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Readings

• Chap. 18 of [Russell and Norvig, 2012]
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Brains as Computational Devices

Brains advantages with respect to digital computers:

• Massively parallel

• Fault-tolerant

• Reliable

• Graceful degradation
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Brains and Neurons

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time

Signals are noisy“spike trains”of electrical potential
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Artificial Neural Network

Artificial neural networks are inspired by brains and neurons

A neural network is a graph with nodes, or units, connected by links

Each link has an associated weight, a real number

Typically, each node i outputs a real number, which is fed as input to
the nodes connected to i

The output of a note is a function of the weighted sum of the node’s
inputs
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A Neural Network Unit

McCulloch & Pitts model:
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a0 = −1 ai = g(ini)

ai
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iniWj,i
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Output is a“squashed” linear function of the inputs:

ai ← g(ini) = g
(

∑

j Wj,iaj

)

This is a gross oversimplification of real neurons, but is meant to
develop understanding of what networks of simple units can do
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Possible Activation Functions

(a) Step function (b) Sign function
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stept(x) =

{

1, if x ≥ t

0, if x < t
sign(x) =

{

+1, if x ≥ 0
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1+e−x
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Normalizing Unit Thresholds.

If t is the threshold value of the output unit, then

stept(

n
∑

j=1

WjIj) = step0(

n
∑

j=0

WjIj)

where W0 = t and I0 = −1

So we can always assume that the unit’s threshold is 0

This allows thresholds to be learned like any other weight

Then, we can even allow output values in [0, 1] by replacing step0 by
the sigmoid function
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Units as Logic Gates

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 =  0.5

NOT

W1 = –1

W0 = – 0.5

Activation function: step function

Since units can implement the ∧,∨,¬ boolean operators, neural nets
are Turing-complete: they can implement any computable function
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Computing with NNs

Different functions are implemented by different network topologies
and unit weights

The allure of NNs is that a network need not be explicitly programmed
to compute a certain function f

Given enough nodes and links, a NN can learn the function by itself

It does so by

• looking at a training set of input/output pairs for f and

• modifying its topology and weights so that its own input/output
behavior agrees with the training pairs

In other words, NNs too learn by induction
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Learning Network Structures

The structure of a NN is given by its nodes and links

The type of function a network can represent depends on the network
structure

Fixing the network structure in advance can make the task of learning
a certain function impossible

On the other hand, using a large network is also potentially
problematic

If a network has too many parameters (i.e., weights), it will simply
learn the examples by memorizing them in its weights (overfitting)
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Learning Network Structures

Two main ways to modify a network structure in accordance with the
training set:

Optimal brain damage:
Start with a large, fully-connected network and remove
connections that do not seem to matter

Tiling: Start with a very small network and increasingly add
units to cover correctly more and more examples

Neither technique is completely satisfactory in practice

Often, the network structure is established manually by trial and error
(using cross-validation, etc.)

Learning procedures are then used to learn the network weights only

CS:4420 Spring 2017 – p.12/37



Network structures

Feed-forward networks:

• single-layer perceptrons

• multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:

• Hopfield networks have symmetric weights (Wi,j = Wj,i)

g(x)= sign(x), ai= ± 1; holographic associative memory

• Boltzmann machines use stochastic activation functions

Recurrent networks have directed cycles with delays, hence have
internal state (like flip-flops), can oscillate etc.

CS:4420 Spring 2017 – p.13/37



Feed-forward example

W1,3

1,4W
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Network is a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 +W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 +W2,3 · a2) +

W4,5 · g(W1,4 · a1 +W2,4 · a2))

Adjusting weights changes the function: do learning this way!
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(Single-layer) Perceptrons

Single-layer, feed-forward networks whose units use a step function as
activation function

Perceptron Network Single Perceptron

Input
Units Units

Output Input
Units Unit

Output

OI j Wj,i Oi I j Wj
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Perceptrons

Input
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Perceptron output

Output units all operate separately—no shared weights

Adjusting weights changes the cliff’s location, orientation, and
steepness
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Perceptron Learning

Perceptrons caused a great stir when they were invented because it
was shown that

If a function is representable by a perceptron, then it is
learnable with 100% accuracy, given enough training
examples

The problem is that perceptrons can only represent linearly-separable
functions

It was soon shown that most of the functions we would like to
compute are not linearly-separable
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Linearly Separable Functions

2-dimensional space:
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I 2
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A black dot corresponds to an output value of 1; an empty dot
corresponds to an output value of 0

Can represent and, or, not, majority, etc., but not xor

Represents a linear separator in input space:

∑

j

WjIj > 0 or W · I > 0
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A Linearly Separable Function

3-dimensional space:

The minority function: return 1 if the input vector contains less 1s
than 0s; return 0 otherwise

(a) Separating plane (b) Weights and threshold

W = −1

t = −1.5
W = −1

W = −1

I3

I2

I1
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Learning with NNs

Most NN learning methods are current-best-hypothesis methods

function NEURAL-NETWORK-LEARNING(examples) returns network

network a network with randomly assigned weights
repeat

for each e in examplesdo
O NEURAL-NETWORK-OUTPUT(network, e)
T the observed output values from e
update the weights in networkbased on e, O, and T

end
until all examples correctly predicted or stopping criterion is reached
return network

Each cycle in the procedure above is called an epoch
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The Perceptron Learning Method

Weight updating in perceptrons is very simple because each output
node is independent of the other output nodes.

