
Alloy 3.0
Reference
Manual

Daniel Jackson
May 0, 2004

© 2004 Daniel Jackson

Contributors to the design of the Alloy language
include: Daniel Jackson, Manu Sridharan,
Ilya Shlyakhter, Emina Torlak, Jonathan Ed-
wards, Greg Dennis, Edmond Lau, Robert
Seater, Derek Rayside, Mandana Vaziri, Sar-
fraz Khurshid, Mana Taghdiri, Ian Schechter,
Uriel Schafer, and Joseph Cohen.

Contents
1 Introduction ... 5
2 Lexical Issues .. 5
3 Namespaces .. 7
4 Grammar ... 7
5 Precedence and Associativity10
6 Semantic Basis ...10
6.1 Instances and Meaning ..10
6.2 Relational Logic ...11
7 Types and Overloading ..13
7.1 Type Errors ...13
7.2 Field Overloading ..14
7.3 Subtypes ..15
7.4 Functions and Predicates ...16
7.5 Integers and Type Checking ..16
7.6 Multiplicity Keywords ..17
8 Language Features ...18
8.1 Module Structure ..18
8.2 Signature Declarations ...20
8.3 Declarations ..22
8.4 Constraint Paragraphs ..25
8.5 Commands ..27
8.6 Expressions ...31
8.7 Integers ..35
8.8 Formulas ..38

4 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 5

 Introduction

Alloy is a lightweight modelling language for software design. It is
amenable to a fully automatic analysis, using the Alloy Analyzer. In-
formation about the Alloy project is available on its web page, http:
alloy.mit.edu.

This manual summarizes the language. It is not likely to be suitable
as a tutorial. An online tutorial is available on the website, and a
book about modelling with Alloy is forthcoming.

2 Lexical Issues

The permitted characters are the printing characters of the ASCII
character set, with the exception of:

· backslash \
· backquote `

and, of the ASCII non-printing characters, only space, horizontal
tab, carriage return and linefeed. Since the encoding of linebreaks
varies across platforms, the Alloy Analyzer accepts any of the stan-
dard combinations of carriage and linefeed.

The non-alphanumeric symbols are used as operators or for punc-
tuation, with the exception of

· dollar sign $;
· percent sign %;
· question mark ?;
· underscore _;
· single and double quote marks (‘ and “).

Dollar, percent are question mark are reserved for use in future
versions of the language. Underscore and quotes may be used in
identifiers. Single and double quote marks (numbered 39 and 34
in ASCII) should not be confused with typographic quote marks
and the prime mark, which are not acceptable characters. If text
is prepared in a word processor, ensure that a ‘smart quotes’ fea-
ture is not active, since it might generate typographic quote marks
from simple ones.

6 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

Characters between -- or // and the end of the line, and from /* to
*/, are treated as comments. Multiple-line comments may not be
nested.

Non-comment text is broken into tokens by the following separa-
tors:

· whitespace (space, tab, linebreak);
· non-alphanumeric characters (except for underscore and

quote marks).

The meaning of the text is independent of its format; in particular,
linebreaks are treated as whitespace just like spaces and tabs.

Keywords and identifiers are case sensitive.

Identifiers may include any of the alphabetic characters, and, ex-
cept as the first character, numbers, underscores, question mark
and exclamation point, and quote marks. A hyphen may not ap-
pear in an identifier, since it is treated as an operator.

A numeric constant consists of a sequence of digits between 0 and
9, whose first digit is not zero.

The following sequences of characters are recognized as single to-
kens:

· the double colon :: used for receiver syntax;
· the implication operator =>;
· the integer comparison operators >= and =<;
· the product arrow ->;
· the restriction operators <: and :>;
· the relational override operator ++;
· conjunction && and disjunction ||;
· the comment markings --, //, /* and */.

The negated operators (such as !=) are not treated as single tokens,
so they may be written with whitespace between the negation and
comparison operators.

The following are reserved as keywords and may not be used for
identifiers:

abstract all and as assert
but check disj else exactly
extends fact for fun iden
if iff implies in Int

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 7

int let lone module no
none not one open or
part pred run set sig
some sum then univ

3 Namespaces

Each identifier belongs to a single namespace. There are three
namespaces:

· Module names and module aliases;
· Signatures, fields, paragraphs (facts, functions, predicates

and assertions), and bound variables (arguments to functions
and predicates, and variables bound by let and quantifiers);

· Command names.

Identifiers in different namespaces may share names without risk
of name conflict. Within a namespace, the same name may not be
used for different identifiers with one exception: bound variables
may shadow each other, and may shadow field names. Conven-
tional lexical scoping applies; the innermost binding applies.

4 Grammar

The grammar uses the standard BNF operators:
· x* for zero or more repetitions of x;
· x+ for one or more repetitions of x;
· x | y for a choice of x or y;
· [x] for an optional x.

In addition,
· x,* means zero or more comma-separated occurrences of x;
· x,+ means one or more comma-separated occurrences of x.

To avoid confusion with grammar symbols, square brackets, star,
plus and the vertical bar are set in bold type when they are to be
interpreted as terminals.

Every name ending Id is an identifier, and is to be treated as a ter-
minal. The terminal number represents a numeric constant.

module ::= header import* paragraph*
header ::= module [path] moduleId [[sigId,+]]

8 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

path ::= directoryId / [path]
import ::= open [path] moduleId [[sigRef,*]] [as aliasId]

paragraph ::=
 sigDecl | factDecl | funDecl | predDecl | assertDecl | runCmd |
checkCmd

sigDecl ::=
 [abstract] [mult] sig sigID,+ [extends sigRef] sigBody
 | [mult] sig sigID,+ in sigRef sigBody
sigBody ::= { decl,* } [formulaSeq]

factDecl ::= fact [factId] formulaSeq
assertDecl ::= assert [assertId] formulaSeq
funDecl ::= fun [sigRef ::] funId (decl,*) : declExpr { expr }
predDecl ::= pred [sigRef ::] predId (decl,*) formulaSeq

runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]
checkCmd ::= [commandId :] check assertRef [scope]

scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int

decl ::= [part | disj] varId,+ : declExpr
letDecl ::= varId = expr
declExpr ::=
 [mult | set] expr
 | expr [mult] -> [mult] expr
mult ::= lone | one | some

expr ::= [@] varId | sigRef | this |
 | none | univ | iden
 | unOp expr | expr binOp expr | expr[expr]
 | { decl,+ | [formula] }
 | let letDecl,+ | expr
 | if formula then expr else expr

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 9

 | Int intExpr
 | [expr ::] funRef (expr,*)
 | (expr)

intExpr ::= number | # expr | sum expr | int expr
 | if formula then intExpr else intExpr
 | intExpr intOp intExpr
 | let letDecl,… | intExpr
 | sum decl,+ | intExpr
 | (intExpr)
intOp ::= + | -

formulaBody ::= formulaSeq | | formula
formulaSeq ::= { formula* }
formula ::= expr [neg] compOp expr
 | quantifier expr
 | intExpr [neg] intCompOp intExpr
 | neg formula | formula logicOp formula
 | formula thenOp formula [elseOp formula]
 | quantifier decl,+ formulaBody
 | let letDecl,+ formulaBody
 | [expr ::] predRef (expr,*)
 | expr : declExpr
 | formulaSeq
 | (formula)

thenOp ::= implies | =>
elseOp ::= else | ,

neg ::= not | !
logicOp ::= && | || | iff | <=> | and | or
quantifier ::= all | no | mult
binOp ::= + | - | & | . | -> | <: | :> | ++
unOp ::= ~ | * | ^
compOp ::= in | =

intCompOp ::= < | > | = | =< | >= funRef ::= [moduleRef] funId
predRef ::= [moduleRef] predId assertRef ::= [moduleRef] asser-
tId sigRef ::= [moduleRef] sigId | Int | univ moduleRef ::= [path]
moduleId [[sigRef,*]] / | aliasId /

10 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

5 Precedence and Associativity

The precedence order for logical operators, tightest first, is:
· negation operators: ! and not;
· conjunction: && and and;
· implication: =>, <=>, implies and iff;
· disjunction: || and or.

