
CS:4420 Artificial Intelligence
Spring 2017

Learning from Examples

Cesare Tinelli

The University of Iowa

Copyright 2004–17, Cesare Tinelli and Stuart Russell a

a
These notes were originally developed by Stuart Russell and are used with permission. They are

copyrighted material and may not be used in other course settings outside of the University of Iowa in their

current or modified form without the express written consent of the copyright holders.

CS:4420 Spring 2017 – p.1/36

Readings

• Chap. 18 of [Russell and Norvig, 2012]

CS:4420 Spring 2017 – p.2/36

Learning Agents

A distinct feature of intelligent agents in nature is their ability to learn
from experience

Using his experience and his internal knowledge, a learning agent is
able to produce new knowledge

That is, given his internal knowledge and a percept sequence, the
agent is able to learn facts that

• are consistent with both the percepts and the previous
knowledge,

• do not just follow from the percepts and the previous knowledge

CS:4420 Spring 2017 – p.3/36

Example: Learning for Logical Agents

Learning in logical agents can be formalized as follows.

Let Γ, ∆ be set of sentences where

• Γ is the agent’s knowledge base, the agent’s current knowledge

• ∆ is a representation of a percept sequence, the evidential data

A learning agent is an agent able to generate facts ϕ from Γ and ∆
such that

• Γ ∪∆ ∪ {ϕ} is satisfiable (consistency of ϕ)

• usually, Γ ∪∆ 6|= ϕ (novelty of ϕ)

CS:4420 Spring 2017 – p.4/36

Learning Agent: Conceptual Components

Performance standard

Agent

E
nvironm

ent

Sensors

Effectors

Performance
 element

changes

knowledge
learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

CS:4420 Spring 2017 – p.5/36

Learning Elements

Machine learning research has produced a large variety of learning
elements

Major issues in the design of learning elements:

• Which components of the performance element are to be
improved

• What representation is used for those components

• What kind of feedback is available:
• supervised learning
• reinforcement learning
• unsupervised learning

• What prior knowledge is available

CS:4420 Spring 2017 – p.6/36

Learning as Learning of Functions

Any component of a performance element can be described
mathematically as a function:

• condition-action rules
• predicates in the knowledge base
• next-state operators
• goal-state recognizers
• search heuristic functions
• belief networks
• utility functions
• . . .

All learning can be seen as learning the representation of a function

CS:4420 Spring 2017 – p.7/36

Inductive Learning

A lot of learning is of an inductive nature:

Given some experimental data, the agent learns the general principles
governing those data and is able to make correct predictions on future
data, based on these general principles.

Examples:

• After a baby is told that certain objects in the house are chairs,
the baby is able to learn the concept of“chair”and then
recognize previously unseen chairs as such.

• Your grandfather watches a soccer match for the first time and
from the action and the commentators’ report is able to figure
out the rules of the game.

CS:4420 Spring 2017 – p.8/36

Purely Inductive Learning

Given a collection {(x1, f(x1)), . . . , (xn, f(xn))} of input/output
pairs, or examples, for a function f

produce a hypothesis, (a compact representation of) a function h that
approximates f

o
o

o
o

(c)

o
o

o

o
o

(a)

o
o

o

o
o

(b)

o
o

o

o
o

(d)

o

In general, there are quite a lot of different hypotheses consistent with
the examples

CS:4420 Spring 2017 – p.9/36

Bias in Learning

Any kind of preference for a hypothesis h over another is called a bias

Bias is inescapable:
Just the choice of formalism to describe h already introduces a bias.

Bias is necessary:
Learning is nearly impossible without bias.
(Which of the many hypotheses do you choose?)

CS:4420 Spring 2017 – p.10/36

Learning Decision Trees

The simplest form of learning from examples occurs in learning
decision trees

A decision tree is a Boolean operator that takes as input a set of
predicates describing an object or a situation, and outputs a discrete
value

It is represented by a tree in which

• every non-leaf node corresponds to a test on the value of one of
the predicates

• every leaf node specifies the value to be returned if that leaf is
reached

Decision trees returning a binary value (e.g., a Boolean) act as
classifiers

CS:4420 Spring 2017 – p.11/36

A Decision Tree

This tree can be used to decide whether to wait for a table at a
restaurant

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30−60 10−30 0−10

No Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF

CS:4420 Spring 2017 – p.12/36

A Decision Tree as Predicates

A decision tree with Boolean output defines a logical predicate

No Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

WillWait ⇔ Patrons = Some

∨ Patrons = Full ∧ ¬Hungry ∧ Type = French

∨ Patrons = Full ∧ ¬Hungry ∧ Type = Burger

∨ Patrons = Full ∧ ¬Hungry ∧ Type = Thay ∧ isFriSat

CS:4420 Spring 2017 – p.13/36

Building Decision Trees

How can we build a decision tree for a specific predicate?

