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 Introduction

Alloy is a lightweight modelling language for software design. It is 
amenable to a fully automatic analysis, using the Alloy Analyzer. In-
formation about the Alloy project is available on its web page, http: 
alloy.mit.edu.

This manual summarizes the language. It is not likely to be suitable 
as a tutorial. An online tutorial is available on the website, and a 
book about modelling with Alloy is forthcoming.

2 Lexical Issues

The permitted characters are the printing characters of the ASCII 
character set, with the exception of:

· backslash \
· backquote `

and, of the ASCII non-printing characters, only space, horizontal 
tab, carriage return and linefeed. Since the encoding of linebreaks 
varies across platforms, the Alloy Analyzer accepts any of the stan-
dard combinations of carriage and linefeed.

The non-alphanumeric symbols are used as operators or for punc-
tuation, with the exception of

· dollar sign $;
· percent sign %;
· question mark ?;
· underscore _;
· single and double quote marks (‘ and “).

Dollar,  percent are question mark are reserved for use in future 
versions of the language. Underscore and quotes may be used in 
identifiers. Single and double quote marks (numbered 39 and 34 
in ASCII) should not be confused with typographic quote marks 
and the prime mark, which are not acceptable characters. If text 
is prepared in a word processor, ensure that a ‘smart quotes’ fea-
ture is not active, since it might generate typographic quote marks 
from simple ones.
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Characters between -- or // and the end of the line, and from /* to 
*/, are treated as comments. Multiple-line comments may not be 
nested.

Non-comment text is broken into tokens by the following separa-
tors:

· whitespace (space, tab, linebreak);
· non-alphanumeric characters (except for underscore and 

quote marks).

The meaning of the text is independent of its format; in particular, 
linebreaks are treated as whitespace just like spaces and tabs.

Keywords and identifiers are case sensitive.

Identifiers may include any of the alphabetic characters, and, ex-
cept as the first character, numbers, underscores, question mark 
and exclamation point, and quote marks. A hyphen may not ap-
pear in an identifier, since it is treated as an operator.

A numeric constant consists of a sequence of digits between 0 and 
9, whose first digit is not zero.

The following sequences of characters are recognized as single to-
kens:

· the double colon :: used for receiver syntax;
· the implication operator =>;
· the integer comparison operators >= and =<;
· the product arrow ->;
· the restriction operators <: and :>;
· the relational override operator ++;
· conjunction && and disjunction ||;
· the comment markings --, //, /* and */.

The negated operators (such as !=) are not treated as single tokens, 
so they may be written with whitespace between the negation and 
comparison operators.

The following are reserved as keywords and may not be used for 
identifiers:

abstract all and as assert 
but check disj else exactly 
extends fact for fun iden 
if iff implies in Int 
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int let lone module no 
none not one open or 
part pred run set sig 
some sum then univ

3 Namespaces

Each identifier belongs to a single namespace. There are three 
namespaces:

· Module names and module aliases;
· Signatures, fields, paragraphs (facts, functions, predicates 

and assertions), and bound variables (arguments to functions 
and predicates, and variables bound by let and quantifiers);

· Command names.

Identifiers in different namespaces may share names without risk 
of name conflict. Within a namespace, the same name may not be 
used for different identifiers with one exception: bound variables 
may shadow each other, and may shadow field names. Conven-
tional lexical scoping applies; the innermost binding applies.

4 Grammar

The grammar uses the standard BNF operators:
· x* for zero or more repetitions of x;
· x+ for one or more repetitions of x;
· x | y for a choice of x or y;
· [x] for an optional x.

In addition,
· x,* means zero or more comma-separated occurrences of x;
· x,+ means one or more comma-separated occurrences of x.

To avoid confusion with grammar symbols, square brackets, star, 
plus and the vertical bar are set in bold type when they are to be 
interpreted as terminals.

Every name ending Id is an identifier, and is to be treated as a ter-
minal. The terminal number represents a numeric constant.

module ::= header import* paragraph*
header ::= module [path] moduleId [[ sigId,+ ]]
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path ::= directoryId / [path]
import ::= open [path] moduleId [[ sigRef,* ]] [as aliasId]
 
paragraph ::=
 sigDecl | factDecl | funDecl | predDecl | assertDecl | runCmd | 
checkCmd
 
sigDecl ::=
 [abstract] [mult] sig sigID,+ [extends sigRef] sigBody
 | [mult] sig sigID,+  in sigRef sigBody
sigBody ::= { decl,* } [formulaSeq]
  
factDecl ::= fact [factId] formulaSeq
assertDecl ::= assert [assertId] formulaSeq
funDecl ::= fun [sigRef ::] funId ( decl,*) :  declExpr { expr }
predDecl ::= pred [sigRef ::] predId ( decl,* ) formulaSeq
 
runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]
checkCmd ::= [commandId :] check assertRef [scope]
 
scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int
 
decl ::= [part | disj] varId,+ : declExpr
letDecl ::= varId = expr
declExpr ::=
 [mult | set] expr
 | expr [mult] -> [mult] expr
mult ::= lone | one | some
  
expr ::= [@] varId | sigRef | this |
 | none | univ | iden
 | unOp expr | expr binOp expr | expr[ expr ]
 | { decl,+ | [formula] }
 | let letDecl,+ | expr
 | if formula then expr else expr
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 | Int intExpr
 | [expr ::] funRef ( expr,* )
 | ( expr )
 
intExpr ::= number | # expr | sum expr | int expr
 | if formula then intExpr else intExpr
 | intExpr intOp intExpr
 | let letDecl,… | intExpr
 | sum decl,+ | intExpr
 | ( intExpr )
intOp ::= + | -
 
formulaBody ::= formulaSeq | | formula
formulaSeq ::= { formula* }
formula ::= expr [neg] compOp expr
 | quantifier expr
 | intExpr [neg] intCompOp intExpr
 | neg formula | formula logicOp formula
 | formula thenOp formula [elseOp formula]
 | quantifier decl,+ formulaBody
 | let letDecl,+ formulaBody
 | [expr ::] predRef ( expr,* )
 | expr : declExpr
 | formulaSeq
 | ( formula )
 
thenOp ::= implies | =>
elseOp ::= else | ,
 
neg ::= not | !
logicOp ::= && | || | iff | <=> | and | or
quantifier ::= all | no | mult
binOp ::= + | - | & | . | -> | <: | :> | ++
unOp ::= ~ | * | ^
compOp ::= in | =

intCompOp ::= < | > | = | =< | >=   funRef ::= [moduleRef] funId 
predRef ::= [moduleRef] predId assertRef ::= [moduleRef] asser-
tId sigRef ::= [moduleRef] sigId | Int | univ moduleRef ::= [path] 
moduleId [[ sigRef,* ]] / | aliasId /
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5 Precedence and Associativity

The precedence order for logical operators, tightest first, is:
· negation operators: ! and not;
· conjunction: && and and;
· implication: =>, <=>, implies and iff;
· disjunction: || and or.

The precedence order for expression operators, tightest first, is:
· unary operators: ~, ^ and *;
· restriction operators: <: and :>;
· dot join: . ;
· square brackets join: [];
· arrow product: ->;
· intersection: &;
· override: ++;
· union and difference: + and -.