The precedence order for expression operators, tightest first, is:
· unary operators: ~, ^ and *;
· restriction operators: <: and :>;
· dot join: . ;
· square brackets join: [];
· arrow product: ->;
· intersection: &;
· override: ++;
· union and difference: + and -.

Note that in particular dot binds more tightly than square brack-
ets, so a.b[c] is parsed as (a.b)[c].

All binary operators are associative, except for: the logical implica-
tion operator, and the expression operators dot, intersection and
difference. Implication associates to the right, and the expression
operators associate to the left. So, for example, p => q => r is parsed
as p => (q => r), and a.b.c is parsed as (a.b).c.

In an implication, an else-clause is associated with its closest then-
clause. So the formula

p => q => r, s

for example, is parsed as

p => (q => r, s)

6 Semantic Basis

6. Instances and Meaning
A model’s meaning is several collections of instances. An instance
is a binding of values to variables. Typically, a single instance rep-
resents a state, or a pair of states (corresponding to execution of an

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 11

operation), or an execution trace. The language has no built-in no-
tion of state machines, however, so an instance need not represent
any of these things.

The collections of instances assigned to a model are:
· A set of core instances associated with the facts of the model,

and the constraints implicit in the signature declarations.
These instances have as their variables the signatures and
their fields, and they bind values to them that make the facts
and declaration constraints true.

· For each function or predicate, a set of those instances for
which the facts and declaration constraints of the model as
a whole are true, and additionally the constraint of the func-
tion or predicate are true. The variables of these instances are
those of the core instances, extended with the arguments of
the function or predicate.

· For each assertion, a set of those instances for which the facts
and declaration constraints of the model as a whole are true,
but for which the constraint of the assertion is false.

A model without any core instances is inconsistent, and almost
certainly erroneous. A function or predicate without instances is
likewise inconsistent, and is unlikely to be useful. An assertion is
expected not to have any instances: the instances are counterex-
amples, which indicate that the assertion does not follow from the
facts.

The Alloy Analyzer finds instances of a model automatically by
search within finite bounds (specified by the user as a scope; see
Section 8.5 below). Because the search is bounded, failure to find
an instance does not necessarily mean that one does not exist. But
instances that are found are guaranteed to be valid.

6.2 Relational Logic
Alloy is a first order relational logic. The values assigned to vari-
ables, and the values of expressions evaluated in the context of a
given instance, are relations. These relations are first order: that is,
they consist of tuples whose elements are atoms (and not them-
selves relations).

Alloy has no explicit notion of sets, scalars or tuples. A set is simply
a unary relation; a scalar is a singleton, unary relation; and a tuple

12 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

is a singleton relation. The type system distinguishes sets from re-
lations because they have different arity, but does not distinguish
tuples and scalars from more general relations.

There is no function application operator. Relational join is used in
its place, and is syntactically cleaner that it would be in a language
that distinguished sets and scalars. For example, given a relation
f that is functional, and x and y constrained to be scalars, the for-
mula

x.f = y

constrains the image of x under the relation f to be the set y. So
long as x is in the domain of f, this formula will have the same
meaning as it would if the dot were interpreted as function ap-
plication, f as a function, and x and y as scalar-typed variables. But
if x is out of the domain of f, the expression x.f will evaluate to the
empty set, and since y is constrained to be a scalar (that is, a single-
ton set), the formula as a whole will be false. In a language with
function application, various meanings are possible, depending on
how partial functions are handled. An advantage of the Alloy ap-
proach is that it sidesteps this issue.

The declaration syntax of Alloy has been designed so that famil-
iar forms have their expected meaning. Thus, when X is a set, the
quantified formula

all x: X | F

has x range over scalar values. That is, the formula F is evaluated
for bindings of x to singleton subsets of X.

The syntax of Alloy does in fact admit higher-order quantifica-
tions. For example, the assertion that join is associative over bi-
nary relations may be written:

assert {all p, q, r: univ -> univ | (p.q).r = p.(q.r)}

Many such formulas become first order when presented for analy-
sis, since (as here) the quantified variables can be skolemized away.
If a formula remains truly higher order, the Alloy Analyzer will
warn the user that analysis is likely to be infeasible.

Alloy provides rudimentary support for integers. There is a class of
expressions whose values are integers. Integer values may not be

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 13

bound to variables in instances, but there is a special class of in-
teger atoms that are associated with primitive integer values, and
which may appear in relations that are bound to variables like any
other atoms. See Section 8.7 for more details.

7 Types and Overloading

Alloy’s type system was designed with different aims from that of a
programming language. There is no notion in a modelling language
of a ‘runtime error’, so type soundness is not an issue. Instead, the
type system is designed to allow as many reasonable models as
possible, without generating false alarms, while still catching prior
to analysis those errors that can be explained in terms of the types
of declared fields and variables alone.

We expect most users to be able to ignore the subtleties of the
type system. Error messages reporting that an expression is ill-
typed are never spurious, and always correspond to a real error.
Messages reporting failure to resolve an overloaded field reference
can always be handled by a small and systematic modification, ex-
plained below.

7. Type Errors
Three kinds of type error are reported:

· An arity error indicates an attempt to apply an operator to an
expression of the wrong arity, or to combine expressions of in-
compatible arity. Examples include: taking the closure of a non-
binary relation; restricting a relation to a non-set; taking the
union, intersection or difference, or comparing with equality or
subset, two relations of different arity.

· A disjointness error indicates an expression in which two re-
lations are combined in such a way that the result will always
be the empty relation, irrespective of their value. Examples in-
clude: taking the intersection of two relations that do not in-
tersect; joining two relations that have no matching elements;
and restricting a relation with a set disjoint from it. Applying
the overriding operator to disjoint relations also generates a
disjointess error, even though the result may not be the empty

14 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

relation, since the relations are expected to overlap (a union suf-
ficing otherwise).

· An irrelevance error indicates that an expression (usually ap-
pearing in a union expression) is redundant, and could be
dropped without affecting the value of the enclosing formula.
Examples include: expressions such as (a+b)&c and formulas
such as c in a+b, where one of a or b is disjoint from c.

Note that unions of disjoint types are permitted, because they
might not be erroneous. Thus the expression (a+b).c, for example,
will be type correct even if a and b have disjoint types, so long as
the type of the leftmost column of c overlaps with the types of the
righthand columns of both a and b.

7.2 Field Overloading
Fields of signatures may be overloaded. That is, two distinct signa-
tures may have fields of the same name, so long as the signatures
do not represent sets that overlap. Field references are resolved
automatically.