We can look at a number of examples that satisfy, or do not satisfy,
the predicate and try to extrapolate the tree from them

Example
Attributes Goal

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 Yes No No Yes Some $$$ No Yes French 0–10 Yes
X2 Yes No No Yes Full $ No No Thai 30–60 No
X3 No Yes No No Some $ No No Burger 0–10 Yes
X4 Yes No Yes Yes Full $ No No Thai 10–30 Yes
X5 Yes No Yes No Full $$$ No Yes French >60 No
X6 No Yes No Yes Some $$ Yes Yes Italian 0–10 Yes
X7 No Yes No No None $ Yes No Burger 0–10 No
X8 No No No Yes Some $$ Yes Yes Thai 0–10 Yes
X9 No Yes Yes No Full $ Yes No Burger >60 No
X10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 No
X11 No No No No None $ No No Thai 0–10 No
X12 Yes Yes Yes Yes Full $ No No Burger 30–60 Yes

CS:4420 Spring 2017 – p.14/36

Some Terminology

The goal predicate is the predicate to be implemented by a decision
tree.

The training set is the set of examples used to build the tree

A member of the training set is a positive example if it is satisfies the
goal predicate, it is a negative example if it does not

A Boolean decision tree implements classifier:

given a potential instance of a goal predicate, it is able to say, by
looking at some attributes of the instance, whether the instance is a
positive example of the predicate or not

CS:4420 Spring 2017 – p.15/36

Good Decision Trees

It is trivial to construct a decision tree that agrees with a given
training set (How?)

However, the trivial tree will simply memorize the given examples

We want a tree that extrapolates a common pattern from the
examples

We want the tree to correctly classify all possible examples, not just
those in the training set

CS:4420 Spring 2017 – p.16/36

Looking for Decision Trees

In general, there are several decision trees that describe the same goal
predicate. Which one should we prefer?

Ockham’s razor: always prefer the simplest description, that is, the
smallest tree

Problem: searching through the space of possible trees and finding
the smallest one is possible but takes exponential time

Solution: apply some simple heuristics that lead to small (if not
smallest) trees

Main Idea: start building the tree by testing at its root an attribute
that better splits the training set into homogeneous classes

CS:4420 Spring 2017 – p.17/36

Choosing an attribute

A good attribute splits the examples into subsets that are ideally all
positive or all negative

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice: it gives more information about the
classification

CS:4420 Spring 2017 – p.18/36

Choosing an attribute

Preferring more informative attributes leads to smaller trees

(a)

None Some Full

Patrons?

YesNo Hungry?

(b)

No Yes

121 3 4 6 8

2 5 7 9 10 11

French Italian Thai Burger

Type?

121 3 4 6 8

2 5 7 9 10 11

1

5

6

10

4 8

2 11

123

7 9 7 11

1 3 6 8 124

2 5 9 10

124

2 105 9

CS:4420 Spring 2017 – p.19/36

Building the Tree: General Procedure

1. Choose for the root node test the attribute that best partitions the

given training set E into homogeneous sets

2. If the chosen attribute has n possible values, it will partition E into n

sets E1, . . . , En. Add a branch i to the root node for each set Ei

3. For each branch i:

(a) If Ei is empty, chose the most common yes/no classification

among E’s examples and add a corresponding leaf to the branch

(b) If Ei contains only positive examples, add a yes leaf to the branch

(c) If Ei contains only negative examples, add a no leaf to the branch

(d) Otherwise, add a non-leaf node to the branch and apply the

procedure recursively to that node with the remaining attributes

and with Ei as the training set

CS:4420 Spring 2017 – p.20/36

Choosing the Best Attribute

What do we exactly mean by“best partitions the training set into
homogeneous classes?”

What if each attribute splits the training set into non-homogeneous
classes?

Which one is better?

Information Theory can be used to devise a measure of goodness for
attributes

CS:4420 Spring 2017 – p.21/36

Information Theory

Studies the mathematical laws governing systems designed to
communicate or manipulate information

It defines quantitative measures of information and the capacity of
various systems to transmit, store, and process information

In particular, it measures the information content, or entropy, of
messages/events

Information is measured in bits

One bit represents the information we need to answer a yes/no
question when we have no idea about the answer

CS:4420 Spring 2017 – p.22/36

Information Content

If an event has n possible outcomes vi, each with prior probability
P (vi), the information content H of the event’s actual outcome is

H(P (v1), . . . , P (vn)) =

n
∑

i=1

−P (vi) log2 P (vi)

i.e., the average information content of each outcome, − log2 P (vi),
weighted by the outcome’s probability