Note that in particular dot binds more tightly than square brack-
ets, so a.b[c] is parsed as (a.b)[c].

All binary operators are associative, except for: the logical implica-
tion operator, and the expression operators dot, intersection and 
difference. Implication associates to the right, and the expression 
operators associate to the left. So, for example, p => q => r is parsed 
as p => (q => r), and a.b.c is parsed as (a.b).c.

In an implication, an else-clause is associated with its closest then-
clause. So the formula

p => q => r, s

for example, is parsed as

p => (q => r, s)

6 Semantic Basis

6. Instances and Meaning
A model’s meaning is several collections of instances. An instance 
is a binding of values to variables. Typically, a single instance rep-
resents a state, or a pair of states (corresponding to execution of an 
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operation), or an execution trace. The language has no built-in no-
tion of state machines, however, so an instance need not represent 
any of these things.

The collections of instances assigned to a model are:
· A set of core instances associated with the facts of the model, 

and the constraints implicit in the signature declarations. 
These instances have as their variables the signatures and 
their fields, and they bind values to them that make the facts 
and declaration constraints true.

· For each function or predicate, a set of those instances for 
which the facts and declaration constraints of the model as 
a whole are true, and additionally the constraint of the func-
tion or predicate are true. The variables of these instances are 
those of the core instances, extended with the arguments of 
the function or predicate.

· For each assertion, a set of those instances for which the facts 
and declaration constraints of the model as a whole are true, 
but for which the constraint of the assertion is false.

A model without any core instances is inconsistent, and almost 
certainly erroneous. A function or predicate without instances is 
likewise inconsistent, and is unlikely to be useful. An assertion is 
expected not to have any instances: the instances are counterex-
amples, which indicate that the assertion does not follow from the 
facts.

The Alloy Analyzer finds instances of a model automatically by 
search within finite bounds (specified by the user as a scope; see 
Section 8.5 below). Because the search is bounded, failure to find 
an instance does not necessarily mean that one does not exist. But 
instances that are found are guaranteed to be valid.

6.2 Relational Logic
Alloy is a first order relational logic. The values assigned to vari-
ables, and the values of expressions evaluated in the context of a 
given instance, are relations. These relations are first order: that is, 
they consist of tuples whose elements are atoms (and not them-
selves relations).

Alloy has no explicit notion of sets, scalars or tuples. A set is simply 
a unary relation; a scalar is a singleton, unary relation; and a tuple 
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is a singleton relation. The type system distinguishes sets from re-
lations because they have different arity, but does not distinguish 
tuples and scalars from more general relations.

There is no function application operator. Relational join is used in 
its place, and is syntactically cleaner that it would be in a language 
that distinguished sets and scalars. For example, given a relation 
f that is functional, and x and y constrained to be scalars, the for-
mula

x.f = y

constrains the image of x under the relation f to be the set y. So 
long as x is in the domain of f, this formula will have the same 
meaning as it would if the dot were interpreted as function ap-
plication, f as a function, and x and y as scalar-typed variables. But 
if x is out of the domain of f, the expression x.f will evaluate to the 
empty set, and since y is constrained to be a scalar (that is, a single-
ton set), the formula as a whole will be false. In a language with 
function application, various meanings are possible, depending on 
how partial functions are handled. An advantage of the Alloy ap-
proach is that it sidesteps this issue.

The declaration syntax of Alloy has been designed so that famil-
iar forms have their expected meaning. Thus, when X is a set, the 
quantified formula

all x: X | F

has x range over scalar values. That is, the formula F is evaluated 
for bindings of x to singleton subsets of X.

The syntax of Alloy does in fact admit higher-order quantifica-
tions. For example, the assertion that join is associative over bi-
nary relations may be written:

assert {all p, q, r: univ -> univ | (p.q).r = p.(q.r)}

Many such formulas become first order when presented for analy-
sis, since (as here) the quantified variables can be skolemized away. 
If a formula remains truly higher order, the Alloy Analyzer will 
warn the user that analysis is likely to be infeasible.

Alloy provides rudimentary support for integers. There is a class of 
expressions whose values are integers. Integer values may not be 
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bound to variables in instances, but there is a special class of in-
teger atoms that are associated with primitive integer values, and 
which may appear in relations that are bound to variables like any 
other atoms. See Section 8.7 for more details.

7 Types and Overloading

Alloy’s type system was designed with different aims from that of a 
programming language. There is no notion in a modelling language 
of a ‘runtime error’, so type soundness is not an issue. Instead, the 
type system is designed to allow as many reasonable models as 
possible, without generating false alarms, while still catching prior 
to analysis those errors that can be explained in terms of the types 
of declared fields and variables alone.

We expect most users to be able to ignore the subtleties of the 
type system. Error messages reporting that an expression is ill-
typed are never spurious, and always correspond to a real error. 
Messages reporting failure to resolve an overloaded field reference 
can always be handled by a small and systematic modification, ex-
plained below.

7. Type Errors
Three kinds of type error are reported:

· An arity error indicates an attempt to apply an operator to an 
expression of the wrong arity, or to combine expressions of in-
compatible arity. Examples include: taking the closure of a non-
binary relation; restricting a relation to a non-set; taking the 
union, intersection or difference, or comparing with equality or 
subset, two relations of different arity.

· A disjointness error indicates an expression in which two re-
lations are combined in such a way that the result will always 
be the empty relation, irrespective of their value. Examples in-
clude: taking the intersection of two relations that do not in-
tersect; joining two relations that have no matching elements; 
and restricting a relation with a set disjoint from it. Applying 
the overriding operator to disjoint relations also generates a 
disjointess error, even though the result may not be the empty 
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relation, since the relations are expected to overlap (a union suf-
ficing otherwise).

· An irrelevance error indicates that an expression (usually ap-
pearing in a union expression) is redundant, and could be 
dropped without affecting the value of the enclosing formula. 
Examples include: expressions such as (a+b)&c and formulas 
such as c in a+b, where one of a or b is disjoint from c.

Note that unions of disjoint types are permitted, because they 
might not be erroneous. Thus the expression (a+b).c, for example, 
will be type correct even if a and b have disjoint types, so long as 
the type of the leftmost column of c overlaps with the types of the 
righthand columns of both a and b.

7.2 Field Overloading
Fields of signatures may be overloaded. That is, two distinct signa-
tures may have fields of the same name, so long as the signatures 
do not represent sets that overlap. Field references are resolved 
automatically.

Resolution of overloading exploits the full context of an expres-
sion, and uses the same information used by the type checker. 
Each possible resolving of an overloaded reference is considered. 
If there is exactly one that would not generate a type error, it is 
chosen. If there is more than one, an error message is generated 
reporting an ambiguous reference.

Resolution takes advantage of all that is know about the types of 
the possible resolvents, including arity, and the types of all columns 
(not only the first). Thus, in contrast to the kind of resolution used 
for field dereferencing in object-oriented languages (such as Java), 
the reference to f in an expression such as x.f can be resolved not 
only by using the type of x, but by using in addition the context in 
which the entire expression appears. For example, if the enclosing 
expression were a+x.f, the reference f could be resolved by the arity 
of a.