Resolution of overloading exploits the full context of an expres-
sion, and uses the same information used by the type checker.
Each possible resolving of an overloaded reference is considered.
If there is exactly one that would not generate a type error, it is
chosen. If there is more than one, an error message is generated
reporting an ambiguous reference.

Resolution takes advantage of all that is know about the types of
the possible resolvents, including arity, and the types of all columns
(not only the first). Thus, in contrast to the kind of resolution used
for field dereferencing in object-oriented languages (such as Java),
the reference to f in an expression such as x.f can be resolved not
only by using the type of x, but by using in addition the context in
which the entire expression appears. For example, if the enclosing
expression were a+x.f, the reference f could be resolved by the arity
of a.

If a field reference cannot be resolved, it is easy to modify the ex-
pression so that it can be. If a field reference f is intended to refer
to the field f declared in signature S, one can replace a reference to
f by the expression S <: f. This new expression has the same mean-

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 15

ing, but is guaranteed to resolve the reference, since only the f de-
clared in S will produce a non-empty result. Note that this is not a
special casting syntax. It relies only the standard semantics of the
domain restriction operator.

7.3 Subtypes
The type system includes a notion of subtypes. This allows more
errors to be caught, and permits a finer-grained namespace for
fields.

The type of any expression is a union type consisting of the union
of some relation types. A relation type is a product of basic types.
A basic type is either a signature type, the predefined universal
type univ, or the predefined empty type none. The basic types form
a lattice, with univ as its maximal, and none as its minimal, element.
The lattice is obtained from the forest of trees of declared signature
types, augmented with the subtype relationship between top-level
types and univ, and between none and all signature types.

The union consisting of no relation types is used in type checking
to represent ill-typed expressions, and is distinct from the union
consisting of a relation type that is a product of none’s (which is
used for expressions constructed with the constant none, repre-
senting an intentionally empty relation).

The semantics of subtyping is very simple. If one signature is a
subtype of another, it represents a subset. The immediate subtypes
of a signature are disjoint. Two subtypes therefore overlap only if
one is, directly or indirectly, a subtype of the other. The type sys-
tem computes a type for an expression that is an approximation to
its value. Consider, for example, the join

e1 . e2

where the subexpressions have types

e1 : A -> B
e2 : C -> D

If the basic types B and C do not overlap, the join gives rise to a dis-
jointness error. Otherwise, one of B or C must be a subtype of the
other. The type of the expression as a whole will be A -> D.

16 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

No casts are needed, either upwards or downwards. If a field f is
declared in a signature S, and sup and sub are respectively variables
whose types are a supertype and subtype of S, both sup.f and sub.
f will be well typed. In neither case is the expression necessarily
empty. In both cases it may be empty: if sup is not in S or f is de-
clared to be partial and sub is outside its domain. On the other
hand, if d is a variable whose type D is disjoint from the type of
S – for example because both S and D are immediate subtypes of
some other signature – the expression d.f will be ill-typed, since it
must always evaluate to the empty relation.

7.4 Functions and Predicates
Invocations of functions and predicates are type checked by en-
suring that the actual argument expressions are not disjoint from
the formal arguments. The types of formals are not used to resolve
overloading of field names in actual expressions.

The constraints implicit in the declarations of arguments of func-
tions and predicates are conjoined to the body formula when a
function or predicate is run. When a function or predicate is in-
voked, however, these implicit constraints are ignored. You should
therefore not rely on such declaration constraints to have a seman-
tic effect; they are intended as redundant documentation. A future
version of Alloy may include a checking scheme that determines
whether actual expressions have values compatible with the decla-
ration constraints of formals.

7.5 Integers and Type Checking
Only integer expressions take on primitive integer values. The
parser distinguishes between relational expressions and integer
expressions, so type information is not needed to resolve the over-
loading of the plus and minus operators (which act as addition and
subtraction for integer expressions, and union and difference for
relational expressions). In a formula such as

#S+S =1

the plus symbol will be parsed as a relational operator (and the #
operator will be applied to the enture left-hand side), since other-
wise the formula as a whole would not be syntactically valid.

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 17

The Int type, which represents the predefined signature for inte-
ger-carrying objects, is treated by the type system like any other
basic type. It is disjoint from all other basic types except for the
universal type univ.

7.6 Multiplicity Keywords
Alloy uses the following multiplicity keywords shown with their
interpretations:

· lone: zero or one;
· one: exactly one;
· some: one or more.

To remember that lone means zero or one, it may help to think of
the word as short for ‘less than or equal to one’.

These keywords are used in several contexts:

· As quantifiers in quantified formulas: the formula one x: S | F,
for example, says that there is exactly one x that satisfies the
formula F;

· As quantifiers in quantified expressions: the formula lone e, for
example, says that the expression e denotes a relation with con-
taining at most one tuple;

· In set declarations: the declaration x: some S, for example, where
S has unary type, declares x to be a set of elements drawn from
S that is non-empty;

· In relation declarations: the declaration r: A one -> one B, for
example, declares r to be a one-to-one relation from A to B.

· In signature declarations: the declaration one sig S {…}, for ex-
ample, declares S to be a signature whose set contains exactly
one element.

When declaring a set variable, the default is one, so in a declaration
x: X in which X has unary type, x will be constrained to be a scalar.
In this case, the set keyword overrides the default.

18 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

8 Language Features

8. Module Structure
The productions discussed in this section are:

module ::= header import* paragraph*
header ::= module [path] moduleId [[sigId,+]]
import ::= open [path] moduleId [[sigRef,*]] [as aliasId]
paragraph ::= sigDecl | factDecl | funDecl | predDecl | assertDecl
 | runCmd | checkCmd
path ::= id / [path]
sigRef ::= [moduleRef] sigId | Int | univ
moduleRef ::= [path] moduleId [[sigRef,*]] | aliasId
funRef ::= [moduleRef] funId
predRef ::= [moduleRef] predId
assertRef ::= [moduleRef] assertId

An Alloy model consists of one or more files, each containing a
single module. One ‘main’ module is presented for analysis; it im-
ports other modules directly (through its own imports) or indi-
rectly (through imports of imported modules).

A module consists of a header identifying the module, some im-
ports, and some paragraphs:

module ::= header import* paragraph*

A model can be contained entirely within one module, in which
case no imports are necessary. A module without paragraphs is
syntactically valid but useless.

The paragraphs of a module are signatures, facts, functions, predi-
cates, assertions, run commands and check commands:

paragraph ::= sigDecl | factDecl | funDecl | predDecl | assertDecl
 | runCmd | checkCmd

Signatures represent sets and are assigned values in analysis; they
therefore play a role similar to static variables in a programming
language. Facts, functions and predicates are packagings of con-
straints. Commands are used to instruct the Alloy Analyzer to
perform various analyses. A module exports as components all

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 19

paragraphs except for commands; only the commands of the main
module are relevant in an analysis.

A module is named by a path and a module identifier, and may be
parameterized by one or more signature parameters:

header ::= module [path] moduleId [[sigId,+]]
path ::= id / [path]

The path must correspond to the directory location of the mod-
ule’s file with respect to a default root directory. A set of root di-
rectories may be specified in the Alloy Analyzer, so that libraries
and domain-specific models, for example, may be kept in different
locations. A module with the module identifier m must be stored
in the file named m.als.