CS:4420 Spring 2017 – p.23/36

Information Content/Entropy

H(P (v1), . . . , P (vn)) =
n
∑

i=1

−P (vi) log2 P (vi)

Examples

1) Entropy of fair coin toss:

H(P (h), P (t)) = H(12 ,
1
2) = −1

2 log2
1
2 − 1

2 log2
1
2 = 1

2 + 1
2 = 1 bit

2) Entropy of a loaded coin toss where P (head) = 0.99:

H(P (h), P (t)) = H(99
100 ,

1
100) = −0.99 log2 0.99− 0.01 log2 0.01

≈ 0.08 bits

3) Entropy of coin toss for a coin with heads on both sides:

H(P (h), P (h)) = H(1, 0) = −1 log2 1− 0 log2 0 = 0− 0 = 0 bits

CS:4420 Spring 2017 – p.24/36

Entropy of a Decision Tree

For decision trees, the event is question is whether the tree will return
“yes”or“no” for a given input example e

Assume the training set E is a representative sample of the domain

That is, the relative frequency of positive examples in E closely
approximates the prior probability of a positive example

CS:4420 Spring 2017 – p.25/36

Entropy of a Decision Tree

For decision trees, the event is question is whether the tree will return
“yes”or“no” for a given input example e

Assume the training set E is a representative sample of the domain

That is, the relative frequency of positive examples in E closely
approximates the prior probability of a positive example

If E contains p positive examples and n negative examples, the

probability distribution of answers by a correct decision tree is:

P (yes) =
p

p+ n
P (no) =

n

p+ n

CS:4420 Spring 2017 – p.25/36

Entropy of a Decision Tree

For decision trees, the event is question is whether the tree will return
“yes”or“no” for a given input example e

Assume the training set E is a representative sample of the domain

That is, the relative frequency of positive examples in E closely
approximates the prior probability of a positive example

If E contains p positive examples and n negative examples, the

probability distribution of answers by a correct decision tree is:

P (yes) =
p

p+ n
P (no) =

n

p+ n

Entropy of correct decision tree:

H

(

p

p+ n
,

n

p+ n

)

= −
p

p+ n
log2

p

p+ n
−

n

p+ n
log2

n

p+ n

CS:4420 Spring 2017 – p.25/36

Information Content of an Attribute

Checking the value of a single attribute A in the tree provides only
some of the information provided by the whole tree

But we can measure how much information is still needed after A has
been checked

CS:4420 Spring 2017 – p.26/36

Information Content of an Attribute

Let E1, . . . , Em be the sets into which A partitions the current
training set E

For i = 1, . . . ,m, let

p = # of positive examples in E

n = # of negative examples in E

pi = # of positive examples in Ei

ni = # of negative examples in Ei

Then, along branch i of node A we will need

Remainder(A) =
m
∑

i=1

pi + ni

p+ n
H

(

pi

pi + ni

,
ni

pi + ni

)

extra bits of information to classify the input example after we have
checked A

CS:4420 Spring 2017 – p.27/36

Choosing an Attribute

Conclusion: The smaller the value of Remainder(A), the higher the
information content of attribute A for the purpose of classifying the
input example

Heuristic: When building a non-leaf node of a decision tree, choose
the attribute with the smallest remainder

CS:4420 Spring 2017 – p.28/36

Building Decision Trees: An Example

Problem: From the information below about several production runs in
a given factory, construct a decision tree to determine the factors that
influence production output

Run Supervisor Operator Machine Overtime Output

1 Patrick Joe a no high

2 Patrick Samantha b yes low

3 Thomas Jim b yes low

4 Patrick Jim b no high

5 Sally Joe c no high

6 Thomas Samantha c no low

7 Thomas Joe c no low

8 Patrick Jim a yes low

CS:4420 Spring 2017 – p.29/36

Building Decision Trees: An Example

First identify the attribute with the lowest information remainder by
using the whole table as the training set

(the positive examples are those with high output)

Since for each attribute A

Remainder(A)

=
∑m

i=1
pi+ni

p+n
I(pi

pi+ni

, ni

pi+ni

)

=
∑n

i=1
pi+ni

p+n
(− pi

pi+ni

log2
pi

pi+ni

− ni

pi+ni

log2
ni

pi+ni

)

we need to compute all the relative frequencies involved

CS:4420 Spring 2017 – p.30/36

Example (1)

Here is how each attribute splits the training set, together with the
entropy each branch

Supervisor Operator

Jim
Joe

Samantha

3
8 7

2
6

4(+) 1(+)
5(+)

 0.92 0.92 0

Machine

1 0.92 0.92

8 3
2

6
7

1(+) 4(+) 5(+)

Overtime

2
8

3
6
7

Sally
ThomasPatrick

1(+)
4(+)

5(+)
4(+)
5(+)
6
7

2
3
8

00.97

a b c no yes

01 0

1(+)

