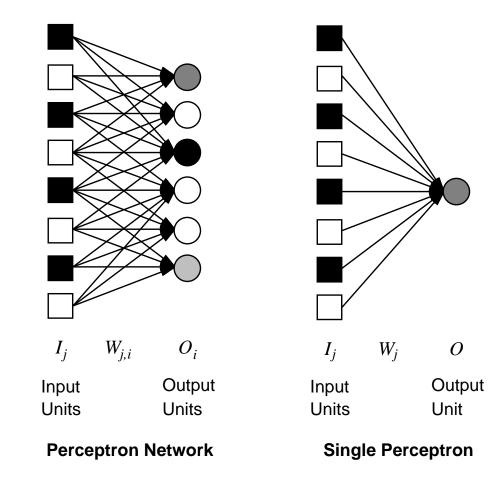
Network is a parameterized family of nonlinear functions:

$$a_{5} = g(W_{3,5} \cdot a_{3} + W_{4,5} \cdot a_{4})$$
  
=  $g(W_{3,5} \cdot g(W_{1,3} \cdot a_{1} + W_{2,3} \cdot a_{2}) + W_{4,5} \cdot g(W_{1,4} \cdot a_{1} + W_{2,4} \cdot a_{2}))$ 

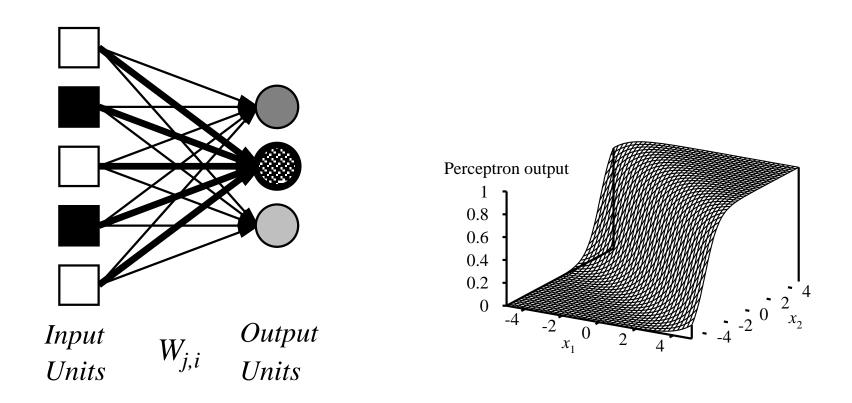
Adjusting weights changes the function: do learning this way!

# (Single-layer) Perceptrons

Single-layer, feed-forward networks whose units use a step function as activation function



#### Perceptrons



Output units all operate separately—no shared weights Adjusting weights changes the cliff's location, orientation, and steepness

### **Perceptron Learning**

Perceptrons caused a great stir when they were invented because it was shown that

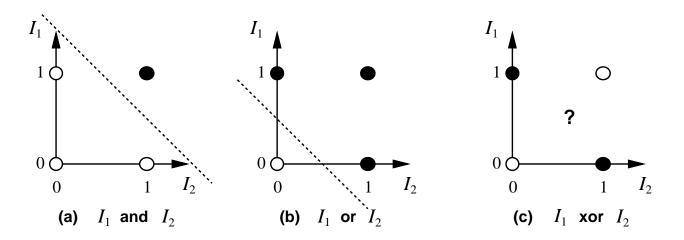
If a function is representable by a perceptron, then it is learnable with 100% accuracy, given enough training examples

The problem is that perceptrons can only represent linearly-separable functions

It was soon shown that most of the functions we would like to compute are not linearly-separable

# **Linearly Separable Functions**

#### 2-dimensional space:



A black dot corresponds to an output value of 1; an empty dot corresponds to an output value of 0