A separate import is needed for each imported module. It gives
the path and name of the imported module, instantiations of its
parameters (if any), and optionally an alias:

import ::= open [path] moduleId [[sigRef,*]] [as aliasId]
sigRef ::= [moduleRef] sigId | Int | univ

There must be an instantiating signature parameter for each pa-
rameter of the imported module. An instantiating signature may
be a type, subtype or subset, or one of the predefined types Int and
univ. If the imported module declares a signature that is an exten-
sion of a signature parameter, instantiating that parameter with a
subset or with Int will be an error.

A single module may be imported more than once. The result is
not to create multiple copies of the same module, but rather to
make a single module available under different names.

A component of an imported module is referred to by its quali-
fied name, consisting of the module reference and the component
name:

sigRef ::= [moduleRef] sigId | Int | univ
funRef ::= [moduleRef] funId
predRef ::= [moduleRef] predId
assertRef ::= [moduleRef] assertId

When a component reference would be ambiguous, it must be
qualified. Components declared in the same module in which they

20 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

are referenced need not be qualified. A module may also be given
an alias when imported to allow more succinct qualified names. If
an alias is declared, the regular module name may not be used.

The module reference may be either the path and module identi-
fier of the imported module along with any instantiating param-
eters (exactly as it appears in the import statement), or an alias if
one was declared in the import:

moduleRef ::= [path] moduleId [[sigRef,*]] / | aliasId /

Paragraphs may appear in a module in any order. There is no re-
quirement of definition before use. The order of import statements
is also immaterial, even if one provides instantiating parameters to
another.

The signature Int is a special predefined signature representing in-
tegers, and can be used without an explicit import.

A module may not contain references to components of another
module that it does not import, even if that module is imported
along with it in another module.

Module names occupy their own name space, and may thus coin-
cide with the names of signatures, paragraphs, arguments or vari-
ables without conflict.

8.2 Signature Declarations
The productions discussed in this section are:

sigDecl ::=
 [abstract] [mult] sig sigID,+ [extends sigRef] sigBody
 | [mult] sig sigID,+ in sigRef sigBody
sigRef ::= [moduleRef] sigId | Int
sigBody ::= { decl,* } [formulaSeq]
formulaSeq ::= { formula* }
moduleRef ::= [path] moduleId [[sigRef,*]] | aliasId
mult ::= lone | one | some

A signature represents a set of atoms. There are two kinds of sig-
nature. A signature declared using the in keyword is a subset sig-
nature:

sigDecl ::= [mult] sig sigID,+ in sigRef sigBody

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 21

All other signatures are type signatures:

sigDecl ::= [abstract] [mult] sig sigID,+ [extends sigRef] sigBody

A type signature plays the role of a type or subtype in the type
system. A type signature that does not extend another signature
is a top-level signature, and its type is a top-level type. A signature
that extends another signature is said to be a subsignature of the
signature it extends, and its type is taken to be a subtype of the
type of the signature extended. A signature may not extend itself,
directly or indirectly. The type signatures therefore form a type
hierarchy whose structure is a forest: a collection of trees rooted
in the top-level types.

Top-level signatures represent mutually disjoint sets, and subsig-
natures of a signature are mutually disjoint. Any two distinct type
signatures are thus disjoint unless one extends the other, directly
or indirectly, in which case they overlap.

A subset signature represents a set of elements that is a subset
of the union of its parents: the signatures listed in its declaration.
These may be subset or type signatures. A subset signature may
not be extended, and subsets of a signature are not necessarily mu-
tually disjoint. A subset signature may not be its own parent, di-
rectly or indirectly. The subset signatures and their parents there-
fore form a directed acyclic graph, rooted in type signatures. The
type of a subset signature is in general a union of top-level types or
subtypes, consisting of the parents of the subset that are types, and
the types of the parents that are subsets.

An abstract signature, marked abstract, is constrained to hold only
those elements that belong to one of the signatures that extends it.
If there are no extensions, the marking has no effect. The intent is
that an abstract signature represents a classification of elements
that is refined further by more ‘concrete’ signatures. If it has no ex-
tensions, the abstract keyword is likely an indication that the model
is incomplete.

Any multiplicity keyword (with the exception of set, since it has
no effect), may be associated with a signature, and constrains the
signature’s set to have the number of elements specified by the
multiplicity.

22 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

The body of a signature declaration consists of declarations of
fields, and an optional signature fact constraining the elements of
the signature:

sigBody ::= { decl,* } [formulaSeq]

A subtype signature inherits the fields of the signature it extends,
along with any fields that signature inherits. A subset signature in-
herits the fields of its parent signatures, along with their inherited
fields.

A signature may not declare a field whose name conflicts with the
name of an inherited field. Moreover, two subset signatures may
not declare a field of the same name if their types overlap. This en-
sures that two fields of the same name can only be declared in dis-
joint signatures, and there is always a context in which two fields
of the same name can be distinguished. If this were not the case,
some overloadings would never be resolvable.

Like any other fact, the signature fact is a constraint that always
holds. Unlike other facts, however, a signature fact is implicitly
quantified over the signature set. Given the signature declaration

sig S {…} { F }

the signature fact F is interpreted as if one had written an explicit
fact

fact { all this: S | F’ }

where F’ is like F, but has each reference to a field f of S (whether
declared or inherited) replaced by this.f. Prefixing a field name
with the special symbol @ preempts this implicit expansion.

Declaring multiple signatures at once in a single signature declara-
tion is equivalent to declaring each individually. Thus the declara-
tion

sig A, B extends C {f: D}

for example, introduces two subsignatures, A and B, of C, and for
each declares a field f.

8.3 Declarations
The productions discussed in this section are:

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 23

decl ::= [part | disj] varId,+ : declExpr
declExpr ::=
 [mult] expr
 | expr [mult] -> [mult] expr
mult ::= lone | one | some

The same declaration syntax is used for fields of signatures, argu-
ments to functions and predicates, and quantified variables – all
of which we shall here refer to as variables. The interpretation for
fields, which is slightly different, is explained second.

A declaration introduces one or more variables, and constrains
their values and type:

decl ::= [part | disj] varId,+ : declExpr

A declaration has two effects:

· Semantically, it constrains the value a variable can take. The re-
lation denoted by the variable (on the left) is constrained to be a
subset of the relation denoted by the declaration expression (on
the right). When more than one variable is declared at once, the
keywords disj and part may be used. The keyword disj constrains
the declared variables to be mutually disjoint. The keyword part
constrains them additionally to form a partition of the relation
denoted by the declaration expression. Multiplicity constraints,
explained below, constrain the value of a variable further.

· For the purpose of type checking, a declaration gives the vari-
able a type. A type is determined for the declaration expression,
and that type is assigned to the variable. Any variable that ap-
pears in the declaration expression must have been declared
already, either earlier in the sequence of declarations in which
this declaration appears, or earlier elsewhere. For a quantified
variable, this means within an enclosing quantifier; for a field of
a signature, this means that the field is inherited; for a function
or predicate argument, this means in the argument declarations
of the enclosing function or predicate.

Note that the declaration expression of a field declaration in a sig-
nature may not refer to fields declared in other signatures, unless
they are inherited.