Perceptron Network Single Perceptron

Input
Units Units

Output Input
Units Unit

Output

OI j Wj,i Oi I j Wj

So we can consider a perceptron with a single output node
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The Perceptron Learning Method

If O is the value returned by the output unit for a given example and
T is the expected output, then the unit’s error is

E = T −O

If the error E is positive we need to increase O; otherwise, we need to
decrease it
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The Perceptron Learning Method

• Since O = g(
∑n

j=0
WjIj) where g is the sigmoid function, we

can change O by changing each Wj .

• To increase O we should increase Wj if Ij is positive, decrease
Wj if Ij is negative.

• To decrease O we should decrease Wj if Ij is positive, increase
Wj if Ij is negative.

• This is done by updating each Wj as follows

Wj ← Wj + α · Ij · g
′(

n
∑

j=0

WjIj) · (T −O)

where g′(x) = g(x) · (1− g(x)) is the first derivative of g
and α is a positive constant, the learning rate
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Perceptron Learning as Search

Provided that the learning rate constant is not too high, the
perceptron will learn any linearly-separable function. Why?

The perceptron learning procedure is a gradient descent search
procedure whose search space has no local minima.

Err

b

a

W2

W1

Each possible configuration of weights for the perceptron is a state in
the search space
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Perceptron learning contd.

Perceptron learning rule converges to a consistent function for any
linearly separable data set
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Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it
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Multilayer, Feed-forward Networks

A kind of neural network in which

• links are unidirectional and form no cycles (the net is a directed
acyclic graph)

• the root nodes of the graph are input units, their activation value
is determined by the environment

• the leaf nodes are output units

• the remaining nodes are hidden units

• units can be divided into layers: a unit in a layer is connected
only to units in the next layer
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A Two-layer, Feed-forward Network

Input units

Hidden units

Output units Oi

Wj,i

a j

Wk,j

Ik

Notes:

• The roots of the graph are at the bottom and the (only) leaf at
the top

• The layer of input units is generally not counted (which is why
this is a two-layer net)

• Layers are usually fully connected; numbers of hidden units is
typically chosen by hand
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Multilayer, Feed-forward Networks

Are a powerful computational device:

• with just one hidden layer, they can approximate any continuous
function

• with just two hidden layers, they can approximate any
computable function

However, the number of needed units per layer may grow
exponentially with the number of the input units
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Expressiveness of MLNs

All continuous functions w/ 2 layers, all functions w/ 3 layers
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Combine two opposite-facing threshold functions to make a ridge

Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)
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Back-Propagation Learning

Extends the the main idea of perceptron learning to multilayer
networks:

Assess the blame for a unit’s error and divide it among the
contributing weights

1. start from the units in the output layer

2. propagate the error back to previous layers up to the input layer

Weight updates:

Output layer: as in the perceptron case

Hidden layer: by back-propagation
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Updating Weights: Output Layer

Exactly as in perceptrons:

aj ig(in  )Wji

iunit

Oi

Wji ← Wji + α · aj ·∆i

where

• g is the sigmoid function, ini =
∑

j Wji aj

• ∆i = g′(ini) · (Ti −Oi)

• Ti is the expected output
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Updating Weights: Hidden Layers

jg(in  ) ajak

aj

aj

Wkj

unit j

Wkj ← Wkj + α · ak ·∆j

where

• ∆j = g′(inj) ·
∑

iWji ∆i

• ∆i = error of unit in the next layer that is connected to unit j
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The Back-propagation Procedure

1. Choose a learning rate α

2. Choose (small) values for the weights randomly

3. Repeat until network performance is satisfactory

For each training example e

a. Propagate e’s inputs forward to compute output Oi

for each output node i

b. For each output node i, compute

∆i := g′(ini) · (Ti −Oi)

c. For each previous level l and node j in l, compute

∆j := g′(inj) ·
∑

iWji∆i

d. Update each weight Wrs by

Wrs ←Wrs + α · ar ·∆s
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Why Back-Propagation Works

Back-propagation learning too is a gradient descent search in the
weight space over a certain error surface

If W is the vector of all the weights in the network, the error surface
is given by

E(W) :=

∑

i(Ti −Oi)
2

2

The update for each weight Wji of a unit i is the opposite of the

gradient (slope) of the error surface along the direction Wji:

aj ·∆i = −
∂E(W)

∂Wji
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Why BP doesn’t Always Work

Producing a new vector W′ by adding to each Wji in W the opposite
of E’s slope along Wji guarantees that

E(W′) ≤ E(W)

Err

b

a

W2

W1

In general, however, the error surface may contain local minima
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Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:
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MLNs are quite good for complex pattern recognition tasks, but
resulting hypotheses cannot be understood easily
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Evaluating Back-propagation

To assess the goodness of back-propagation learning for multilayer
networks one must consider several issues:

• Expressiveness

• Computational efficiency

• Generalization power

• Sensitivity to noise

• Transparency

• Background Knowledge
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