If a field reference cannot be resolved, it is easy to modify the ex-
pression so that it can be. If a field reference f is intended to refer 
to the field f declared in signature S, one can replace a reference to 
f by the expression S <: f. This new expression has the same mean-
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ing, but is guaranteed to resolve the reference, since only the f de-
clared in S will produce a non-empty result. Note that this is not a 
special casting syntax. It relies only the standard semantics of the 
domain restriction operator.

7.3 Subtypes
The type system includes a notion of subtypes. This allows more 
errors to be caught, and permits a finer-grained namespace for 
fields.

The type of any expression is a union type consisting of the union 
of some relation types. A relation type is a product of basic types. 
A basic type is either a signature type, the predefined universal 
type univ, or the predefined empty type none. The basic types form 
a lattice, with univ as its maximal, and none as its minimal, element. 
The lattice is obtained from the forest of trees of declared signature 
types, augmented with the subtype relationship between top-level 
types and univ, and between none and all signature types.

The union consisting of no relation types is used in type checking 
to represent ill-typed expressions, and is distinct from the union 
consisting of a relation type that is a product of none’s (which is 
used for expressions constructed with the constant none, repre-
senting an intentionally empty relation).

The semantics of subtyping is very simple. If one signature is a 
subtype of another, it represents a subset. The immediate subtypes 
of a signature are disjoint. Two subtypes therefore overlap only if 
one is, directly or indirectly, a subtype of the other. The type sys-
tem computes a type for an expression that is an approximation to 
its value. Consider, for example, the join

e1 . e2

where the subexpressions have types

e1 : A -> B
e2 : C -> D

If the basic types B and C do not overlap, the join gives rise to a dis-
jointness error. Otherwise, one of B or C must be a subtype of the 
other. The type of the expression as a whole will be A -> D.
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No casts are needed, either upwards or downwards. If a field f is 
declared in a signature S, and sup and sub are respectively variables 
whose types are a supertype and subtype of S, both sup.f and sub.
f will be well typed. In neither case is the expression necessarily 
empty. In both cases it may be empty: if sup is not in S or f is de-
clared to be partial and sub is outside its domain. On the other 
hand, if d is a variable whose type D is disjoint from the type of 
S – for example because both S and D are immediate subtypes of 
some other signature – the expression d.f will be ill-typed, since it 
must always evaluate to the empty relation.

7.4 Functions and Predicates
Invocations of functions and predicates are type checked by en-
suring that the actual argument expressions are not disjoint from 
the formal arguments. The types of formals are not used to resolve 
overloading of field names in actual expressions.

The constraints implicit in the declarations of arguments of func-
tions and predicates are conjoined to the body formula when a 
function or predicate is run. When a function or predicate is in-
voked, however, these implicit constraints are ignored. You should 
therefore not rely on such declaration constraints to have a seman-
tic effect; they are intended as redundant documentation. A future 
version of Alloy may include a checking scheme that determines 
whether actual expressions have values compatible with the decla-
ration constraints of formals.

7.5 Integers and Type Checking
Only integer expressions take on primitive integer values. The 
parser distinguishes between relational expressions and integer 
expressions, so type information is not needed to resolve the over-
loading of the plus and minus operators (which act as addition and 
subtraction for integer expressions, and union and difference for 
relational expressions). In a formula such as

#S+S =1

the plus symbol will be parsed as a relational operator (and the # 
operator will be applied to the enture left-hand side), since other-
wise the formula as a whole would not be syntactically valid.
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The Int type, which represents the predefined signature for inte-
ger-carrying objects, is treated by the type system like any other 
basic type. It is disjoint from all other basic types except for the 
universal type univ.

7.6 Multiplicity Keywords
Alloy uses the following multiplicity keywords shown with their 
interpretations:

· lone: zero or one;
· one: exactly one;
· some: one or more.

To remember that lone means zero or one, it may help to think of 
the word as short for ‘less than or equal to one’.

These keywords are used in several contexts:

· As quantifiers in quantified formulas: the formula one x: S | F, 
for example, says that there is exactly one x that satisfies the 
formula F;

· As quantifiers in quantified expressions: the formula lone e, for 
example, says that the expression e denotes a relation with con-
taining at most one tuple;

· In set declarations: the declaration x: some S, for example, where 
S has unary type, declares x to be a set of elements drawn from 
S that is non-empty;

· In relation declarations: the declaration r: A one -> one B, for 
example, declares r to be a one-to-one relation from A to B.

· In signature declarations: the declaration one sig S {…}, for ex-
ample, declares S to be a signature whose set contains exactly 
one element.

When declaring a set variable, the default is one, so in a declaration 
x: X in which X has unary type, x will be constrained to be a scalar. 
In this case, the set keyword overrides the default.
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8 Language Features

8. Module Structure
The productions discussed in this section are:

module ::= header import* paragraph*
header ::= module [path] moduleId [[ sigId,+ ]]
import ::= open [path] moduleId [[ sigRef,* ]] [as aliasId]
paragraph ::= sigDecl | factDecl | funDecl | predDecl | assertDecl
 | runCmd | checkCmd
path ::= id / [path]
sigRef ::= [moduleRef] sigId | Int | univ
moduleRef ::= [path] moduleId [[ sigRef,* ]] | aliasId
funRef ::= [moduleRef] funId
predRef ::= [moduleRef] predId
assertRef ::= [moduleRef] assertId

An Alloy model consists of one or more files, each containing a 
single module. One ‘main’ module is presented for analysis; it im-
ports other modules directly (through its own imports) or indi-
rectly (through imports of imported modules).

A module consists of a header identifying the module, some im-
ports, and some paragraphs:

module ::= header import* paragraph*

A model can be contained entirely within one module, in which 
case no imports are necessary. A module without paragraphs is 
syntactically valid but useless.

The paragraphs of a module are signatures, facts, functions, predi-
cates, assertions, run commands and check commands:

paragraph ::= sigDecl | factDecl | funDecl | predDecl | assertDecl
 | runCmd | checkCmd

Signatures represent sets and are assigned values in analysis; they 
therefore play a role similar to static variables in a programming 
language. Facts, functions and predicates are packagings of con-
straints. Commands are used to instruct the Alloy Analyzer to 
perform various analyses. A module exports as components all 
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paragraphs except for commands; only the commands of the main 
module are relevant in an analysis.

A module is named by a path and a module identifier, and may be 
parameterized by one or more signature parameters:

header ::= module [path] moduleId [[ sigId,+ ]]
path ::= id / [path]

The path must correspond to the directory location of the mod-
ule’s file with respect to a default root directory. A set of root di-
rectories may be specified in the Alloy Analyzer, so that libraries 
and domain-specific models, for example, may be kept in different 
locations. A module with the module identifier m must be stored 
in the file named m.als.

A separate import is needed for each imported module. It gives 
the path and name of the imported module, instantiations of its 
parameters (if any), and optionally an alias:

import ::= open [path] moduleId [[ sigRef,* ]] [as aliasId]
sigRef ::= [moduleRef] sigId | Int | univ

There must be an instantiating signature parameter for each pa-
rameter of the imported module. An instantiating signature may 
be a type, subtype or subset, or one of the predefined types Int and 
univ. If the imported module declares a signature that is an exten-
sion of a signature parameter, instantiating that parameter with a 
subset or with Int will be an error.