24 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

The declaration expression is an arbitrary expression. If the ex-
pression denotes a set (that is, a unary relation), it may be prefixed
by a multiplicity keyword:

declExpr ::= [mult | set] expr
mult ::= lone | one | some

If the keyword is omitted, the declared variable is constrained by
default to be a scalar (that is, to be a singleton set). The keyword
set eliminates this constraint; lone weakens it to allow the variable
to denote a ‘loner’ or ‘option’: either a singleton set or the empty
set; some constrains the variable to denote a non-empty set; and
one has no effect, being equivalent to omission.

If the expression denotes a relation of higher arity, the multiplicity
keywords may not be used as a prefix. If the expression is formed
with the arrow operator, the arrow itself may be elaborated with
multiplicity keywords:

declExpr ::= expr [mult] -> [mult] expr
mult ::= lone | one | some

If the declaration expression has the form e1 m->n e2, where m and
n are multiplicity keywords, the declaration imposes a multiplicity
constraint on the declared variable. An arrow expression of this
form denotes the relation whose tuples are concatenations of the
tuples in e1 and the tuples in e2. If the marking n is present, the
relation denoted by the declared variable is required to contain,
for each tuple t1 in e1, n tuples that begin with t1. If the marking m
is present, the relation denoted by the declared variable is required
to contain, for each tuple t2 in e2, m tuples that end with t2. The
markings are interpreted as follows:

· lone means zero or one;
· one means exactly one;
· some means one or more.

When the expressions e1 and e2 are unary, these reduce to familiar
notions. For example, a declaration expression of the form X ->one
Y makes the variable a total function from X to Y; the expression X
->lone Y makes it an partial function; and X one->one Y makes it a
bijection.

Declarations within a signature have essentially the same inter-
pretation. But for a field f, the declaration constraints apply not to

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 25

f itself but to this.f: that is, to the value obtained by dereferencing
an element of the signature with f. Thus, for example, the declara-
tion

sig S {f: e}

does not constrain f to be a subset of e (as it would if f were a regu-
lar variable), but rather implies

all this: S | this.f in e

Moreover, any field appearing in e is expanded according to the
rules of signature facts (Section 8.2). A similar treatment applies
to multiplicity constraints and disj/part. In this case, for example,
if e denotes a unary relation, the implicit multiplicity constraint
will make this.f a scalar, so that f itself will denote a total function
on S.

Type checking of fields has the same flavour. The field f is not as-
signed the type e, but rather the type of the expression S -> e. That
is, the domain of the relation f has the type S, and this.f has the
same type as e.

8.4 Constraint Paragraphs
The productions discussed in this section are:

factDecl ::= fact [factId] formulaSeq
predDecl ::= pred [sigRef ::] predId (decl,*) formulaSeq
funDecl ::= fun [sigRef ::] funId (decl,*) : declExpr { expr }
assertDecl ::= assert [assertId] formulaSeq
formulaSeq ::= { formula* }
formula ::= … | [expr ::] predRef (expr,*)
expr ::= … | [expr ::] funRef (expr,*)

A fact is a constraint that always holds. A predicate is a template
for a constraint that can be instantiated in different contexts. A
function is a template for an expression. An assertion is a con-
straint that is intended to follow from the facts of a model; it is
thus an intentional redundancy. Assertions can be checked by the
Alloy Analyzer; functions and predicates can be simulated.

A fact can be named for documentation purposes. An assertion
can be named or anonymous, but since a command to check an as-

26 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

sertion must name it, an anonymous assertion cannot be checked.
Functions and predicates must always be named.

A fact consists of an optional name and a constraint, given as a
sequence of formulas, which are implicitly conjoined:

factDecl ::= fact [factId] formulaSeq

A predicate declaration consists of the name of the predicate,
some argument declarations, and a constraint, given as a sequence
of formulas, which are implicitly conjoined:

predDecl ::= pred [sigRef ::] predId (decl,*) formulaSeq

The argument declarations may include a first argument declared
anonymously. When a predicate is declared in the form

pred S::f (…) {…}

the first argument is taken to be a scalar of signature S, which is
referred to within the body of the predicate using the keyword this,
as if the declaration had been written

pred f (this: S, …) {…}

A function declaration consists of the name of the predicate, some
argument declarations, and an expression:

funDecl ::= fun [sigRef ::] funId (decl,*) : declExpr { expr }

The argument declarations include a declaration expression for
the result of the function, corresponding to the value of the ex-
pression. The first argument may be declared anonymously, ex-
actly as for predicates.

A predicate may be invoked as a formula by providing an expres-
sion for each argument:

formula ::= [expr ::] predRef (expr,*)

A function likewise may be invoked as an expression by providing
an expression for each argument:

expr ::= [expr ::] funRef (expr,*)

Invocation can be viewed as textual inlining. An invocation of a
predicate gives a formula which is obtained by taking the formula
of the predicate’s body, and replacing the formal arguments by the
corresponding expressions of the invocation. Likewise, invocation

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 27

of a function gives an expression obtained by taking the expres-
sion of the function’s body, and replacing the formal arguments of
the function by the corresponding expressions of the invocation.
Recursive invocations are not currently supported.

A function or predicate invocation may present its first argument
in receiver position. So instead of writing

p (a, b, c)

for example, one can write

a::p (b, c)

The form of invocation is not constrained by the form of declara-
tion. Although often a function or predicate will be both declared
with an anonymous receiver argument and used with receiver syn-
tax, this is not necessary. The first argument may be presented as
a receiver irrespective of the format of declaration, and the first
argument may be declared anonymously irrespective of the format
of use. In particular, it can be convenient to invoke a function or
predicate in receiver form when the first argument is not a sca-
lar, even though it cannot be declared with receiver syntax in that
case.

Within a module, no two constraint paragraphs may be declared
with the same name, nor may a constraint paragraph have the
same name as a signature.

8.5 Commands
The productions discussed in this section are:

runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]
checkCmd ::= [commandId :] check assertRef [scope]
scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int
sigRef ::= [moduleRef] sigId | Int | univ

A command is an instruction to the Alloy Analyzer to perform
an analysis. Analysis involves constraint solving. A run command

28 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

causes the analyzer to search for an instance that witnesses the
consistency of a function or a predicate. A check command causes
it to search for a counterexample showing that an assertion does
not hold.

A command to run a function or predicate consists of an optional
command name, the keyword run, a reference to the function or
predicate, and, optionally, a scope specification:

runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]

Similarly, a command to check an assertion consists of an optional
command name, the keyword check, a reference to the assertion,
and, optionally, a scope specification:

checkCmd ::= [commandId :] check assertRef [scope]

The command name is used in the user interface of the Alloy Ana-
lyzer (or at the command line) to select the command to be ex-
ecuted. In the graphical user interface, the command is selected
from a pop-up menu; the only reason for the command name is
to allow commands to be more easily recognized when there are
many commands for the same assertion, function or predicate. No
two commands in a module may have the same command names.

As explained in Section 6, analysis always involves solving a con-
straint. For a predicate with body formula P, the constraint solved
is

P and F and D

where F is the conjunction of all facts, and D is the conjunction of
all declaration constraints, including the declarations of the pred-
icate’s arguments. Note that when the predicate’s body is empty,
the constraint is simply the facts and declaration constraints of
the model. An empty predicate is often a useful starting point in
analysis to determine whether the model is consistent, and, if so,
to examine some of its instances.