Can represent and, or, not, majority, etc., but not xor

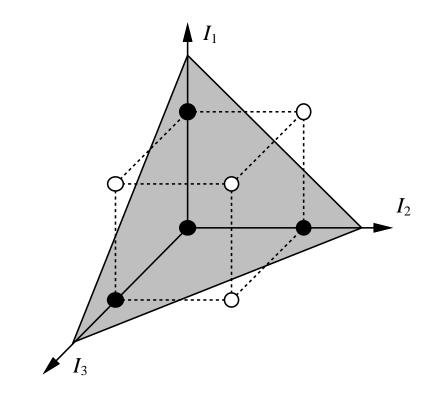
Represents a linear separator in input space:

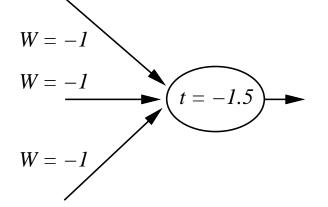
$$\sum_{j} W_{j} I_{j} > 0 \quad \text{or} \quad \mathbf{W} \cdot \mathbf{I} > 0$$

# **A Linearly Separable Function**

3-dimensional space:

The minority function: return 1 if the input vector contains less 1s than 0s; return 0 otherwise





(a) Separating plane

(b) Weights and threshold

# Learning with NNs

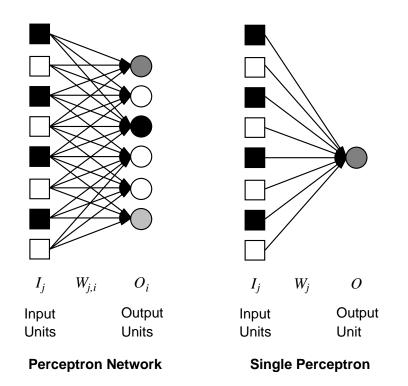
Most NN learning methods are current-best-hypothesis methods

```
function NEURAL-NETWORK-LEARNING(examples) returns network
network ← a network with randomly assigned weights
repeat
for each e in examples do
        O ← NEURAL-NETWORK-OUTPUT(network, e)
        T ← the observed output values from e
        update the weights in network based on e, O, and T
        end
until all examples correctly predicted or stopping criterion is reached
return network
```

Each cycle in the procedure above is called an epoch

# The Perceptron Learning Method

Weight updating in perceptrons is very simple because each output node is independent of the other output nodes.



So we can consider a perceptron with a single output node

# **The Perceptron Learning Method**

If O is the value returned by the output unit for a given example and T is the expected output, then the unit's error is

E = T - O

If the error E is positive we need to increase O; otherwise, we need to decrease it

## **The Perceptron Learning Method**

- Since  $O = g(\sum_{j=0}^{n} W_j I_j)$  where g is the sigmoid function, we can change O by changing each  $W_j$ .
- To increase O we should increase  $W_j$  if  $I_j$  is positive, decrease  $W_j$  if  $I_j$  is negative.
- To decrease O we should decrease  $W_j$  if  $I_j$  is positive, increase  $W_j$  if  $I_j$  is negative.
- This is done by updating each  $W_j$  as follows

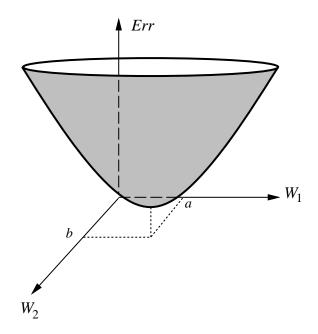
$$W_j \leftarrow W_j + \alpha \cdot I_j \cdot g'(\sum_{j=0}^n W_j I_j) \cdot (T - O)$$

where  $g'(x) = g(x) \cdot (1 - g(x))$  is the first derivative of gand  $\alpha$  is a positive constant, the learning rate

# **Perceptron Learning as Search**

Provided that the learning rate constant is not too high, the perceptron will learn any linearly-separable function. Why?