A single module may be imported more than once. The result is 
not to create multiple copies of the same module, but rather to 
make a single module available under different names.

A component of an imported module is referred to by its quali-
fied name, consisting of the module reference and the component 
name:

sigRef ::= [moduleRef] sigId | Int | univ
funRef ::= [moduleRef] funId
predRef ::= [moduleRef] predId
assertRef ::= [moduleRef] assertId

When a component reference would be ambiguous, it must be 
qualified. Components declared in the same module in which they 
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are referenced need not be qualified. A module may also be given 
an alias when imported to allow more succinct qualified names. If 
an alias is declared, the regular module name may not be used.

The module reference may be either the path and module identi-
fier of the imported module along with any instantiating param-
eters (exactly as it appears in the import statement), or an alias if 
one was declared in the import:

moduleRef ::= [path] moduleId [[ sigRef,* ]] / | aliasId /

Paragraphs may appear in a module in any order. There is no re-
quirement of definition before use. The order of import statements 
is also immaterial, even if one provides instantiating parameters to 
another.

The signature Int is a special predefined signature representing in-
tegers, and can be used without an explicit import.

A module may not contain references to components of another 
module that it does not import, even if that module is imported 
along with it in another module.

Module names occupy their own name space, and may thus coin-
cide with the names of signatures, paragraphs, arguments or vari-
ables without conflict.

8.2 Signature Declarations
The productions discussed in this section are:

sigDecl ::=
 [abstract] [mult] sig sigID,+ [extends sigRef] sigBody
 | [mult] sig sigID,+  in sigRef sigBody
sigRef ::= [moduleRef] sigId | Int
sigBody ::= { decl,* } [formulaSeq]
formulaSeq ::= { formula* }
moduleRef ::= [path] moduleId [[ sigRef,* ]] | aliasId
mult ::= lone | one | some

A signature represents a set of atoms. There are two kinds of sig-
nature. A signature declared using the in keyword is a subset sig-
nature:

sigDecl ::= [mult] sig sigID,+  in sigRef sigBody
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All other signatures are type signatures:

sigDecl ::= [abstract] [mult] sig sigID,+ [extends sigRef] sigBody

A type signature plays the role of a type or subtype in the type 
system. A type signature that does not extend another signature 
is a top-level signature, and its type is a top-level type. A signature 
that extends another signature is said to be a subsignature of the 
signature it extends, and its type is taken to be a subtype of the 
type of the signature extended. A signature may not extend itself, 
directly or indirectly. The type signatures therefore form a type 
hierarchy whose structure is a forest: a collection of trees rooted 
in the top-level types.

Top-level signatures represent mutually disjoint sets, and subsig-
natures of a signature are mutually disjoint. Any two distinct type 
signatures are thus disjoint unless one extends the other, directly 
or indirectly, in which case they overlap.

A subset signature represents a set of elements that is a subset 
of the union of its parents: the signatures listed in its declaration. 
These may be subset or type signatures. A subset signature may 
not be extended, and subsets of a signature are not necessarily mu-
tually disjoint. A subset signature may not be its own parent, di-
rectly or indirectly. The subset signatures and their parents there-
fore form a directed acyclic graph, rooted in type signatures. The 
type of a subset signature is in general a union of top-level types or 
subtypes, consisting of the parents of the subset that are types, and 
the types of the parents that are subsets.

An abstract signature, marked abstract, is constrained to hold only 
those elements that belong to one of the signatures that extends it. 
If there are no extensions, the marking has no effect. The intent is 
that an abstract signature represents a classification of elements 
that is refined further by more ‘concrete’ signatures. If it has no ex-
tensions, the abstract keyword is likely an indication that the model 
is incomplete.

Any multiplicity keyword (with the exception of set, since it has 
no effect), may be associated with a signature, and constrains the 
signature’s set to have the number of elements specified by the 
multiplicity.
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The body of a signature declaration consists of declarations of 
fields, and an optional signature fact constraining the elements of 
the signature:

sigBody ::= { decl,* } [formulaSeq]

A subtype signature inherits the fields of the signature it extends, 
along with any fields that signature inherits. A subset signature in-
herits the fields of its parent signatures, along with their inherited 
fields.

A signature may not declare a field whose name conflicts with the 
name of an inherited field. Moreover, two subset signatures may 
not declare a field of the same name if their types overlap. This en-
sures that two fields of the same name can only be declared in dis-
joint signatures, and there is always a context in which two fields 
of the same name can be distinguished. If this were not the case, 
some overloadings would never be resolvable.

Like any other fact, the signature fact is a constraint that always 
holds. Unlike other facts, however, a signature fact is implicitly 
quantified over the signature set. Given the signature declaration

sig S {…} { F }

the signature fact F is interpreted as if one had written an explicit 
fact

fact { all this: S | F’ }

where F’ is like F, but has each reference to a field f of S (whether 
declared or inherited) replaced by this.f. Prefixing a field name 
with the special symbol @ preempts this implicit expansion.

Declaring multiple signatures at once in a single signature declara-
tion is equivalent to declaring each individually. Thus the declara-
tion

sig A, B extends C {f: D}

for example, introduces two subsignatures, A and B, of C, and for 
each declares a field f.

8.3 Declarations
The productions discussed in this section are:
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decl ::= [part | disj] varId,+ : declExpr
declExpr ::=
 [mult] expr
 | expr [mult] -> [mult] expr
mult ::= lone | one | some

The same declaration syntax is used for fields of signatures, argu-
ments to functions and predicates, and quantified variables – all 
of which we shall here refer to as variables. The interpretation for 
fields, which is slightly different, is explained second.

A declaration introduces one or more variables, and constrains 
their values and type:

decl ::= [part | disj] varId,+ : declExpr

A declaration has two effects:

· Semantically, it constrains the value a variable can take. The re-
lation denoted by the variable (on the left) is constrained to be a 
subset of the relation denoted by the declaration expression (on 
the right). When more than one variable is declared at once, the 
keywords disj and part may be used. The keyword disj constrains 
the declared variables to be mutually disjoint. The keyword part 
constrains them additionally to form a partition of the relation 
denoted by the declaration expression. Multiplicity constraints, 
explained below, constrain the value of a variable further.

· For the purpose of type checking, a declaration gives the vari-
able a type. A type is determined for the declaration expression, 
and that type is assigned to the variable. Any variable that ap-
pears in the declaration expression must have been declared 
already, either earlier in the sequence of declarations in which 
this declaration appears, or earlier elsewhere. For a quantified 
variable, this means within an enclosing quantifier; for a field of 
a signature, this means that the field is inherited; for a function 
or predicate argument, this means in the argument declarations 
of the enclosing function or predicate.

Note that the declaration expression of a field declaration in a sig-
nature may not refer to fields declared in other signatures, unless 
they are inherited.
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The declaration expression is an arbitrary expression. If the ex-
pression denotes a set (that is, a unary relation), it may be prefixed 
by a multiplicity keyword:

declExpr ::= [mult | set] expr
mult ::= lone | one | some

If the keyword is omitted, the declared variable is constrained by 
default to be a scalar (that is, to be a singleton set). The keyword 
set eliminates this constraint; lone weakens it to allow the variable 
to denote a ‘loner’ or ‘option’: either a singleton set or the empty 
set; some constrains the variable to denote a non-empty set; and 
one has no effect, being equivalent to omission.