For a function named f whose body expression is E, the constraint
solved is

f = E and F and D

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 29

where F is the conjunction of all facts, and D is the conjunction of
all declaration constraints, including the declarations of the func-
tion arguments. The variable f stands for the value of the expres-
sion.

Note that the declaration constraints of a predicate or function are
used when that function or predicate is run, but are ignored when
the predicate or function is invoked.

For an assertion whose body formula is A, the constraint solved is

F and D and not A

namely the negation of

F and D implies A

where F is the conjunction of all facts, and D is the conjunction of
all declaration constraints.

An instance or counterexample found by the analyzer will assign
values to the following variables:

· The signatures and fields of the model;
· For an instance of a predicate or function, the arguments of

the function or predicate, one of which will be named this if
the first argument is declared anonymously;

· For an instance of function, a variable denoting the value of
the expression, with the same name as the function itself.

The analyzer may also give values to skolem constants as witnesses
for existential quantifications. Whether it does so, and whether
existentials inside universals are skolemized, depends on prefer-
ences set by the user.

The search for an instance is conducted within a scope, which is
specified as follows:

scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int
sigRef ::= [moduleRef] sigId | Int | univ

The scope specification of a command places bounds on the sizes
of the sets assigned to type signatures, thus making the search fi-
nite. Only type signatures are involved; subset signatures may not

30 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

be bounded in a scope specification. For the rest of this section,
‘signature’ should be read as synonymous with ‘type signature’.

The bounds are determined as follows:
· If no scope specification is given, a default scope of 3 ele-

ments is used: each top-level signature is constrained to rep-
resent a set of at most 3 elements.

· If the scope specification takes the form for N, a default of N is
used instead.

· If the scope specification takes the form for N but …, every
signature listed following but is constrained by its given
bound, and any top-level signature whose bound is not given
implicitly is bounded by the default N.

· Otherwise, for an explicit list without a default, each signa-
ture listed is constrained by the given bound.

Implicit bounds are determined as follows:
· If an abstract signature has no explicit bound, but its sub-

signatures have bounds, implicit or explicit, its bound is the
sum of those of its subsignatures.

· If an abstract signature has a bound, explicit or by default,
and all but one of its subsignatures have bounds, implicit or
explicit, the bound of the remaining subsignature is the dif-
ference between the abstract signature’s bound and the sum
of the bounds of the other subsignatures.

· A signature declared with the multiplicity keyword one has a
bound of 1.

· If an implicit bound cannot be determined for a signature by
these rules, the signature has no implicit bound.

If a scope specification uses the keyword exactly, the bound is tak-
en to be both an upper and lower bound on the cardinality of the
signature. The rules for implicit bounds are adjusted accordingly.
For example, an abstract signature whose subsignatures are con-
strained exactly will likewise be constrained exactly.

The scope specification must be:
· consistent: at most one bound must be associated with any

signature, implicitly, explicitly or by default;
· complete: every top-level signature must have a bound;
· uniform: a signature without a bound may not have a subsig-

nature that has a bound.

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 31

By default, the predefined signature Int is limited to 3 elements,
so that there may be at most 3 integer objects appearing in an in-
stance or counterexample. The bound on the integer values rep-
resented by these integer objects, and on the values of integer ex-
pressions, may be altered by assigning a bound to int. A bound of k
for int limits integer values to be between 0 and 2k-1. Its default is
5, so integers by default range from 0 to 31.

8.6 Expressions
The productions discussed in this section are:

expr ::= [@] varId | sigRef | this |
 | none | univ | iden
 | unOp expr | expr binOp expr | expr[expr]
 | { decl,+ | [formula] }
 | let letDecl,+ | expr
 | if formula then expr else expr
 | (expr)
letDecl ::= varId = expr
binOp ::= + | - | & | . | -> | <: | :> | ++
unOp ::= ~ | * | ^

There are two kinds of expression in Alloy: relational expressions,
and integer expressions. When mentioned without qualification,
the term ‘expression’ refers to a relational expression.

Every relational expression denotes a relation. A set is represented
as a relation of arity one, and a scalar is represented as a singleton
set. A tuple is a singleton relation.

Alloy’s analysis involves finding solutions to constraints. For any
candidate instance that may be a solution to the constraint, each
expression of the constraint has a value given by the instance’s
bindings of values to variables.

An expression may consist simply of a variable name, signature
reference, or the special argument this:

expr ::= [@] varId | sigRef | this |

If the variable denotes a field name, its value is the value bound
to that field in the instance being evaluated. In contexts in which
field names are implicitly dereferenced – that is, in signature dec-

32 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

laration expressions and signature facts – the prefix @ preempts
dereferencing (see Section 8.2). If there is more than one field of
the given name, the reference is resolved, or rejected if ambiguous
(see Section 7).

If a variable denotes a quantified or let-bound variable, its value
is determined by the binding. If the variable is an argument of a
function or predicate, the analysis at hand must be a run of that
function or predicate (since if the function or predicate is invoked,
its meaning is obtained by inlining and the argument has been re-
placed) and the variable’s value is bound speculatively to each pos-
sible value during search.

An expression may be a relational constant:

expr ::= none | univ | iden

The three constants none, univ and iden denote respectively: the
empty unary relation (that is, the set containing no elements), the
universal unary relation (the set containing every element) and the
identity relation (the binary relation that relates every element to
itself).

Note that univ and iden are interpreted over the universe of all at-
oms. So a formula such as

iden in r

will be unsatisfiable unless the relation r has type univ -> univ. To
say that r is a reflexive relation, you might write instead

t <: iden in r

for example, where r has type t -> t.

An expression may be a compound expression:

expr ::= unOp expr | expr binOp expr | expr[expr]
binOp ::= + | - | & | . | ->
unOp ::= ~ | * | ^

The value of a compound expression is obtained from the values
of its constituents by applying the operator given. The meanings of
the operators are as follows:

· ~e: transpose of e;
· ^e: transitive closure of e;

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 33

· *e: reflexive-transitive closure of e;
· e1 + e2: union of e1 and e2;
· e1 - e2: difference of e1 and e2;
· e1 & e2: intersection of e1 and e2;
· e1 . e2: join of e1 and e2;
· e2 [e1]: join of e1 and e2;
· e1 -> e2: product of e1 and e2;
· e2 <: e1: domain restriction of e1 to e2;
· e1 :> e2: range restriction of e1 to e2;
· e1 ++ e2: relational override of e1 by e2.

For the first three (the unary operators), e is required to be binary.
For the set theoretic operations (union, difference and intersec-
tion) and for relational override, the arguments are required to
have the same arity. For the restriction operators, the argument e2
is required to be a set.

Note that e1[e2] is equivalent to e2.e1, but the dot and square
brackets operators have different precedence.

The transpose of a relation is its mirror image: the relation ob-
tained by reversing each tuple. The transitive closure of a relation
is the smallest enclosing relation that is transitive (that is, relates a
to c whenever there is a b such that it relates a to b and b to c). The
reflexive-transitive closure of a relation is the smallest enclosing
relation that is transitive and reflexive (that is, includes the identity
relation).

The union, difference and intersection operators are the standard
set theoretic operators, applied to relations viewed as sets of tu-
ples. The union of e1 and e2 contains every tuple in e1 or in e2; the
intersection of e1 and e2 contains every tuple in both e1 and in e2;
the difference of e1 and e2 contains every tuple in e1 but not in e2.