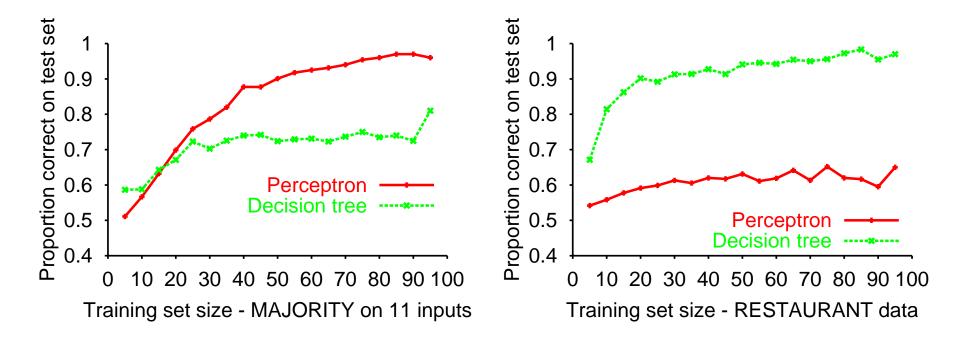
The perceptron learning procedure is a gradient descent search procedure whose search space has no local minima.



Each possible configuration of weights for the perceptron is a state in the search space

# Perceptron learning contd.

Perceptron learning rule converges to a consistent function for any linearly separable data set



Perceptron learns majority function easily, DTL is hopeless

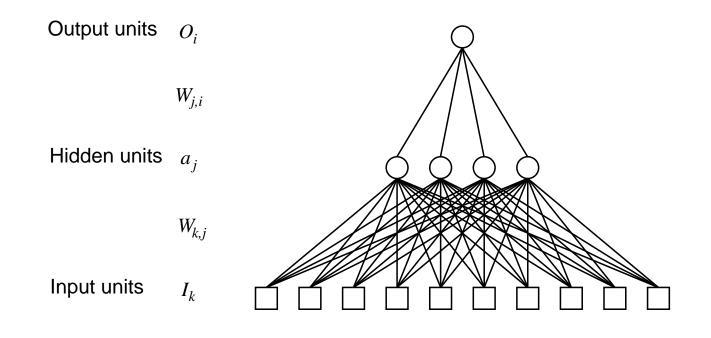
DTL learns restaurant function easily, perceptron cannot represent it

# Multilayer, Feed-forward Networks

A kind of neural network in which

- links are unidirectional and form no cycles (the net is a directed acyclic graph)
- the root nodes of the graph are input units, their activation value is determined by the environment
- the leaf nodes are output units
- the remaining nodes are hidden units
- units can be divided into layers: a unit in a layer is connected only to units in the next layer

# A Two-layer, Feed-forward Network



Notes:

- The roots of the graph are at the bottom and the (only) leaf at the top
- The layer of input units is generally not counted (which is why this is a two-layer net)
- Layers are usually fully connected; numbers of hidden units is typically chosen by hand

# Multilayer, Feed-forward Networks

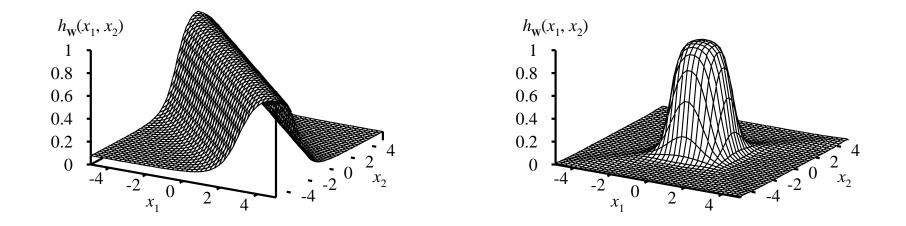
Are a powerful computational device:

- with just one hidden layer, they can approximate any continuous function
- with just two hidden layers, they can approximate any computable function

However, the number of needed units per layer may grow exponentially with the number of the input units

# **Expressiveness of MLNs**

All continuous functions w/ 2 layers, all functions w/ 3 layers



Combine two opposite-facing threshold functions to make a ridge Combine two perpendicular ridges to make a bump Add bumps of various sizes and locations to fit any surface Proof requires exponentially many hidden units (cf DTL proof)

# **Back-Propagation Learning**

Extends the the main idea of perceptron learning to multilayer networks:

Assess the blame for a unit's error and divide it among the contributing weights

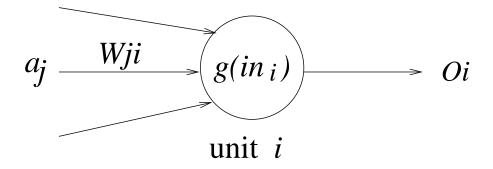
- 1. start from the units in the output layer
- 2. propagate the error back to previous layers up to the input layer

Weight updates:

Output layer: as in the perceptron case Hidden layer: by back-propagation

# **Updating Weights: Output Layer**

Exactly as in perceptrons:

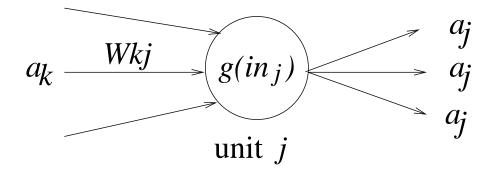


$$W_{ji} \leftarrow W_{ji} + \alpha \cdot a_j \cdot \Delta_i$$

where

- g is the sigmoid function,  $in_i = \sum_j W_{ji} a_j$
- $\Delta_i = g'(in_i) \cdot (T_i O_i)$
- $T_i$  is the expected output

### **Updating Weights: Hidden Layers**



$$W_{kj} \leftarrow W_{kj} + \alpha \cdot a_k \cdot \Delta_j$$

where

- $\Delta_j = g'(in_j) \cdot \sum_i W_{ji} \Delta_i$
- $\Delta_i$  = error of unit in the next layer that is connected to unit j

# The Back-propagation Procedure

- 1. Choose a learning rate  $\alpha$
- 2. Choose (small) values for the weights randomly
- 3. Repeat until network performance is satisfactory

For each training example e

- a. Propagate e's inputs forward to compute output  $O_i$  for each output node i
- b. For each output node i, compute

 $\Delta_i := g'(in_i) \cdot (T_i - O_i)$ 

c. For each previous level l and node j in l, compute

 $\Delta_j := g'(in_j) \cdot \sum_i W_{ji} \,\Delta_i$ 

d. Update each weight  $W_{rs}$  by

$$W_{rs} \leftarrow W_{rs} + \alpha \cdot a_r \cdot \Delta_s$$

# Why Back-Propagation Works

Back-propagation learning too is a gradient descent search in the weight space over a certain error surface

If  $\mathbf{W}$  is the vector of all the weights in the network, the error surface is given by

$$E(\mathbf{W}) := \frac{\sum_{i} (T_i - O_i)^2}{2}$$

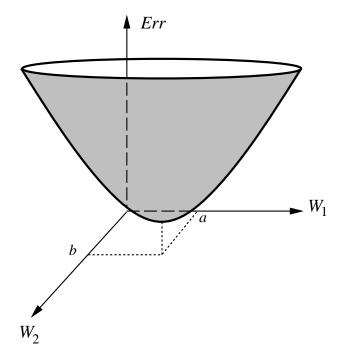
The update for each weight  $W_{ji}$  of a unit *i* is the opposite of the gradient (slope) of the error surface along the direction  $W_{ji}$ :

$$a_j \cdot \Delta_i = -\frac{\partial E(\mathbf{W})}{\partial W_{ji}}$$

# Why BP doesn't Always Work

Producing a new vector  $\mathbf{W}'$  by adding to each  $W_{ji}$  in  $\mathbf{W}$  the opposite of E's slope along  $W_{ji}$  guarantees that

 $E(\mathbf{W}') \le E(\mathbf{W})$ 



In general, however, the error surface may contain local minima

# Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:



MLNs are quite good for complex pattern recognition tasks, but resulting hypotheses cannot be understood easily

# **Evaluating Back-propagation**

To assess the goodness of back-propagation learning for multilayer networks one must consider several issues:

- Expressiveness
- Computational efficiency
- Generalization power
- Sensitivity to noise
- Transparency
- Background Knowledge