If the expression denotes a relation of higher arity, the multiplicity 
keywords may not be used as a prefix. If the expression is formed 
with the arrow operator, the arrow itself may be elaborated with 
multiplicity keywords:

declExpr ::= expr [mult] -> [mult] expr
mult ::= lone | one | some

If the declaration expression has the form e1 m->n e2, where m and 
n are multiplicity keywords, the declaration imposes a multiplicity 
constraint on the declared variable. An arrow expression of this 
form denotes the relation whose tuples are concatenations of the 
tuples in e1 and the tuples in e2. If the marking n is present, the 
relation denoted by the declared variable is required to contain, 
for each tuple t1 in e1, n tuples that begin with t1. If the marking m 
is present, the relation denoted by the declared variable is required 
to contain, for each tuple t2 in e2, m tuples that end with t2. The 
markings are interpreted as follows:

· lone means zero or one;
· one means exactly one;
· some means one or more.

When the expressions e1 and e2 are unary, these reduce to familiar 
notions. For example, a declaration expression of the form X ->one 
Y makes the variable a total function from X to Y; the expression X 
->lone Y makes it an partial function; and X one->one Y makes it a 
bijection.

Declarations within a signature have essentially the same inter-
pretation. But for a field f, the declaration constraints apply not to 
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f itself but to this.f: that is, to the value obtained by dereferencing 
an element of the signature with f. Thus, for example, the declara-
tion

sig S {f: e}

does not constrain f to be a subset of e (as it would if f were a regu-
lar variable), but rather implies

all this: S | this.f in e

Moreover, any field appearing in e is expanded according to the 
rules of signature facts (Section 8.2). A similar treatment applies 
to multiplicity constraints and disj/part. In this case, for example, 
if e denotes a unary relation, the implicit multiplicity constraint 
will make this.f a scalar, so that f itself will denote a total function 
on S.

Type checking of fields has the same flavour. The field f is not as-
signed the type e, but rather the type of the expression S -> e. That 
is, the domain of the relation f has the type S, and this.f has the 
same type as e.

8.4 Constraint Paragraphs
The productions discussed in this section are:

factDecl ::= fact [factId] formulaSeq
predDecl ::= pred [sigRef ::] predId ( decl,* ) formulaSeq
funDecl ::= fun [sigRef ::] funId ( decl,*) :  declExpr { expr }
assertDecl ::= assert [assertId] formulaSeq
formulaSeq ::= { formula* }
formula ::= … | [expr ::] predRef ( expr,* )
expr ::= … | [expr ::] funRef ( expr,* )

A fact is a constraint that always holds. A predicate is a template 
for a constraint that can be instantiated in different contexts. A 
function is a template for an expression. An assertion is a con-
straint that is intended to follow from the facts of a model; it is 
thus an intentional redundancy. Assertions can be checked by the 
Alloy Analyzer; functions and predicates can be simulated.

A fact can be named for documentation purposes. An assertion 
can be named or anonymous, but since a command to check an as-
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sertion must name it, an anonymous assertion cannot be checked. 
Functions and predicates must always be named.

A fact consists of an optional name and a constraint, given as a 
sequence of formulas, which are implicitly conjoined:

factDecl ::= fact [factId] formulaSeq

A predicate declaration consists of the name of the predicate, 
some argument declarations, and a constraint, given as a sequence 
of formulas, which are implicitly conjoined:

predDecl ::= pred [sigRef ::] predId ( decl,* ) formulaSeq

The argument declarations may include a first argument declared 
anonymously. When a predicate is declared in the form

pred S::f (…) {…}

the first argument is taken to be a scalar of signature S, which is 
referred to within the body of the predicate using the keyword this, 
as if the declaration had been written

pred f (this: S, …) {…}

A function declaration consists of the name of the predicate, some 
argument declarations, and an expression:

funDecl ::= fun [sigRef ::] funId ( decl,*) :  declExpr { expr }

The argument declarations include a declaration expression for 
the result of the function, corresponding to the value of the ex-
pression. The first argument may be declared anonymously, ex-
actly as for predicates.

A predicate may be invoked as a formula by providing an expres-
sion for each argument:

formula ::= [expr ::] predRef ( expr,* )

A function likewise may be invoked as an expression by providing 
an expression for each argument:

expr ::= [expr ::] funRef ( expr,* )

Invocation can be viewed as textual inlining. An invocation of a 
predicate gives a formula which is obtained by taking the formula 
of the predicate’s body, and replacing the formal arguments by the 
corresponding expressions of the invocation. Likewise, invocation 
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of a function gives an expression obtained by taking the expres-
sion of the function’s body, and replacing the formal arguments of 
the function by the corresponding expressions of the invocation. 
Recursive invocations are not currently supported.

A function or predicate invocation may present its first argument 
in receiver position. So instead of writing

p (a, b, c)

for example, one can write

a::p (b, c)

The form of invocation is not constrained by the form of declara-
tion. Although often a function or predicate will be both declared 
with an anonymous receiver argument and used with receiver syn-
tax, this is not necessary. The first argument may be presented as 
a receiver irrespective of the format of declaration, and the first 
argument may be declared anonymously irrespective of the format 
of use. In particular, it can be convenient to invoke a function or 
predicate in receiver form when the first argument is not a sca-
lar, even though it cannot be declared with receiver syntax in that 
case.

Within a module, no two constraint paragraphs may be declared 
with the same name, nor may a constraint paragraph have the 
same name as a signature.

8.5 Commands
The productions discussed in this section are:

runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]
checkCmd ::= [commandId :] check assertRef [scope]
scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int
sigRef ::= [moduleRef] sigId | Int | univ

A command is an instruction to the Alloy Analyzer to perform 
an analysis. Analysis involves constraint solving. A run command 
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causes the analyzer to search for an instance that witnesses the 
consistency of a function or a predicate. A check command causes 
it to search for a counterexample showing that an assertion does 
not hold.

A command to run a function or predicate consists of an optional 
command name, the keyword run, a reference to the function or 
predicate, and, optionally, a scope specification:

runCmd ::=
 [commandId :] run funRef [scope]
 [commandId :] run predRef [scope]

Similarly, a command to check an assertion consists of an optional 
command name, the keyword check, a reference to the assertion, 
and, optionally, a scope specification:

checkCmd ::= [commandId :] check assertRef [scope]

The command name is used in the user interface of the Alloy Ana-
lyzer (or at the command line) to select the command to be ex-
ecuted. In the graphical user interface, the command is selected 
from a pop-up menu; the only reason for the command name is 
to allow commands to be more easily recognized when there are 
many commands for the same assertion, function or predicate. No 
two commands in a module may have the same command names.

As explained in Section 6, analysis always involves solving a con-
straint. For a predicate with body formula P, the constraint solved 
is

P and F and D

where F is the conjunction of all facts, and D is the conjunction of 
all declaration constraints, including the declarations of the pred-
icate’s arguments. Note that when the predicate’s body is empty, 
the constraint is simply the facts and declaration constraints of 
the model. An empty predicate is often a useful starting point in 
analysis to determine whether the model is consistent, and, if so, 
to examine some of its instances.