Remainder(Supervisor) = 4
8
× 1 + 1

8
× 0 + 3

8
× 0 = 0.50

Remainder(Operator) = 3
8
× 0.92 + 3

8
× 0.92 + 2

8
× 0 = 0.69

Remainder(Machine) = 2
8
× 1 + 3

8
× 0.92 + 3

8
× 0.92 = 0.94

Remainder(Overtime) = 5
8
× 0.97 + 3

8
× 0 = 0.61

Choose Supervisor since it has the lowest remainder
CS:4420 Spring 2017 – p.31/36

Example (2)

Thomas’ runs are all negative and Sally’s are all positive

Supervisor Operator

Jim
Joe

Samantha

3
8 7

2
6

4(+) 1(+)
5(+)

 0.92 0.92 0

Machine

1 0.92 0.92

8 3
2

6
7

1(+) 4(+) 5(+)

Overtime

2
8

3
6
7

Sally
ThomasPatrick

1(+)
4(+)

5(+)
4(+)
5(+)
6
7

2
3
8

00.97

a b c no yes

01 0

1(+)

We need to further classify just Patrick’s runs

CS:4420 Spring 2017 – p.32/36

Example (2)

Recompute the remainders of the remaining attributes, but this time
based solely on Patrick’s runs

Machine

1 1

8
1(+) 4(+)

2

a b c

Overtime

4(+)
2

no yes

8

0 0

1(+)

Operator

Jim
Joe

Samantha

24(+) 1(+)
8

0 1 0

Remainder(Operator) = 2
4
× 1 + 1

4
× 0 + 1

4
× 0 = 0.5

Remainder(Machine) = 2
4
× 1 + 2

4
× 1 = 1

Remainder(Overtime) = 2
4
× 0 + 2

4
× 0 = 0

Choose Overtime to further classify Patrick’s runs

CS:4420 Spring 2017 – p.32/36

Example (3)

The final decision tree:

Supervisor

noyes

noyesOvertime

ThomasPatrick
Sally

no yes

CS:4420 Spring 2017 – p.33/36

Problems in Building Decision Trees

Noise. Two training examples may have identical values for all the
attributes but be classified differently

Overfitting. Irrelevant attributes may make spurious distinctions
among training examples

Missing data. The value of some attributes of some training
examples may be missing

Multi-valued attributes. The information gain of an attribute with
many different values tends to be non-zero even when the attribute is
irrelevant

Continuous-valued attributes. They must be discretized to be used.
Of all the possible discretizations, some are better than others for
classification purposes.

CS:4420 Spring 2017 – p.34/36

Performance measurement

How do we know that the learned hypothesis h approximates the
intended function f?

• Use theorems of computational/statistical learning theory

• Try h on a new test set of examples, using same distribution
over example space as training set

Learning curve = % correct on test set as a function of training set
size

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

%
 c

or
re

ct
 o

n
te

st
 s

et

Training set size

• 100 randomly-generated

restaurant examples

• graph averaged over 20 trials

• for i = 1, . . . , 99, each trial selects

i examples randomly

CS:4420 Spring 2017 – p.35/36

Choosing the best hypothesis

Consider a set S = {(x, y) | y = f(x)} of N input/output examples
for a target function f

Stationarity assumption: All examples E ∈ S have the same prior
probability distribution P(E) and each of them is independent from
the previously observed ones

Error rate of an hypothesis h: |{(x, y) | (x, y)∈S, h(x) 6= y}|
N

Holdout cross-validation: Partions S randomly into a training set and
a test set.

k-fold cross-validation: Partions S into k subsets S1, . . . , Sn of the
same size. For each i = 1, . . . , k, use Si as the test set and S \ Si as
the training set. Use the average error rate

CS:4420 Spring 2017 – p.36/36

	Readings
	Learning Agents
	Example: Learning for Logical Agents
	Learning Agent: Conceptual Components
	Learning Elements
	Learning as Learning of Functions
	Inductive Learning
	Purely Inductive Learning
	Bias in Learning
	Learning Decision Trees
	A Decision Tree
	A Decision Tree as Predicates
	Building Decision Trees
	Some Terminology
	Good Decision Trees
	Looking for Decision Trees
	Choosing an attribute
	Choosing an attribute
	Building the Tree: General Procedure
	Choosing the Best Attribute
	Information Theory
	Information Content
	Information Content/Entropy
	Entropy of a Decision Tree
	Information Content of an Attribute
	Information Content of an Attribute
	Choosing an Attribute
	Building Decision Trees: An Example
	Building Decision Trees: An Example
	Example (1)
	Example (2)
	Example (3)
	Problems in Building Decision Trees
	Performance measurement
	Choosing the best hypothesis