The join of two relations is the relation obtained by taking each
combination of a tuple from the first relation and a tuple from the
second relation, and if the last element of the first tuple matches
the first element of the second tuple, including the concatenation
of the two tuples, omitting the matching elements.

The product of two relations is the relation obtained by taking each
combination of a tuple from the first relation and a tuple from the
second relation, and including their concatenation.

34 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

The domain restriction of e1 to e2 contains all tuples in e1 that
start with an element in the set e2. The range restriction of e1 to
e2 contains all tuples in e1 that end with an element in the set e2.
These operators are especially handy in resolving overloading (see
Section 7).

The relational override of e1 by e2 contains all tuples in e2, and
additionally, any tuples of e1 whose first element is not the first
element of a tuple in e2.

An expression may be a comprehension expression:

expr ::= { decl,+ | [formula] }

The expression

{x1: e1, x2: e2, … | F}

denotes the relation obtained by taking all tuples x1 -> x2 -> …
in which x1 is drawn from the set e1, x2 is drawn from the set e2,
etc., and the formula F holds. The expressions e1, e2, etc., must be
unary, and may not be prefixed by multiplicity keywords. More
general declaration forms are not permitted, except for the use of
the disj and part keywords.

An expression may be a let expression:

expr ::= let letDecl,+ | expr
letDecl ::= varId = expr

The expression

let v1 = e1, v2 = e2, … | e

is equivalent to the expression e, but with each bound variable v1,
v2, etc. replaced by its assigned expression e1, e2, etc. Variables ap-
pearing in let declaration expressions must have been previously
declared. Recursive bindings are not permitted.

An expression may be an if expression:

expr ::= if formula then expr else expr

The expression

if F then e1 else e2

has the value of expression e1 when the formula F is true, and the
value of expression e2 otherwise.

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 35

The meaning of an invocation expression

expr ::= [expr ::] funRef (expr,*)

is explained in Section 8.4.

The meaning of the Integer expression

expr ::= Int intExpr

is explained in Section 8.7.

An expression may be parenthesized to force a particular ordering
of application of operators:

expr ::= (expr)

8.7 Integers
The productions discussed in this section are:

formula ::= intExpr [neg] intCompOp intExpr
expr ::= Int intExpr
intExpr ::= number | # expr | sum expr | int expr
 | if formula then intExpr else intExpr
 | intExpr intOp intExpr
 | let letDecl,… | intExpr
 | sum decl,+ | intExpr
 | (intExpr)
intOp ::= + | -
intCompOp ::= < | > | = | =< | >=

There are two kinds of integers in Alloy. The predefined signature
Int denotes a set of integer-carrying objects that may appear as at-
oms in relations. Integer operators may not be applied to these
objects directly. Integer expressions are distinguished syntacti-
cally from relational expressions, and have primitive integer values
which may be combined and compared using arithmetic opera-
tors. Primitive integer values may not appear as atoms in relations,
and cannot be quantified over.

Distinct integer objects never carry the same primitive integer
value. So the following assertion always holds:

assert IntegersCanonical {no disj i, j: Int | int i = int j}

36 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

A primitive integer value may be obtained from a relational ex-
pression whose value is a set of integer objects:

intExpr ::= sum expr | int expr

Both integer expressions int e and sum e have an integer value that
is the sum of the integer values associated with integer objects in
the set denoted by the relational expression e. There is no semantic
difference between the two. The intent is that sum be used to indi-
cate explicitly that the expression is expected not to be a singleton.
Usually, the int operator will be applied to an expression denoting
a single Integer object, but it is defined over a set of Integer objects
so that it always has a value.

A primitive integer value may be obtained from a relational ex-
pression of any type using a cardinality expression:

intExpr ::= # expr

The integer expression #e has an integer value corresponding to
the cardinality of e – that is, the number of tuples in the relation
denoted by the relational expression e.

A numeric constant may be used as an integer expression:

intExpr ::= number

A numeric constant is a sequence of one or more digits, of which
the first is not zero.

Integers may be combined using standard arithmetic operators for
addition and subtraction:

intExpr ::= intExpr intOp intExpr
intOp ::= + | -

The integer expression i + j evaluates to the sum of the values of the
integer expressions i and j; the integer expression i - j evaluates to
the value of the integer expression i minus the value of the integer
expression j. Note that the plus and minus symbols are overload-
ed: they are treated as arithmetic operators within integer expres-
sions, and as relational operators within relational expressions.

A sum expression computes the sum of the values of an integer
expression over a range of bindings:

intExpr ::= sum decl,+ | intExpr

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 37

The integer expression

sum x: X, y: Y, … | ie

evaluates to the sum of the values that the integer expression ie
can take for all distinct bindings of the variables x, y, etc. The most
general declaration forms are permitted, although analysis may
not be feasible when the bindings are not first order.

If-then-else and let can be applied to integer expressions:

intExpr ::=
 if formula then intExpr else intExpr
 | let letDecl,… | intExpr

with the same meaning as for relational expressions, but with in-
teger values instead.

Integer valued expressions can be compared:

formula ::= intExpr [neg] intCompOp intExpr
intCompOp ::= < | > | = | =< | >=

The meaning of the comparison operators is as follows:
· The formula i = j is true when the integer expressions i and j

have the same value;
· The formula i < j is true when i is less than j;
· The formula i > j is true when i is greater than j;
· The formula i =< j is true when i is less than or equal to j;
· The formula i >= j is true when i is greater than or equal to j.

The ‘less than or equal to’ operator is written unconventionally
with the equals symbol first so that it does not have the appearance
of an arrow, which might be confused with a logical implication.

A formula in which the comparison operator is negated

e1 not op e2

is equivalent to the formula obtained by moving the negation out-
side:

not e1 op e2

The negation operators ! and not have the same meaning.

Integer objects are obtained from integer values with the Int op-
erator:

38 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

expr ::= Int intExpr

The expression Int ie denotes the Integer object associated with
the value of the integer expression ie; it is equivalent to

{i: Int | int i = ie}

It is possible that, in a particular analysis, the scope is too small to
provide such an integer. In that case, Int ie denotes the empty set.
Note that because no two integer-carrying objects hold the same
integer value, it will never denote a set of more than one object.

8.8 Formulas
The productions discussed in this section are:

formula ::=
 quantifier expr
 | expr [neg] compOp expr
 | neg formula | formula logicOp formula
 | formula thenOp formula [elseOp formula]
 | quantifier decl,+ formulaBody
 | let letDecl,+ formulaBody
 | expr : declExpr
 | formulaSeq
 | (formula)
formulaBody ::= formulaSeq | | formula
formulaSeq ::= { formula* }
letDecl ::= varId = expr
thenOp ::= implies | =>
elseOp ::= else | ,
neg ::= not | !
logicOp ::= && | || | iff | <=> | and | or
quantifier ::= all | no | mult
mult ::= lone | one | some
compOp ::= in | : | =
declExpr ::=
 [mult | set] expr
 | expr [mult] -> [mult] expr

Elementary formulas are formed by applying quantifiers to rela-
tional expressions, or by comparing relational or integer expres-
sions.