For a function named f whose body expression is E, the constraint 
solved is

f = E and F and D



ALLOY 3.0 REFERENCE MANUAL  · MAY 10, 2004 29

where F is the conjunction of all facts, and D is the conjunction of 
all declaration constraints, including the declarations of the func-
tion arguments. The variable f stands for the value of the expres-
sion.

Note that the declaration constraints of a predicate or function are 
used when that function or predicate is run, but are ignored when 
the predicate or function is invoked.

For an assertion whose body formula is A, the constraint solved is

F and D and not A

namely the negation of

F and D implies A

where F is the conjunction of all facts, and D is the conjunction of 
all declaration constraints.

An instance or counterexample found by the analyzer will assign 
values to the following variables:

· The signatures and fields of the model;
· For an instance of a predicate or function, the arguments of 

the function or predicate, one of which will be named this if 
the first argument is declared anonymously;

· For an instance of function, a variable denoting the value of 
the expression, with the same name as the function itself.

The analyzer may also give values to skolem constants as witnesses 
for existential quantifications. Whether it does so, and whether 
existentials inside universals are skolemized, depends on prefer-
ences set by the user.

The search for an instance is conducted within a scope, which is 
specified as follows:

scope ::= for number
 | for [number but] typescope,+

typescope ::= [exactly] number scopeable
scopeable ::= sigRef | int
sigRef ::= [moduleRef] sigId | Int | univ

The scope specification of a command places bounds on the sizes 
of the sets assigned to type signatures, thus making the search fi-
nite. Only type signatures are involved; subset signatures may not 
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be bounded in a scope specification. For the rest of this section, 
‘signature’ should be read as synonymous with ‘type signature’.

The bounds are determined as follows:
· If no scope specification is given, a default scope of 3 ele-

ments is used: each top-level signature is constrained to rep-
resent a set of at most 3 elements.

· If the scope specification takes the form for N, a default of N is 
used instead.

· If the scope specification takes the form for N but …, every 
signature listed following but is constrained by its given 
bound, and any top-level signature whose bound is not given 
implicitly is bounded by the default N.

· Otherwise, for an explicit list without a default, each signa-
ture listed is constrained by the given bound.

Implicit bounds are determined as follows:
· If an abstract signature has no explicit bound, but its sub-

signatures have bounds, implicit or explicit, its bound is the 
sum of those of its subsignatures.

· If an abstract signature has a bound, explicit or by default, 
and all but one of its subsignatures have bounds, implicit or 
explicit, the bound of the remaining subsignature is the dif-
ference between the abstract signature’s bound and the sum 
of the bounds of the other subsignatures.

· A signature declared with the multiplicity keyword one has a 
bound of 1.

· If an implicit bound cannot be determined for a signature by 
these rules, the signature has no implicit bound.

If a scope specification uses the keyword exactly, the bound is tak-
en to be both an upper and lower bound on the cardinality of the 
signature. The rules for implicit bounds are adjusted accordingly. 
For example, an abstract signature whose subsignatures are con-
strained exactly will likewise be constrained exactly.

The scope specification must be:
· consistent: at most one bound must be associated with any 

signature, implicitly, explicitly or by default;
· complete: every top-level signature must have a bound;
· uniform: a signature without a bound may not have a subsig-

nature that has a bound.
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By default, the predefined signature Int is limited to 3 elements, 
so that there may be at most 3 integer objects appearing in an in-
stance or counterexample. The bound on the integer values rep-
resented by these integer objects, and on the values of integer ex-
pressions, may be altered by assigning a bound to int. A bound of k 
for int limits integer values to be between 0 and 2k-1. Its default is 
5, so integers by default range from 0 to 31.

8.6 Expressions
The productions discussed in this section are:

expr ::= [@] varId | sigRef | this |
 | none | univ | iden
 | unOp expr | expr binOp expr | expr[ expr ]
 | { decl,+ | [formula] }
 | let letDecl,+ | expr
 | if formula then expr else expr
 | ( expr )
letDecl ::= varId = expr
binOp ::= + | - | & | . | -> | <: | :> | ++
unOp ::= ~ | * | ^

There are two kinds of expression in Alloy: relational expressions, 
and integer expressions. When mentioned without qualification, 
the term ‘expression’ refers to a relational expression.

Every relational expression denotes a relation. A set is represented 
as a relation of arity one, and a scalar is represented as a singleton 
set. A tuple is a singleton relation.

Alloy’s analysis involves finding solutions to constraints. For any 
candidate instance that may be a solution to the constraint, each 
expression of the constraint has a value given by the instance’s 
bindings of values to variables.

An expression may consist simply of a variable name, signature 
reference, or the special argument this:

expr ::= [@] varId | sigRef | this |

If the variable denotes a field name, its value is the value bound 
to that field in the instance being evaluated. In contexts in which 
field names are implicitly dereferenced – that is, in signature dec-
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laration expressions and signature facts – the prefix @ preempts 
dereferencing (see Section 8.2). If there is more than one field of 
the given name, the reference is resolved, or rejected if ambiguous 
(see Section 7).

If a variable denotes a quantified or let-bound variable, its value 
is determined by the binding. If the variable is an argument of a 
function or predicate, the analysis at hand must be a run of that 
function or predicate (since if the function or predicate is invoked, 
its meaning is obtained by inlining and the argument has been re-
placed) and the variable’s value is bound speculatively to each pos-
sible value during search.

An expression may be a relational constant:

expr ::= none | univ | iden

The three constants none, univ and iden denote respectively: the 
empty unary relation (that is, the set containing no elements), the 
universal unary relation (the set containing every element) and the 
identity relation (the binary relation that relates every element to 
itself ).

Note that univ and iden are interpreted over the universe of all at-
oms. So a formula such as

iden in r

will be unsatisfiable unless the relation r has type univ -> univ. To 
say that r is a reflexive relation, you might write instead

t <: iden in r

for example, where r has type t -> t.

An expression may be a compound expression:

expr ::= unOp expr | expr binOp expr | expr[ expr ]
binOp ::= + | - | & | . | ->
unOp ::= ~ | * | ^

The value of a compound expression is obtained from the values 
of its constituents by applying the operator given. The meanings of 
the operators are as follows:

· ~e: transpose of e;
· ^e: transitive closure of e;
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· *e: reflexive-transitive closure of e;
· e1 + e2: union of e1 and e2;
· e1 - e2: difference of e1 and e2;
· e1 & e2: intersection of e1 and e2;
· e1 . e2: join of e1 and e2;
· e2 [e1]: join of e1 and e2;
· e1 -> e2: product of e1 and e2;
· e2 <: e1: domain restriction of e1 to e2;
· e1 :> e2: range restriction of e1 to e2;
· e1 ++ e2: relational override of e1 by e2.

For the first three (the unary operators), e is required to be binary. 
For the set theoretic operations (union, difference and intersec-
tion) and for relational override, the arguments are required to 
have the same arity. For the restriction operators, the argument e2 
is required to be a set.

Note that e1[e2] is equivalent to e2.e1, but the dot and square 
brackets operators have different precedence.

The transpose of a relation is its mirror image: the relation ob-
tained by reversing each tuple. The transitive closure of a relation 
is the smallest enclosing relation that is transitive (that is, relates a 
to c whenever there is a b such that it relates a to b and b to c). The 
reflexive-transitive closure of a relation is the smallest enclosing 
relation that is transitive and reflexive (that is, includes the identity 
relation).

The union, difference and intersection operators are the standard 
set theoretic operators, applied to relations viewed as sets of tu-
ples. The union of e1 and e2 contains every tuple in e1 or in e2; the 
intersection of e1 and e2 contains every tuple in both e1 and in e2; 
the difference of e1 and e2 contains every tuple in e1 but not in e2.

The join of two relations is the relation obtained by taking each 
combination of a tuple from the first relation and a tuple from the 
second relation, and if the last element of the first tuple matches 
the first element of the second tuple, including the concatenation 
of the two tuples, omitting the matching elements.

The product of two relations is the relation obtained by taking each 
combination of a tuple from the first relation and a tuple from the 
second relation, and including their concatenation.
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The domain restriction of e1 to e2 contains all tuples in e1 that 
start with an element in the set e2. The range restriction of e1 to 
e2 contains all tuples in e1 that end with an element in the set e2. 
These operators are especially handy in resolving overloading (see 
Section 7).

The relational override of e1 by e2 contains all tuples in e2, and 
additionally, any tuples of e1 whose first element is not the first 
element of a tuple in e2.

An expression may be a comprehension expression:

expr ::= { decl,+ | [formula] }

The expression

{x1: e1, x2: e2, … | F}

denotes the relation obtained by taking all tuples x1 -> x2 -> … 
in which x1 is drawn from the set e1, x2 is drawn from the set e2, 
etc., and the formula F holds. The expressions e1, e2, etc., must be 
unary, and may not be prefixed by multiplicity keywords. More 
general declaration forms are not permitted, except for the use of 
the disj and part keywords.

An expression may be a let expression:

expr ::= let letDecl,+ | expr
letDecl ::= varId = expr

The expression

let v1 = e1,  v2 = e2, … | e

is equivalent to the expression e, but with each bound variable v1, 
v2, etc. replaced by its assigned expression e1, e2, etc. Variables ap-
pearing in let declaration expressions must have been previously 
declared. Recursive bindings are not permitted.

An expression may be an if expression:

expr ::= if formula then expr else expr

The expression

if F then e1 else e2

has the value of expression e1 when the formula F is true, and the 
value of expression e2 otherwise.
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The meaning of an invocation expression

expr ::= [expr ::] funRef ( expr,* )

is explained in Section 8.4.

The meaning of the Integer expression

expr ::= Int intExpr

is explained in Section 8.7.

An expression may be parenthesized to force a particular ordering 
of application of operators:

expr ::= ( expr )

8.7 Integers
The productions discussed in this section are:

formula ::= intExpr [neg] intCompOp intExpr
expr ::= Int intExpr
intExpr ::= number | # expr | sum expr | int expr
 | if formula then intExpr else intExpr
 | intExpr intOp intExpr
 | let letDecl,… | intExpr
 | sum decl,+ | intExpr
 | ( intExpr )
intOp ::= + | -
intCompOp ::= < | > | = | =< | >=

There are two kinds of integers in Alloy. The predefined signature 
Int denotes a set of integer-carrying objects that may appear as at-
oms in relations. Integer operators may not be applied to these 
objects directly. Integer expressions are distinguished syntacti-
cally from relational expressions, and have primitive integer values 
which may be combined and compared using arithmetic opera-
tors. Primitive integer values may not appear as atoms in relations, 
and cannot be quantified over.

Distinct integer objects never carry the same primitive integer 
value. So the following assertion always holds:

assert IntegersCanonical {no disj i, j: Int | int i = int j}
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A primitive integer value may be obtained from a relational ex-
pression whose value is a set of integer objects:

intExpr ::= sum expr | int expr

Both integer expressions int e and sum e have an integer value that 
is the sum of the integer values associated with integer objects in 
the set denoted by the relational expression e. There is no semantic 
difference between the two. The intent is that sum be used to indi-
cate explicitly that the expression is expected not to be a singleton. 
Usually, the int operator will be applied to an expression denoting 
a single Integer object, but it is defined over a set of Integer objects 
so that it always has a value.

A primitive integer value may be obtained from a relational ex-
pression of any type using a cardinality expression:

intExpr ::= # expr

The integer expression #e has an integer value corresponding to 
the cardinality of e – that is, the number of tuples in the relation 
denoted by the relational expression e.

A numeric constant may be used as an integer expression:

intExpr ::= number

A numeric constant is a sequence of one or more digits, of which 
the first is not zero.

Integers may be combined using standard arithmetic operators for 
addition and subtraction:

intExpr ::= intExpr intOp intExpr
intOp ::= + | -

The integer expression i + j evaluates to the sum of the values of the 
integer expressions i and j; the integer expression i - j evaluates to 
the value of the integer expression i minus the value of the integer 
expression j. Note that the plus and minus symbols are overload-
ed: they are treated as arithmetic operators within integer expres-
sions, and as relational operators within relational expressions.

A sum expression computes the sum of the values of an integer 
expression over a range of bindings:

intExpr ::= sum decl,+ | intExpr
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The integer expression

sum x: X, y: Y, … | ie

evaluates to the sum of the values that the integer expression ie 
can take for all distinct bindings of the variables x, y, etc. The most 
general declaration forms are permitted, although analysis may 
not be feasible when the bindings are not first order.

If-then-else and let can be applied to integer expressions:

intExpr ::=
 if formula then intExpr else intExpr
 | let letDecl,… | intExpr

with the same meaning as for relational expressions, but with in-
teger values instead.

Integer valued expressions can be compared:

formula ::= intExpr [neg] intCompOp intExpr
intCompOp ::= < | > | = | =< | >=

The meaning of the comparison operators is as follows:
· The formula i = j is true when the integer expressions i and j 

have the same value;
· The formula i < j is true when i is less than j;
· The formula i > j is true when i is greater than j;
· The formula i =< j is true when i is less than or equal to j;
· The formula i >= j is true when i is greater than or equal to j.

The ‘less than or equal to’ operator is written unconventionally 
with the equals symbol first so that it does not have the appearance 
of an arrow, which might be confused with a logical implication.

A formula in which the comparison operator is negated

e1 not op e2

is equivalent to the formula obtained by moving the negation out-
side:

not e1 op e2

The negation operators ! and not have the same meaning.

Integer objects are obtained from integer values with the Int op-
erator:
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expr ::= Int intExpr

The expression Int ie denotes the Integer object associated with 
the value of the integer expression ie; it is equivalent to

{i: Int | int i = ie}

It is possible that, in a particular analysis, the scope is too small to 
provide such an integer. In that case, Int ie denotes the empty set. 
Note that because no two integer-carrying objects hold the same 
integer value, it will never denote a set of more than one object.