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 39

A quantified expression takes the form

formula ::= quantifier expr
quantifier ::= all | no | mult
mult ::= lone | one | some

Its meaning depends on the quantifier chosen:
· The formula no e is true when e evaluates to a relation con-

taining no tuple.
· The formula some e is true when e evaluates to a relation con-

taining one or more tuple.
· The formula lone e is true when e evaluates to a relation con-

taining at most one tuple.
· The formula one e is true when e evaluates to a relation con-

taining exactly one tuple.

The formula all e is rejected by a static semantic check: it has no
meaning.

A comparison formula takes the form

formula ::= expr [neg] compOp expr
compOp ::= in | =

Its meaning depends on the comparison operator:
· The formula e1 in e2 is true when the relation that e1 evalu-

ates to is a subset of the relation that e2 evaluates to.
· The formula e1 = e2 is true when the relation that e1 evaluates

to to the same relation as e2.

Note that relational equality is extensional: two relations are equal
when they contain the same tuples.

A formula in which the comparison operator is negated

e1 not op e2

is equivalent to the formula obtained by moving the negation out-
side:

not e1 op e2

The negation operators ! and not have the same meaning.

Comparisons on integer expressions are covered in Section 8.7.

A negated formula takes the form

40 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

formula ::= neg formula
neg ::= not | !

The formula not F is true when the formula F is false, and vice ver-
sa. The negation operators not and ! are interchangeable.

A compound formula combines smaller formulas with logical op-
erators:

formula ::=
 formula logicOp formula
 | formula thenOp formula [elseOp formula]
logicOp ::= && | || | iff | <=> | and | or
thenOp ::= implies | =>
elseOp ::= else | ,

The meaning of the logical operators is as follows:
· The formula F and G is true when F is true and G is true.
· The formula F or G is true when one or both of F and G are

true.
· The formula F iff G is true when F and G are both false or both

true.
· The formula F implies G is true when F is false or G is true.
· The formula F implies G else H is true when both F and G are

true, or when F is false and H is true.

The logical operators may be written interchangeably as symbols:
&& for and, || for or, => for implies, <=> for iff, and a comma (,) for
else.

A formula sequence is a sequence of formulas enclosed in curly
braces:

formula ::= formulaSeq
formulaSeq ::= { formula* }

The formula

{ F G H … }

is equivalent to the conjunction

F and G and H and …

If the sequence contains no formulas, the formula is true.

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 41

A quantified formula consists of one or more declarations and a
body:

formula ::= quantifier decl,+ formulaBody
formulaBody ::= formulaSeq | | formula
formulaSeq ::= { formula* }
quantifier ::= all | no | mult
mult ::= lone | one | some

It makes no difference whether the formula body is a single for-
mula preceded by a vertical bar, or a formula sequence. The two
forms are provided so that the vertical bar can be omitted when
the body is a sequence of formulas. Some users prefer to use the
bar in all cases, writing for example:

all x: X | { F }

Others prefer never to use the bar, and use the curly braces even
when the formula sequence consists of only a single formula:

all x: X { F }

These forms are all acceptable and are interchangeable.

The meaning of the formula depends on the quantifier:
· The formula all x: e | F is true when the formula F is true for

all bindings of the variable x.
· The formula no x: e | F is true when the formula F is true for

no bindings of the variable x.
· The formula some x: e | F is true when the formula F is true for

one or more bindings of the variable x.
· The formula sole x: e | F is true when the formula F is true for

at most one binding of the variable x.
· The formula one x: e | F is true when the formula F is true for

exactly one binding of the variable x.
· The formula two x: e | F is true when the formula F is true for

exactly two bindings of the variable x.

The range and type of the bound variable is determined by its
declaration (see Section 8.3). In a sequence of declarations, each
declared variable may be bound by the declarations or previously
declared variables. For example, in the formula

all x: e, y: S - x | F

42 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

the variable x varies over the values of the expression e (assumed
to represent a set), and the variable y varies over all elements of
the set S except for x. When more than one variable is declared,
the quantifier is interpreted over bindings of all variables. For ex-
ample,

one x: X, y: Y | F

is true when there is exactly one binding that assigns values to x
and y that makes F true. So although a quantified formula with
multiple declarations may be regarded, for some quantifiers, as a
shorthand for nested formulas each with one declaration, this is
not in general true. Thus

all x: X, y: Y | F

is short for

all x: X | all y: Y | F

but

one x: X, y: Y | F

is not short for

one x: X | one y: Y | F

A quantified formula may be higher-order: that is, it may bind
non-scalar values to variables. Whether the formula is analyzable
will depend on whether it can be skolemized by the Analyzer, and
if not, how large the scope is.

A let formula allows a variable to be introduced, to highlight an
import subexpression or make the formula shorter by factoring
out a repeated subexpression:

formula ::= let letDecl,+ formulaBody
letDecl ::= varId = expr

The formula

let x1 = e1, x2 = e2, … | F

is equivalent to the formula F with each occurrence of the bound
variable x1 replaced by the expression e1, x2 by e2, etc. Like all
declarations, let declarations are interpreted in order, and may not
be recursive.

ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004 43

Predicate invocation is discussed in Section 8.4.

A declaration formula allows a multiplicity constraint to be placed
on an expression:

formula ::= declFormula
declFormula ::= expr : declExpr
declExpr ::=
 [mult | set] expr
 | expr [mult] -> [mult] expr

Declaration formulas are useful for two reasons. First, they al-
low multiplicity constraints to be placed on arbitrary expressions,
where declarations themselves only allow them to be placed on
variables. Thus,

p.q : t one->one t

for example, says that the join of p and q is a bijection. Second,
they allow additional multiplicity constraints to be expressed that
cannot be expressed in declarations. For example, the relation r of
type A -> B can be declared as a field of A:

sig A {r: set B}

Since the declaration constraints apply to the relations this.r, they
cannot constrain the multiplicity of the relation from B’s perspec-
tive. To say that r maps at most one A to each B, one could add as a
fact the declaration formula

r: A lone-> B

Another deficiency of declarations that can be overcome is that
they only allow multiplicities around one arrow to be given. For a
relation p of type A -> B -> C, a declaration of the form

all r: A ->some (B -> C) | …

makes r total on A. The constraint that R maps a pair from A -> B to
each element of C cannot be expressed in this declaration because
it requires a different parsing of the expression, associating the ar-
rows to the left rather than the right. To express this constraint,
one could use a declation formula like this:

all r: A ->some (B -> C) | r: (A -> B) some-> C => …

44 ALLOY 3.0 REFERENCE MANUAL · MAY 10, 2004

A formula may be parenthesized to force a particular ordering of
application of operators:

formula ::= (formula)

	1	Introduction
	2	Lexical Issues
	3	Namespaces
	4	Grammar
	5	Precedence and Associativity
	6	Semantic Basis
	6.1	Instances and Meaning
	6.2	Relational Logic

	7	Types and Overloading
	7.1	Type Errors
	7.2	Field Overloading
	7.3	Subtypes
	7.4	Functions and Predicates
	7.5	Integers and Type Checking
	7.6	Multiplicity Keywords

	8	Language Features
	8.1	Module Structure
	8.2	Signature Declarations
	8.3	Declarations
	8.4	Constraint Paragraphs
	8.5	Commands
	8.6	Expressions
	8.7	Integers
	8.8	Formulas