8.8 Formulas
The productions discussed in this section are:

formula ::=
 quantifier expr
 | expr [neg] compOp expr
 | neg formula | formula logicOp formula
 | formula thenOp formula [elseOp formula]
 | quantifier decl,+ formulaBody
 | let letDecl,+ formulaBody
 | expr : declExpr
 | formulaSeq
 | ( formula )
formulaBody ::= formulaSeq | | formula
formulaSeq ::= { formula* }
letDecl ::= varId = expr
thenOp ::= implies | =>
elseOp ::= else | ,
neg ::= not | !
logicOp ::= && | || | iff | <=> | and | or
quantifier ::= all | no | mult
mult ::= lone | one | some
compOp ::= in | : | =
declExpr ::=
 [mult | set] expr
 | expr [mult] -> [mult] expr

Elementary formulas are formed by applying quantifiers to rela-
tional expressions, or by comparing relational or integer expres-
sions.
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A quantified expression takes the form

formula ::= quantifier expr
quantifier ::= all | no | mult
mult ::= lone | one | some

Its meaning depends on the quantifier chosen:
· The formula no e is true when e evaluates to a relation con-

taining no tuple.
· The formula some e is true when e evaluates to a relation con-

taining one or more tuple.
· The formula lone e is true when e evaluates to a relation con-

taining at most one tuple.
· The formula one e is true when e evaluates to a relation con-

taining exactly one tuple.

The formula all e is rejected by a static semantic check: it has no 
meaning.

A comparison formula takes the form

formula ::= expr [neg] compOp expr
compOp ::= in | =

Its meaning depends on the comparison operator:
· The formula e1 in e2 is true when the relation that e1 evalu-

ates to is a subset of the relation that e2 evaluates to.
· The formula e1 = e2 is true when the relation that e1 evaluates 

to to the same relation as e2.

Note that relational equality is extensional: two relations are equal 
when they contain the same tuples.

A formula in which the comparison operator is negated

e1 not op e2

is equivalent to the formula obtained by moving the negation out-
side:

not e1 op e2

The negation operators ! and not have the same meaning.

Comparisons on integer expressions are covered in Section 8.7.

A negated formula takes the form
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formula ::= neg formula
neg ::= not | !

The formula not F is true when the formula F is false, and vice ver-
sa. The negation operators not and ! are interchangeable.

A compound formula combines smaller formulas with logical op-
erators:

formula ::=
 formula logicOp formula
 | formula thenOp formula [elseOp formula]
logicOp ::= && | || | iff | <=> | and | or
thenOp ::= implies | =>
elseOp ::= else | ,

The meaning of the logical operators is as follows:
· The formula F and G is true when F is true and G is true.
· The formula F or G is true when one or both of F and G are 

true.
· The formula F iff G is true when F and G are both false or both 

true.
· The formula F implies G is true when F is false or G is true.
· The formula F implies G else H is true when both F and G are 

true, or when F is false and H is true.

The logical operators may be written interchangeably as symbols: 
&& for and, || for or, => for implies, <=> for iff, and a comma (,) for 
else.

A formula sequence is a sequence of formulas enclosed in curly 
braces:

formula ::= formulaSeq
formulaSeq ::= { formula* }

The formula

{ F G H … }

is equivalent to the conjunction

F and G and H and …

If the sequence contains no formulas, the formula is true.
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A quantified formula consists of one or more declarations and a 
body:

formula ::= quantifier decl,+ formulaBody
formulaBody ::= formulaSeq | | formula
formulaSeq ::= { formula* }
quantifier ::= all | no | mult
mult ::= lone | one | some

It makes no difference whether the formula body is a single for-
mula preceded by a vertical bar, or a formula sequence. The two 
forms are provided so that the vertical bar can be omitted when 
the body is a sequence of formulas. Some users prefer to use the 
bar in all cases, writing for example:

all x: X | { F }

Others prefer never to use the bar, and use the curly braces even 
when the formula sequence consists of only a single formula:

all x: X { F }

These forms are all acceptable and are interchangeable.

The meaning of the formula depends on the quantifier:
· The formula all x: e | F is true when the formula F is true for 

all bindings of the variable x.
· The formula no x: e | F is true when the formula F is true for 

no bindings of the variable x.
· The formula some x: e | F is true when the formula F is true for 

one or more bindings of the variable x.
· The formula sole x: e | F is true when the formula F is true for 

at most one binding of the variable x.
· The formula one x: e | F is true when the formula F is true for 

exactly one binding of the variable x.
· The formula two x: e | F is true when the formula F is true for 

exactly two bindings of the variable x.

The range and type of the bound variable is determined by its 
declaration (see Section 8.3). In a sequence of declarations, each 
declared variable may be bound by the declarations or previously 
declared variables. For example, in the formula

all x: e, y: S - x | F
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the variable x varies over the values of the expression e (assumed 
to represent a set), and the variable y varies over all elements of 
the set S except for x. When more than one variable is declared, 
the quantifier is interpreted over bindings of all variables. For ex-
ample,

one x: X, y: Y | F

is true when there is exactly one binding that assigns values to x 
and y that makes F true. So although a quantified formula with 
multiple declarations may be regarded, for some quantifiers, as a 
shorthand for nested formulas each with one declaration, this is 
not in general true. Thus

all x: X, y: Y | F

is short for

all x: X | all y: Y | F

but

one x: X, y: Y | F

is not short for

one x: X | one y: Y | F

A quantified formula may be higher-order: that is, it may bind 
non-scalar values to variables. Whether the formula is analyzable 
will depend on whether it can be skolemized by the Analyzer, and 
if not, how large the scope is.

A let formula allows a variable to be introduced, to highlight an 
import subexpression or make the formula shorter by factoring 
out a repeated subexpression:

formula ::= let letDecl,+ formulaBody
letDecl ::= varId = expr

The formula

let x1 = e1, x2 = e2, … | F

is equivalent to the formula F with each occurrence of the bound 
variable x1 replaced by the expression e1, x2 by e2, etc. Like all 
declarations, let declarations are interpreted in order, and may not 
be recursive.
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Predicate invocation is discussed in Section 8.4.

A declaration formula allows a multiplicity constraint to be placed 
on an expression:

formula ::= declFormula
declFormula ::= expr : declExpr
declExpr ::=
 [mult | set] expr
 | expr [mult] -> [mult] expr

Declaration formulas are useful for two reasons. First, they al-
low multiplicity constraints to be placed on arbitrary expressions, 
where declarations themselves only allow them to be placed on 
variables. Thus,

p.q : t one->one t

for example, says that the join of p and q is a bijection. Second, 
they allow additional multiplicity constraints to be expressed that 
cannot be expressed in declarations. For example, the relation r of 
type A -> B can be declared as a field of A:

sig A {r: set B}

Since the declaration constraints apply to the relations this.r, they 
cannot constrain the multiplicity of the relation from B’s perspec-
tive. To say that r maps at most one A to each B, one could add as a 
fact the declaration formula

r: A lone-> B

Another deficiency of declarations that can be overcome is that 
they only allow multiplicities around one arrow to be given. For a 
relation p of type A -> B -> C, a declaration of the form

all r: A ->some (B -> C) | …

makes r total on A. The constraint that R maps a pair from A -> B to 
each element of C cannot be expressed in this declaration because 
it requires a different parsing of the expression, associating the ar-
rows to the left rather than the right. To express this constraint, 
one could use a declation formula like this:

all r: A ->some (B -> C) | r: (A -> B) some-> C  => …
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A formula may be parenthesized to force a particular ordering of 
application of operators:

formula ::= ( formula )
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